

1 **“Stress-induced clustering of the UPR sensor IRE1 α is driven by disordered**
2 **regions within its ER luminal domain”**

3
4 Paulina Kettel^{1,2,*}, Laura Marosits^{1,3,*}, Elena Spinetti⁴, Michael Rechberger¹, Philipp
5 Radler⁵, Isabell Niedermoser^{1,3}, Irmgard Fischer¹, Gijs A Versteeg^{1,6}, Martin Loose⁵,
6 Roberto Covino⁴ and G Elif Karagöz^{1,3,#}

7
8 1. Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria.
9 2. Vienna BioCenter PhD Program, Doctoral School of the University of Vienna
10 and Medical University of Vienna, Vienna, Austria.
11 3. Medical University of Vienna, Vienna, Austria.
12 4. Frankfurt Institute for Advanced Studies, Frankfurt, Germany.
13 5. Institute of Science and Technology Austria, Klosterneuburg, Austria.
14 6. Department of Microbiology, Immunobiology and Genetics, University of
15 Vienna, Vienna, Austria.

16
17 * : contributed equally
18 #: corresponding author

19 **Abstract**

20 Upon accumulation of unfolded proteins at the endoplasmic reticulum (ER), IRE1
21 activates the unfolded protein response (UPR) to restore protein-folding homeostasis.
22 During ER stress, IRE1’s ER luminal domain (LD) drives its clustering on the ER
23 membrane to initiate signaling. How IRE1’s LD assembles into high-order oligomers
24 remains largely unknown. By *in vitro* reconstitution experiments we show that human
25 IRE1 α LD forms dynamic biomolecular condensates. IRE1 α LD condensates were
26 stabilized when IRE1 α LD was tethered to model membranes and upon binding of
27 unfolded polypeptide ligands. Molecular dynamics simulations suggested that weak
28 multivalent interactions are involved in IRE1 α LD assemblies. Mutagenesis showed
29 that disordered regions in IRE1 α LD control its clustering *in vitro* and in cells.
30 Importantly, dysregulated clustering led to defects in IRE1 α signaling. Our results
31 reveal that membranes and unfolded polypeptides act as scaffolds to assemble
32 dynamic IRE1 α condensates into stable, signaling competent clusters.

33 **Introduction**

34 The endoplasmic reticulum (ER) controls various fundamental cellular functions
35 ranging from folding and quality control of secreted and membrane proteins to lipid
36 biogenesis. A set of conserved signaling pathways collectively known as the unfolded
37 protein response (UPR) maintains ER homeostasis ¹. IRE1, a single-pass ER
38 transmembrane kinase/RNase, drives the most conserved UPR pathway ²⁻⁶. In
39 response to ER stress, IRE1 assembles into clusters, which brings its cytosolic kinase
40 and RNase domains in close proximity allowing for trans-autophosphorylation of the
41 kinase domains and subsequent allosteric activation of its RNase domain ⁷⁻¹⁰. IRE1’s
42 RNase activity initiates the nonconventional splicing of the mRNA encoding the
43 transcription factor XBP1. The spliced form of XBP1 mRNA drives expression of the
44 genes involved in restoring ER homeostasis, including chaperones ^{3,4,6,10-15}. In

49 metazoans, IRE1 activation also leads to the degradation of ER-bound mRNAs in a
50 process known as regulated IRE1-dependent mRNA decay (RIDD), which decreases
51 the ER protein-folding burden to alleviate ER stress^{16,17}.

52

53 IRE1 senses various perturbations to ER homeostasis to initiate signaling. Under
54 steady-state conditions, IRE1's LD is bound by the ER chaperone BiP, which keeps
55 IRE1 in an inactive state¹⁸. Accumulation of misfolded proteins in the ER results in the
56 dissociation of BiP from IRE1's LD¹⁸⁻²¹. Under these conditions, IRE1's luminal
57 domain (LD) binds misfolded proteins as ligands that trigger its oligomerization²²⁻²⁴.
58 IRE1 can also sense lipid bilayer stress by its transmembrane domain leading to its
59 activation²⁵⁻²⁷. IRE1 activation highly correlates with its assembly into microscopically
60 visible clusters in cells^{8,22,28-30}. Clustering of IRE1 is initiated by its ER-luminal sensor
61 domain^{7,9,22,29,31}. Importantly, mutations introduced to the oligomerization interface in
62 IRE1's LD impair the formation of high-order oligomers and abolish IRE1 signaling in
63 cells^{7,22,29,31}.

64

65 Oligomerization is a conserved property of IRE1 LD from yeast to humans^{7,22}. *In vitro*,
66 the core folded domain of human IRE1 α LD (cLD) forms discrete dimers, which in a
67 concentration-dependent manner assemble into dynamic high-order oligomers²². The
68 human IRE1 α cLD was crystallized as a monomer in the unit cell and the crystal
69 structure did not display functional oligomerization interfaces²¹. Therefore, the
70 structural basis for IRE1 α LD oligomerization has remained elusive. Mutational
71 analyses based on crosslinking coupled to mass spectroscopy data identified a
72 hydrophobic segment in IRE1 α cLD that controls its oligomerization *in vitro* and its
73 clustering in cells²². However, this method did not provide sufficient resolution to map
74 the interfaces contributing to the formation of high-order oligomers. Therefore, the
75 mechanistic basis of IRE1 α oligomerization and the states leading to formation of
76 signaling competent IRE1 α oligomers have been poorly understood. Importantly, even
77 though IRE1 α is a membrane protein, how the two-dimensional physiological
78 orientation of IRE1 α on the membrane impacts its clustering has not been explored.

79

80 To mechanistically dissect how IRE1 α LD assembles into high-order oligomers, we
81 reconstituted IRE1 α LD clustering in solution and on supported lipid bilayers (SLB) as
82 model membranes. We revealed that disordered regions (DRs) in IRE1 α LD control its
83 assembly into dynamic biomolecular condensates. Our data suggest that membranes
84 and unfolded polypeptide ligands act synergistically in stabilizing dynamic IRE1 α LD
85 condensates into long-lived clusters to transmit the signal across the ER membrane.

86

87 **Results**

88

89 **IRE1 α LD forms stable clusters on synthetic membranes**

90

91 To investigate whether membrane association influences IRE1 α LD clustering, we
92 reconstituted the system *in vitro* using purified human IRE1 α LD tethered to supported
93 lipid bilayers (SLBs). SLBs are constituted of planar membranes formed on solid
94 surfaces which are widely used as membrane-mimics (**Fig. 1A,B**).

95

96 We reconstituted SLBs composed primarily of 1-palmitoyl-2-oleoyl-glycero-3-
97 phosphocholine (98.92 mol% POPC). We used 1 mol% nickel–nitrilotriacetic acid (Ni-
98 NTA) lipids to tether mCherry-IRE1 α LD-10His to SLBs through its C-terminal 10xHis
99 tag, which allows placing IRE1 α LD in the topologically correct orientation (**Fig. 1B**).
100 To monitor SLB integrity and fluidity, we used 0.08 mol% Atto488 labeled 1,2-
101 Dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE). Fluorescence recovery after
102 photobleaching (FRAP) experiments revealed that mCherry-IRE1 α LD-10His
103 displayed a dynamic behavior on SLBs (**Fig 1C (left)**, **Fig. Supp. 1A**, **Suppl. Table 1**).
104 FRAP of Atto488 labeled DPPE lipids confirmed that the membrane was fluid (**Fig.**
105 **Supp. 1A**, **Supp. Table 1**).

106
107 To mimic the crowding of the ER environment in our *in vitro* assays, we used the
108 molecular-crowding agent polyethylene glycol 8000 (PEG)³². We monitored mCherry-
109 IRE1 α LD-10His clustering *via* total internal reflection fluorescence (TIRF) microscopy
110 and FRAP experiments at various PEG concentrations (**Fig. 1C (right)**, **Fig. 1F**, **Fig.**
111 **Supp. 1B,C**). Using the recovery half-life times obtained by the FRAP experiments,
112 we calculated the diffusion coefficient based on Axelrod et al³³ and Soumpasis et al³⁴.
113 Increasing the PEG concentration gradually decreased the mobile fraction and
114 diffusion rates of mCherry-IRE1 α LD-10His from 0.18 $\mu\text{m}^2/\text{s}$ without PEG to 0.02 $\mu\text{m}^2/\text{s}$
115 in presence of 11 % (w/v) PEG, demonstrating that the diffusion rate of IRE1 α LD on
116 SLBs decreases in the presence of crowding agent (**Fig. Supp. 1B-C**). In the presence
117 of 10 % PEG, mCherry-IRE1 α LD-10His displayed a diffuse fluorescence signal (**Fig.**
118 **1F**, **Fig. Supp. 1B**, **Supp. Table 2**), while 11 % PEG induced the formation of large
119 mCherry-IRE1 α LD-10His clusters on the SLB (**Fig. 1C (right)**, **Fig. 1F**, **Fig. Supp.**
120 **1B,C**, **Movie 1**, **Supp. Table 2**). In the presence of 11 % PEG, both mCherry-10His
121 control and Atto488-labeled DPPE retained their dynamic behavior confirming that the
122 integrity of the SLB was not compromised and clustering is specific to IRE1 α LD (**Fig.**
123 **Supp. 1D-F**, **Supp. Table 2**). Under those conditions, mCherry-IRE1 α LD-10His
124 clusters formed and fused over time (**Fig. 1D**, **Movie 2**). Yet, FRAP experiments
125 showed that photo-bleached IRE1 α LD clusters did not recover even after 300 seconds
126 (**Fig. 1E**, **Fig. Supp. 1B**). Instead, we observed a slight increase in mCherry-IRE1 α
127 LD-10His fluorescence at the periphery of the clusters (**Fig. 1E**) indicating that
128 membrane-tethered IRE1 α LD assembles into stable clusters driven by molecular
129 crowding. To test whether membrane-tethered IRE1 α LD clusters are not just
130 aggregates, we performed wash-out experiments in which we removed the crowding
131 agent from the well. Removal of PEG led to the disappearance of IRE1 α LD clusters
132 back to a diffuse fluorescence signal (**Fig. Supp. 1G**). Importantly, clusters could
133 reform by adding 11 % PEG, indicating that they are dynamic and reversible.
134 Altogether, we found that IRE1 α LD forms stable but reversible clusters on synthetic
135 membranes. Notably, our data are in line with the FRAP experiments performed with
136 IRE1 α in cells indicating that IRE1 α LD reconstituted on membranes recapitulates the
137 physical properties of IRE1 α assemblies in cells³⁰.

138
139 **Binding of model unfolded polypeptides enhances IRE1 α LD clustering**
140
141 IRE1 α 's LD binds unfolded peptides that are enriched in arginine, aromatic and
142 hydrophobic residues as a means of recognizing aberrant protein conformations^{22,23}.
143 We next tested whether binding of model unfolded polypeptides would enhance IRE1 α

144 LD clustering on SLBs. We used peptides that we had previously shown to interact
145 with IRE1 α LD ²². The binding peptides with the highest affinity were derived from
146 Myelin Protein Zero (MPZ) referred to as MPZ derivatives. MPZ1N is a 12mer peptide
147 with a single binding site for IRE1 α LD and binds IRE1 α LD with an approximate affinity
148 of 20 μ M (**Fig. Supp. 2A**). MPZ1N-2X consists of two MPZ1N 12mers arranged in
149 tandem, and it binds IRE1 α LD with 1 μ M affinity due to avidity ²² (**Fig. Supp. 2B**). As
150 a control, we mutated arginine residues in MPZ1N-2X to impair its interaction with
151 IRE1 α LD, yielding MPZ1N-2X-RD ²². Using fluorescence anisotropy experiments, we
152 confirmed the MPZ1N-2X-RD interaction with IRE1 α LD is largely impaired (**Fig. Supp.**
153 **2B**).

154

155 In the stressed ER, IRE1 α LD clustering may be initiated by specific interactions of
156 IRE1 α LD with un/misfolded proteins, and a bulk increase in molecular crowding due
157 to blocked secretion of un/misfolded proteins. Therefore, we next tested whether
158 IRE1 α LD's interactions with model unfolded polypeptides would decrease the
159 threshold for its clustering in the presence of a crowding agent. We found that
160 incubation with peptides reduced the effective concentration of PEG required to drive
161 the clustering of mCherry-IRE1 α LD-10His (**Fig. 1F-H, Fig. Supp. 2C**). This increased
162 propensity was specific, as incubation of mCherry-IRE1 α LD-10His with the mutant
163 peptide MPZ1N-2X-RD did not impact its clustering (**Fig. 1I**). Importantly, the FRAP
164 experiments revealed that the peptides did not impair SLB integrity (**Fig. 1F-I, Fig.**
165 **Supp. 2D-F, Supp. Table 2**). In sum, we succeeded in reconstituting ligand-enhanced
166 IRE1 α LD clustering on synthetic membranes from minimal components, thus
167 recapitulating a critical step of the UPR.

168

169 IRE1 α LD forms dynamic condensates in solution

170

171 Our data suggested that IRE1 α LD tethered to synthetic membranes forms stable
172 clusters due to restricted conformational freedom on planar surfaces. This model
173 predicts that IRE1 α LD clusters formed in solution should exhibit a more dynamic
174 behavior when compared to those formed on SLBs. To test this prediction, we
175 monitored IRE1 α LD clustering in solution by differential interference contrast (DIC)
176 microscopy. The systematic analyses of protein concentrations and buffer conditions
177 by DIC showed that in the presence of 6 % PEG, 12,5 μ M IRE1 α LD formed droplets
178 in solution. IRE1 α LD droplets resembled biomolecular condensates formed through
179 liquid-liquid phase separation (LLPS). Both the number and size of the condensates
180 increased at higher protein concentrations (**Supp. Fig. 3A,B**) IRE1 α LD condensates
181 displayed dynamic and liquid-like behavior in solution, as evidenced by fusion events
182 (**Fig. 2A,B, Movie 3**). FRAP experiments confirmed the liquid-like nature of IRE1 α LD
183 condensates and revealed that IRE1 α LD molecules exchanged in and out of the
184 condensates with a mobile fraction of 88 % ($t_{1/2} = 173.4$ s); **Fig. 2C** and **Movie 2**). It
185 has been observed that if a protein goes through LLPS, the liquid droplets will wet the
186 glass surface, whereas hydrogels or less dynamic condensates do not wet solid
187 surfaces or change shape ³⁵. IRE1 α LD condensates wetted the bottom of the glass
188 surface in a time-dependent manner, confirming their liquid-like properties (**Supp. Fig.**
189 **3C**). Neither IRE1 α LD^{D123P} mutant, which is impaired in dimerization ²¹, nor the
190 mCherry control formed condensates. This suggested that D123 is required for
191 formation of larger IRE1 α LD clusters in solution (**Fig. Supp. 3D**). Altogether, our data

192 revealed that in solution IRE1 α LD forms dynamic condensates upon molecular
193 crowding. These data suggested that tethering IRE1 α LD to membranes leads to
194 stabilization of IRE1 α LD assemblies in the condensates. It is plausible that the
195 restriction of IRE1 α LD's degree of freedom, or membrane-induced structural
196 rearrangements, stabilize interfaces important for its clustering. Consequently, this
197 could drive formation of long-lived IRE1 α LD assemblies on membranes.

198
199 We next characterized the impact of unfolded polypeptides on the formation and
200 dynamics of IRE1 α LD condensates. Fluorescein labeled MPZ1N-2X efficiently
201 partitioned into preformed IRE1 α LD condensates, revealing that they recruit client
202 proteins (**Supp. Fig. 3E, left panel**). Instead, the Fluorescein-MPZ1N-2X-RD control
203 peptide was not enriched in the condensates (**Supp. Fig. 3E, right panel**). In an
204 experimental condition where IRE1 α LD barely formed condensates (**Fig. 2D, left**
205 **panel**), its incubation with stoichiometric amounts of model unfolded peptides led to
206 the formation of large condensates (**Fig. 2D, Fig. Supp. 3F**). Instead, the control
207 peptide MPZ1N-2X-RD did not impact IRE1 α LD phase separation (**Fig. 2D, right**
208 **panel, Fig. Supp. 3F**). Importantly, model unfolded polypeptides did not undergo
209 phase separation in those conditions (**Supp. Fig. 3G,H**). This data indicated that
210 specific interactions with unfolded polypeptides facilitate IRE1 α LD phase separation.
211 We next assessed whether unfolded polypeptide-binding would impact the dynamics
212 of IRE1 α LD assemblies in the condensates. FRAP experiments showed that while
213 MPZ1N did not significantly impact IRE1 α LD's half-time recovery after
214 photobleaching, instead binding of MPZ1N-2X peptide led to an increase in the
215 recovery time of IRE1 α LD (**Fig. 2C, Fig. Supp. 3I-J, Supp. Table 3**). These data
216 revealed that a peptide with a single binding site shifts IRE1 α LD to a confirmation that
217 favors its clustering consistent with previous findings ²². MPZ1N-2X, which has two
218 binding sites, can nucleate clusters by bridging IRE1 α LD molecules and further
219 stabilize IRE1 α LD assemblies. We speculate that binding of unfolded polypeptides
220 with various stoichiometry and biochemical properties might tune dynamics of IRE1 α
221 condensates and impact UPR signaling in cells.

222
223 **Disordered regions in IRE1 α LD drive dynamic clustering**
224

225 The biomolecular condensates formed by IRE1 α LD in solution prompted us to ask
226 which molecular interactions might explain this behavior. The formation of
227 biomolecular condensates is often controlled by disordered regions in proteins ³⁶.
228 IRE1 α LD comprises a mostly folded N-terminal motif (aa 24-307) joined to the
229 transmembrane helix by a disordered region (aa 307-443) (**Fig. 3A, Fig. Supp. 4A**)³⁷.
230 In the crystal structure of IRE1 α cLD (aa 24-390, pdb: 2hz6²¹), several segments (i.e.
231 (aa) 131-152, 307-358, and 369-390) are not resolved due to their flexibility (**Fig. 3B,**
232 **Fig. Supp. 4A,B**). We refer to the disordered regions in IRE1 α LD as Disordered
233 Region 1 (DR1, aa 131-152), Disordered Region 2 (DR2, aa 307-358), Disordered
234 Region 3, (DR3, aa 369-390), and the linker region (aa 391-443), respectively. Here,
235 we employed molecular dynamics (MD) simulations to characterize their conformation
236 and interaction.

237
238 Atomistic MD simulations of the IRE1 α cLD dimer (residues aa 29-368) revealed that
239 DR1 and DR2 remain highly disordered during a 1 μ s long simulation, not adopting

any distinct secondary structures (**Fig. 3C**). DR2 was the most flexible part of the dimer. These data are in line with the published hydrogen-deuterium exchange experiments ³⁸. We then performed coarse-grained MD simulations to test whether the disordered regions might self-associate (**Fig 3D,E**). We observed that DR1 did not form clusters in a 20 μ s-long simulation (**Fig. Supp. 4C**). Instead, DR2 and the linker region readily clustered after 1 μ s of simulation. The clusters were highly dynamic, and we observed reversible association of single polypeptide chains. To test the potential of heterologous associations, we simulated a system containing DR1 and DR2 and another system comprising DR2 and the linker region (**Fig. Supp. 4C,D**). DR2 clusters did not interact with the DR1 segments, which remained free in solution, while the DR2 and the linker formed well-mixed clusters. These data suggested that DR2 and the linker have the potential to form protein condensates.

We next investigated which specific interactions may drive the disordered regions to cluster. In protein condensates, the contacts formed inside a single polypeptide chain often resemble the ones formed across different polypeptide chains ³⁹, indicating that the same interactions promote the internal and oligomeric organization. Therefore, we computed contact maps for interactions formed within single polypeptide chains and across different polypeptide chains in the clusters. Indeed, 1-D plots derived from the contact matrices, where we summed up the contributions from all possible interactions that a single residue forms in the simulations, confirmed this feature. Interactions within and between the DR2 and the linker region were mainly formed by the charged and aromatic residues (Asp, Lys, Phe) (**Fig. Supp. 5A-D**). In DR2, Asp328 and Lys349 formed the most probable contacts, suggesting an important role in cluster formation (**Fig. Supp. 5A-D**). The contact analysis showed that distinct regions in the disordered segments in IRE1 α LD have the propensity to form low-affinity transient interactions driven by aromatic and charged residues. In summary, MD simulations revealed the biochemical potential of the disordered segments in IRE1 α 's LD in driving its LLPS.

IRE1 α cLD forms rigid condensates

As MD simulations predicted that DR2 and the linker region form clusters in isolation, we next tested their LLPS potential through DIC microscopy with the purified constructs. We found that the core luminal domain (cLD aa 24-389), which lacks the disordered linker region, formed condensates (**Fig. 3F, right**). These data revealed that the linker region is not necessary for formation of IRE1 α LD condensates. IRE1 α cLD rapidly formed condensates at lower protein and PEG concentrations compared to IRE1 α LD (**Fig. Supp. 3A,B vs Fig. Supp. 6A,B**). DIC microscopy revealed that IRE1 α cLD (aa 24-389) formed structures that resembled beads on a string (**Fig. 3F, right**). IRE1 α cLD condensates accumulated on the glass slide without wetting the surface (**Fig. Supp. 6C**). FRAP experiments showed that IRE1 α cLD recovered after $t_{1/2} = 281.5$ s and displayed a 26.7 % mobile fraction confirming that cLD condensates are less dynamic in comparison to IRE1 α LD condensates (**Fig. 3G, Supp. Table 4**). In support of the low mobile fraction of IRE1 α cLD revealed by the FRAP data, mCherry-tagged IRE1 α LD partitioned into preformed IRE1 α LD condensates after 5 min, in contrast mCherry tagged-cLD failed to do so (**Fig. Supp. 6D**). Altogether, our data showed that IRE1 α cLD formed stable condensates, indicating that the linker segment (aa 390-443) modulates both the propensity to coalesce and IRE1 α LD

288 associations in condensates. Together with the MD simulations, these data suggest
289 that the linker region forms transient intra- and intermolecular contacts that potentially
290 regulate a critical switch in UPR signaling.

291

292 **Mutations in IRE1 α LD's disordered regions modulate clustering *in vitro***

293

294 We next screened for mutants in the disordered segments that may regulate IRE1 α
295 LD's clustering. For these experiments, we used LLPS assays in solution to rapidly
296 screen for mutants that impair IRE1 α LD self-assembly. As IRE1 α cLD could readily
297 form condensates in solution, we mutated DR2 and DR3 in IRE1 α LD. We chose
298 regions enriched in hydrophobic or aromatic sequences, which might form
299 intermolecular contacts to nucleate phase separation⁴⁰. Specifically, we mutated 3- or
300 4-residue stretches to glycine-serine residues, which often form dynamic segments
301 acting as spacers in biomolecular condensates (**Fig. 4A, Supp. Fig 4A**).

302

303 All the mutants were biochemically stable upon purification, allowing us to study their
304 clustering behavior by DIC microscopy. The IRE1 α LD³¹²TLPL³¹⁵ mutant formed
305 smaller condensates with slower kinetics that failed to fuse efficiently suggesting that
306 this region is important for condensate formation. A mutation in the³²⁰QTDG³²³
307 segment did not impair phase separation (**Fig. 4B, Fig. Supp. 7A**), whereas mutating
308 a segment enriched in hydrophobic and aromatic residues (IRE1 α LD³⁵²LNYL³⁵⁵)
309 abolished formation of IRE1 α LD condensates (**Fig. 4B**). Introducing a mutation to the
310 neighboring segment³⁵⁴YLR³⁵⁶ strongly impaired LLPS (**Fig. Supp. 7B**), yet mutating
311 the segment preceding it^{(350)NKLN³⁵³} only slightly impacted LLPS (**Fig. 4B**). Similarly,
312 the IRE1 α LD³⁷³TKML³⁷⁶ mutant in DR3 did not impact condensate formation (**Fig.**
313 **4B**). These data revealed that³⁵⁴YL³⁵⁵ region forms a hot spot for molecular
314 interactions driving IRE1 α LD clustering.

315

316 Notably, ³⁵⁴YL³⁵⁵ resides near³⁵⁹WLLI³⁶², whose mutation to GSGS impairs IRE1 α LD
317 oligomerization^{22, 31}. DIC microscopy indicated that IRE1 α LD³⁵⁹WLLI³⁶² mutant
318 underwent LLPS, even in conditions in which wild-type IRE1 α LD barely formed
319 condensates (**Fig. Supp. 7C**). These results revealed that disrupting the canonical
320 oligomerization interface did not hinder phase separation of IRE1 α LD and, moreover,
321 suggested that oligomers are distinct from condensates (**Fig. 4B, Fig. Supp. 7C**).
322 These results motivated us to interrogate the oligomerization behavior of IRE1 α LD
323³⁵²LNYL³⁵⁵ and³¹²TLPL³¹⁵ mutants using orthogonal methods. To this end, we
324 performed analytical ultracentrifugation sedimentation velocity (AUC-SV) experiments
325 to determine whether IRE1 α LD mutants could form high-order oligomers. These
326 experiments revealed that, similar to previous observations on IRE1 α cLD²², IRE1 α
327 LD was found in equilibrium of dimers and oligomers at 25 μ M. Strikingly, under those
328 conditions, IRE1 α LD³⁵²LNYL³⁵⁵ and³¹²TLPL³¹⁵ mutants only formed dimers. These
329 data revealed that³⁵²LNYL³⁵⁵ and³¹²TLPL³¹⁵ regions are important for the formation of
330 high-order IRE1 α LD oligomers (**Fig. 4C**). Altogether, our data converge on a model in
331 which IRE1 α LD dimers interact with each other in various conformations. These
332 interactions are facilitated by the propensity of DRs to assemble into stable oligomers
333 with a distinct preferred structure and into condensates with low affinity contacts with
334 no fixed valence. We propose that the transient low affinity interactions are crucial in

335 bringing IRE1 α molecules in close proximity to drive formation of active IRE1 α
336 assemblies.

337

338 **The disordered regions in IRE1 α LD are important for its clustering in cells**

339

340 IRE1 α forms dynamic clusters in cells experiencing ER stress ^{28-30, 41}. To validate the
341 role of disordered segments in IRE1 α LD clustering, we established stable cell lines
342 expressing wild type human IRE1 α or IRE1 α harboring mutants with impaired (IRE1 α
343 LD LNYL and TLPL mutants) or enhanced (IRE1 α cLD Δ linker) its clustering, as
344 determined by our *in vitro* assays (**Supp. Fig. 6A, Fig. 4B**). We introduced
345 doxycycline-inducible transgenes encoding mNeonGreen (mNG) tagged variants of
346 IRE1 α into mouse embryonic fibroblasts (MEFs) deficient for both isoforms of IRE1
347 (IRE1 $\alpha^{-/-}$ and IRE1 $\beta^{-/-}$), and monitored IRE1 α clustering by fluorescence microscopy.
348 We introduced the mNG tag into IRE1 α 's cytoplasmic flexible linker ^{22, 28, 30}. In the
349 absence of doxycycline, cells expressed low levels of IRE1 α due to the inherent
350 leakiness of the doxycycline-inducible system (**Fig. Supp. Fig 8A-D**). Under these
351 conditions, the expression levels of IRE1 α -mNG and its mutant variants were similar
352 to the level of endogenous IRE1 α observed in wild-type MEFs as assessed by Western
353 blot analysis (**Fig. Supp. 8D**). When we treated the cells with the ER stress inducing
354 drug tunicamycin, cells carrying IRE1 α -mNG showed a modest reduction in *XBP1*
355 mRNA splicing activity compared with wild type control MEFs, suggesting that the
356 mNG-tag slightly impairs its activity (**Fig. Supp. 8E**).

357

358 The size of IRE1 α clusters in cell depends on the protein concentration ^{28, 31, 42}. While
359 clusters formed at endogenous levels of IRE1 α in most tissues are generally too small
360 to overcome the diffraction limit of light, IRE1 α forms microscopically visible clusters
361 when it is ectopically expressed to levels 2-20 times over endogenous protein levels
362 ^{22, 28-31, 41, 42}. To visualize IRE1 α clustering in mammalian cells with confocal microscopy,
363 we overexpressed IRE1 α in MEFs. IRE1 α expression levels increased linearly with
364 doxycycline concentration in the range of 25 to 400 nM (**Fig. Supp. 8C**). Treatment
365 with 400 nM doxycycline led to expression levels roughly 30-fold over endogenous
366 IRE1 α in wild type MEFs (**Fig. Supp. 8F**). Confocal microscopy experiments in which
367 we monitored IRE1 α cluster formation indicated that at 400 nM doxycycline, but not
368 100 nM, cells expressing wild type IRE1 α -mNG formed microscopically visible clusters
369 in a stress-dependent manner (**Fig 5A, Fig Supp. 8G**).

370

371 Notably, in these conditions, IRE1 α -TLPL-mNG and IRE1 α -LNYL-mNG mutants failed
372 to form visible clusters at comparable expression levels as the wild type IRE1 α -mNG
373 (**Fig 5A, Fig. Supp. 8A-F**). These results substantiated our findings that TLPL and
374 LNYL segments in the LD are important for IRE1 α assembly. In stark contrast, IRE1 α
375 cLD-mNG (Δ linker), which lacks the linker region, formed clusters constitutively in the
376 absence of stress (**Fig 5A, Fig. Supp. 8G**), or even upon induction of its expression
377 with a lower (100 nM) doxycycline concentration. This suggested that the clustering
378 threshold is lower for IRE1 α cLD-mNG consistent with the results we obtained in our
379 *in vitro* experiments. Taken together, these results substantiate the role of disordered
380 segments in IRE1 α 's LD in regulating IRE1 α 's self-association into high-order
381 assemblies.

382
383 Next, we investigated whether the mutants would impact IRE1 α activity monitored by
384 its ability to splice *XBP1* mRNA. Semi-quantitative polymerase chain reaction (PCR)
385 and quantitative real-time PCR (qRT-PCR) analyses revealed that IRE1 α LNYL-mNG
386 mutant exhibited impaired *XBP1* mRNA splicing activity compared to wild type IRE1 α -
387 mNG, indicating that the interfaces formed by the LNYL region in IRE1 α LD play an
388 important role in forming active IRE1 α assemblies in cells (**Fig 5B,C**). Instead, IRE1 α
389 TLPL-mNG splicing activity was only slightly diminished^{31,42} (**Fig 5B,C**). These data
390 suggested that the mutation in the interface formed by TLPL segment can be
391 compensated by formation of other protein interfaces in cells. IRE1 α cLD-mNG, which
392 constitutively formed foci in the absence of stress, displayed high constitutive *XBP1*
393 mRNA splicing activity (**Fig 5B,C**). These data revealed that the splicing activity of the
394 mutants in cells is in excellent agreement with their ability to form biomolecular
395 condensates *in vitro*. Altogether, these results indicate that disordered segments in the
396 IRE1 α LD are involved in the formation of signaling competent IRE1 α assemblies in
397 cells.

398

399 Discussion

400

401 IRE1 governs the most evolutionarily conserved branch of the UPR. IRE1 signaling is
402 tied to the formation of dynamic clusters in yeast and mammalian cells, and mutations
403 that impair IRE1 clustering result in severely reduced activity^{8, 22, 28, 30}. Thus, self-
404 assembly emerges as a fundamental principle of IRE1 regulatory control. IRE1
405 clustering is driven by its ER-sensor luminal domain, which juxtaposes its cytosolic
406 domains to activate its RNase domain. The structural features enabling IRE1 α LD
407 clustering and its mechanistic principles have remained unknown, and here, through
408 bottom-up approaches to reconstitute IRE1 α LD clustering in solution and on model
409 membranes, we provide evidence for the role of DRs in regulating IRE1 α 's self-
410 assembly.

411

412 We found that the stress sensing LD of IRE1 α formed dynamic biomolecular
413 condensates in solution. In contrast, IRE1 α LD formed long-lived clusters on model
414 membranes similar to what was shown for IRE1 α clusters in cells indicating that
415 membrane-tethering stabilizes interactions among IRE1 α LD molecules (**Fig. 1. C-E**),
416³⁰. We anticipate that these long-lived interactions are crucial for providing sufficient
417 time for transmitting the information through the membrane bilayer to initiate the auto-
418 phosphorylation of the kinase domains leading to activation of its RNase domain. This
419 model is in line with the recent data, which showed a lag between IRE1 α
420 oligomerization and its trans-autophosphorylation activity in cells³¹. In our
421 experiments, we used a simple membrane composition, and thus future studies are
422 necessary to assess how changes in the membrane composition during ER stress
423 might regulate IRE1 α clustering^{25, 26, 43}.

424

425 Biomolecular condensates are formed through multivalent low affinity interactions by
426 the disordered segments in proteins⁴⁴⁻⁴⁷. IRE1 α LD has several DRs whose function
427 has remained largely unknown. Surprisingly, the distinct DRs in IRE1 α LD regulate the
428 formation and dynamics of IRE1 α LD clusters in opposite ways. Removing the linker
429 region (aa 390-443), which connects the folded core domain to the transmembrane

430 helix, decreased the clustering threshold of IRE1 α . By contrast, mutating aromatic and
431 hydrophobic amino acids in two distinct parts in the DR2 segment ($^{312}\text{TLPL}^{315}$ and
432 $^{352}\text{LNYL}^{356}$ mutants) impaired its oligomerization *in vitro*, and abolished formation of
433 microscopically detectable clusters in cells.

434
435 One IRE1 α LD mutant, IRE1 α LD $^{359}\text{WLLI}^{362}$, does not form oligomers²² but could
436 readily form condensates even at lower protein concentrations. These data indicate
437 that the distinct oligomeric conformation formed through the contacts provided by the
438 $^{359}\text{WLLI}^{362}$ segment is not required for the multivalent-transient interactions formed by
439 $^{312}\text{TLPL}^{315}$ and $^{352}\text{LNYL}^{356}$ regions. Importantly, both $^{359}\text{WLLI}^{362}$ and $^{352}\text{LNYL}^{356}$ mutants
440 display impaired *XBP1* mRNA splicing activity in mammalian cells indicating that they
441 both contribute to the assembly of IRE1 α into enzymatically active clusters²². Our data
442 suggest that these interfaces contribute to the formation of temporally separated
443 distinct assembly intermediates to generate signaling competent IRE1 α oligomers in
444 cells. Intriguingly, recent correlated light and electron microscopy combined with
445 electron cryo-tomography (cryo-CLEM-ET) imaging of the IRE1 α clusters in
446 mammalian cells suggested that IRE1 α LD forms ordered double-helical filaments in
447 its native, membrane-embedded state under stress conditions⁴¹. We anticipate that
448 the increased local concentration of IRE1 α in the condensates might facilitate
449 assembly of IRE1 α LD into filaments with distinct structure observed in cells. The
450 regions in IRE1 α LD, which we identified to regulate its clustering, were earlier
451 proposed to be recognized by the ER-chaperone BiP³⁸, and therefore, it is plausible
452 that these regions are occluded by BiP binding, which could prevent clustering under
453 non-stress conditions.

454
455 Clustering of IRE1 α LD on membranes followed a sharp transition as a function of
456 molecular crowding (compare 10 % and 11 % PEG, **Fig. 1F**), suggesting that an
457 increase in ER protein load, as during ER stress, could constitute the sensing threshold
458 for IRE1 α ⁴⁸⁻⁵³. In line with our previous observations, we found that in addition to
459 molecular crowding, IRE1 α LD's direct interaction with unfolded peptide ligands
460 decreased the threshold for IRE1 α LD clustering (**Fig. 1F-H**) and stabilized IRE1 α LD
461 condensates. We anticipate that misfolded proteins with diverse biochemical
462 properties could differently modulate the threshold for IRE1 α clustering and the stability
463 of IRE1 α clusters regulating both sensitivity and duration of the UPR in cells.

464
465 Our data converge on a model in which ER stress triggers BiP release from the DRs
466 in IRE1 α 's LD, allowing their association with DRs of other IRE1 α molecules through
467 low affinity transient contacts. ER stress increases molecular crowding in the ER due
468 to secretory and protein-folding impairment and accumulation of misfolded proteins,
469 both of which facilitate self-assembly of IRE1 α LDs. Under those conditions, unfolded
470 polypeptides that bind to IRE1 α LD and membrane-imposed constraints further
471 stabilize IRE1 α clusters leading to the formation of stable IRE1 α assemblies competent
472 in UPR signaling (**Fig. 5D**).

473
474 LLPS of membrane-associated proteins has emerged as a novel mechanism
475 regulating cellular organization and signaling^{54-58, 59}. Our data suggest that LLPS of
476 IRE1 α contributes to UPR signaling. IRE1 α levels are controlled *via* intricate feedback
477 loops that regulate protein abundance during ER stress⁶⁰ and aberrant overexpression

478 of IRE1 α in multiple myeloma and breast cancer contributes to pathology^{61,62}. We
479 anticipate that the novel assembly states of IRE1 α identified here could be targeted by
480 small molecules for therapeutic purposes in disease.

481
482 **Acknowledgements**
483

484 We thank Thomas Peterbauer at the Max Perutz Labs Biooptics Light Microscopy
485 Facility for his help and support. We are grateful to Kitti Csalyi and Thomas Sauer at
486 Max Perutz Labs Biooptics FACS facility for their help. We acknowledge funding from
487 Austrian Science Fund (FWF-SFB F79 and FWF-W 1261) to GEK. PK acknowledges
488 the support of the Max Perutz PhD fellowship. We thank the members of the Karagöz
489 lab for the critical reading and editing of the manuscript. We are thankful to our
490 colleagues Diego Acosta-Alvear, Vladislav Belyy, Jirka Peschek, Yasin Dagdas, Javier
491 Martinez, Sascha Martens and Alwin Köhler for their invaluable input on the
492 manuscript. We are grateful to Life Science Editors, especially Katrina Woolcock for
493 valuable input on the manuscript. GAV is funded by Stand-Alone grants (P30231-B,
494 P30415-B, P36572), Special Research Grant (SFB grant F79), and Doctoral School
495 grant (DK grant W1261) from the Austrian Science Fund (FWF). E.S. and R.C.
496 acknowledge support and funding by the Frankfurt Institute of Advanced Studies, the
497 LOEWE Center for Multiscale Modelling in Life Sciences of the state of Hesse, the
498 Collaborative Research Center 1507 "Membrane-associated Protein Assemblies,
499 Machineries, and Supercomplexes" (Project-ID Project ID 450648163), and the
500 International Max Planck Research School on Cellular Biophysics (to R.C.), the Center
501 for Scientific Computing of the Goethe University and the Jülich Supercomputing
502 Centre for computational resources and support. We are thankful to Monika Kubickova
503 for the help with the AUC experiments. We acknowledge CF BIC of CIISB, Instruct-CZ
504 Centre, supported by MEYS CR (LM2023042) and European Regional Development
505 Fund-Project „UP CIISB“ (No. CZ.02.1.01/0.0/0.0/18_046/0015974).

506
507 **Movies**
508

509 **Movie 1.** mCherry-IRE1 α LD-10His cluster formation on SLBs after the addition of 11% PEG.
510 Each frame is recorded every 2 sec for a total of 32 frames.

511 **Movie 2.** Fusion of mCherry-IRE1 α LD-10His clusters on SLBs. The movie is recorded 10 min
512 after induction of cluster formation by addition of 11 % PEG. Each frame is recorded every 2
513 sec for a total of 60 frames.

514 **Movie 3.** LLPS of IRE1 α LD in solution. The movie is recorded 30 min after induction of LLPS
515 with 6% PEG.

516
517 **Supplementary Tables**
518

519 **Supplementary Table 1.** mCherry-IRE1 LD-10His Fluorescence Intensity on SLBs

520 **Supplementary Table 2.** Fits of the FRAP curves obtained from SLB tethered mCherry-IRE1
521 LD-10His and Atto488-DPPE.

522 **Supplementary Table 3.** Fits of the FRAP curves of mCherry-IRE1 LD-10His in condensates
523 formed in solution.

524 **Supplementary Table 4.** Fits of the FRAP curves of mCherry-IRE1 LD-10His or mCherry-
525 IRE1 cLD-10His in condensates formed in solution.

526
527

528

529 Materials and Methods

530 Generation of Constructs for in-vitro Assays

531 All constructs were constructed in pET-47 b(+) vector. hIRE1 α LD mutants ³¹²TLPL³¹⁵-
532 GSGS, ³⁵⁰NKLN³⁵³-GSGS, and ³⁵²LNYL³⁵⁵-GSGS were based on the T274C variant of
533 hIRE1 α LD (Cysteines are substituted by Alanins, Threonine aa274 was substituted
534 by Cysteine). All other mutants were based on the WT hIRE1 α LD. We could not
535 observe any differences between hIRE1 α LD WT and T274C in our assays.
536 ³²⁰QTDG³²³-GSGS and ³⁷³TKML³⁷⁶-GSGS were constructed through site-directed
537 mutagenesis, with subsequent blunt end ligation. For mCherry tagged proteins, an N-
538 terminal mCherry sequence and C-terminal 10HisTag was used.

539 Protein expression and purification

540 hIRE1 α LD expression and purification was adapted from published protocols ²². In
541 brief, *Escherichia coli* strain BL21DE3* RIPL was grown with the respective antibiotics
542 in Luria Broth at 37°C until OD₆₀₀ = 0.6-0.8. The protein expression was induced with
543 400 μ M IPTG for hIRE1 α variants without and 1 mM for variants with mCherry at 20°C
544 and grew overnight. Before lysis and after each purification step, 1X Roche cOmplete
545 Protease Inhibitor Cocktail was added to the cells or fractions containing protein. Cells
546 were harvested and lysed (50mM HEPES pH 7.2- pH 7.4, 400 mM NaCl, 20 mM
547 Imidazol, 5 mM β -mercaptoethanol, 0 or 10 % Glycerol) in an Avestin EmulsiFlex-C3
548 cell disruptor at 16,000 psi. The lysate was spun at 30,700 x g for 45 min. The
549 supernatant was applied to a 5 ml His-TRAP column (GE Healthcare) and eluted with
550 a gradient of 20 mM to 500 mM imidazole. The eluate was diluted with 50 mM Hepes
551 pH 7.2 – pH 7.4 (in the absence or in the presence of 10 % Glycerol, 5 mM β -
552 mercaptoethanol) to a concentration of 50 mM NaCl, to apply it to a HiTRAP Q HP (5
553 ml, GE Healthcare) anion exchange column. The protein was eluted with a linear
554 gradient from 50 mM to 1 M NaCl. To remove the His tag from hIRE1 α LD without
555 mCherry, the protein was incubated with 3C Precision protease at a ratio of 50 to 1
556 over night at 4°C. The protein was loaded to a His-TRAP column before it was further
557 purified on a Superdex 200 10/300 gel filtration column (25/50 mM HEPES pH 7.2 –
558 pH 7.4, 150 mM NaCl, 5 mM DTT; for mCherry proteins: 25 mM HEPES pH 7.4, 150
559 mM KCl, 10 mM MgCl₂, 5 mM DTT). The Expasy ProtParam tool
560 (<http://web.expasy.org/protparam/>) was used to determine the extinction coefficient at
561 280 nm to get the final protein concentration.

562

563 SLB preparation and assays

564 The protocol was adapted from (Bakalar et al. 2018, Cell⁶³).

565 SUV preparation

566 In brief, SUVs were prepared by creating a dried lipid film of mainly POPC (1-palmitoyl-
567 2-oleoyl-sn-glycero-3-phosphocholine, Avanti), 1 mol% Ni-NTA (DGS-NTA(Ni) (1,2-
568 dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl]
569 (nickel salt), Avanti) and 0.08 mol% Atto488 labeled DPPE (1,2-Dipalmitoyl-sn-
570 glycero-3-phosphoethanolamine labeled with Atto488, Sigma-Aldrich) with an argon
571 stream followed by desiccation for 45 min. The rehydration was performed with
572 deionized water by gently vortexing followed by 40 s tip sonication at 20 % power for

573 three times with 20 s in between to prevent generation of heat. The SUVs were filtered
574 through a 0.22 μ m PES filter (Carl Roth) and stored at 4°C for a maximum of 48 hrs to
575 prevent oxidation of lipids.

576 **SLB preparation**

577 SLBs were formed in a silicone chamber (Grace Bio-Labs, GBL103280) sealed on an
578 RCA cleaned (Nguyen *et al.* (2015) Methods Cell Biol.) 1.5 H, 24 x 50 mm coverslip
579 (Carl Roth) by fusing 20 μ l SUVs with 30 μ l MOPS buffer (25 mM MOPS pH 7.4, 125
580 mM NaCl) for 10min at room temperature. The SLB was washed with 50 μ l PBS and
581 50 μ l wash buffer (25 mM Hepes, pH 7.3, 150 mM NaCl, 250 μ M TCEP) each four
582 times, respectively. To determine the optimal concentration of protein in our
583 reconstituted system, we incubated SLBs with various concentrations of mCherry-
584 IRE1 α LD-10His ranging from 50 nM to 500 nM, and set on a concentration of 200 nM,
585 which was below saturation of the 1 mol% Ni-NTA lipids as determined by fluorescent
586 intensity as a function of protein concentration (Supp. Table 1).

587

588 The protein was attached at a concentration of 200 nM by incubating for 10 min
589 followed by three more wash steps with wash buffer to remove any unattached protein
590 from the solution. Imaging was conducted on an Olympus cellSens Live Imaging TIRF
591 system with an Olympus 100 \times 1.49 NA high-performance TIRF objective with 7 %
592 488, 100 ms exposure and 10 % 561, 100 ms exposure *via* a Hamamatsu ImagEM X2
593 EM-CCD camera operated by Olympus cellSens 3.1.1. The fluidity of the membrane
594 was confirmed *via* FRAP experiments. A 2 s 50 % single-point laser pulse of 405 nm
595 was used to bleach the fluorescence of the membrane and protein and the
596 fluorescence recovery was followed over 100 frames every 2 s. Image processing was
597 performed in ImageJ by selecting the FRAP ROI and another ROI of the same size on
598 a non-FRAPed area as bleaching background and was kept the same within an
599 experiment. The bleaching ROI was used to obtain bleaching factors by which the
600 FRAP values were corrected with, followed by normalization. The normalized FRAP
601 values of all 100 frames for mCherry proteins and 15 frames for Atto488 labeled DPPE
602 was fitted to an exponential recovery with no offset curve in ImageJ. The half-life time
603 was used to calculate the diffusion coefficient based on Axelrod *et al.* and Soumpasis
604 *et al*^{33,34} assuming only 2D diffusion of the protein on the SLBs as any access unbound
605 protein was washed out. Image processing was performed in ImageJ adjusting the
606 brightness and contrast of the images to be the same within a Figure panel.

607 **Crowding assay in 2D**

608 The protein of interest was incubated with the desired PEG concentration in 25 mM
609 Hepes pH 7.3, 150 mM NaCl, 250 μ M TCEP and PEG (indicated in the Figure legend)
610 for 10 min before FRAP experiments were performed to access the dynamics of the
611 membrane and the protein. For the wash-out experiments, the well was washed 5
612 times with 30 μ l wash buffer before another FRAP experiment was performed.

613 **Peptide experiments on SLBs**

614 After carefully washing the access protein, the peptides were incubated for 30 min to
615 allow for binding to mCherry-hIRE1 α LD-10His. Phase separation was induced with 25
616 mM Hepes pH 7.3, 150 mM NaCl, 250 μ M TCEP and PEG at percentages between 9
617 % and 11 %. After an 10 min incubation period, the Atto488 labeled membrane and the
618 mCherry tagged protein were imaged. The end concentration of the peptides above
619 the SLB were 10 μ M MPZ1N, 1 μ M MPZ1N -2X and 1 μ M MPZ1N -2X-RD.

620

621

622 **In solution phase separation assay**

623 The phase separation behavior of hIRE1 α LD protein variants in presence of PEG
624 (Sigma-Aldrich (P2139) or 40 % (w/w) Sigma-Aldrich (P1458)) was observed *via* DIC
625 microscopy on a Zeiss Axio Observer inverted microscope. Images were acquired at
626 room temperature with a Plan-Apochromat 63x/1.4 Oil DIC RMS objective and
627 CoolSnapHQ2 or Hamamatsu ORCA-Flash4.0 LT+ Digital CMOS camera controlled
628 by Visitron and Zeiss systems, respectively. Therefore, glass wells (Greiner Bio-One
629 96 Well SensoPlateTM) were pretreated with 1 % (w/v) Pluronic[®] F-127 (PF127, Sigma
630 Aldrich) for 2 hrs at room temperature. After three wash steps (150 mM NaCl, 1 M
631 Hepes pH 7.3 (Molecular Biology, Fisher BioReagentsTM), phase separation of the
632 protein of interest was induced. Hence, the protein was mixed with equal volumes of
633 PEG containing buffer (25 mM HEPES pH 7.3, 150 mM NaCl, 4 mM DTT, 20 mM
634 MgCl₂, 2X PEG percentage (depending on condition)) in a final volume of 50 μ l. For
635 peptide experiments, 24.5 μ M hIRE1 α LD and 0.5 μ M mCherry-hIRE1 α LD-10His were
636 preincubated with the respective peptide for 30 min on ice before phase separation
637 was induced *via* PEG. The final protein and PEG concentration and incubation time is
638 indicated in the Figure legends. Image processing was performed in ImageJ and
639 Adobe Photoshop[®] adjusting the brightness, contrast and sharpness of the images.
640

641

642 **FRAP on condensates in solution**

643 Phase separation was induced as described in the “In solution phase separation”
644 section. For FRAP experiments hIRE1 α LD was mixed with 2 % of the corresponding
645 mCherry tagged protein at a concentration of 25 μ M, phase separation was induced in
646 a test tube for 30 min in the presence of 6 % PEG in the well. Experiments were
647 performed on a Zeiss Axio Observer inverted microscope equipped with a Yokogawa
648 CSU-X1-A1 Nipkow spinning disc unit (Visitron Systems; pinhole diameter 50 μ m,
649 spacing 253 μ m), sCMOS camera (Pco.edge 4.2) and a Plan-Apochromat 63x/1.4 Oil
650 DIC objective. Images were conducted every 5 s for a time course of 10 min with 80
651 % HX, 50 ms exposure and 10 % 561 nm laser intensity exposed for 100 ms. Per
652 condition, 3 condensates were bleached after 2 frames with 100 % 561 nm laser power
653 for 10 ms per pixel. Image processing was performed in ImageJ selecting the FRAP
654 ROI and two ROIs of the same size within a non FRAPed condensate for bleaching
655 correction and an area without condensate for background correction for every
656 FRAPed condensate. The background value was subtracted from the FRAP and
657 bleaching value, followed by calculating the bleaching factor to correct the FRAP
658 values leading to the final normalization. The normalized FRAP values were fitted to
659 the One-phase association in PRISM.
660

661

662 **Recruitment experiments**

663 Phase separation was induced as described in the “In solution phase separation”
664 section. After 30 min of incubation within the well, the respective mCherry labeled
665 protein was added (at 2 % of a total protein concentration of 25 μ M) and imaged under
666 the same conditions (on a Zeiss Axio Observer inverted microscope equipped with a
667 Yokogawa CSU-X1-A1 Nipkow spinning disc unit (Visitron Systems; pinhole diameter
668 50 μ m, spacing 253 μ m), sCMOS camera (Pco.edge 4.2) and a Plan-Apochromat
669 63x/1.4 Oil DIC objective) every 5 s for 25 min with 80 % HX, 50 ms and 10 % 561
670 laser intensity exposed for 100 ms. Image processing was performed in ImageJ.
671

669

670

671

672 **Modelling of disordered regions**

673 The protein structure of the human IRE1 α core Luminal Domain (cLD) dimer was
674 obtained from the Protein Data Bank (www.rcsb.org⁶⁴, PDB ID: 2HZ6)²¹. We added
675 the missing residues (66-70, 89-90, 11-115, 131-152, 308-357, 369-443) as unfolded
676 loops using UCSF Chimera (version 1.15,⁶⁵

677 From this model, the regions DR1, DR2 and linker were extracted as isolated peptides
678 and individually mapped to coarse-grained representation.

679 The peptides obtained were:

680 **DR1**, 131 – LTGEKQQTLSSAFADSLSPSTS -152;

681 **DR2**, aa 307-

682 VPRGSTLPLLEGQTDGVTIGDKGESVITPSTDVKFDPLKSKNKLNYLRNY- 358;

683 **Linker region**, aa 369 -

684 LSASTKMLERFPNNLPKHRENVIPADSEKKSFEEVINLVDQQTSENAPTTVSRDVEEK
685 PAHAPARPEAPVDSMLKD - 443.

686 The conversion of the all-atom models into Martini 3⁶⁶ coarse-grained models and the
687 setup of the simulation systems were performed using the tools *martinize2*
688 (<https://github.com/marrink-lab/vermouth-martinize>) and *insane.py*⁶⁷ and
689 gromacs/2020.5 tools (*gmx insert-molecules*). The termini were neutralized and the
690 side chain fix was applied to prevent unrealistic side chain orientations as proposed in
691⁶⁸.

692

693 **Molecular dynamics simulations**

694 We set up systems containing two disordered regions' peptides by randomly inserting
695 16 copies of each region in a 30 x 30 x 30 nm³ simulation box. We obtained a system
696 containing DR1 and DR2 and a system containing DR2 and the linker region. We
697 solvated the systems with Martini water molecules and chloride and sodium ions,
698 corresponding to a salt concentration of 150 mM.

699

700 After a first energy minimization we equilibrated the system. First, we ran a 10 ps-long
701 simulation using a 1 fs time step and restraining the position of protein backbone beads
702 by using harmonic potentials with force-constants of 1000 kJ mol⁻¹ nm⁻². Afterwards,
703 we ran another 2.1 ns without restraints using a 30 fs time step and a final equilibration
704 of 21 ns. After the equilibration, we ran MD simulations using 20 fs time step. The
705 temperature in the simulation box was controlled by a velocity rescale thermostat
706⁶⁹(reference temperature T_ref = 300K, coupling time constant tau_T = 1 ps). The
707 Parrinello-Rahman barostat⁷⁰ (reference pressure p_ref = 1 bar; coupling time
708 constant tau_p = 24 ps) was used for the last equilibration step and for the production
709 run.

710 Coarse-grained molecular dynamics simulations were performed using with the Martini
711 3.0 forcefield⁶⁶ and the GROMACS 2020.5 software⁷¹.

712

713 **Contact maps from MD simulations**

714 We set up individual simulations for each region (DR1, DR2 and linker) in two different
715 settings, namely containing two peptides or 33 peptides. For the two peptides'

716 simulations, we determined the dimensions of the box by setting a 2 nm distance
717 between periodic images in a cubic box. In the latter simulation setting we randomly
718 inserted 33 peptide copies in a 30 x 30 x 30 nm³ simulation box to obtain a protein
719 concentration of 2 mM. We solvated the systems with Martini water molecules and
720 chloride and sodium ions, corresponding to a salt concentration of 150 mM.

721

722 We analyzed the contacts formed over time among the peptide chains in these
723 simulations. Initially, we computed the contact map between all beads of all peptides
724 at each frame thanks to the python package Contact Map Explorer
725 (https://github.com/dwhswenson/contact_map, version 0.7.0). Two Martini beads were
726 considered in contact if nearer than 0.5 nm. In the simulations containing 33 copies,
727 we considered which peptide chains are interacting to create a network representation
728 of the clusters at each frame from which we could determine which is the central chain
729 of the cluster. Then we counted all the contacts between beads of the central chain
730 and beads of its neighboring chains at each frame and we averaged over the number
731 of chains interacting with the central one at each frame.

732 We obtained a matrix of dimensions (*Number of beads per chain, Number of beads
733 per chain*) and we convert it to dimensions (*Number of residues per chain, Number of
734 residues per chain*) by retaining the maximum score present between all the beads of
735 a pair of residues. The contact matrices were computed in a similar way for systems
736 of two peptides. In these simulations we considered all the interactions happening
737 between the two chains, removing the notion of a central chain. We produced 1D-
738 projections of the contact maps by summing up all the contribution for a specific
739 residue in the final contact matrices for simulations of two or 33 copies.

740

741 **Generation of Constructs for Stable Cell Lines via Lentiviral Transduction**

742 For the establishment of stable cell lines in Mouse Embryonic Fibroblasts, a vector with
743 a Tet-On doxycycline-inducible TRE3G promoter was utilized. TRE3G-P2A-eBFP2-
744 PGK-puroSTOP-IRES-rtTA3 (kind gift from Gijs Versteeg) was cut using restriction
745 enzymes BsrGI-HF and BamHI (New England Biolabs). hIRE1 α signal sequence with
746 the transmembrane domain (amino acids 1-469) 3XFlag and 6XHis tag and hIRE1 α
747 kinase-RNase domain (amino acids 470-977) were amplified from pShuttle-CMV-
748 TO_hIRE1-3F6H-GFP-LKR-K36.3. Additionally, due to its higher stability, the GFP
749 tag, upstream of the kinase domain, was replaced with mNeonGreen through Gibson
750 Assembly. The mutations were introduced into IRE1 α N-terminal part (amino acids 1-
751 469) or into kinase-RNase domain (amino acids 470-977) via PCR and the mutated
752 fragment were used for Gibson assembly as described above. All the constructs,
753 except for the core LD, encode for the full-length luminal sequence of hIRE1 α (amino
754 acids 1-469). The luminal boundaries for the CLD include the core sequence (amino
755 acids 24-389), as well as, a short region proximal to the transmembrane domain
756 (amino acids 434-443), which was shown to be essential for the interaction with the
757 Sec61 translocon⁷².

758

759 **Transfection of Packaging Cells**

760 All transfections were performed by mixing DNA and Polyethylenimine (PEI,
761 Polysciences, 23966) in a 1:3 ratio (μ g DNA/ μ g PEI) in DMEM without supplements.
762 Plasmids for the transfection were purified using an endotoxin-free Plasmid Kit

763 (Qiagen). Transfection was performed using 1100 ng of total DNA (500 ng transfer
764 plasmid, 500 ng pCMVR8.74 Addgene plasmid # 22036, 100 ng pCMV-VSV-G
765 Addgene plasmid # 8454) The day before transfection, 2×10^5 HEK293T HiEx
766 packaging cells were seeded in 6-well plates in fully supplemented media. The
767 following day, the above-described transfection mixture was added dropwise to the
768 cells. Subsequently, cells were incubated for 48 hrs.

769 **Transduction of Mouse Embryonic Fibroblasts (MEF) (IRE1 $\alpha^{-/-}$ /IRE1 $\beta^{-/-}$) and Cell
770 Selection**

771 Following the 48 hour incubation period, the viral supernatant was sterile filtered with
772 a syringe. The day before transduction 1×10^5 MEF (IRE1 $\alpha^{-/-}$ /IRE1 $\beta^{-/-}$) were seeded in
773 a 6-well plates in fully supplemented media. For the transduction, the virus was mixed
774 with fully supplemented DMEM (Sigma-Aldrich, D6429) and 8 μ g/ml Polybrene
775 (Sigma-Aldrich, TR-1003-G) at 1:50 (v/v). After a 48 hour incubation period, cell lines
776 were expanded to 10-15 cm dishes. Protein expression, for subsequent Fluorescence
777 Activated Cell Sorting (FACS), was induced with 400 nM of Doxycycline for 24 hours.
778 Cells were sorted in yield mode using BD FACSaria II or BD FACSMelody, gated for
779 low and high-expression cells. The high-expression cells were resorted in stringent
780 mode, following the same procedure. The second FACS sorted high population of the
781 first FACS sorted high population was used for characterization.

782 **Immunofluorescence**

783 IRE1 double-knockout Mouse Embryonic Fibroblasts (MEF) (IRE1 $\alpha^{-/-}$ /IRE1 $\beta^{-/-}$)
784 reconstituted with a doxycycline inducible hIRE1 α -mNG (or mutants) were seeded at
785 a density of 20000 cells in a μ -Slide 8well dish (ibidi) 1 day before the experiment.
786 IRE1 α expression was induced for 24 hrs by adding 400 nM doxycycline. Cells were
787 stressed with 5 μ g/ml Tunicamycin for 4 hrs. The experiment was stopped by washing
788 with cold PBS and fixation with 4 % paraformaldehyde for 7 min. After two more
789 washes with PBS, the cells were incubated for 1h in blocking buffer (PBS, 10 % FBS,
790 1 % Saponin) followed by primary antibody incubation overnight at 4°C (Calnexin,
791 Abcam ab22595 at a dilution of 1:200). After washing twice with wash buffer (PBS, 10
792 % FBS) the secondary antibody (Alexa Fluor 594 goat anti-rabbit, Invitrogen A11037
793 at a dilution of 1:1000) was incubated for 1h at room temperature. After three additional
794 wash steps, the sample was imaged in PBS on a Zeiss LSM 980 inverse point
795 scanning confocal microscope with a Plan-Apochromat 63x/1.4 Oil DIC, WD 0.19 mm
796 objective. The microscope is operated by the Zeiss ZEN 3.3 microscope software.
797 mNG and Atto549 were excited by the 488 nm and 561 nm laser diodes of the
798 microscope, respectively. Image processing was performed in ImageJ.
799

800 **Western blotting**

801 Treated MEFs at a confluence of 80 % were collected in RIPA buffer. The protein
802 concentration was determined by a bicinchoninic acid assay using a commercially
803 available kit. 10-15 μ g protein of the lysate in sample buffer was loaded after
804 denaturation for 10 min at 95°C on a 10 % sodium dodecyl sulfate gel. The proteins
805 were wet transferred from the gel to a nitrocellulose membrane in transfer buffer (25
806 mM Tris, 192 mM glycine, 20 % (v/v) ethanol, pH 8.3) for 120 min at 110 V. The
807 proteins on the membrane were stained with Ponceau S for 5 min followed by blocking
808 in 5 % milk for 1 h at room temperature. The primary antibody was applied in 2.5 %

809 milk for 1 h at room temperature or overnight at 4°C. The membranes were washed
810 five times in TBST for 5min before the secondary antibody in 2.5 % BSA (Anti-Rabbit
811 IgG (H+L), HRP Conjugate, Promega W401B at a dilution of 1:10000) was added and
812 incubated for 1h at room temperature. After five 5 min TBST wash steps, the
813 chemiluminescence substrate for the horseradish peroxidase was applied using a
814 commercially available kit. The membranes were imaged using a ChemiDoc system
815 and analyzed with the Image Lab software of Bio-Rad.

816 Primary antibodies

Antibody	Dilution	Catalog number	Company
GAPDH	1:10000	10494-1-AP	Proteintech
IRE1alpha (14C10)	1:1000	3294	Cell Signalling

817

818 **XBP1 mRNA splicing assays**

819

820 **Semi quantitative PCR analyses**

821 The protocol was adapted from Karagöz et al 2017, *elife*.²² In brief, MEFs grown in a
822 12 well plate were treated for 24 hrs with or without 400 nM dox, DMSO or tunicamycin
823 (5 µg/ml) and collected in 180 µl TriFast (VWR Life Science). 100 µl of water and 60
824 µl of chloroform was added, mixed and incubated for 10 min at room temperature
825 followed by a 5 min 20,800 x g spin. The transparent phase was transferred to a new
826 tube, mixed with 100ul isopropanol and 0.5ul glycogen and incubated for 15 min on
827 ice. After a 10 min 20,800 x g spin, the pellet was washed three times with 75 % ethanol
828 and resuspended in 16 µl water. The total RNA concentration was determined by
829 Nanodrop measurement and normalized throughout the samples. The quality of RNA
830 was verified by a 1 % Agarose gel. To generate cDNA, total RNA (a minimum of 175
831 ng) was reverse transcribed using LunaScript RT (New England Biolabs) followed by
832 dilution of 1:5 or 1:10 depending on the normalized RNA input concentration. 4 %
833 cDNA product was used to perform semiquantitative PCR using 50 % Taq MM (New
834 England Biolabs) and 0.5 µM of the forward (GAACCAGGAGTTAACACACG) and
835 reverse (AGGCAACAGTGTCAAGAGTCC) primers. The PCR product was amplified for
836 28 cycles and analyzed on a GelRad stained 3 % agarose gel (50:50 mixture of regular
837 and low-melting point agarose). The gels were imaged using a FastGene FAS_V
838 Geldoc System and analyzed with the Image Lab software of Bio-Rad.

839

840 **Real-time quantitative reverse transcription PCR analyses**

841 The qPCRs were conducted on a Roche LightCycler® 480 in 384 well plates in
842 triplicate. Per well there was 2ul cDNA, 0.8ul of Forward and Reverse primer (10uM
843 concentration) each, 5ul Promega GoTaq® qPCR mix (cat.# A6002) and 2.2ul
844 nuclease/RNase free water to a total volume of 10ul. Data was processed using the
845 ΔCq method in R with the tidyqpcr package ⁷³. The values are plotted as relative fold
846 change of the target normalized to their respective reference gene expression level.
847 Target primers for spliced Xbp1 were 5'-CTGAGTCCGAATCAGGTGCAG-3' for
848 forward and 5' GTCCATGGGAAGATGTTCTGG-3' for reverse, taken from
849 Scortegagna et al. ⁷⁴. The reference gene for normalization was mHPRT
850 (Hypoxanthine guanine Phosphoribosyl-transferase) (Forward primer: 5'
851 GCAGTCCCAGCGTCGTGATTA-3', Reverse primer: 5'-
852 TGATGGCCTCCCATCTCCTTCA-3') from Manakanatas et al. ⁷⁵.

853

854

855

856

857

858

859 **References**

860

1. Karagoz, G.E., Acosta-Alvear, D. & Walter, P. The Unfolded Protein Response: Detecting and Responding to Fluctuations in the Protein-Folding Capacity of the Endoplasmic Reticulum. *Cold Spring Harb Perspect Biol* **11** (2019).
2. Cox, J.S., Chapman, R.E. & Walter, P. The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. *Mol Biol Cell* **8**, 1805-1814 (1997).
3. Cox, J.S., Shamu, C.E. & Walter, P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. *Cell* **73**, 1197-1206 (1993).
4. Cox, J.S. & Walter, P. A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. *Cell* **87**, 391-404 (1996).
5. Shamu, C.E., Cox, J.S. & Walter, P. The unfolded-protein-response pathway in yeast. *Trends Cell Biol* **4**, 56-60 (1994).
6. Sidrauski, C., Cox, J.S. & Walter, P. tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. *Cell* **87**, 405-413 (1996).
7. Credle, J.J., Finer-Moore, J.S., Papa, F.R., Stroud, R.M. & Walter, P. On the mechanism of sensing unfolded protein in the endoplasmic reticulum. *Proc Natl Acad Sci U S A* **102**, 18773-18784 (2005).
8. Aragon, T. *et al.* Messenger RNA targeting to endoplasmic reticulum stress signalling sites. *Nature* **457**, 736-740 (2009).
9. van Anken, E. *et al.* Specificity in endoplasmic reticulum-stress signaling in yeast entails a step-wise engagement of HAC1 mRNA to clusters of the stress sensor Ire1. *Elife* **3**, e05031 (2014).
10. Korennykh, A.V. *et al.* The unfolded protein response signals through high-order assembly of Ire1. *Nature* **457**, 687-693 (2009).
11. Yamamoto, K. *et al.* Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. *Dev Cell* **13**, 365-376 (2007).
12. Yoshida, H., Haze, K., Yanagi, H., Yura, T. & Mori, K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. *J Biol Chem* **273**, 33741-33749 (1998).
13. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. *Cell* **107**, 881-891 (2001).
14. Acosta-Alvear, D. *et al.* XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. *Mol Cell* **27**, 53-66 (2007).
15. Lee, A.H., Iwakoshi, N.N. & Glimcher, L.H. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. *Mol Cell Biol* **23**, 7448-7459 (2003).
16. Hollien, J. & Weissman, J.S. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. *Science* **313**, 104-107 (2006).
17. Hollien, J. *et al.* Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. *J Cell Biol* **186**, 323-331 (2009).

907 18. Bertolotti, A., Zhang, Y., Hendershot, L.M., Harding, H.P. & Ron, D. Dynamic
908 interaction of BiP and ER stress transducers in the unfolded-protein response.
909 *Nat Cell Biol* **2**, 326-332 (2000).

910 19. Amin-Wetzel, N. *et al.* A J-Protein Co-chaperone Recruits BiP to Monomerize
911 IRE1 and Repress the Unfolded Protein Response. *Cell* **171**, 1625-1637 e1613
912 (2017).

913 20. Oikawa, D., Kimata, Y., Kohno, K. & Iwawaki, T. Activation of mammalian
914 IRE1alpha upon ER stress depends on dissociation of BiP rather than on direct
915 interaction with unfolded proteins. *Exp Cell Res* **315**, 2496-2504 (2009).

916 21. Zhou, J. *et al.* The crystal structure of human IRE1 luminal domain reveals a
917 conserved dimerization interface required for activation of the unfolded protein
918 response. *Proc Natl Acad Sci U S A* **103**, 14343-14348 (2006).

919 22. Karagoz, G.E. *et al.* An unfolded protein-induced conformational switch
920 activates mammalian IRE1. *Elife* **6** (2017).

921 23. Gardner, B.M. & Walter, P. Unfolded proteins are Ire1-activating ligands that
922 directly induce the unfolded protein response. *Science* **333**, 1891-1894 (2011).

923 24. Sundaram, A., Appathurai, S., Plumb, R. & Mariappan, M. Dynamic changes in
924 complexes of IRE1alpha, PERK, and ATF6alpha during endoplasmic reticulum
925 stress. *Mol Biol Cell* **29**, 1376-1388 (2018).

926 25. Halbleib, K. *et al.* Activation of the Unfolded Protein Response by Lipid Bilayer
927 Stress. *Mol Cell* **67**, 673-684 e678 (2017).

928 26. Volmer, R., van der Ploeg, K. & Ron, D. Membrane lipid saturation activates
929 endoplasmic reticulum unfolded protein response transducers through their
930 transmembrane domains. *Proc Natl Acad Sci U S A* **110**, 4628-4633 (2013).

931 27. Kono, N., Amin-Wetzel, N. & Ron, D. Generic membrane-spanning features
932 endow IRE1alpha with responsiveness to membrane aberrancy. *Mol Biol Cell*
933 **28**, 2318-2332 (2017).

934 28. Li, H., Korenykh, A.V., Behrman, S.L. & Walter, P. Mammalian endoplasmic
935 reticulum stress sensor IRE1 signals by dynamic clustering. *Proc Natl Acad Sci
936 U S A* **107**, 16113-16118 (2010).

937 29. Ricci, D. *et al.* Clustering of IRE1alpha depends on sensing ER stress but not
938 on its RNase activity. *FASEB J* **33**, 9811-9827 (2019).

939 30. Belyy, V., Tran, N.H. & Walter, P. Quantitative microscopy reveals dynamics
940 and fate of clustered IRE1alpha. *Proc Natl Acad Sci U S A* **117**, 1533-1542
941 (2020).

942 31. Belyy, V., Zuazo-Gaztelu, I., Alamban, A., Ashkenazi, A. & Walter, P.
943 Endoplasmic reticulum stress activates human IRE1alpha through reversible
944 assembly of inactive dimers into small oligomers. *Elife* **11** (2022).

945 32. Kuznetsova, I.M., Turoverov, K.K. & Uversky, V.N. What macromolecular
946 crowding can do to a protein. *Int J Mol Sci* **15**, 23090-23140 (2014).

947 33. Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E. & Webb, W.W. Mobility
948 measurement by analysis of fluorescence photobleaching recovery kinetics.
949 *Biophys J* **16**, 1055-1069 (1976).

950 34. Soumpasis, D.M. Theoretical analysis of fluorescence photobleaching recovery
951 experiments. *Biophys J* **41**, 95-97 (1983).

952 35. Wang, Z., Zhang, G. & Zhang, H. Protocol for analyzing protein liquid-liquid
953 phase separation. *Biophysics Reports* **5**, 1-9 (2019).

954 36. Hyman, A.A. & Brangwynne, C.P. Beyond stereospecificity: liquids and
955 mesoscale organization of cytoplasm. *Dev Cell* **21**, 14-16 (2011).

956 37. Erdos, G. & Dosztanyi, Z. Analyzing Protein Disorder with IUPred2A. *Curr
957 Protoc Bioinformatics* **70**, e99 (2020).

958 38. Amin-Wetzel, N., Neidhardt, L., Yan, Y., Mayer, M.P. & Ron, D. Unstructured
959 regions in IRE1alpha specify BiP-mediated destabilisation of the luminal
960 domain dimer and repression of the UPR. *Elife* **8** (2019).

961 39. Tesei, G., Schulze, T.K., Crehuet, R. & Lindorff-Larsen, K. Accurate model of
962 liquid-liquid phase behavior of intrinsically disordered proteins from
963 optimization of single-chain properties. *Proc Natl Acad Sci U S A* **118** (2021).

964 40. Choi, J.M., Holehouse, A.S. & Pappu, R.V. Physical Principles Underlying the
965 Complex Biology of Intracellular Phase Transitions. *Annu Rev Biophys* **49**, 107-
966 133 (2020).

967 41. Tran, N.H. *et al.* The stress-sensing domain of activated IRE1alpha forms
968 helical filaments in narrow ER membrane tubes. *Science* **374**, 52-57 (2021).

969 42. Gomez-Puerta, S. *et al.* Live imaging of the co-translational recruitment of
970 XBP1 mRNA to the ER and its processing by diffuse, non-polarized IRE1alpha.
971 *Elife* **11** (2022).

972 43. Fun, X.H. & Thibault, G. Lipid bilayer stress and proteotoxic stress-induced
973 unfolded protein response deploy divergent transcriptional and non-
974 transcriptional programmes. *Biochim Biophys Acta Mol Cell Biol Lipids* **1865**,
975 158449 (2020).

976 44. Alberti, S. & Hyman, A.A. Biomolecular condensates at the nexus of cellular
977 stress, protein aggregation disease and ageing. *Nat Rev Mol Cell Biol* **22**, 196-
978 213 (2021).

979 45. Patel, A. *et al.* A Liquid-to-Solid Phase Transition of the ALS Protein FUS
980 Accelerated by Disease Mutation. *Cell* **162**, 1066-1077 (2015).

981 46. Lin, Y., Currie, S.L. & Rosen, M.K. Intrinsically disordered sequences enable
982 modulation of protein phase separation through distributed tyrosine motifs. *J
983 Biol Chem* **292**, 19110-19120 (2017).

984 47. Banani, S.F., Lee, H.O., Hyman, A.A. & Rosen, M.K. Biomolecular
985 condensates: organizers of cellular biochemistry. *Nat Rev Mol Cell Biol* **18**,
986 285-298 (2017).

987 48. Rhodes, C.J. Type 2 diabetes-a matter of beta-cell life and death? *Science* **307**,
988 380-384 (2005).

989 49. Snapp, E.L., Sharma, A., Lippincott-Schwartz, J. & Hegde, R.S. Monitoring
990 chaperone engagement of substrates in the endoplasmic reticulum of live cells.
991 *Proc Natl Acad Sci U S A* **103**, 6536-6541 (2006).

992 50. Zuber, C., Fan, J.Y., Guhl, B. & Roth, J. Misfolded proinsulin accumulates in
993 expanded pre-Golgi intermediates and endoplasmic reticulum subdomains in
994 pancreatic beta cells of Akita mice. *FASEB J* **18**, 917-919 (2004).

995 51. Liu, M., Hodish, I., Rhodes, C.J. & Arvan, P. Proinsulin maturation, misfolding,
996 and proteotoxicity. *Proc Natl Acad Sci U S A* **104**, 15841-15846 (2007).

997 52. Liu, M., Li, Y., Cavener, D. & Arvan, P. Proinsulin disulfide maturation and
998 misfolding in the endoplasmic reticulum. *J Biol Chem* **280**, 13209-13212
999 (2005).

1000 53. Covino, R., Hummer, G. & Ernst, R. Integrated Functions of Membrane
1001 Property Sensors and a Hidden Side of the Unfolded Protein Response. *Mol
1002 Cell* **71**, 458-467 (2018).

1003 54. Banjade, S. & Rosen, M.K. Phase transitions of multivalent proteins can
1004 promote clustering of membrane receptors. *Elife* **3** (2014).

1005 55. Su, X. *et al.* Phase separation of signaling molecules promotes T cell receptor
1006 signal transduction. *Science* **352**, 595-599 (2016).

1007 56. Rebane, A.A. *et al.* Liquid-liquid phase separation of the Golgi matrix protein
1008 GM130. *FEBS Lett* **594**, 1132-1144 (2020).

1009 57. King, C., Sengupta, P., Seo, A.Y. & Lippincott-Schwartz, J. ER membranes
1010 exhibit phase behavior at sites of organelle contact. *Proc Natl Acad Sci U S A*
1011 **117**, 7225-7235 (2020).

1012 58. Case, L.B., Zhang, X., Ditlev, J.A. & Rosen, M.K. Stoichiometry controls activity
1013 of phase-separated clusters of actin signaling proteins. *Science* **363**, 1093-
1014 1097 (2019).

1015 59. Ditlev, J.A. *et al.* A composition-dependent molecular clutch between T cell
1016 signaling condensates and actin. *Elife* **8** (2019).

1017 60. Sun, S. *et al.* IRE1alpha is an endogenous substrate of endoplasmic-reticulum-
1018 associated degradation. *Nat Cell Biol* **17**, 1546-1555 (2015).

1019 61. Harnoss, J.M. *et al.* IRE1alpha Disruption in Triple-Negative Breast Cancer
1020 Cooperates with Antiangiogenic Therapy by Reversing ER Stress Adaptation
1021 and Remodeling the Tumor Microenvironment. *Cancer Res* **80**, 2368-2379
1022 (2020).

1023 62. Harnoss, J.M. *et al.* Disruption of IRE1alpha through its kinase domain
1024 attenuates multiple myeloma. *Proc Natl Acad Sci U S A* **116**, 16420-16429
1025 (2019).

1026 63. Bakalar, M.H. *et al.* Size-Dependent Segregation Controls Macrophage
1027 Phagocytosis of Antibody-Opsonized Targets. *Cell* **174**, 131-142 e113 (2018).

1028 64. Berman, H.M. *et al.* The Protein Data Bank. *Nucleic Acids Res* **28**, 235-242
1029 (2000).

1030 65. Pettersen, E.F. *et al.* UCSF Chimera--a visualization system for exploratory
1031 research and analysis. *J Comput Chem* **25**, 1605-1612 (2004).

1032 66. Souza, P.C.T. *et al.* Martini 3: a general purpose force field for coarse-grained
1033 molecular dynamics. *Nat Methods* **18**, 382-388 (2021).

1034 67. Wassenaar, T.A., Ingolfsson, H.I., Bockmann, R.A., Tieleman, D.P. & Marrink,
1035 S.J. Computational Lipidomics with insane: A Versatile Tool for Generating
1036 Custom Membranes for Molecular Simulations. *J Chem Theory Comput* **11**,
1037 2144-2155 (2015).

1038 68. Herzog, F.A., Braun, L., Schoen, I. & Vogel, V. Improved Side Chain Dynamics
1039 in MARTINI Simulations of Protein-Lipid Interfaces. *J Chem Theory Comput*
1040 **12**, 2446-2458 (2016).

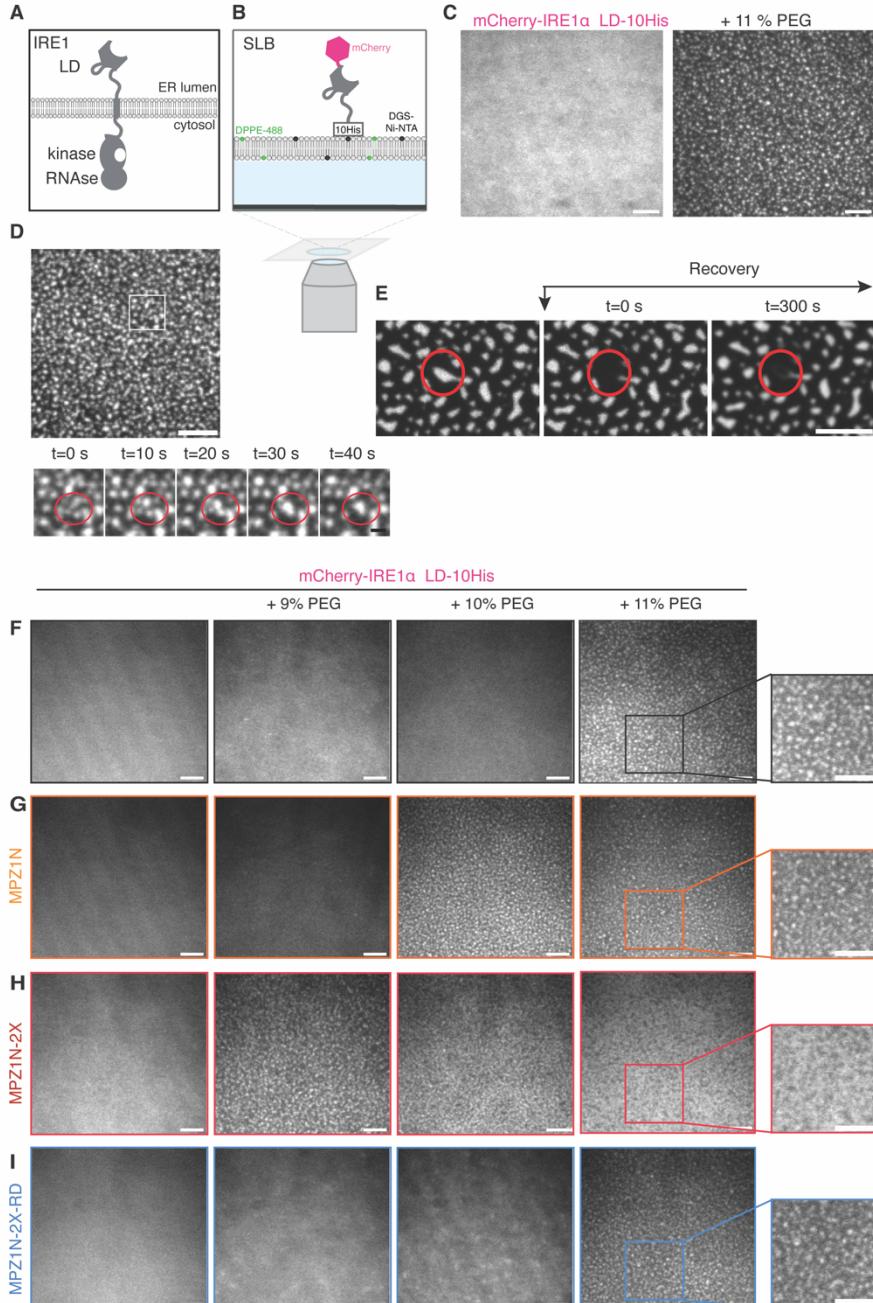
1041 69. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity
1042 rescaling. *J Chem Phys* **126**, 014101 (2007).

1043 70. Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: A new
1044 molecular dynamics method. *Journal of Applied Physics* **52**, 7182-7190 (1981).

1045 71. Lindahl, E., MJ; A., Hess, B. & van der Spoel, D. GROMACS 2020.5 Source
1046 code. (2021).

1047 72. Plumb, R., Zhang, Z.R., Appathurai, S. & Mariappan, M. A functional link
1048 between the co-translational protein translocation pathway and the UPR. *Elife*
1049 **4** (2015).

1050 73. Haynes, S., Wallace, EWJ The tidyqpcr R Package: Quantitative PCR analysis
1051 in the tidyverse (Version 0.3) [Software]. . (2021).


1052 74. Scortegagna, M. *et al.* Fine tuning of the UPR by the ubiquitin ligases Siah1/2.
1053 *PLoS Genet* **10**, e1004348 (2014).

1054 75. Manakanatas, C. *et al.* Endothelial and systemic upregulation of miR-34a-5p
1055 fine-tunes senescence in progeria. *Aging (Albany NY)* **14**, 195-224 (2022).

1056

Figures

Figure 1

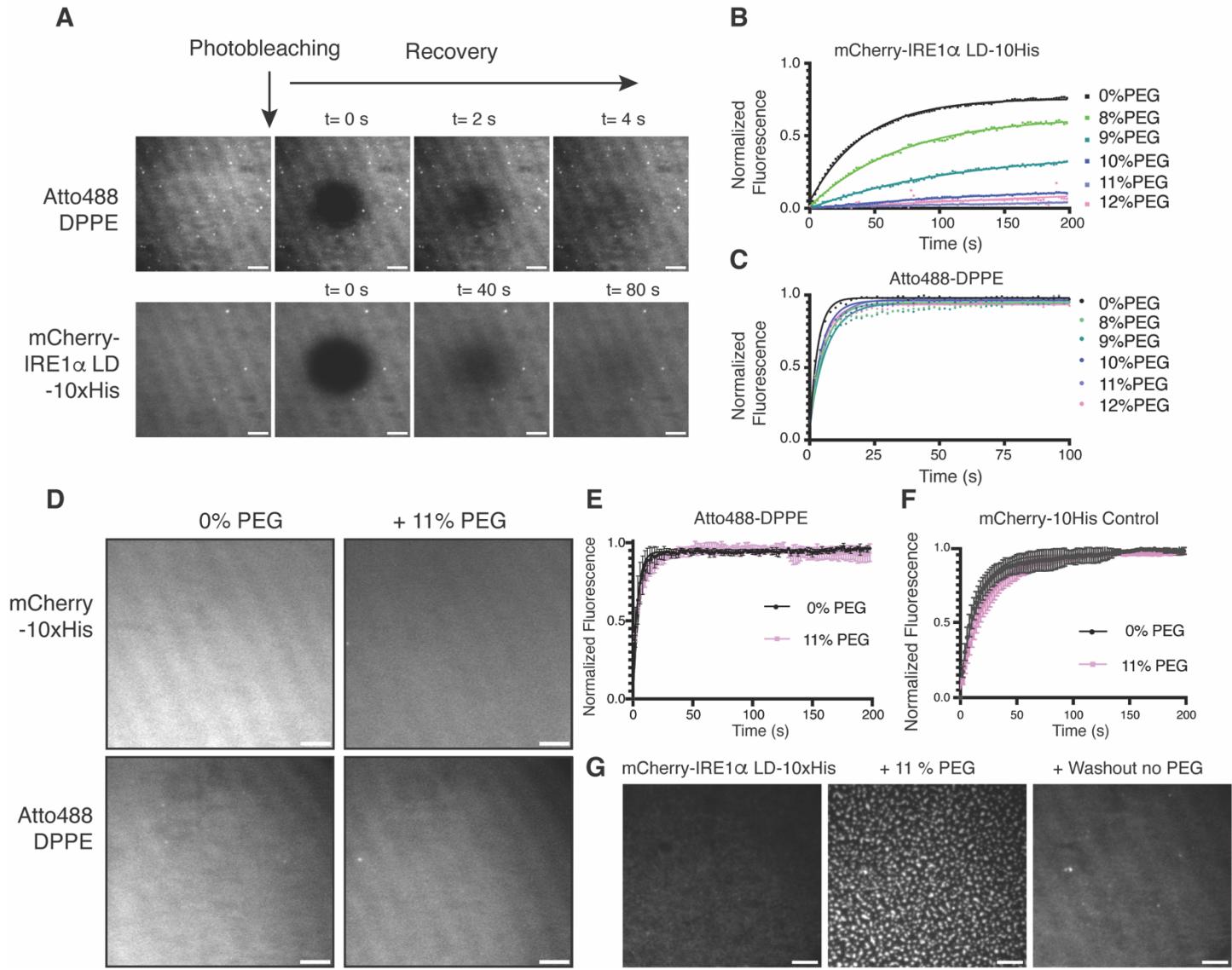


Fig. 1. IRE1α LD forms clusters on supported lipid bilayers (SLB).

A. Schematic illustration of IRE1α domain architecture within the ER membrane. **B.** Schematic illustration of the SLB setup. **C.** TIRF images of mCherry-IRE1α LD-10His clustering on an SLB in the absence (left) and presence of 11 % PEG. Scale bar (SB) = 5 μm. **D.** Fusion events of mCherry-IRE1α LD-10His clusters on SLBs at the indicated time points. Scale bar = 5 μm, zoom in scale bar = 1 μm. **D.** FRAP images of mCherry-IRE1α LD-10His on SLBs in presence of 11 % PEG within 300 s. Scale bar = 5 μm. **E.** TIRF images displaying clustering of mCherry-IRE1α LD-10His tethered to SLBs via 1 % Ni-NTA lipids in the presence of the indicated concentrations of PEG **F.** Clustering is visible by the formation of fluorescent intense spots. Scale bar = 5 μm **G.** TIRF images displaying clustering of mCherry-IRE1α LD-10His in the presence of PEG and 10 μM model unfolded polypeptide ligand MPZ1N. Scale bar = 5 μm. **H.** TIRF images displaying the phase diagram of mCherry-IRE1α LD-10His in the presence of PEG and 1 μM model unfolded polypeptide ligand MPZ1N-2X. Scale bar = 5 μm. **I.** TIRF images displaying the phase diagram of mCherry-IRE1α LD-10His in the presence of the indicated concentrations of PEG and 1 μM control peptide MPZ1N-2X-RD. Scale bar = 5 μm.

Figures

Supp. Figure 1

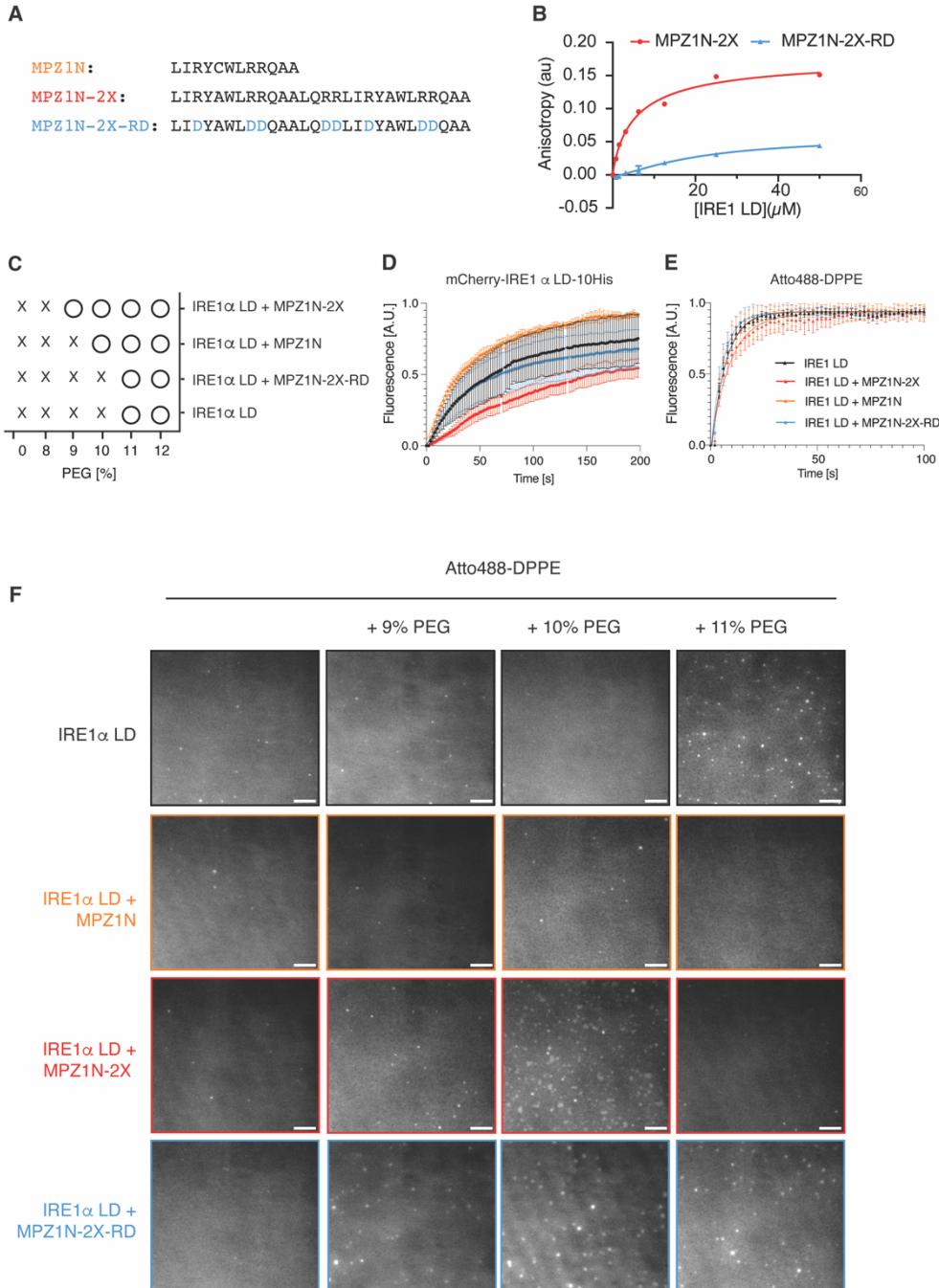


Fig. Supp. 1

A. TIRF images of FRAP experiments of Atto488 labeled DPPE lipids (top) and mCherry-IRE1 α LD-10His (bottom) on SLBs showing the dynamic behavior within the indicated time. Scale bar = 5 μ m. **B.** FRAP curves of mCherry-IRE1 α LD-10His tethered to SLBs by 1 % Ni-NTA labeled lipids. The SLBs are incubated 10 min with the indicated concentration of the crowding agent PEG before the images are taken. The mobile fraction and diffusion values are decreasing with increasing PEG concentration. **C.** FRAP curves displaying the fluorescent intensity of Atto488 labeled DPPE lipids within SLBs treated with the indicated concentration of the crowding agent PEG over time. **D.** TIRF images displaying mCherry-10His control and the membrane (Atto488 DPPE) with and without PEG. Scale bar = 5 μ m. **E.** FRAP curves displaying the fluorescent intensity of Atto488 labeled DPPE lipids within SLBs treated with the indicated concentration of the crowding agent PEG over time. **F.** FRAP curves displaying the fluorescent intensity of mCherry-10His control within SLBs treated with the indicated concentration of the crowding agent PEG over time. **G.** TIRF images of mCherry-hIRE1 α LD-10His tethered to SLBs by 1 % Ni-NTA labeled lipids in the absence of PEG, in presence of 11 % PEG and where PEG is washed out from the well. Scale bar = 5 μ m.

Figures

Supp. Figure 2

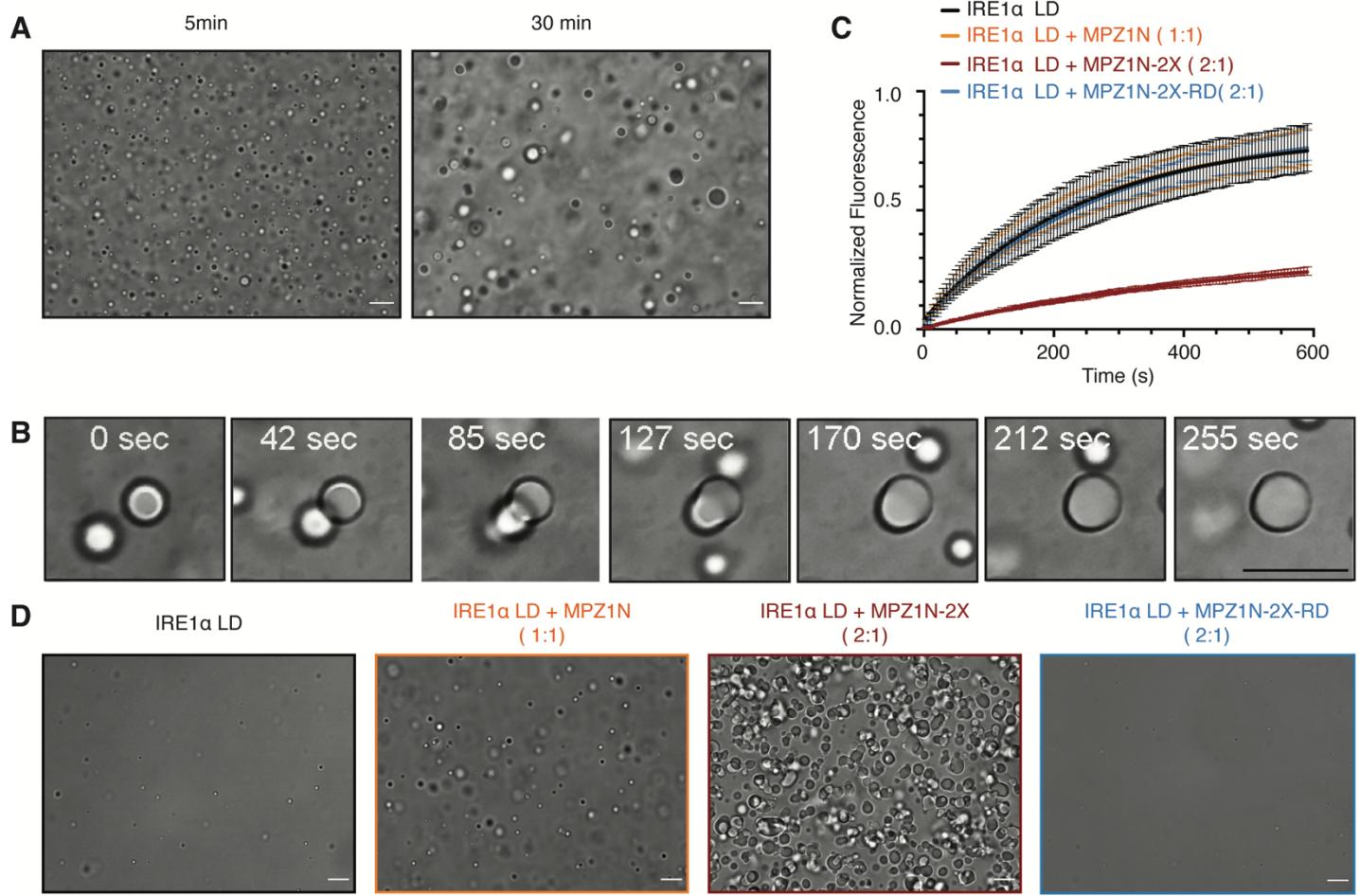


Fig. Supp. 2

A. Amino acid sequences of model unfolded polypeptides MPZ1N and MPZ1-N-2X and the control non-binding derivative MPZ1N-N-2X-RD. **B.** Fluorescence anisotropy experiments monitor the interaction of N-terminal fluorescein labeled MPZ1N-2X and its derivative MPZ1N-2X-RD with IRE1 α LD. MPZ1N-2X interacts with IRE1 α LD at 2 μ M affinity, whereas the MPZ1N-2X-RD is impaired in binding. **C.** Diagram summarizing mCherry-IRE1 α LD-10His clustering on SLBs in the presence of peptides at various PEG concentrations. “X” depicts no cluster and “O” cluster formation. **D.** FRAP curves of mCherry-IRE1 α LD-10His on SLBs in the absence (black curve) and presence of 10 μ M MPZ1N (orange curve), 1 μ M MPZ1N-2X (red curve) and 1 μ M MPZ1N-2X-RD (blue curve) peptides. Curve marks show the mean value, error bars display the standard deviation and the values are fitted to a one-phase association curve. n=3 independent experiments were performed. **D.** FRAP curves of Atto488 labeled DPPE lipids within SLBs color code is as in Fig. Supp. 2D. **E.** TIRF images displaying Atto488 labeled DPPE within SLBs of experiments shown in **Fig. 1F-I**. Scale bar = 5 μ m

Figures

Figure 2

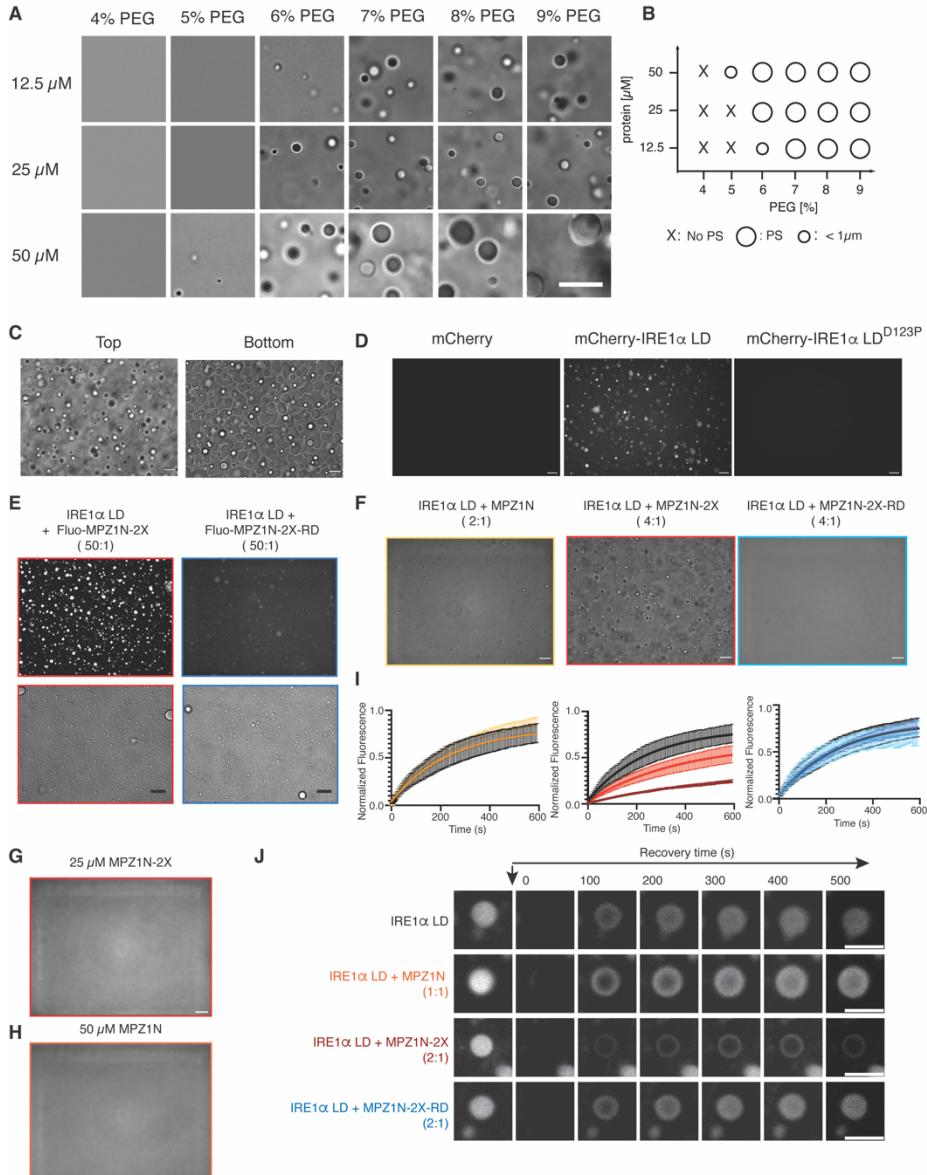


Fig. 2. IRE1 α LD forms dynamic condensates in solution.

A. DIC microscopy images showing IRE1 α LD condensates imaged after 5 min (left) and 30 min incubation with PEG (50 μ M IRE1 LD, 6 % PEG). Scale bar for all images = 10 μ m. **B.** Fusion of IRE1 α LD condensates imaged by DIC microscopy. The condensates were imaged after 30 min incubation with PEG at the indicated time points (50 μ M IRE1 LD, 6 % PEG). **C.** FRAP curves showing normalized fluorescent recovery of IRE1 α LD condensates after 30 min incubation with 6 % PEG. IRE1 α LD (25 μ M IRE1 LD, 6 % PEG) in the absence (black curve) and in the presence of MPZ1N peptide (1:1 stoichiometry, orange curve), in the presence of MPZ1N-2X peptide (2:1 stoichiometry, dark red curve), in the presence of MPZ1N-2X-RD peptide (2:1 stoichiometry, blue curve). Curve marks show the mean value, error bars display the standard deviation. n=3 independent experiments were performed while 3 condensates were bleached each experiment. **D.** DIC microscopy images displaying LLPS behavior of IRE1 α LD alone (50 μ M IRE1 α LD, 5% PEG) (left) and IRE1 α LD in complex with MPZ1N (1:1 stoichiometry), MPZ1N-2X (2:1 stoichiometry) and the control MPZ1N-2X-RD. Images were taken 30 min after induction of phase separation with PEG.

Figures

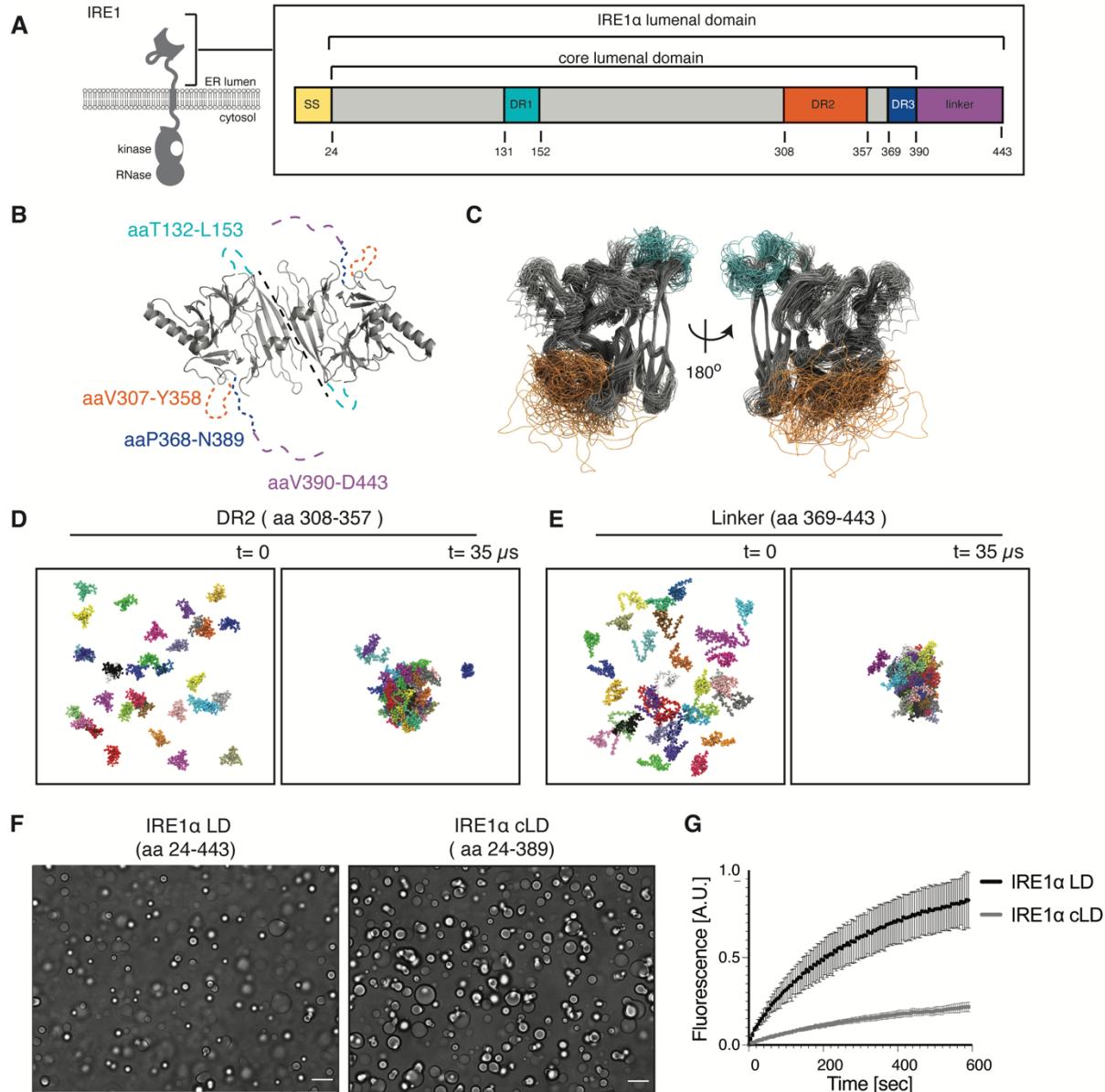

Kettel et al., Supp. Figure 3

Fig. Supp. 3 A. DIC images of IRE1 α LD representing the phase diagram of IRE1 α LD. Scale bar = 10 μm . **B.** Phase diagram of IRE1 α LD condensates at 12.5, 25 and 50 μM at 30 min incubation with 4-9 % PEG as in **Fig. Supp. 1A**. No phase separation (PS) is indicated by a cross and phase separation (PS) is indicated by a circle. The smaller circle refers to condensates with diameter $< 1\text{ }\mu\text{m}$. **C.** DIC images of 50 μM IRE1 α LD incubated with 6 % PEG for 30 min. The images are obtained at the bottom or middle of the plate. Scale bar = 10 μm . **D.** Fluorescence images of 25 μM mCherry control, mCherry-IRE1 α LD-10His and the dimerization mutant of IRE1 α LD, mCherry-IRE1 α LD^{D123P}-10His after 30 min incubation with 6% PEG. Scale bar = 10 μm . **E.** Confocal (top) and bright field (bottom) images displaying the recruitment of Fluorescein-labeled MPZ1N-2X (left, red) and MPZ1N-2X-RD (right, blue) peptides into preformed IRE1 α LD condensates. Scale bar = 13 μm . **F.** DIC microscopy images of 50 μM IRE1 α LD incubated with MPZ1N (2:1 stoichiometry, left), MPZ1N-2X (4:1 stoichiometry, middle) or MPZ1N-2X-RD (4:1 stoichiometry, right panel) at 30 min after induction of phase separation with 5% PEG. Scale bar = 10 μm . **G.** DIC images of 25 μM MPZ1N-2X peptide in the presence of 6 % PEG. Scale bar = 10 μm **H.** FRAP images of 25 μM IRE1 α LD and 6 % PEG in the absence (black curve) and in the presence of MPZ1N peptide (2:1 stoichiometry, light orange curve, 1:1 stoichiometry orange curve), MPZ1N-2X peptide (4:1 stoichiometry, red, 2:1 stoichiometry dark red) and MPZ1N-2X-RD control peptide (4:1 stoichiometry, light blue, 2:1 stoichiometry blue). **I.** FRAP images of a single IRE1 α LD condensate in absence and presence of the model unfolded peptides at the indicated stoichiometry taken before and at the indicated time points after photo-bleaching. Scale bar = 5 μm .

Figures

Figure 3

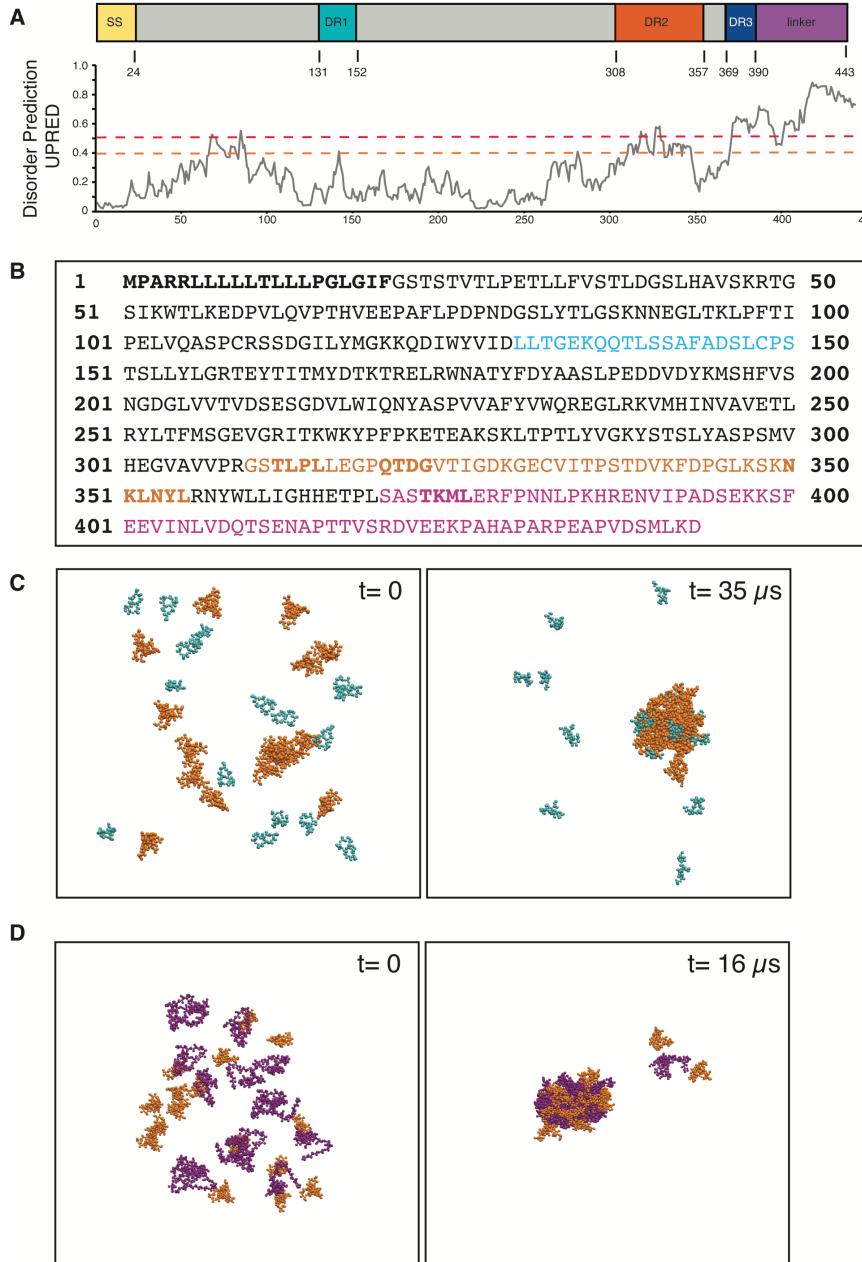


Fig. 3. Disordered regions in IRE1 α LD have potential to form clusters.

A. Schematic description of DRs in IRE1 α LD and boundaries of the core LD. The numbers correspond to the amino acid number at the domain boundaries. SS = Signal sequence, DR = disordered region. **B.** IRE1 α cLD dimeric structure based on the crystal structure of human IRE1 α (pdb: 2hz6). The DRs that are not resolved in the structure are depicted by dashed lines. **C.** Superposition of frames of an all-atom cLD simulation. Molecular dynamic simulations of IRE1 α cLD shows flexibility of the DR at 600 ns time scale. **D.** Molecular Dynamics Simulations of 33 copies of DR2. These simulations reveal that the DR2 region forms clusters. **E.** Molecular Dynamics Simulations of 33 copies of the linker region. These simulations reveal that the linker region forms clusters. **F.** DIC images of IRE1 α LD (left) and IRE1 α cLD (right) reveal that IRE1 α cLD is sufficient to form condensates. All images were obtained for 50 μ M protein after incubation with 6 % PEG for 30 min. Scale bar = 10 μ m. **G.** FRAP curve showing the time-dependent, normalized fluorescent recovery of 25 μ M IRE1 α LD and IRE1 α cLD condensates after 30 min incubation with 6 % PEG. Curve marks show the mean value, error bars display the standard deviation and the values are fitted to a one-phase association curve displaying a lower mobile fraction and longer half-life time for IRE1 α cLD condensates. n=3 independent experiments were performed where 3 condensates were bleached each experiment.

Figures

Supp. Figure 4

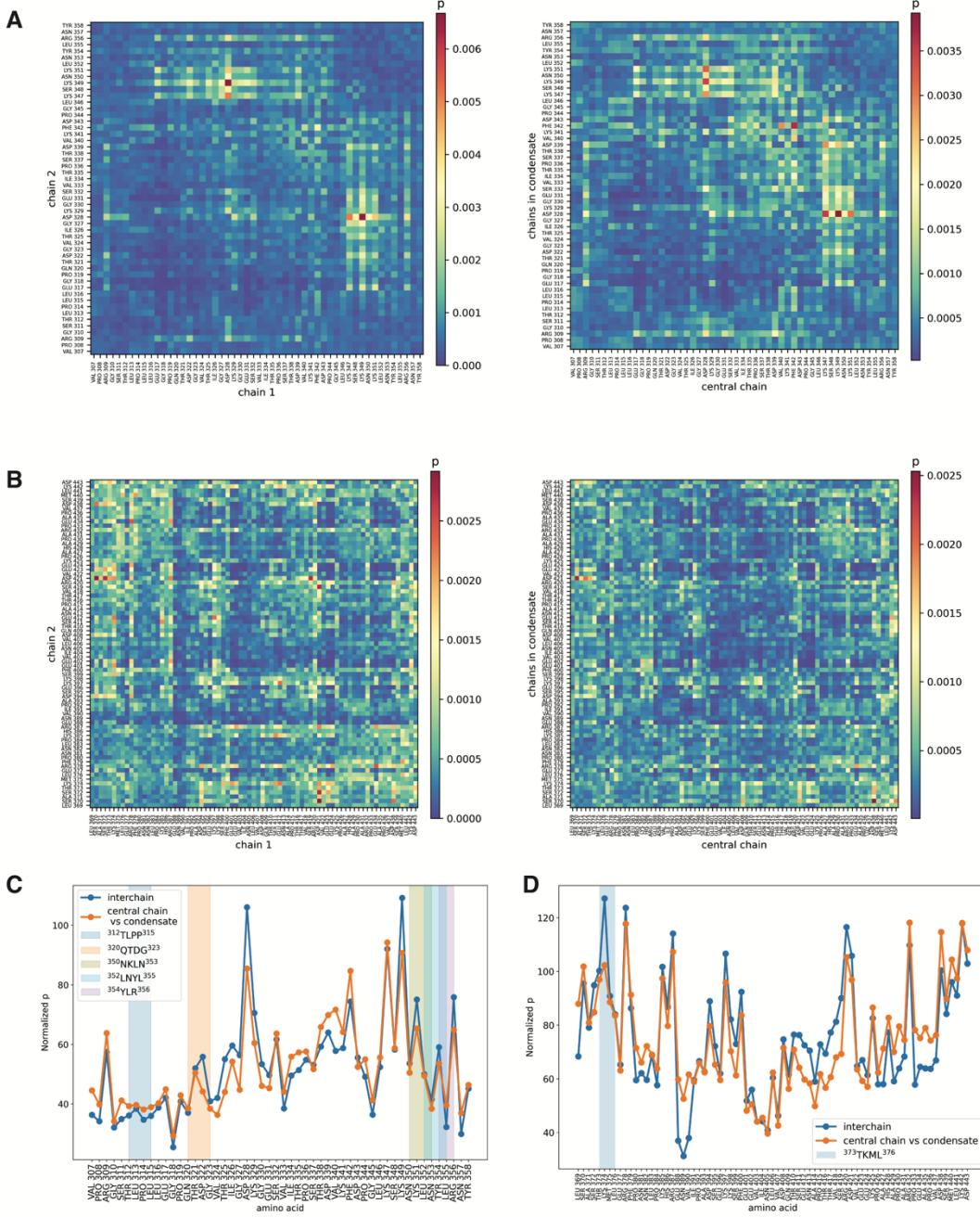


Fig. Supp. 4.

A. Schematic presentation of DRs in IRE1 α LD domain organization in combination with the prediction of intrinsically unstructured regions of hIRE1 α LD using the IUPRED server. The red and orange lines indicate moderate and disordered propensity, respectively. **B.** Amino acid sequence of IRE1 α LD where DR1, DR2 and linker segments are colored in cyan, orange and purple respectively. The signal sequence and mutated segments are highlighted in bold letters. **C.** Simulation of 16 copies of DR1 (cyan) and 16 copies of DR2 (orange). Molecular Dynamics Simulations show that the cluster formed by DR2 do not recruit DR1 segments. **D.** Simulation of 16 copies of DR2 (orange) and 16 copies of linker region (purple) (right two panels). Molecular Dynamics Simulations show that the cluster formed by DR2 recruit the linker segments.

Figures

Supp. Figure 5

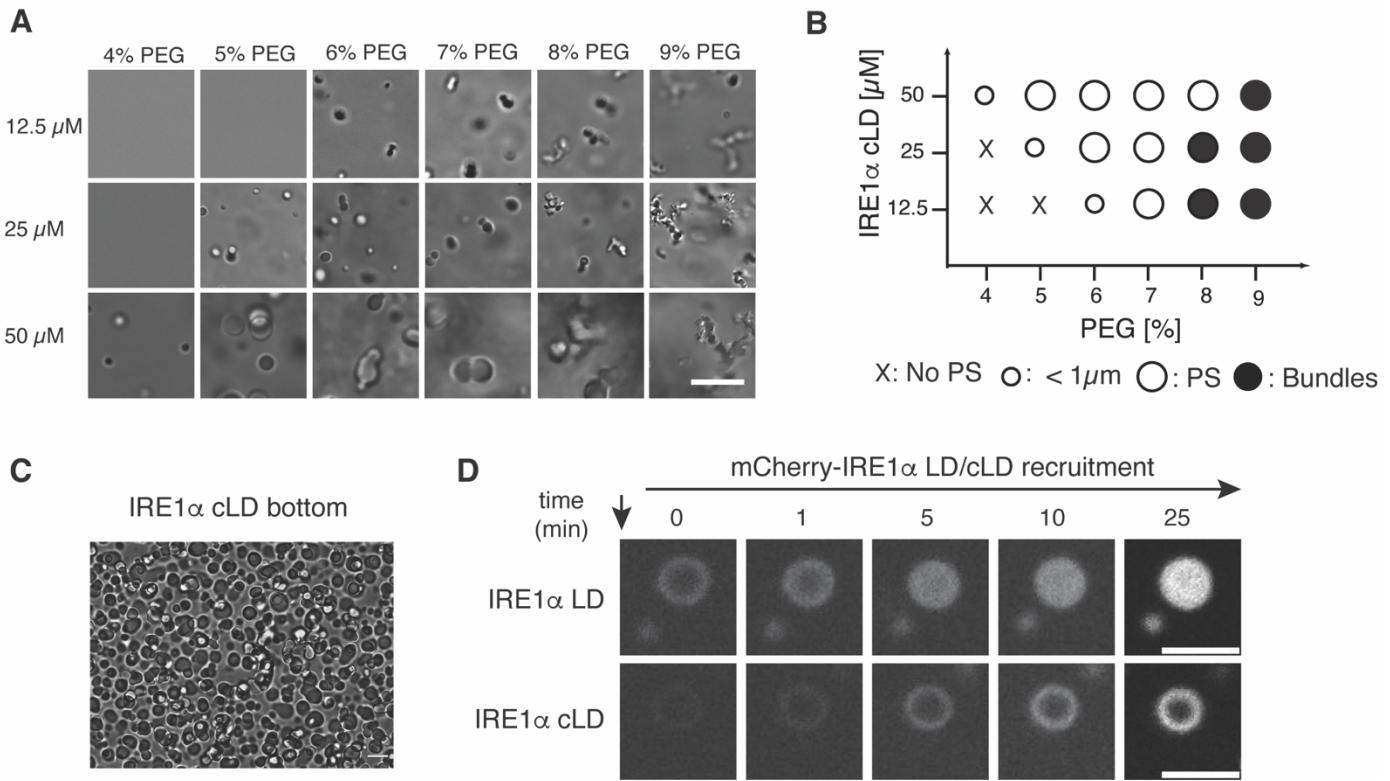


Fig. Supp. 5.

A. Contact maps for interchain and condensate interactions in simulations containing two or 33 copies of DR2. **B.** Contact maps for interchain and condensate interactions in simulations containing two or 33 copies of linker. **C.** 1D-projections of the contact maps computed for the simulations containing two or 33 copies of DR2. **D.** 1D-projections of the contact maps computed for the simulations containing two or 33 copies of linker.

Figures

Supp. Figure 6

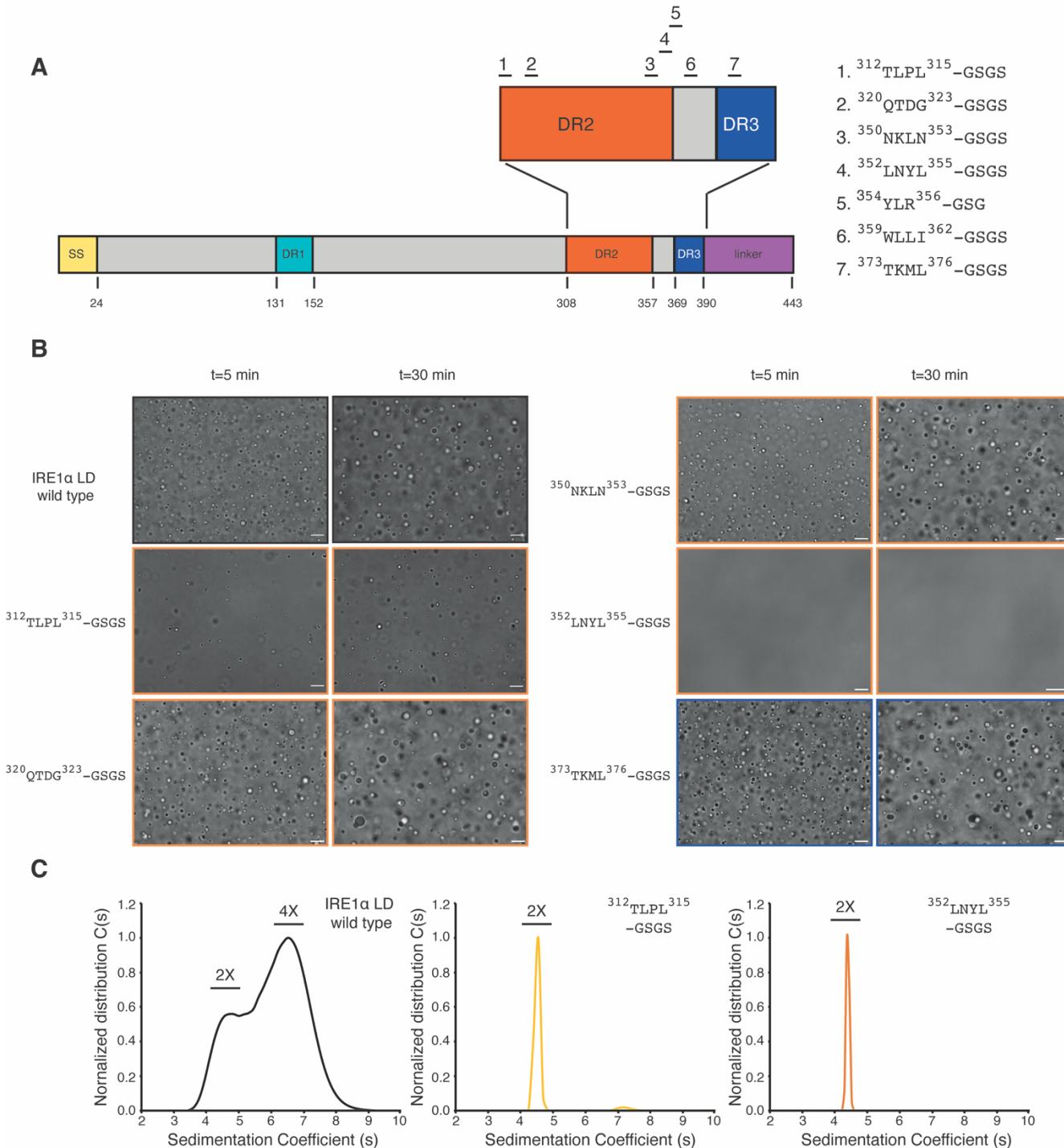


Fig. Supp. 6.

A. DIC Images of IRE1 α cLD representing the phase diagram at 12.5, 25 and 50 μM acquired after 30 min incubation with PEG at concentrations ranging from 4 - 9 %. Scale bar = 10 μm **B.** Phase diagram of IRE1 α cLD based on images in Fig. Supp. 4C. No phase separation (PS) is indicated by a cross, phase separation (PS) is indicated by a circle and condensates that resemble beads on a string are represented by a black circle (bundles). The smaller circle refers to smaller condensates (diameter $< 1\mu\text{m}$). **C.** DIC images of the bottom of the well of IRE1 α cLD (50 μM) condensates taken 60 min after induction of phase separation *via* addition of 6 % PEG showing the phase separation propensity and wetting effect. Scale bar = 10 μm **D.** Fluorescence images of 25 μM IRE1 α LD (top) or IRE1 α cLD (bottom) condensates at the indicated time points after 30 min incubation with 6 % PEG following the recruitment of 2 % mCherry labeled IRE1 α LD or cLD, respectively. mCherry-IRE1 α LD-10His is recruited to the center of preformed IRE1 α LD condensates, whereas mCherry-IRE1 α cLD-10His could only associate with the outer shell of the preformed IRE1 α cLD condensates. Scale bar = 5 μm .

Figures

Figure 4

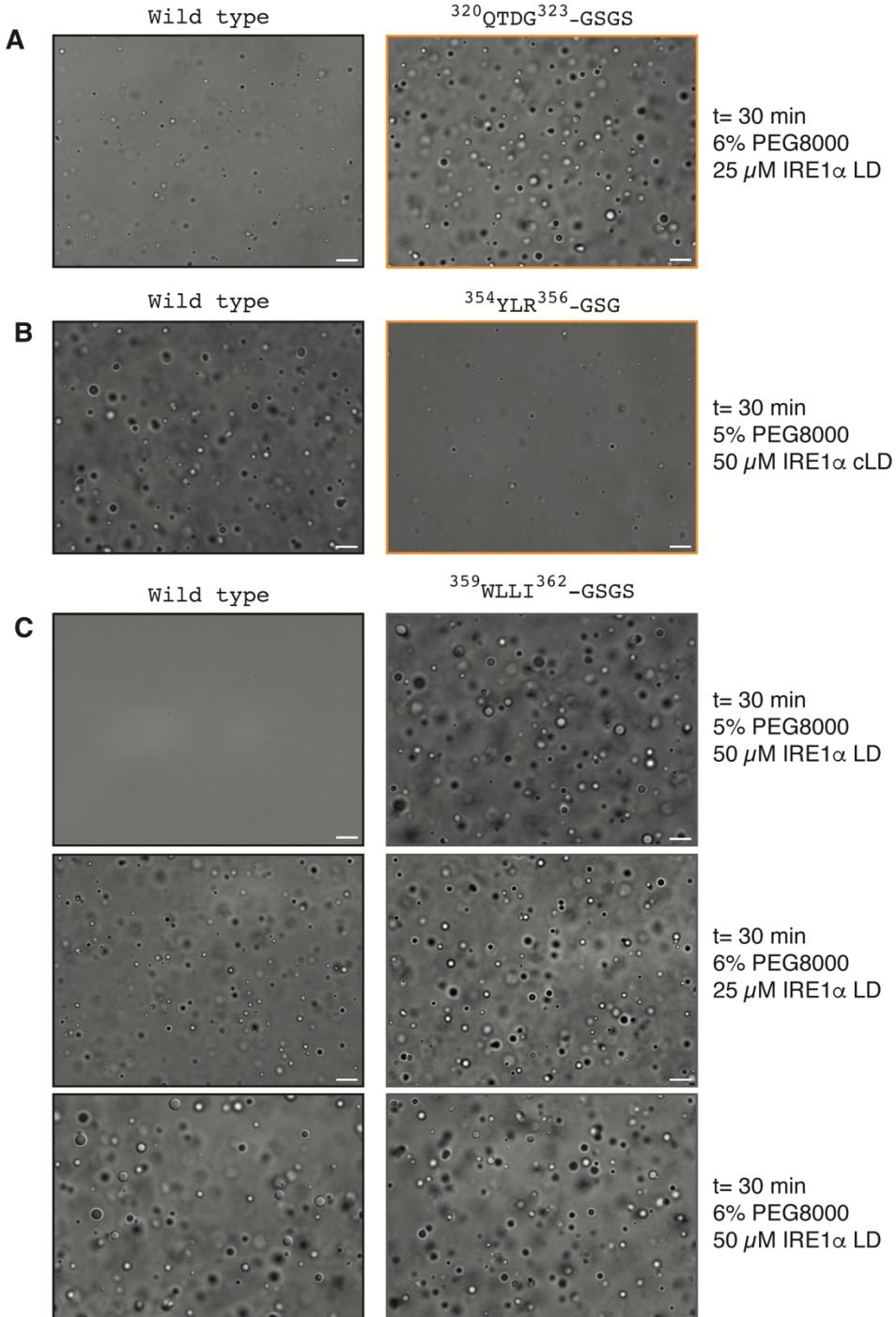


Fig. 4. Mutations in disordered segments in IRE1 α LD impair phase separation.

A. Schematic description of the mutations (1-7) introduced to IRE1 α LD. SS = Signal sequence, DR = disordered region. **B.** DIC images showing LLPS behavior of IRE1 α LD wild type and the mutants at 50 μM after their incubation with 6 % PEG for 5 min (left) and 30 min (right). Scale bar = 10 μm . **C.** AUC-SV curves of 25 μM wild type IRE1 α LD (black curve, left), IRE1 α LD $^{312}\text{TLPL}^{315}\text{-GSGS}$ (light orange curve, middle) and IRE1 α LD $^{352}\text{LNYL}^{355}\text{-GSGS}$ mutants (orange curve, right).

Figures

Supp. Fig. 7

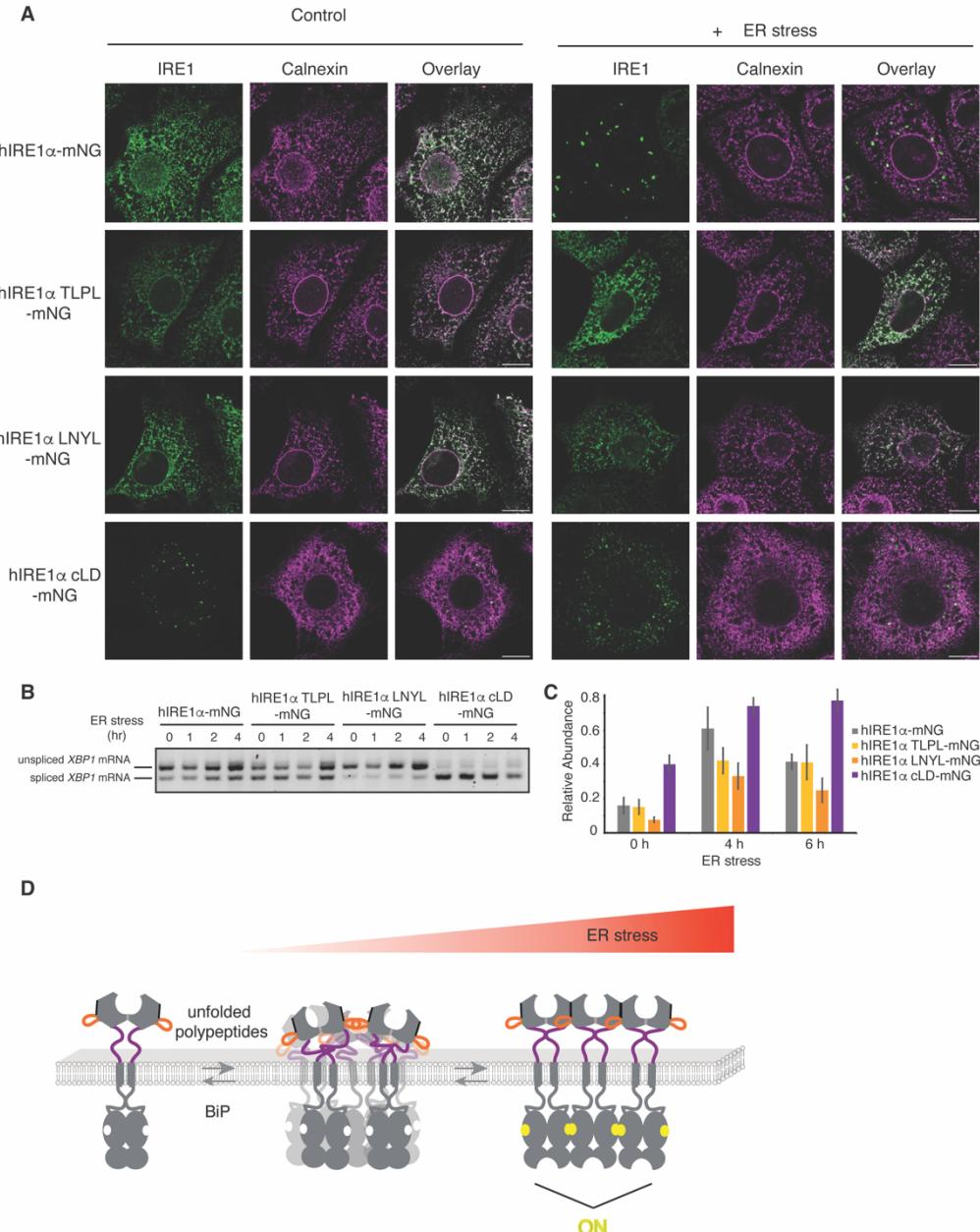


Fig. Supp. 7

A. DIC images of 25 μM WT IRE1 α LD and IRE1 α LD $^{320}\text{QTDG}^{323}\text{-GSGS}$ mutant showing LLPS behavior 30 min after induction of phase separation by the addition of 6 % PEG. **B.** DIC images of 50 μM WT IRE1 α cLD and IRE1 α cLD $^{354}\text{YLR}^{356}\text{-GSG}$ mutant showing LLPS behavior 30 min after induction of phase separation by the addition of 5 % PEG. **C.** DIC images comparing the LLPS behavior of WT IRE1 α LD (left column) and IRE1 α LD $^{359}\text{WLLI}^{362}\text{-GSGS}$ mutant (right column) 30 min after induction of phase separation at 50 μM protein concentration and 5 % PEG (top row) at 25 μM protein concentration and 6 % PEG (middle row) and at 50 μM protein concentration and 6 % PEG (bottom row). Scale bar for all images = 10 μm .

Figures

Figure 5

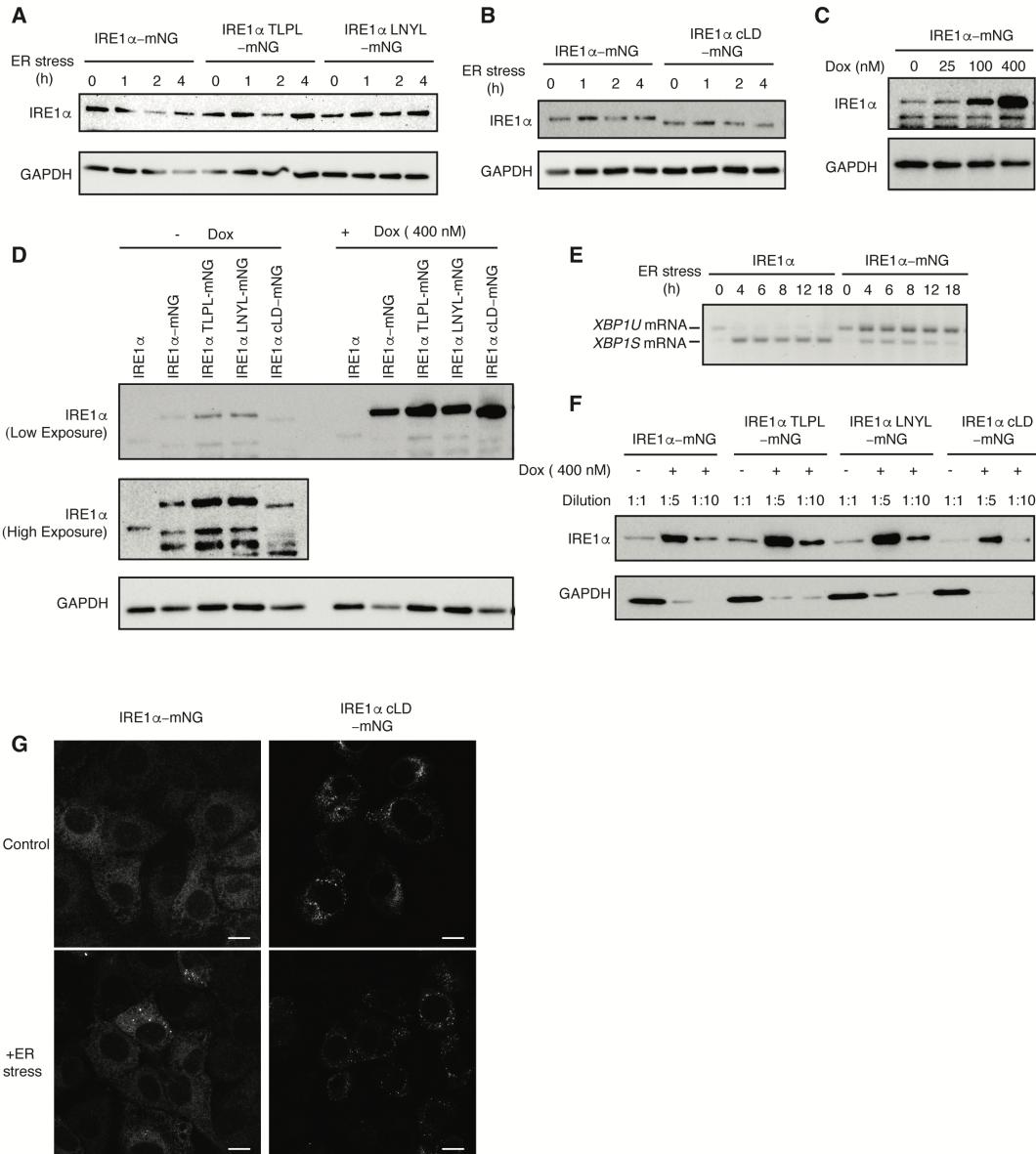


Fig. 5. IRE1 α LD DR mutants dysregulate its clustering and activity *in vivo*.

A. Immunofluorescence images of MEFs treated with 400 nM doxycycline expressing IRE1 α -mNG or its mutants in the absence (left panel) of stress and treated with 5 μ g/ml ER stressor Tunicamycin for 4 hrs (right panel). IRE1 α -mNG and its mutants are visualized by mNG fluorescence (green) and the ER-chaperone Calnexin is stained by anti-calnexin antibody (purple). Scale bar = 10 μ m. **B.** Semiquantitative PCR reaction to monitor splicing of *XBP1* mRNA by IRE1 α -mNG and its mutants at different time points after induction of ER stress by addition of 5 μ g/ml Tunicamycin. Expression of the IRE1 α variants is induced by treatment of MEFs 24 hrs with 400 nM doxycycline before induction of ER stress. The bands are indicated as unspliced and spiced *XBP1* variants. **C.** qRT-PCR to monitor splicing of *XBP1* mRNA by IRE1 α -mNG and its mutants at different time points after induction of ER stress by addition of 5 μ g/ml Tunicamycin. **D.** Model describing the role of DRs in IRE1 α clustering. During ER stress, ER-resident chaperone BiP is released from the DRs in IRE1 α LD allowing these segments to self-associate through multivalent weak interactions. Under those conditions, misfolded proteins accumulating in the ER facilitate formation of dynamic IRE1 α condensates. These dynamic condensates rapidly assemble into stable IRE1 α clusters with distinct conformation allowing for IRE1 α trans-autophosphorylation and RNase activity.

Figures

Supp. Figure 8

Fig. Supp. 8

A, Western blot analyses comparing the expression level of IRE1 α -mNG and its mutants IRE1 α -TLPL-mNG and IRE1 α -LNYL-mNG in MEFs in the absence of doxycycline treatment at different points after induction of ER stress. **B**, Western blot analyses comparing the expression levels of IRE1 α -mNG and IRE1 α -cLD-mNG in MEFs in the absence of doxycycline treatment at different points after induction of ER stress. **C**, Western blot analyses comparing the WT IRE1 α expression to the expression level of IRE1 α -mNG in the absence and presence of various concentrations of doxycycline inducing its expression for 24 hours. **D**, Quantification of overexpression levels of IRE1 α -mNG and its mutants upon induction of protein expression with 400 nM doxycycline for 24 hrs. **E**, Semiquantitative PCR reaction to monitor splicing of XBP1 mRNA by IRE1 α -mNG (in the absence of doxycycline) and wild type IRE1 α at different time points after induction of ER stress by addition of 5 μ g/ml Tunicamycin. The bands are indicated as unspliced and spliced XBP1 variants. **F**, Western blot analyses comparing the expression levels of IRE1 α -mNG and its mutants in MEFs in the absence and presence of 400 nM doxycycline treatment. Lysates obtained from 400 nM doxycycline MEFs were diluted 1 to 5 and 1 to 10. **G**, Immunofluorescence images of MEFs treated with 100 nM doxycycline to induce expression of IRE1 α -mNG and the IRE1 α -cLD-mNG mutant in the absence (top row) of stress and treated with 5 μ g/ml ER stressor Tunicamycin for 4 hrs (bottom row). IRE1 α -mNG and its mutants are visualized by mNG fluorescence (green). Scale bar = 10 μ m.