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Abstract

Drug resistance is a major obstacle in cancer treatment and can involve a variety of different
factors. Identifying effective therapies for drug resistant tumors is integral for improving patient
outcomes. In this study, we applied a computational drug repositioning approach to identify
potential agents to sensitize primary drug resistant breast cancers. We extracted drug resistance
profiles from the I-SPY 2 TRIAL, a neoadjuvant trial for early stage breast cancer, by comparing
gene expression profiles of responder and non-responder patients stratified into treatments within
HR/HER2 receptor subtypes, yielding 17 treatment-subtype pairs. We then used a rank-based
pattern-matching strategy to identify compounds in the Connectivity Map, a database of cell line
derived drug perturbation profiles, that can reverse these signatures in a breast cancer cell line.
We hypothesize that reversing these drug resistance signatures will sensitize tumors to treatment
and prolong survival. We found that few individual genes are shared among the drug resistance
profiles of different agents. At the pathway level, however, we found enrichment of immune
pathways in the responders in 8 treatments within the HR+HER2+, HR+HER2-, and HR-HER2-
receptor subtypes. We also found enrichment of estrogen response pathways in the non-
responders in 10 treatments primarily within the hormone receptor positive subtypes. Although
most of our drug predictions are unique to treatment arms and receptor subtypes, our drug
repositioning pipeline identified the estrogen receptor antagonist fulvestrant as a compound that
can potentially reverse resistance across 13/17 of the treatments and receptor subtypes including
HR+ and triple negative. While fulvestrant showed limited efficacy when tested in a panel of 5
paclitaxel-resistant breast cancer cell lines, it did increase drug response in combination with
paclitaxel in HCC-1937, a triple negative breast cancer cell line.
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1 Introduction

Breast cancer is the most common cancer diagnosis in women worldwide and is expected to
make up 15.3% of all new cancer cases in the United States in 2020'. While the prognosis for
women with stage I or stage II breast cancer is excellent, 10-15% of newly diagnosed breast
cancers are locally advanced cancers which have significantly poorer outcomes . Additionally,
breast cancer is an incredibly heterogenous disease and research has shown that breast cancers
with different molecular features can have different treatment responses?>. Breast cancers can be
stratified into receptor subtypes based on immunohistochemistry markers for ER, PR, and HER?2,
which are commonly used for therapeutic decision making®. Several of these receptor subtypes,
which include triple negative, or ER-PR-HER2- tumors, and HER2+ tumors, represent patient
populations with more aggressive disease even in early stage who could benefit from improved
treatment®.

While breast cancer treatments have advanced, no treatment is effective in 100% of breast cancer
patients. Drug resistance in cancer is a multi-faceted problem that involves a variety of biological
determinants such as tumor heterogeneity, tumor burden and growth kinetics, physical barriers,
the immune system, and the tumor microenvironment®. While there has been much research into
understanding and overcoming drug resistance, it remains one of the largest challenges in cancer
today and new approaches are needed to tackle this problem.

The I-SPY 2 TRIAL (Investigation of Serial studies to Predict Your Therapeutic Response with
Imaging And molecular anaLysis 2) is an adaptive phase Il clinical trial of neoadjuvant treatment
for women with high risk, locally advanced breast cancer’ ® ? 10 11 12 The trial uses an adaptive
design to accelerate the clinical trial process with the goal of identifying optimal treatment
regimens for patient subsets based on HR, HER2, and MammaPrint>. While the I-SPY 2 trial has
been successful in graduating numerous drugs, patients who fail to respond to the neoadjuvant
treatments in the trial tend to have worse outcomes'? 14, Identifying more efficacious treatments
for these non-responder patients with primary drug resistance may improve patient outcomes.

We applied a computational drug repurposing approach to identify potential agents to include in
the trial for patients unlikely to respond to agent classes tested in the trial to date. Drug
repurposing offers advantages over traditional drug development by greatly reducing
development costs and providing shorter paths to approval, as drug safety has already been
established during the drug’s original regulatory process. Our group has previously developed
and applied a computational drug repositioning approach which involves generating a disease
gene expression signature by comparing disease samples to control samples, and then identifying
a drug that can reverse this disease signature!”. Potential drug hits can be found by using datasets
such as the Connectivity Map (CMap) and the Library of Integrated Network-Based Cellular
Signatures (L1000) which have generated thousands of drug perturbation expression profiles.
This gene expression based computational drug repurposing approach has previously been used
to identify effective treatments for a number of different indications, including several cancer
types!8 1°. It has also been used to predict agents to reverse drug resistance in acute
lymphoblastic leukemia and non-small cell lung cancer 2° 2!,
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In this study, we leveraged the I-SPY2-990 mRNA/RPPA data compendium?? to extract drug
resistance signatures by comparing the pre-treatment expression profiles of responders to non-
responders within each receptor subtype and treatment arm. We then applied a computational
drug repositioning approach to identify agents which can reverse these primary drug resistance
signatures, and experimentally tested the top drug hit in a panel of paclitaxel-resistant breast
cancer cell lines. This is the first large scale attempt to apply this transcriptomics-based drug
repositioning pipeline to the receptor subtypes of breast cancer.

2 Methods
2.1 I-SPY2 Gene Expression and Clinical Data

I-SPY 2 is a multicenter, phase II adaptive clinical trial for women with high-risk stage II/I11
breast cancer. Patients are classified into receptor subtypes based on hormone-receptor (HR),
HER2, and MammaPrint status and assigned to one of several investigational therapies or the
control regimen using an adaptive randomization engine which gives greater weight to
treatments with a higher estimated response rate in the patient’s tumor subtype. The primary
endpoint is pathologic complete response (pCR, no residual invasive disease in breast or nodes)
at the time of surgery. The analysis is modified intention to treat and patients who do not proceed
to surgery, withdraw from the trial, or receive non-protocol therapy are considered non-pCR.

We used pre-treatment biopsy samples from the closed arms of the ISPY?2 trial (n=990), which
were assayed using custom Agilent array designs (15746 and 32627). Normalized data for each
array was generated by centering the log2 transformed gMeanSignal of all probes within the
array to the 75 percentile of all probes. A fixed value of 9.5 was added to avoid negative values.
Genes with multiple probes were averaged and ComBat was applied to adjust for platform-
biases??.

We define drug resistant patients as patients with Residual Cancer Burden (RCB) III measured at
time of surgery and drug sensitive patients as patients with RCB 0 or I at time of surgery. While
we initially included RCB II patients in the drug resistant group, we removed the RCB II patients
in our final analysis to achieve better separation in predictive signals distinguishing responders
and non-responders. We kept receptor subtype and treatments with at least three patients in the
resistant and sensitive groups, resulting in 19 receptor subtype-treatment pairs.

2.2 Differential Expression to Identify Drug Resistance Genes

We used limma to perform differential expression between the drug resistant and drug sensitive
samples within treatments and receptor subtypes. We then filtered the differential expression
results by p-value and log-fold change to generate the resistance gene lists. We chose a p-value
threshold of 0.01 because the differences between the resistant and sensitive tumors were
relatively subtle and very few genes met the typical g-value cutoff of 0.05. To identify the
optimal log fold change cutoff for each differential expression gene list, we selected the log fold
change value that best separated the drug resistant and drug sensitive samples after filtering for
p-value < 0.01. Specifically, we iterated over a range of potential log2 fold change cutoffs (start
=1, end = 0, step size = 0.1) and applied k-means clustering (k=2) at each cutoff to identify two
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clusters of samples. We then calculated the Mathew’s correlation coefficient (MCC) to evaluate
how well the k-means derived clusters match the actual clinical labels of drug resistant and drug
sensitive samples. We used the log2 fold change cutoff with the highest MCC value to generate
our drug resistance gene lists. Only drug resistance gene lists with a sufficient number of genes
(>50) were kept for further analysis.

2.3 Gene Set Enrichment Analysis

For the GSEA analysis, the drug resistance profiles were ranked by their log fold-change values.
We used the fgsea R package’’ to calculate normalized enrichment scores (NES) and FDR values
from these ranked lists. The NES reflects the degree to which a gene set is overrepresented at the
top or bottom of the ranked list of genes (the enrichment score) divided by the mean enrichment
score for all dataset permutations. Normalizing the enrichment score allows for comparison
across gene sets. We downloaded the 50 Hallmark gene sets from the MSigDB Collections®®.

2.4 Computational Drug Repositioning

We applied our previously published drug repositioning pipeline!” to identify potential
therapeutics to reverse drug resistance in breast cancer patients. At a high level, the method works
by identifying drugs that have reversed differential gene expression profiles compared to the drug
resistance profile. We hypothesize that reversing the expression patterns of drug resistance genes
will drive the tumor towards a drug sensitive state.

To prioritize drugs that have the potential to reverse the drug resistance genes, we used drug
perturbation profiles from CMap V2, which includes 6100 profiles consisting of 1309 distinct
chemical compounds. We applied a filtering step previously described by Chen et al. (2017) to
keep high quality drug perturbation profiles. We further subset this dataset to include only drug
profiles that were generated using MCF-7, the only breast cancer cell line in CMap, resulting in a
final dataset of 756 profiles.

Our drug repositioning pipeline uses a non- parametric, rank-based pattern-matching strategy
based on the Kolmogorov-Smirnov (KS) statistic to assess the enrichment of drug resistance genes
in a ranked drug perturbation gene list. We calculate a reverse gene expression score (RGES) of
each drug by matching resistance gene expression and drug gene expression using the KS test.
Significance of the score is assessed by comparing with scores generated from 100,000 random
permutations, and further corrected by the multiple hypothesis test. FDR < 0.05 was used to select
drug hits.

2.5 Validation experiments for fulvestrant

To validate fulvestrant as a compound to overcome drug resistance, we first selected paclitaxel-
resistant breast cancer cell lines because paclitaxel was used as the standard therapy in the ISPY2
trial. We selected three paclitaxel-resistant and three paclitaxel-sensitive cell lines from Daemen
et al. (2015) from within the HR+HER2- and HR-HER2- receptor subtypes. Daemen et al. only
identified 2 Paclitaxel-sensitive cell lines and 2 Paclitaxel-resistant cell lines for the HR+HER2+
subtype, so we included all four HR+HER2+ cell lines in our validation experiment. Additionally,


https://doi.org/10.1101/2023.03.30.534178
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.30.534178; this version posted April 4, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

since Daemen et al. did not identify any Paclitaxel-resistant HR-HER2+ cell lines in their study,
we did not include any HR-HER2+ cell lines in our validation experiment.

We ordered 16 cell lines from ATCC (Table 3) which were recovered using the cell media
recommended for each cell line by ATCC. We failed to culture three cell lines: MDA-MB-134-
VI, BT-483, UACC-812. Cell line density was determined by seeding cell lines at the following
densities (625, 1250, 2500, 5000, 10000, 20000) and then monitoring their growth curves for 72
hours. For the drug treatment experiments, the cell lines were seeded at the optimal density
determined in the previous cell line density experiments and incubated overnight before treatment.
For the single agent experiments, the cell lines were treated in triplicate with a top dose of 10uM
in 1:3 dilutions for a total of 12 doses with paclitaxel (Sigma-Aldrich Product Number T7191),
fulvestrant (Sigma-Aldrich Product Number 14409), and staurosporine which was used as a
positive control. After 72hr, cell line viability was measured using the CellTiter-Glo Luminescent
Cell Viability Assay following the manufacturer’s instructions. For the sequential treatment
experiments, 1uM of fulvestrant was added to each well 6 hours before treatment with paclitaxel.
The 1 uM dose and 6 hour time point were chosen based on the dose and time point used to generate
the CMAP profile for fulvestrant. For the combination treatment experiments, the cell lines were
treated with paclitaxel as described above in combination with 10uM fulvestrant.

3 Results
3.1 Study design and datasets

In this study, we applied our drug repositioning pipeline to the drug resistance signatures derived
from the I-SPY?2 trial (Figure 1). Pre-treatment samples from ~990 patients in 9 experimental
arms of the trial and concurrent controls were profiled using the Agilent 44K array, as previously
described??. The clinical data for these samples includes the HR/HER?2 receptor subtype of each
sample, treatment, and treatment response including pathologic complete response (pCR),
defined as the absence of invasive cancer in the breast and lymph nodes, and residual cancer
burden (RCB) information. RCB scores are a continuous variable based on the primary tumor
dimensions, the cellularity in the tumor bed, and the axillary nodal burden after neoadjuvant
therapy. The continuous RCB score can then be divided into discrete RCB classes (0, 1, 2, 3)
based on predefined cutoffs>>. An RCB of 0 indicates pathologic complete response while an
RCB of 1-3 indicates increasing amounts of residual cancer. 109 samples were missing RCB
information and excluded from the analysis. The data used in this study form part of the ISPY2-
990 mRNA/RPPA data compendium?? recently deposited on GEO (GSE196096). A summary of
the clinical data, including receptor subtype which we define by the HR and HER?2 status of the
tumor, is provided in Supplementary Table 1 and the corresponding arm for each treatment is
provided in Supplementary Table 2.

3.2 Drug resistance gene profiles overlap at the pathway level and include previously
implicated drug resistance genes

We first classified each pre-treatment biopsy sample from the ISPY 2 trial as drug sensitive or
drug resistant using the RCB class from the clinical data. We define drug sensitive tumors as
having an RCB of 0 or I and we define drug resistant tumors as having an RCB of III. While we


https://doi.org/10.1101/2023.03.30.534178
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.30.534178; this version posted April 4, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

originally defined resistant tumors as having RCB II or III, we found a more distinct signal when
resistance is defined using RCB III only and RCB II tumors are removed from the data set
(Supplementary Table 3 and Supplementary Figure 1).

We performed differential expression analysis between drug sensitive and drug resistant patients
within individual treatments, by receptor subtype. We analyzed only the receptor subtype-
treatment pairs with a minimum of 3 samples in both the drug sensitive group and the drug
resistant group, which resulted in a total of 19 subtype-treatment pairs (Table 1). Of note, there
was an insufficient number of HR-HER2+ tumors for our within-treatment analysis and this
receptor subtype was excluded from our study.

We generated drug resistance gene profiles for each receptor subtype and treatment by filtering
the differential expression analysis results by p-value (0.01) and then selecting the optimal log-
fold change cutoff to achieve maximal separation between the drug resistant and drug sensitive
tumors (see Methods). Drug resistance gene profiles with fewer than 50 genes were removed as
we had previously found this to be the minimum sufficient number of genes required for the drug
repositioning pipeline!®. The drug resistance gene profiles for the remaining 17 receptor subtype-
treatment pairs are included in Supplementary Data 1. We also generated a more general drug
resistance profile by comparing all resistant tumors to all sensitive samples while adjusting for
receptor subtype and treatments, but this profile achieved poor separation of resistant and
sensitive tumors (Supplementary Figure 2).

We found that few individual genes are shared across the receptor subtype and treatment drug
resistance gene profiles (Figure 2A). However, of the 18 genes that appear in at least 4 of the
subtype-treatment pair resistance profiles, 11 have been implicated in drug resistance or drug
response based on the literature. For example, SERPINA3, which was present in five of the drug
resistance gene profiles, including paclitaxel with neratinib and paclitaxel with pembrolizumab
in the HR+HER2- subtype, has been implicated in drug resistance in TNBC cells®*. Additionally,
STC2, which has been implicated in drug resistance in cervical cancer®, was in the following
four drug resistance gene profiles: paclitaxel in the HR+HER2- subtype, paclitaxel with
ganetespib in the HR+HER2- subtype, paclitaxel with pertuzumab and trastuzumab in the
HR+HER2+ subtype, and paclitaxel with trastuzumab in the HR+HER2+ subtype.

We then performed Gene Set Enrichment Analysis (GSEA)? to investigate the differences
between the drug sensitive and drug resistant tumors at the pathway level with the 50 hallmark
pathways from MSigDB (Figure 2B). Similar to previous studies®’ 28, we found an enrichment
of immune pathways in drug sensitive tumors compared to drug resistant tumors in 14 out of the
17 receptor subtype and treatment pairs, including as expected the HR+HER2- subtype in the
pembrolizumab treatment. We also found an enrichment of estrogen response pathways in drug
resistant tumors in 12 of the receptor subtype-treatment pairs, 10 of which are in the hormone-
receptor positive receptor subtypes. The estrogen response pathway has also been previously
implicated in chemoresistance®.

3.3 Prediction of drug sensitizing agents based on expression identifies fulvestrant as a
potential therapeutic
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We applied a transcriptomics-based drug repositioning pipeline!” to compare the drug resistance
gene profiles to the Connectivity Map, a public dataset of drug perturbation profiles, in order to
identify compounds which have the reversed differential gene expression profiles compared to
the drug resistance gene profiles. We hypothesize that if we can identify a drug which can
downregulate the genes that are upregulated in drug resistance and upregulate the genes which
are downregulated in drug resistance, then this drug may induce chemosensitivity in resistant
breast cancer tumors. Out of 756 high quality gene perturbation profiles in the Connectivity Map
dataset derived from a breast cancer cell line, the median number of significant drug hits (q-value
< 0.05 and RES < 0) per receptor subtype-treatment pair was 49 (min: 1, max: 256). The drug
hits for each receptor subtype and treatment are reported in Supplementary Data 2.

Although the number of individual genes that overlap across the drug resistance gene profiles of
the different receptor subtype-treatment pairs was limited, we observed 22 drugs that appeared as
hits in at least 9/17 of the drug resistance gene profiles (Figure 3A and Supplementary Figure 3).

Of note, we identified fulvestrant as a drug hit that significantly reversed 13/17 of the drug
resistance profiles. It is predicted to reverse the drug resistance profiles in 5/6 treatment groups
for TN; 4/4 for HR+HER2+; and 4/7 for HR+HER2- (Figure 3A). Fulvestrant is a selective
estrogen receptor degrader used in the treatment of hormone-receptor positive and HER2-
advanced breast cancer in post-menopausal woman who have not previously been treated with
endocrine therapy. We performed GSEA on the fulvestrant drug perturbation signature from the
Connectivity Map to investigate the pathways which are reversed by fulvestrant and examined
the enrichment of these pathways in the drug resistance profiles (Figure 3B). Unsurprisingly,
fulvestrant seems to downregulate the estrogen response pathways and cell cycle pathways. A
previous study also showed that fulvestrant may reverse drug resistance in multidrug-resistant
breast cancer cell lines independent of estrogen receptor expression®’. For these reasons, we
selected fulvestrant for further validation experiments.

3.4 Fulvestrant validation experiments demonstrate limited efficacy in breast cancer cell
lines

In order to validate fulvestrant as a drug candidate that can reverse drug resistance, we first
needed to identify a panel of drug-resistant breast cancer cell lines. We selected cell lines that are
resistant to paclitaxel because paclitaxel is a standard therapy in the I-SPY 2 trial. The Daemen
et al. study screened 90 experimental and approved drugs, including paclitaxel, in a panel of 70
breast cancer cell lines. Based on the drug response data from this study, we selected paclitaxel-
resistant and paclitaxel-sensitive breast cancer cell lines within each receptor subtype. The cell
lines selected for the validation experiments are listed in Table 3 and were ordered from ATCC.
We were unable to grow three of the cell lines (MDA-MB-134-VI, BT-483, UACC-812), which
were excluded from the drug response experiments.

Next, we treated the breast cancer cell lines with paclitaxel to validate the drug responses from
the Daemen et al. study3!. We used the mean EC50 response as the cutoff to separate the
resistant and sensitive cell lines. We identified five cell lines that were resistant to paclitaxel
based on this cutoff, two of which were also found to be resistant in the Daemen et al. study
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(Table 3). The discrepancy between our drug responses and the drug responses in the Daemen et

al. study may be due in part to the different drug response metrics that were used. The Daemen et
al. study used GI50 while we used EC50 to measure drug response. Out of the five cell lines that

we determined to be resistant to paclitaxel, two were HR-HER2-, two were HR+HER2-, and one
was HR+HER2+.

We then tried two different treatment strategies for testing fulvestrant in the paclitaxel resistant
cell lines. In the first treatment strategy, we treated the paclitaxel resistant cell lines with
fulvestrant for 6 hours before adding paclitaxel. This sequential treatment approach gives the cell
lines time to become sensitized by fulvestrant before being treated with paclitaxel. This
sequential treatment approach (Supplementary Figure 4) did not result in a change in response to
paclitaxel in the paclitaxel-resistant cell lines. In the second treatment strategy, we treated the
paclitaxel-resistant cell lines with both fulvestrant and paclitaxel in combination for 72 hours.
Out of the five paclitaxel-resistant cell lines, this combination treatment strategy resulted in an
increase in response in one cell line, HCC-1937, with an EC50 shift from 3.09e-8 to 5.17¢-9 M,
and a decrease in sensitivity in MCF-7 and MDA-MB-415 (Figure 3C). Interestingly, HCC-1937
is a triple negative breast cancer cell line, suggesting perhaps an estrogen receptor independent
mechanism of action.

4 Discussion

Drug resistance is the primary factor that limits cures in cancer patients. In this study, we applied
a computational drug repositioning approach to identify potential FDA-approved agents for
patients with primary drug-resistant tumors in the I-SPY 2 trial.

We generated drug resistance profiles for each receptor subtype and treatment by comparing the
expression profiles of responder to non-responder patients. While we were unable to identify
genes that were present across every drug resistance profile, many of the genes which appeared
in multiple drug resistance profiles have been previously implicated in drug resistance.
SERPINA3, which was upregulated in multiple drug resistance profiles, has been shown to
reduce sensitivity of TNBC cells to cisplatin upon overexpression®*. Similarly, STC2, which was
also upregulated in multiple drug resistance profiles, has been found to be significantly elevated
in cisplatin resistant cervical cancer cells*>. We were able find literature support for a number of
genes that were present in multiple drug resistance profiles, suggesting that our drug resistance
profiles are capturing aspects of known biology about drug resistance.

When we performed gene set enrichment analysis on the drug resistance profiles, we identified
enrichment of estrogen response and metabolic pathways in resistant tumors compared to
sensitive tumors. This is in line with previous studies which have shown that estrogen can
promote resistance to chemotherapeutic drugs in ER+ human breast cancer cells through
regulation of the Bcl-2 proto-oncogene?®. Unsurprisingly, the estrogen response pathways were
primarily enriched in the HR+ groups in our analysis. Previous studies have also shown that
metabolic pathways are key mediators of drug resistance in breast cancer. Fatty acid metabolism,
which was enriched in resistant tumors across multiple receptor subtype and treatments in our
analysis, has previously been implicated in drug resistance through mechanisms such as
increased fatty acid oxidation, which can generate energy for cancer cells, or decreased
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membrane fluidity, which can affect drug uptake®?. Oxidative phosphorylation was also found to
be enriched across multiple receptor subtype and treatments, similar to previous studies which
have shown that tamoxifen-resistant MCF-7 breast cancer cells display increased levels of
oxidative phosphorylation®.

We identified potential drug candidates by searching for drugs in the CMAP dataset that can
significantly reverse these drug-resistance profiles. Fulvestrant was our most common drug hit
and it was predicted to significantly reverse 85% of the drug resistance profiles. An in vitro study
using multi-drug resistant breast cancer cell lines showed that fulvestrant can induce sensitivity
to doxorubicin’. Interestingly, they found that this response was independent of the ER status of
the breast cancer cell lines and may involve an interaction with P-glycoprotein. Sirolimus, also
known as rapamycin, was another drug that appeared across multiple drug resistance profiles.
Previous studies have shown that sirolimus may enhance the effects of chemotherapies in breast
cancer cell lines** and osteosarcoma cell lines*>. Additionally, MK-2206 targets the same
pathway and was shown to be effective in the I-SPY 2 trial’. While we selected fulvestrant to test
in vitro because it appeared as a hit in the greatest number of drug resistance profiles, the other
drug hits may be promising candidates for reversing drug sensitivity in breast cancer.

For the validation experiments, we first selected breast cancer cell line that were either sensitive
or resistant to paclitaxel based on the Daemen et al. study (2015). We then validated the drug
responses by treating these cell lines with paclitaxel and we identified five cell lines that are
paclitaxel-resistant. We treated these paclitaxel-resistant breast cancer cell lines with fulvestrant
and paclitaxel, both sequentially and in combination. While fulvestrant showed limited efficacy
in a majority of the cell lines, fulvestrant in combination with paclitaxel did increase drug
response in one triple negative cell line, HCC-1937, suggesting the potential of fulvestrant as a
combination treatment for drug-resistant tumors within specific genetic contexts. It is worth
noting, however, that the HR+HER2- cell lines did not respond to fulvestrant, which was
unexpected, especially since one of the cell lines, MCF-7, was used to generate the CMap drug
perturbation profiles used for prediction. It is possible that a higher dose or a longer pre-
treatment time with fulvestrant may be necessary to induce a response in these cell lines.
Alternatively, these cell lines may reflect hormone receptor-positive tumors that do not respond
to chemotherapy, as identified in previous clinical trials*®.

Our study has several limitations which we discuss here. First, the drug perturbation data used to
make the predictions was derived from MCF-7, a single HR+HER2- cell line. Had the drug
perturbation data included multiple breast cancer cell lines spanning the different receptor
subtypes, the predictions may have been improved. Second, the primary tumor expression
profiles from the I-SPY 2 study are from pre-treatment samples only. Thus, the drug resistance
profiles that we generated primarily reflect intrinsic drug resistance rather than adaptive drug
resistance, the latter of which would require post-treatment samples. Additionally, after
stratifying the I-SPY 2 patient samples by receptor subtype and treatment, the number of samples
within some groups were relatively small, limiting the power of the study. Similarly, our
validation experiments were performed in a limited number of breast cancer cell lines. Future
experiments should incorporate more patient samples, including post-treatment samples, to
generate more robust drug resistance profiles to inform predictions, which should be based on
more diverse cell lines that better capture breast cancer heterogeneity. We also hope to test
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additional drug hits in a larger panel of breast cancer cell lines, such as the panel used in Daemen
et. al, to better understand the genomic context contributing to drug response.

In summary, we used a computational drug repurposing approach to identify potential agents to
sensitize drug resistant breast cancers. We generated drug resistance profiles for each receptor
subtype and treatment in the I-SPY 2 trial and found that estrogen response and metabolic
pathways are enriched in resistant tumors and immune pathways are enriched in sensitive
tumors. We then compared these drug resistance profiles to the drugs in CMAP and identified
drug hits for each resistance profile. We tested fulvestrant in a panel of five paclitaxel-resistant
breast cancer cell lines and found that it increased drug response in combination with paclitaxel
in the cell line HCC-1937.
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Drug resistance gene profiles overlap at pathway level. (A) Heatmap of significant
differentially expressed genes in each treatment and receptor subtype arm. The colored
annotation bar on the left side of the heatmap indicates the receptor subtype of the treatment arm.
The colors within the heatmap indicates log-fold change with red indicating significantly
upregulated genes and blue indicating significantly downregulated genes. White indicates that a
gene was not differentially expressed in the specific treatment and receptor subtype arm. (B)
Gene Set Enrichment Analysis of drug resistance signatures in treatment and molecular subtype
arms using MsigDB’s 50 hallmark pathways. Red boxes indicate enrichment in non-responders
and turquoise boxes indicate enrichment in responders. Significant (q-value < 0.05) normalized
enrichment scores (NES) are shown.
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Drug hits and validation experiments. (A) Heatmap of the 22 most common drug hits (g-value
< 0.05 and RES < 0) across treatment and molecular subtype arms. Color indicates strength of
reversal score and white color indicates that drug is not a significant hit in the specific treatment
and molecular subtype arm. (B) GSEA analysis comparing fulvestrant perturbation profile (first
column) to the drug resistance profiles using MsigDB’s 50 hallmark pathways. Only pathways
that have significant NES scores (q-value < 0.05) in the fulvestrant perturbation profile are
shown. (C) Drug response of paclitaxel alone (black) and fulvestrant and paclitaxel in
combination (red) tested in paclitaxel-resistant breast cancer cell lines. The vertical lines indicate
the EC50 values. Fulvestrant and paclitaxel given in combination increases response in the HCC-
1937 cell line.
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Tables

Table 1. Summary of receptor subtype and treatments

Treatment Receptor Sensitive | Resistant | # of genes in
subtype resistance profile

I(’:zillji;[)e;;iiz ABT 888 + HRAHER?- 28 4 109
I(’:zillji;[)e;;iiz ABT 888 + HR+ HERD- 10 7 182
Paclitaxel + AMG 386 HR- HER2- 30 5 55

Paclitaxel + AMG 386 HR+ HER2- 19 13 165
Paclitaxel + Ganetespib HR- HER2- 24 4 124
Paclitaxel + Ganetespib HR+ HER2- 12 9 85

Paclitaxel HR- HER2- 31 9 69

Paclitaxel HR+ HER2- 22 23 531
Paclitaxel + MK-2206 HR- HER2- 18 3 201
Paclitaxel + MK-2206 HR+ HER2- 7 7 593
Paclitaxel + Neratinib HR- HER2- 16 6 146
Paclitaxel + Neratinib HR+ HER2- 3 3 147
Paclitaxel + Neratinib HR+ HER2+ 17 7 88

Paclitaxel + Pembrolizumab HR+ HER?2- 17 7 217
?izliﬁl;lfrlll;bPertuzumab + HR+ HER2+ 12 3 170
Paclitaxel + Trastuzumab HR+ HER2+ |7 3 176

T-DM1 + Pertuzumab HR+ HER2+ |19 4 157
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Table 2. Table of genes in drug resistance profiles

Gene Symbol | # of drug Description References
resistance
profiles

POU2AFI 5 Transcriptional coactivator

SERPINA3 5 Member of the serpin family of proteins 24 39

EPHX2 4 Member of the epoxide hydrolase family 40

STC2 4 Secreted, homodimeric glycoprotein 25

CHSTS 4 Member of the sulfotransferase 2 family

CXCL11 4 CXC chemokine, chemotactic for interleukin- [*!
activated T-cells

HAPLN3 4 Member of the hyaluronan and proteoglycan [
binding link protein gene family

CXCL13 4 CXC chemokine, lymphocyte B 43
chemoattractant

EVL 4 Actin-associated proteins 44

HSD11B1 4 Microsomal enzyme, reversibly catalyzes
conversion of cortisol to cortisone

IDO1 4 Heme enzyme, catalyzes tryptophan catabolism/[*®

IL21R 4 Cytokine receptor for interleukin 21 46

SELI1L3 4 Protein coding gene

SLC22A5 4 Organic cation and sodium-dependent high [/
affinity carnitine transporter

TNFRSF17 4 Receptor for TNFSF13B/BLyS/BAFF and
TNFSF13/APRIL

ZBED2 4 Transcriptional regulator 48

ANKRD22 4 Protein coding gene

LPPR3 4 Member of the lipid phosphate phosphatase

(LPP) family
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Table 3. Summary of breast cancer cell line responses to paclitaxel

Cell line Receptor Subtype | —logl0(EC50) Paclitaxel status
HCC-1937 HR-HER2- 5.24 Resistant™*
MDA-MB-231 HR-HER2- 5.46 Resistant
MCEF-7 HR-+HER2- 6.77 Resistant™*
MDA-MB-415 HR-+HER2- 6.83 Resistant
BT-474 HR-+HER2+ 7.44 Resistant
MDA-MB-436 HR-HER2- 7.69 Sensitive
BT-549 HR-HER2- 7.99 Sensitive*
HCC-38 HR-HER2- 8.11 Sensitive*
MDA-MB-361 HR+HER2+ 8.15 Sensitive
ZR-751 HR+HER2- 8.26 Sensitive
HCC-1143 HR-HER2- 8.56 Sensitive
T-47D HR+HER2- 8.84 Sensitive*
ZR-7530 HR+HER2+ 9.48 Sensitive

*Indicates that Paclitaxel response matches response in the Daemen et al. paper
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