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Abstract 

Reproducibility is a cornerstone of scientific progress. In epigenome- and transcriptome-wide 

association studies (E/TWAS) failure to reproduce may be the result of false discoveries. 

Whereas multiple methods exist to control false discoveries due to sampling error, minimizing 

false discoveries due to outliers and other data artefacts remains challenging. We propose a 

robust E/TWAS approach that outperforms alternative methods to improve reproducibility such 

as split-half replication. Furthermore, robust E/TWAS results in only a minor loss of power if 

there are no outliers and can in the presence of outliers, likely a more realistic scenario, even be 

more powerful than regular E/TWAS. 
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BRIEF REPORT 

Reproducibility is a cornerstone of scientific progress[1]. In the context of high dimensional 

biological investigations such as epigenome- and transcriptome-wide association studies 

(E/TWAS), failure to reproduce may be the result of a lack of generalizability of findings to other 

study populations, false discoveries due to sampling fluctuations, and false discoveries due to 

outliers or other data artefacts. To generalize findings, studies need to be performed other 

populations. False discoveries due to sampling fluctuations can effectively be controlled using 

standard multiple testing corrections. It is less clear how to best eliminate false discoveries due 

to outliers and other data artefacts. Replicating findings in independent samples is an option. 

However, these samples may not always be available, and even if they are, for statistical and 

pragmatic reasons it will be better to avoid replicating false discoveries as much as possible. 

The availability of efficient methods to eliminate false discoveries due data artefacts may be 

particularly important for E/TWAS where many markers are tested for association. That is, 

although results may be sound for the vast majority of tested biological markers, such false 

discoveries may be disproportionally over-represented among the top findings as data artefacts 

may increase the chance of artificially small P values. 

 In this article, we propose a method for eliminating false discoveries due to outliers and 

other data artefacts that we call robust E/TWAS. This method involves (i) partitioning the sample 

in k equal and non-overlapping folds, (ii) perform separate association studies in each fold, (iii) 

perform a signed meta-analysis across all k folds using Stouffer's Z-score method[2] after 

transforming T statistics from each fold into Z statistics, and (iv) declare significance after 

controlling for multiple testing using the meta-analysis P values as input.  

We performed simulations to evaluate the robust E/TWAS method. We studied either 

univariate or bivariate outliers. Univariate outliers affect both the outcome or the biological 

marker (e.g., the methylation site or transcript) but not both variables in the same individual. 

Bivariate outliers involve outlying values for both the outcome and the biological marker in the 
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same individual. We perform 10,000 simulations for a marker with a sample size of 250 and 

assuming that the outcome and marker are not associated. We either assume five univariate 

outliers or one bivariate outlier (bivariate outliers will be rarer than univariate outliers). 

Significance tests are performed allowing for a Type I error of α=0.05, meaning that the null 

hypothesis should be rejected in 5% of the simulations if false discoveries are controlled 

properly. For the sake of comparison, we also study the impact of these outliers on regular 

association testing that analyzes the entire sample at once, and “split-half replication” where the 

sample is randomly split in a discovery and replication part. For split-half replication, in 

simulations where the P value is smaller than 0.05 in the discovery sample we perform a 

“replication” using a one-sided test in the replication sample assuming the same direction of 

effect as in the discovery sample. 

Figure 1a shows the results. Without outliers all methods accurately control the Type I 

error at 0.05 (results not shown). With univariate outliers, Type I errors are slightly lower than 

the desired 0.05. The exception is the robust E/TWAS with k≥10 that accurately controls the 

Type I errors at the 0.05 level. The bivariate outlier appears to have a much bigger impact. The 

split-half replication method is most sensitive to this outlier. Thus, the bivariate outlier will be 

present in either the discovery sample or the replication sample. If present in the discovery 

sample, it will have an increased probability (> 0.05) of being tested in the replication sample 

where it is expected to “replicate” in 5% of the simulations (α=0.05). If not present in the 

discovery sample, it will be tested in 5% of the replication samples (α=0.05) where it will have 

an increased probability (> 0.05) to “replicate” due to the outlier being in the replication sample. 

Figure 1a shows that to mitigate the effect of a bivariate outlier, rather than split-half replication 

it is actually better to analyze the entire sample at once as the vast majority of individuals that 

have no outliers will dilute the effect of the bivariate outlier. However, by far the best results are 

obtained with robust E/TWAS where the risk of false discoveries decreases when the number of 

folds increases. As the effect of the bivariate outlier is limited to one fold, robust E/TWAS dilutes 
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its impact as it combines the association evidence from the affected fold with those from all 

other folds that are not affected by the outlier. 

The risk of false discoveries needs to be balanced against the risk of false non-

discoveries (Type II errors), which is determined by the statistical power. To study power, we 

repeated the simulations but now assuming a correlation of 0.3 between the outcome and 

biological marker and use α=0.001 as the threshold for declaring significance. We only studied 

power in the absence of outliers and in the presence of univariate outliers as these are the 

common scenarios. Having a bivariate outlier for a marker with a true effect will be rare where, 

depending on whether the outlier is in line with the association trend, the outlier can either make 

it more or less likely that the association will be detected. When there are no outliers, robust 

E/TWAS results in only a slight loss of power compared to analyzing all data at once (Figure 

1b). In addition, in the presence of univariate outliers robust E/TWAS can even have better 

power compared to analyzing all data at once. This is because univariate outliers attenuate the 

association signal. In robust E/TWAS this attenuation is limited to only the folds with the outliers 

where the unaffected folds mitigate the overall loss in power. The split-half replication has the 

poorest power. This is because splitting the sample in two parts results in low power in the 

discovery stage leading to a relatively larger number of simulations where the marker will not 

proceed to the replication stage and therefore remain undetected. 

To illustrate the method with real data we reanalyzed HumanMethylation450 array data 

for 691 individuals (354 cases and 337 controls, GEO data set GSE42861). After performing 

quality control as described elsewhere[3], we observed 7 significant findings after a Bonferroni 

correction for multiple testing. Coefficient lambda (ratio of the median of the observed 

distribution of the test statistic to the expected median) was 1.126 (Figure S1). This suggested 

that the vast majority of tests P values were accurate and not influenced by outliers or other 

data artefacts. The 7 significant results were reanalyzed after removing outliers defined as 

residual scores (distance between the observed value and the value predicted on the basis of 
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the covariates) with a median absolute deviation (MAD) of >3[4]. Three of the seven significant 

findings were potentially driven by outliers as removing the outlying observations reduced the P 

value >100 times. The individuals causing the outlying observations varied across the 7 

methylation sites, suggesting that this problem cannot be resolved by eliminating specific 

individuals from all analyses. Next, we performed a robust MWAS. To keep a fold size of at 

least 100 individuals, we chose k=5 folds. The lambda of 1.083 (Figure S2) was comparable to 

the lambda of the regular MWAS, suggesting again that the majority of results were not driven 

by outliers. In the robust MWAS 24 sites reached “suggestive” significance (P < 1×10-5). Two of 

the three sites identified as driven by outliers in the regular MWAS were no longer among these 

24 robust MWAS, suggesting it successfully eliminated findings potentially caused by outliers. 

Two of the four sites that were not flagged as outlier-driven in the regular MWAS were still 

among the top 24 robust MWAS findings, suggesting it retained part of the sites that were not 

caused by outliers. The fact that not all four findings that were retained in the regular MWAS 

were among the top 24 robust MWAS findings may mean that (i) the MAD outlier detection 

algorithm is not perfect or (ii) because of lower power in the robust MWAS.  

In this real data example, a variety of covariates were regressed out. Part of the reason 

for reduced power in the robust MWAS power may therefore be the loss of the degrees of 

freedom caused by regressing out covariates in each fold separately. We therefore tested a 

variant of the robust method that first regressed out effects of covariates in the entire sample, 

and then performed association testing in each fold separately with residualized outcome scores 

while charging the loss of degrees of freedom equally across the folds. However, this 

approximation resulted in deflated P values. We also tried a log data transformation to handle 

outliers as that will also avoid a loss of degrees of freedom. However, consistent with previous 

observations that results for transformed data are often not relevant for the original non-

transformed data[5], we no longer observed any overlapping results with the original MWAS. 
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In summary, robust E/TWAS provides an efficient method to improve the reproducibility 

of findings from high dimensional biological association studies by eliminating false discoveries 

due to outliers or other data artefacts. It results in only a minor loss of power if there are no 

outliers but can in the presence of outliers, likely a more realistic scenario, even be more 

powerful than regular E/TWAS. As it turns a single sample into multiple subsamples, the 

negative effect of outliers on false discoveries and power is essentially diluted when the 

association evidence from the affected subsamples is combined with the evidence from the 

subsamples that are not affected by the outliers. Robust E/TWAS clearly outperformed split-half 

replication in terms of false discoveries and power. It also provides a more systematic and 

statistically motivated method for handling outliers compared to traditional methods for outlier 

detection that would need to be performed post-hoc on a per site basis and involve multiple 

arbitrary choices. Finally, robust E/TWAS is easy to implement and can be used with any type of 

association test. 

 

Supplementary information 

Supplementary information accompanies this paper at: 

Additional file 1:  

  Figure S1. QQ-plot MWAS  

  Figure S2. QQ-plot robust MWAS 
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Figure Caption 

 

Figure 1. Method comparisons. a) Type I error at α=0.05 (top lines bivariate outliers and dashed 

bottom lines univariate outliers), b) Power at α=0.001 (top lines no outliers and dashed bottom 

lines univariate outliers) 
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