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Abstract 
 
Drug resistance is a major obstacle in cancer treatment and can involve a variety of different 
factors. Identifying effective therapies for drug resistant tumors is integral for improving patient 
outcomes. In this study, we applied a computational drug repositioning approach to identify 
potential agents to sensitize primary drug resistant breast cancers. We extracted drug resistance 
profiles from the I-SPY 2 TRIAL, a neoadjuvant trial for early stage breast cancer, by comparing 
gene expression profiles of responder and non-responder patients stratified into treatments within 
HR/HER2 receptor subtypes, yielding 17 treatment-subtype pairs. We then used a rank-based 
pattern-matching strategy to identify compounds in the Connectivity Map, a database of cell line 
derived drug perturbation profiles, that can reverse these signatures in a breast cancer cell line. 
We hypothesize that reversing these drug resistance signatures will sensitize tumors to treatment 
and prolong survival. We found that few individual genes are shared among the drug resistance 
profiles of different agents. At the pathway level, however, we found enrichment of immune 
pathways in the responders in 8 treatments within the HR+HER2+, HR+HER2-, and HR-HER2- 
receptor subtypes. We also found enrichment of estrogen response pathways in the non-
responders in 10 treatments primarily within the hormone receptor positive subtypes. Although 
most of our drug predictions are unique to treatment arms and receptor subtypes, our drug 
repositioning pipeline identified the estrogen receptor antagonist fulvestrant as a compound that 
can potentially reverse resistance across 13/17 of the treatments and receptor subtypes including 
HR+ and triple negative. While fulvestrant showed limited efficacy when tested in a panel of 5 
paclitaxel-resistant breast cancer cell lines, it did increase drug response in combination with 
paclitaxel in HCC-1937, a triple negative breast cancer cell line. 
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1 Introduction 
 
Breast cancer is the most common cancer diagnosis in women worldwide and is expected to 
make up 15.3% of all new cancer cases in the United States in 20201. While the prognosis for 
women with stage I or stage II breast cancer is excellent, 10-15% of newly diagnosed breast 
cancers are locally advanced cancers which have significantly poorer outcomes . Additionally, 
breast cancer is an incredibly heterogenous disease and research has shown that breast cancers 
with different molecular features can have different treatment responses2,3. Breast cancers can be 
stratified into receptor subtypes based on immunohistochemistry markers for ER, PR, and HER2, 
which are commonly used for therapeutic decision making4. Several of these receptor subtypes, 
which include triple negative, or ER-PR-HER2- tumors, and HER2+ tumors, represent patient 
populations with more aggressive disease even in early stage who could benefit from improved 
treatment5. 
 
While breast cancer treatments have advanced, no treatment is effective in 100% of breast cancer 
patients. Drug resistance in cancer is a multi-faceted problem that involves a variety of biological 
determinants such as tumor heterogeneity, tumor burden and growth kinetics, physical barriers, 
the immune system, and the tumor microenvironment6. While there has been much research into 
understanding and overcoming drug resistance, it remains one of the largest challenges in cancer 
today and new approaches are needed to tackle this problem.  
 
The I-SPY 2 TRIAL (Investigation of Serial studies to Predict Your Therapeutic Response with 
Imaging And molecular anaLysis 2) is an adaptive phase II clinical trial of neoadjuvant treatment 
for women with high risk, locally advanced breast cancer7 8 9 10 11 12. The trial uses an adaptive 
design to accelerate the clinical trial process with the goal of identifying optimal treatment 
regimens for patient subsets based on HR, HER2, and MammaPrint5. While the I-SPY 2 trial has 
been successful in graduating numerous drugs, patients who fail to respond to the neoadjuvant 
treatments in the trial tend to have worse outcomes13 14. Identifying more efficacious treatments 
for these non-responder patients with primary drug resistance may improve patient outcomes. 
 
We applied a computational drug repurposing approach to identify potential agents to include in 
the trial for patients unlikely to respond to agent classes tested in the trial to date. Drug 
repurposing offers advantages over traditional drug development by greatly reducing 
development costs and providing shorter paths to approval, as drug safety has already been 
established during the drug’s original regulatory process. Our group has previously developed 
and applied a computational drug repositioning approach which involves generating a disease 
gene expression signature by comparing disease samples to control samples, and then identifying 
a drug that can reverse this disease signature17. Potential drug hits can be found by using datasets 
such as the Connectivity Map (CMap) and the Library of Integrated Network-Based Cellular 
Signatures (L1000) which have generated thousands of drug perturbation expression profiles. 
This gene expression based computational drug repurposing approach has previously been used 
to identify effective treatments for a number of different indications, including several cancer 
types18 19. It has also been used to predict agents to reverse drug resistance in acute 
lymphoblastic leukemia and non-small cell lung cancer 20 21.  
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In this study, we leveraged the I-SPY2-990 mRNA/RPPA data compendium22 to extract drug 
resistance signatures by comparing the pre-treatment expression profiles of responders to non-
responders within each receptor subtype and treatment arm. We then applied a computational 
drug repositioning approach to identify agents which can reverse these primary drug resistance 
signatures, and experimentally tested the top drug hit in a panel of paclitaxel-resistant breast 
cancer cell lines. This is the first large scale attempt to apply this transcriptomics-based drug 
repositioning pipeline to the receptor subtypes of breast cancer. 
 
2 Methods 
 
2.1 I-SPY2 Gene Expression and Clinical Data 
 
I-SPY 2 is a multicenter, phase II adaptive clinical trial for women with high-risk stage II/III 
breast cancer. Patients are classified into receptor subtypes based on hormone-receptor (HR), 
HER2, and MammaPrint status and assigned to one of several investigational therapies or the 
control regimen using an adaptive randomization engine which gives greater weight to 
treatments with a higher estimated response rate in the patient’s tumor subtype. The primary 
endpoint is pathologic complete response (pCR, no residual invasive disease in breast or nodes) 
at the time of surgery. The analysis is modified intention to treat and patients who do not proceed 
to surgery, withdraw from the trial, or receive non-protocol therapy are considered non-pCR. 
 
We used pre-treatment biopsy samples from the closed arms of the ISPY2 trial (n=990), which 
were assayed using custom Agilent array designs (15746 and 32627).  Normalized data for each 
array was generated by centering the log2 transformed gMeanSignal of all probes within the 
array to the 75th percentile of all probes. A fixed value of 9.5 was added to avoid negative values. 
Genes with multiple probes were averaged and ComBat was applied to adjust for platform-
biases22. 
 
We define drug resistant patients as patients with Residual Cancer Burden (RCB) III measured at 
time of surgery and drug sensitive patients as patients with RCB 0 or I at time of surgery. While 
we initially included RCB II patients in the drug resistant group, we removed the RCB II patients 
in our final analysis to achieve better separation in predictive signals distinguishing responders 
and non-responders. We kept receptor subtype and treatments with at least three patients in the 
resistant and sensitive groups, resulting in 19 receptor subtype-treatment pairs. 
 
2.2 Differential Expression to Identify Drug Resistance Genes 
 
We used limma to perform differential expression between the drug resistant and drug sensitive 
samples within treatments and receptor subtypes. We then filtered the differential expression 
results by p-value and log-fold change to generate the resistance gene lists. We chose a p-value 
threshold of 0.01 because the differences between the resistant and sensitive tumors were 
relatively subtle and very few genes met the typical q-value cutoff of 0.05. To identify the 
optimal log fold change cutoff for each differential expression gene list, we selected the log fold 
change value that best separated the drug resistant and drug sensitive samples after filtering for 
p-value < 0.01. Specifically, we iterated over a range of potential log2 fold change cutoffs (start 
= 1, end = 0, step size = 0.1) and applied k-means clustering (k=2) at each cutoff to identify two 
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clusters of samples. We then calculated the Mathew’s correlation coefficient (MCC) to evaluate 
how well the k-means derived clusters match the actual clinical labels of drug resistant and drug 
sensitive samples. We used the log2 fold change cutoff with the highest MCC value to generate 
our drug resistance gene lists. Only drug resistance gene lists with a sufficient number of genes 
(>50) were kept for further analysis. 
 
2.3 Gene Set Enrichment Analysis 

For the GSEA analysis, the drug resistance profiles were ranked by their log fold-change values. 
We used the fgsea R package37 to calculate normalized enrichment scores (NES) and FDR values 
from these ranked lists. The NES reflects the degree to which a gene set is overrepresented at the 
top or bottom of the ranked list of genes (the enrichment score) divided by the mean enrichment 
score for all dataset permutations. Normalizing the enrichment score allows for comparison 
across gene sets. We downloaded the 50 Hallmark gene sets from the MSigDB Collections38. 

2.4 Computational Drug Repositioning 
 
We applied our previously published drug repositioning pipeline17 to identify potential 
therapeutics to reverse drug resistance in breast cancer patients. At a high level, the method works 
by identifying drugs that have reversed differential gene expression profiles compared to the drug 
resistance profile. We hypothesize that reversing the expression patterns of drug resistance genes 
will drive the tumor towards a drug sensitive state.  
 
To prioritize drugs that have the potential to reverse the drug resistance genes, we used drug 
perturbation profiles from CMap V2, which includes 6100 profiles consisting of 1309 distinct 
chemical compounds. We applied a filtering step previously described by Chen et al. (2017) to 
keep high quality drug perturbation profiles. We further subset this dataset to include only drug 
profiles that were generated using MCF-7, the only breast cancer cell line in CMap, resulting in a 
final dataset of 756 profiles.  
 
Our drug repositioning pipeline uses a non- parametric, rank-based pattern-matching strategy 
based on the Kolmogorov-Smirnov (KS) statistic to assess the enrichment of drug resistance genes 
in a ranked drug perturbation gene list. We calculate a reverse gene expression score (RGES) of 
each drug by matching resistance gene expression and drug gene expression using the KS test. 
Significance of the score is assessed by comparing with scores generated from 100,000 random 
permutations, and further corrected by the multiple hypothesis test. FDR < 0.05 was used to select 
drug hits. 
 
2.5 Validation experiments for fulvestrant 
 
To validate fulvestrant as a compound to overcome drug resistance, we first selected paclitaxel-
resistant breast cancer cell lines because paclitaxel was used as the standard therapy in the ISPY2 
trial. We selected three paclitaxel-resistant and three paclitaxel-sensitive cell lines from Daemen 
et al. (2015) from within the HR+HER2- and HR-HER2- receptor subtypes. Daemen et al. only 
identified 2 Paclitaxel-sensitive cell lines and 2 Paclitaxel-resistant cell lines for the HR+HER2+ 
subtype, so we included all four HR+HER2+ cell lines in our validation experiment. Additionally, 
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since Daemen et al. did not identify any Paclitaxel-resistant HR-HER2+ cell lines in their study, 
we did not include any HR-HER2+ cell lines in our validation experiment.  
 
We ordered 16 cell lines from ATCC (Table 3) which were recovered using the cell media 
recommended for each cell line by ATCC. We failed to culture three cell lines: MDA-MB-134-
VI, BT-483, UACC-812. Cell line density was determined by seeding cell lines at the following 
densities (625, 1250, 2500, 5000, 10000, 20000) and then monitoring their growth curves for 72 
hours. For the drug treatment experiments, the cell lines were seeded at the optimal density 
determined in the previous cell line density experiments and incubated overnight before treatment. 
For the single agent experiments, the cell lines were treated in triplicate with a top dose of 10uM 
in 1:3 dilutions for a total of 12 doses with paclitaxel (Sigma-Aldrich Product Number T7191), 
fulvestrant (Sigma-Aldrich Product Number I4409), and staurosporine which was used as a 
positive control. After 72hr, cell line viability was measured using the CellTiter-Glo Luminescent 
Cell Viability Assay following the manufacturer’s instructions. For the sequential treatment 
experiments, 1uM of fulvestrant was added to each well 6 hours before treatment with paclitaxel. 
The 1 uM dose and 6 hour time point were chosen based on the dose and time point used to generate 
the CMAP profile for fulvestrant. For the combination treatment experiments, the cell lines were 
treated with paclitaxel as described above in combination with 10uM fulvestrant.  
 
3 Results 
 
3.1 Study design and datasets 
 
In this study, we applied our drug repositioning pipeline to the drug resistance signatures derived 
from the I-SPY2 trial (Figure 1). Pre-treatment samples from ~990 patients in 9 experimental 
arms of the trial and concurrent controls were profiled using the Agilent 44K array, as previously 
described22.  The clinical data for these samples includes the HR/HER2 receptor subtype of each 
sample, treatment, and treatment response including pathologic complete response (pCR), 
defined as the absence of invasive cancer in the breast and lymph nodes, and residual cancer 
burden (RCB) information. RCB scores are a continuous variable based on the primary tumor 
dimensions, the cellularity in the tumor bed, and the axillary nodal burden after neoadjuvant 
therapy. The continuous RCB score can then be divided into discrete RCB classes (0, 1, 2, 3) 
based on predefined cutoffs23.  An RCB of 0 indicates pathologic complete response while an 
RCB of 1-3 indicates increasing amounts of residual cancer. 109 samples were missing RCB 
information and excluded from the analysis. The data used in this study form part of the ISPY2-
990 mRNA/RPPA data compendium22 recently deposited on GEO (GSE196096). A summary of 
the clinical data, including receptor subtype which we define by the HR and HER2 status of the 
tumor, is provided in Supplementary Table 1 and the corresponding arm for each treatment is 
provided in Supplementary Table 2.  
 
3.2 Drug resistance gene profiles overlap at the pathway level and include previously 
implicated drug resistance genes 
 
We first classified each pre-treatment biopsy sample from the ISPY 2 trial as drug sensitive or 
drug resistant using the RCB class from the clinical data. We define drug sensitive tumors as 
having an RCB of 0 or I and we define drug resistant tumors as having an RCB of III. While we 
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originally defined resistant tumors as having RCB II or III, we found a more distinct signal when 
resistance is defined using RCB III only and RCB II tumors are removed from the data set 
(Supplementary Table 3 and Supplementary Figure 1). 
 
We performed differential expression analysis between drug sensitive and drug resistant patients 
within individual treatments, by receptor subtype. We analyzed only the receptor subtype-
treatment pairs with a minimum of 3 samples in both the drug sensitive group and the drug 
resistant group, which resulted in a total of 19 subtype-treatment pairs (Table 1). Of note, there 
was an insufficient number of HR-HER2+ tumors for our within-treatment analysis and this 
receptor subtype was excluded from our study.  
 
We generated drug resistance gene profiles for each receptor subtype and treatment by filtering 
the differential expression analysis results by p-value (0.01) and then selecting the optimal log-
fold change cutoff to achieve maximal separation between the drug resistant and drug sensitive 
tumors (see Methods). Drug resistance gene profiles with fewer than 50 genes were removed as 
we had previously found this to be the minimum sufficient number of genes required for the drug 
repositioning pipeline18. The drug resistance gene profiles for the remaining 17 receptor subtype-
treatment pairs are included in Supplementary Data 1. We also generated a more general drug 
resistance profile by comparing all resistant tumors to all sensitive samples while adjusting for 
receptor subtype and treatments, but this profile achieved poor separation of resistant and 
sensitive tumors (Supplementary Figure 2). 
 
We found that few individual genes are shared across the receptor subtype and treatment drug 
resistance gene profiles (Figure 2A). However, of the 18 genes that appear in at least 4 of the 
subtype-treatment pair resistance profiles, 11 have been implicated in drug resistance or drug 
response based on the literature. For example, SERPINA3, which was present in five of the drug 
resistance gene profiles, including paclitaxel with neratinib and paclitaxel with pembrolizumab 
in the HR+HER2- subtype, has been implicated in drug resistance in TNBC cells24. Additionally, 
STC2, which has been implicated in drug resistance in cervical cancer25, was in the following 
four drug resistance gene profiles: paclitaxel in the HR+HER2- subtype, paclitaxel with 
ganetespib in the HR+HER2- subtype, paclitaxel with pertuzumab and trastuzumab in the 
HR+HER2+ subtype, and paclitaxel with trastuzumab in the HR+HER2+ subtype. 
 
We then performed Gene Set Enrichment Analysis (GSEA)26 to investigate the differences 
between the drug sensitive and drug resistant tumors at the pathway level with the 50 hallmark 
pathways from MSigDB (Figure 2B). Similar to  previous studies27 28, we found an enrichment 
of immune pathways in drug sensitive tumors compared to drug resistant tumors in 14 out of the 
17 receptor subtype and treatment pairs, including as expected the HR+HER2- subtype in the 
pembrolizumab treatment. We also found an enrichment of estrogen response pathways in drug 
resistant tumors in 12 of the receptor subtype-treatment pairs, 10 of which are in the hormone-
receptor positive receptor subtypes. The estrogen response pathway has also been previously 
implicated in chemoresistance29.  
  
3.3 Prediction of drug sensitizing agents based on expression identifies fulvestrant as a 
potential therapeutic    
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We applied a transcriptomics-based drug repositioning pipeline17 to compare the drug resistance 
gene profiles to the Connectivity Map, a public dataset of drug perturbation profiles, in order to 
identify compounds which have the reversed differential gene expression profiles compared to 
the drug resistance gene profiles. We hypothesize that if we can identify a drug which can 
downregulate the genes that are upregulated in drug resistance and upregulate the genes which 
are downregulated in drug resistance, then this drug may induce chemosensitivity in resistant 
breast cancer tumors. Out of 756 high quality gene perturbation profiles in the Connectivity Map 
dataset derived from a breast cancer cell line, the median number of significant drug hits (q-value 
< 0.05 and RES < 0) per receptor subtype-treatment pair was 49 (min: 1, max: 256). The drug 
hits for each receptor subtype and treatment are reported in Supplementary Data 2. 
 
Although the number of individual genes that overlap across the drug resistance gene profiles of 
the different receptor subtype-treatment pairs was limited, we observed 22 drugs that appeared as 
hits in at least 9/17 of the drug resistance gene profiles (Figure 3A and Supplementary Figure 3).  
 
Of note, we identified fulvestrant as a drug hit that significantly reversed 13/17 of the drug 
resistance profiles. It is predicted to reverse the drug resistance profiles in 5/6 treatment groups 
for TN; 4/4 for HR+HER2+; and 4/7 for HR+HER2- (Figure 3A). Fulvestrant is a selective 
estrogen receptor degrader used in the treatment of hormone-receptor positive and HER2- 
advanced breast cancer in post-menopausal woman who have not previously been treated with 
endocrine therapy. We performed GSEA on the fulvestrant drug perturbation signature from the 
Connectivity Map to investigate the pathways which are reversed by fulvestrant and examined 
the enrichment of these pathways in the drug resistance profiles (Figure 3B). Unsurprisingly, 
fulvestrant seems to downregulate the estrogen response pathways and cell cycle pathways. A 
previous study also showed that fulvestrant may reverse drug resistance in multidrug-resistant 
breast cancer cell lines independent of estrogen receptor expression30. For these reasons, we 
selected fulvestrant for further validation experiments. 
 
3.4 Fulvestrant validation experiments demonstrate limited efficacy in breast cancer cell 
lines 
  
In order to validate fulvestrant as a drug candidate that can reverse drug resistance, we first 
needed to identify a panel of drug-resistant breast cancer cell lines. We selected cell lines that are 
resistant to paclitaxel because paclitaxel is a standard therapy in the I-SPY 2 trial. The Daemen 
et al. study screened 90 experimental and approved drugs, including paclitaxel, in a panel of 70 
breast cancer cell lines. Based on the drug response data from this study, we selected paclitaxel-
resistant and paclitaxel-sensitive breast cancer cell lines within each receptor subtype. The cell 
lines selected for the validation experiments are listed in Table 3 and were ordered from ATCC. 
We were unable to grow three of the cell lines (MDA-MB-134-VI, BT-483, UACC-812), which 
were excluded from the drug response experiments. 
 
Next, we treated the breast cancer cell lines with paclitaxel to validate the drug responses from 
the Daemen et al. study31. We used the mean EC50 response as the cutoff to separate the 
resistant and sensitive cell lines. We identified five cell lines that were resistant to paclitaxel 
based on this cutoff, two of which were also found to be resistant in the Daemen et al. study 
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(Table 3). The discrepancy between our drug responses and the drug responses in the Daemen et 
al. study may be due in part to the different drug response metrics that were used. The Daemen et 
al. study used GI50 while we used EC50 to measure drug response. Out of the five cell lines that 
we determined to be resistant to paclitaxel, two were HR-HER2-, two were HR+HER2-, and one 
was HR+HER2+. 
 
We then tried two different treatment strategies for testing fulvestrant in the paclitaxel resistant 
cell lines. In the first treatment strategy, we treated the paclitaxel resistant cell lines with 
fulvestrant for 6 hours before adding paclitaxel. This sequential treatment approach gives the cell 
lines time to become sensitized by fulvestrant before being treated with paclitaxel. This 
sequential treatment approach (Supplementary Figure 4) did not result in a change in response to 
paclitaxel in the paclitaxel-resistant cell lines. In the second treatment strategy, we treated the 
paclitaxel-resistant cell lines with both fulvestrant and paclitaxel in combination for 72 hours. 
Out of the five paclitaxel-resistant cell lines, this combination treatment strategy resulted in an 
increase in response in one cell line, HCC-1937, with an EC50 shift from 3.09e-8 to 5.17e-9 M, 
and a decrease in sensitivity in MCF-7 and MDA-MB-415 (Figure 3C). Interestingly, HCC-1937 
is a triple negative breast cancer cell line, suggesting perhaps an estrogen receptor independent 
mechanism of action.  
 
4 Discussion 
 
Drug resistance is the primary factor that limits cures in cancer patients. In this study, we applied 
a computational drug repositioning approach to identify potential FDA-approved agents for 
patients with primary drug-resistant tumors in the I-SPY 2 trial.  
 
We generated drug resistance profiles for each receptor subtype and treatment by comparing the 
expression profiles of responder to non-responder patients. While we were unable to identify 
genes that were present across every drug resistance profile, many of the genes which appeared 
in multiple drug resistance profiles have been previously implicated in drug resistance. 
SERPINA3, which was upregulated in multiple drug resistance profiles, has been shown to 
reduce sensitivity of TNBC cells to cisplatin upon overexpression24. Similarly, STC2, which was 
also upregulated in multiple drug resistance profiles, has been found to be significantly elevated 
in cisplatin resistant cervical cancer cells25. We were able find literature support for a number of 
genes that were present in multiple drug resistance profiles, suggesting that our drug resistance 
profiles are capturing aspects of known biology about drug resistance.  
 
When we performed gene set enrichment analysis on the drug resistance profiles, we identified 
enrichment of estrogen response and metabolic pathways in resistant tumors compared to 
sensitive tumors. This is in line with previous studies which have shown that estrogen can 
promote resistance to chemotherapeutic drugs in ER+ human breast cancer cells through 
regulation of the Bcl-2 proto-oncogene29. Unsurprisingly, the estrogen response pathways were 
primarily enriched in the HR+ groups in our analysis. Previous studies have also shown that 
metabolic pathways are key mediators of drug resistance in breast cancer. Fatty acid metabolism, 
which was enriched in resistant tumors across multiple receptor subtype and treatments in our 
analysis, has previously been implicated in drug resistance through mechanisms such as 
increased fatty acid oxidation, which can generate energy for cancer cells, or decreased 
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membrane fluidity, which can affect drug uptake32. Oxidative phosphorylation was also found to 
be enriched across multiple receptor subtype and treatments, similar to previous studies which 
have shown that tamoxifen-resistant MCF-7 breast cancer cells display increased levels of 
oxidative phosphorylation33. 
 
We identified potential drug candidates by searching for drugs in the CMAP dataset that can 
significantly reverse these drug-resistance profiles. Fulvestrant was our most common drug hit 
and it was predicted to significantly reverse 85% of the drug resistance profiles. An in vitro study 
using multi-drug resistant breast cancer cell lines showed that fulvestrant can induce sensitivity 
to doxorubicin30. Interestingly, they found that this response was independent of the ER status of 
the breast cancer cell lines and may involve an interaction with P-glycoprotein. Sirolimus, also 
known as rapamycin, was another drug that appeared across multiple drug resistance profiles. 
Previous studies have shown that sirolimus may enhance the effects of chemotherapies in breast 
cancer cell lines34 and osteosarcoma cell lines35. Additionally, MK-2206 targets the same 
pathway and was shown to be effective in the I-SPY 2 trial9. While we selected fulvestrant to test 
in vitro because it appeared as a hit in the greatest number of drug resistance profiles, the other 
drug hits may be promising candidates for reversing drug sensitivity in breast cancer.  
 
For the validation experiments, we first selected breast cancer cell line that were either sensitive 
or resistant to paclitaxel based on the Daemen et al. study (2015). We then validated the drug 
responses by treating these cell lines with paclitaxel and we identified five cell lines that are 
paclitaxel-resistant. We treated these paclitaxel-resistant breast cancer cell lines with fulvestrant 
and paclitaxel, both sequentially and in combination. While fulvestrant showed limited efficacy 
in a majority of the cell lines, fulvestrant in combination with paclitaxel did increase drug 
response in one triple negative cell line, HCC-1937, suggesting the potential of fulvestrant as a 
combination treatment for drug-resistant tumors within specific genetic contexts. It is worth 
noting, however, that the HR+HER2- cell lines did not respond to fulvestrant, which was 
unexpected, especially since one of the cell lines, MCF-7, was used to generate the CMap drug 
perturbation profiles used for prediction. It is possible that a higher dose or a longer pre-
treatment time with fulvestrant may be necessary to induce a response in these cell lines. 
Alternatively, these cell lines may reflect hormone receptor-positive tumors that do not respond 
to chemotherapy, as identified in previous clinical trials36. 
 
Our study has several limitations which we discuss here. First, the drug perturbation data used to 
make the predictions was derived from MCF-7, a single HR+HER2- cell line. Had the drug 
perturbation data included multiple breast cancer cell lines spanning the different receptor 
subtypes, the predictions may have been improved.  Second, the primary tumor expression 
profiles from the I-SPY 2 study are from pre-treatment samples only. Thus, the drug resistance 
profiles that we generated primarily reflect intrinsic drug resistance rather than adaptive drug 
resistance, the latter of which would require post-treatment samples. Additionally, after 
stratifying the I-SPY 2 patient samples by receptor subtype and treatment, the number of samples 
within some groups were relatively small, limiting the power of the study. Similarly, our 
validation experiments were performed in a limited number of breast cancer cell lines. Future 
experiments should incorporate more patient samples, including post-treatment samples, to 
generate more robust drug resistance profiles to inform predictions, which should be based on 
more diverse cell lines that better capture breast cancer heterogeneity. We also hope to test 
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additional drug hits in a larger panel of breast cancer cell lines, such as the panel used in Daemen 
et. al, to better understand the genomic context contributing to drug response.  

In summary, we used a computational drug repurposing approach to identify potential agents to 
sensitize drug resistant breast cancers. We generated drug resistance profiles for each receptor 
subtype and treatment in the I-SPY 2 trial and found that estrogen response and metabolic 
pathways are enriched in resistant tumors and immune pathways are enriched in sensitive 
tumors. We then compared these drug resistance profiles to the drugs in CMAP and identified 
drug hits for each resistance profile. We tested fulvestrant in a panel of five paclitaxel-resistant 
breast cancer cell lines and found that it increased drug response in combination with paclitaxel 
in the cell line HCC-1937.  
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Figures 
 
Figure 1 

 
 
 
Study overview. Drug resistance gene lists were generated for each subtype and treatment arm 
by performing differential expression between responders (RCB 0/I) and non-responders (RCB 
III). We then compared these drug resistance gene profiles to the Connectivity Map drug 
perturbation profiles for the MCF7 breast cancer cell line to identify drugs that can reverse these 
drug resistance genes. We tested our top hit, fulvestrant, in paclitaxel-resistant breast cancer cell 
lines. 
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Figure 2 

 
Drug resistance gene profiles overlap at pathway level. (A) Heatmap of significant 
differentially expressed genes in each treatment and receptor subtype arm. The colored 
annotation bar on the left side of the heatmap indicates the receptor subtype of the treatment arm. 
The colors within the heatmap indicates log-fold change with red indicating significantly 
upregulated genes and blue indicating significantly downregulated genes. White indicates that a 
gene was not differentially expressed in the specific treatment and receptor subtype arm. (B) 
Gene Set Enrichment Analysis of drug resistance signatures in treatment and molecular subtype 
arms using MsigDB’s 50 hallmark pathways. Red boxes indicate enrichment in non-responders 
and turquoise boxes indicate enrichment in responders.  Significant (q-value < 0.05) normalized 
enrichment scores (NES) are shown.  
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Figure 3.  

 
Drug hits and validation experiments. (A) Heatmap of the 22 most common drug hits (q-value 
< 0.05 and RES < 0) across treatment and molecular subtype arms. Color indicates strength of 
reversal score and white color indicates that drug is not a significant hit in the specific treatment 
and molecular subtype arm. (B) GSEA analysis comparing fulvestrant perturbation profile (first 
column) to the drug resistance profiles using MsigDB’s 50 hallmark pathways. Only pathways 
that have significant NES scores (q-value < 0.05) in the fulvestrant perturbation profile are 
shown. (C) Drug response of paclitaxel alone (black) and fulvestrant and paclitaxel in 
combination (red) tested in paclitaxel-resistant breast cancer cell lines. The vertical lines indicate 
the EC50 values. Fulvestrant and paclitaxel given in combination increases response in the HCC-
1937 cell line. 
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Tables 

Table 1. Summary of receptor subtype and treatments 
 
Treatment  Receptor 

subtype 
Sensitive Resistant # of genes in 

resistance profile 

Paclitaxel + ABT 888 + 
Carboplatin HR+HER2- 28 4 109 

Paclitaxel + ABT 888 + 
Carboplatin HR+ HER2- 10 7 182 

Paclitaxel + AMG 386 HR- HER2- 30 5 55 

Paclitaxel + AMG 386 HR+ HER2- 19 13 165 

Paclitaxel + Ganetespib HR- HER2- 24 4 124 

Paclitaxel + Ganetespib HR+ HER2- 12 9 85 

Paclitaxel HR- HER2- 31 9 69 

Paclitaxel HR+ HER2- 22 23 531 

Paclitaxel + MK-2206 HR- HER2- 18 3 201 

Paclitaxel + MK-2206 HR+ HER2- 7 7 593 

Paclitaxel + Neratinib HR- HER2- 16 6 146 

Paclitaxel + Neratinib HR+ HER2- 3 3 147 

Paclitaxel + Neratinib HR+ HER2+ 17 7 88 

Paclitaxel + Pembrolizumab HR+ HER2- 17 7 217 

Paclitaxel + Pertuzumab + 
Trastuzumab HR+ HER2+ 12 3 170 

Paclitaxel + Trastuzumab HR+ HER2+ 7 3 176 

T-DM1 + Pertuzumab HR+ HER2+ 19 4 157 
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Table 2. Table of genes in drug resistance profiles 
 

Gene Symbol # of drug 
resistance 
profiles 

Description References 

POU2AF1 5 Transcriptional coactivator   

SERPINA3 5 Member of the serpin family of proteins 24 39 

EPHX2 4 Member of the epoxide hydrolase family 40 

STC2 4 Secreted, homodimeric glycoprotein  25 

CHST8 4 Member of the sulfotransferase 2 family  

CXCL11 4 CXC chemokine, chemotactic for interleukin-
activated T-cells 

41 

HAPLN3 4 Member of the hyaluronan and proteoglycan 
binding link protein gene family 

42 

CXCL13 4 CXC chemokine, lymphocyte B 
chemoattractant 

43 

EVL 4 Actin-associated proteins 44 

HSD11B1 4 Microsomal enzyme, reversibly catalyzes 
conversion of cortisol to cortisone 

 

IDO1 4 Heme enzyme, catalyzes tryptophan catabolism 45 

IL21R 4 Cytokine receptor for interleukin 21 46 

SEL1L3 4 Protein coding gene  

SLC22A5 4 Organic cation and sodium-dependent high 
affinity carnitine transporter 

47 

TNFRSF17 4 Receptor for TNFSF13B/BLyS/BAFF and 
TNFSF13/APRIL 

 

ZBED2 4 Transcriptional regulator 48 

ANKRD22 4 Protein coding gene  

LPPR3 4 Member of the lipid phosphate phosphatase 
(LPP) family 
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Table 3. Summary of breast cancer cell line responses to paclitaxel  

Cell line Receptor Subtype –log10(EC50) Paclitaxel status 

HCC-1937 HR-HER2- 5.24 Resistant* 

MDA-MB-231 HR-HER2- 5.46 Resistant 

MCF-7 HR+HER2- 6.77 Resistant* 

MDA-MB-415 HR+HER2- 6.83 Resistant 

BT-474 HR+HER2+ 7.44 Resistant 

MDA-MB-436 HR-HER2- 7.69 Sensitive 

BT-549 HR-HER2- 7.99 Sensitive* 

HCC-38 HR-HER2- 8.11 Sensitive* 

MDA-MB-361 HR+HER2+ 8.15 Sensitive 

ZR-751 HR+HER2- 8.26 Sensitive 

HCC-1143 HR-HER2- 8.56 Sensitive 

T-47D HR+HER2- 8.84 Sensitive* 

ZR-7530 HR+HER2+ 9.48 Sensitive 

*Indicates that Paclitaxel response matches response in the Daemen et al. paper 
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