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Abstract

Germinal centers (GCs) are the key histological structures of the adaptive immune system,
responsible for the development and selection of B cells producing high-a�nity antibodies
against antigens. Due to their level of complexity, unexpected malfunctioning may lead
to a range of pathologies, including various malignant formations. One promising way
to improve the understanding of malignant transformation is to study the underlying
gene regulatory networks (GRNs) associated with cell development and di�erentiation.
Evaluation and inference of the GRN structure from gene expression data is a challenging
task in systems biology: recent achievements in single-cell (SC) transcriptomics allow
the generation of SC gene expression data, which can be used to sharpen the knowledge
on GRN structure. In order to understand whether a particular network of three key
gene regulators (BCL6, IRF4, BLIMP1), influenced by two external stimuli signals
(surface receptors BCR and CD40), is able to describe GC B cell di�erentiation, we
used a stochastic model to fit SC transcriptomic data from a human lymphoid organ
dataset. The model is defined mathematically as a piecewise-deterministic Markov process.
We showed that after parameter tuning, the model qualitatively recapitulates mRNA
distributions corresponding to GC and plasmablast stages of B cell di�erentiation. Thus,
the model can assist in validating the GRN structure and, in the future, could lead to
better understanding of the di�erent types of dysfunction of the regulatory mechanisms.
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1 Introduction1

Adaptive immune response is a complex mechanism, relying on B and T lymphocytes,2

which protects the organism against a range of pathogens. Crucial elements of adaptive3

immune response, the germinal centers (GCs) are the structures in lymphoid organs where4

activated naive B cells are expanded (in a dark zone, DZ) and selected (in a light zone,5

LZ) and can have multiple exit fates, such as antibody production (plasmablasts and6

plasma cells, PB_PC), long term storage of antigen information (memory B cells, MC),7

or death via apoptosis [1, 2].8

It is currently thought that B cell di�erentiation in GC is controlled by a small network9

of transcription factors (TFs) constituted by B-cell lymphoma 6 (BCL6), interferon10

regulatory factor 4 (IRF4) and PR domain zinc finger protein 1 (BLIMP1) [3]. BCL611

controls formation of GC, terminal di�erentiation of B cells and lymphomagenesis [4,12

5]. BCL6 disturbance can be triggered by several mechanisms, including proteasome13

degradation by BCR, T-cell-mediated CD40-induced IRF4 repression of BCL6 [6, 5], or14

disruption of BCL6 autoregulation loop [5, 7]. Transcription factor IRF4 is involved in the15

termination of GC B cell di�erentiation, in immunoglobulin class switch recombination16

(CSR) and plasma cell development [8]. Impairment of IRF4 expression is tightly connected17

with the appearance of multiple malignancies [8]. BLIMP1 regulates pathways responsible18

for B cell lineage (e.g., PAX5) and GC proliferation and metabolism (e.g., MYC) [9,19

10]. BLIMP1 is also involved in the induction of genes (e.g., XBP-1, ATF6, Ell2)20

facilitating antibody synthesis [11, 12, 13]. These three TFs interact, through various21

activation/inhibition processes: IRF4 represses BCL6 and activates BLIMP1 [14] (hence22

being essential for GC maturation and B cell di�erentiation into plasmablast), BLIMP123

and BCL6 mutually repress each other [15, 16, 17, 18].24

Martinez et al. [3] developed a deterministic kinetic ODE model capable of simulating25

normal and malignant GC exits using a GRN based on these three transcription factors.26

For the normal di�erentiation of GC B cells towards PB_PC stage, the kinetic ODE27

model fits microarray data at two steady-states: the first one associated with the GC stage28

of B cell di�erentiation (with high levels of BCL6 and low levels of IRF4 and BLIMP1),29

and the second one associated with PB_PC stage (with low levels of BCL6 and high30

levels of IRF4 and BLIMP1).31

Recently, multiple protocols for SC RNA-seq data generation have been developed and32

used to answer various questions in biology [19, 20]. At the same time, di�erent groups33

showed that gene transcription in eukaryotes is a discontinuous process and follows34

bursting kinetics [21, 22, 23, 24]. Such results suggest that the stochastic nature of35

gene expression at the single cell (SC) level can be partly responsible for the phenotype36

variation in living organisms [25]. Thus, by gaining access to a stochastic behavior of37

gene expression, the SC viewpoint may lead to further improvement of the understanding38

of the biological systems and their variability.39

Nevertheless, stochastic modeling of GRNs using SC gene expression data is still in its40

early stage [26, 27] and has never been studied for GC B cells. Here, we apply a particular41

class of stochastic models combining deterministic dynamics and random jumps, called42
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piecewise-deterministic Markov processes (PDMPs) [28], to the description of GC B cell43

di�erentiation. It is a two-state model of gene expression introduced in [29] that allows a44

description of the system’s dynamics at the promoter, transcription and translation levels45

for a given GRN. We apply this model to the GRN made of the three key genes, BCL6,46

IRF4 and BLIMP1, and simulate single B cell mRNA data [30]. We show that the model47

can qualitatively simulate the SC mRNA patterns for normal B cell di�erentiation at GC48

and PB_PC stages.49

2 Material, Methods and Models50

2.1 Single-cell data51

We used the B cell dataset from human lymphoid organs published by Milpied et al. [30].52

The authors studied normal B cell subsets from germinal centers of the human spleen and53

tonsil and performed integrative SC analysis of gene expression. They used an adapted54

version of the integrative single-cell analysis protocol [31]. In short, the authors prepared55

cells for flow cytometry cell sorting. Then in every 96-well plate the authors sorted56

three to six ten-cell samples of the same phenotype as a single-cell. They performed57

multiplex qPCR analysis using the Biomark system (Fluidigm) with 96x96 microfluidic58

chips (fluidigm) and Taqmann assays (Thermofisher) [30]. They obtained results in the59

form of fixed fluorescence threshold to derive Ct values. We used Ct values to derive60

Expression threshold (Et) values: Et = 30 ≠ Ct. When there was an unreliably low or61

undetected expression (Ct > 30), Et was set to zero [30]. Using SC gene expression62

analysis of a panel of 91 preselected genes and pseudotime analysis (based on the cartesian63

coordinates of SC on the first and second principal components of the PCA), the authors64

separated GC DZ cells, GC LZ cells, memory cells and PB_PC cells.65

Here we focused on three genes, BCL6, IRF4 and BLIMP1. We selected the SC gene66

expression values for BCL6, IRF4 and BLIMP1 for GC DZ cells (317 SC) and for PB_PC67

(104 SC) (see Figure 5). The experimental dataset includes at the GC B cell stage 30 cells68

with zero BCL6 mRNA amount, 292 cells with zero IRF4 mRNA amount and 292 cells69

with zero BLIMP1 mRNA amount. For the end of the B cell di�erentiation (PB_PC),70

there were 25 cells with zero BCL6 mRNA amount, 79 cells with zero IRF4 and 5 cells71

with zero BLIMP1 mRNA amount.72

2.2 Kinetic ODE model73

Martinez et al. [3] derived an ODE model that simulates B cell di�erentiation from mature74

GC cells towards PB_PC. Dynamics of each protein (BCL6, IRF4 and BLIMP1) are75

defined by a production rate (µ), a degradation rate (⁄), a dissociation constant (k) and76

a maximum transcription rate (‡). Dynamics are described by System (1)-(3), where p, b77
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Index Gene/Stimulus
1 BCL6
2 IRF4
3 BLIMP1
4 BCR
5 CD40

Table 1. Correspondence between gene or stimulus names and model index.

and r account for proteins BLIMP1, BCL6 and IRF4, respectively:78

dp

dt
= µp + ‡p

k2
b

k2
b + b2 + ‡p

r2

k2
r + r2 ≠ ⁄pp, (1)

db

dt
= µb + ‡b

k2
p

k2
p + p2

k2
b

k2
b + b2

k2
r

k2
r + r2 ≠ (⁄b + BCR)b, (2)

dr

dt
= µr + ‡r

r2

k2
r + r2 + CD40 ≠ ⁄rr. (3)

In this model, CD40 and BCR act as stimuli on genes: BCR temporary represses BCL679

and CD40 temporary activates IRF4.80

2.3 Stochastic model81

The stochastic model that describes the coupled dynamics of gene i and the other genes82

of the GRN is defined by the series of equations:83

Y
___]

___[

Ei(t) : 0 kon,i(P1,P2,P3,Qs)≠≠≠≠≠≠≠≠≠≠æ 1, 1 ko�,i(P1,P2,P3,Qs)≠≠≠≠≠≠≠≠≠≠æ 0,

M Õ
i(t) = s0,iEi(t) ≠ d0,iMi(t),

P Õ
i (t) = s1,iMi(t) ≠ d1,iPi(t),

(4)

where Ei(t), Mi(t) and Pi(t) are, respectively, the activation status of the promoter, the84

quantity of mRNA and the quantity of proteins of gene i, for i œ {1, 2, 3}. For s œ {4, 5},85

Qs accounts for external stimuli intensity. Each index i refers to one of the gene in the86

GRN, either BCL6, IRF4, or BLIMP1, and each index s to stimuli BCR and CD40 (see87

Table 1).88

For each gene i, System (4) is defined by the promoter state switching rates kon,i (h≠1) and89

ko�,i (h≠1), by a degradation rate of mRNA (d0,i, h≠1), a protein degradation rate (d1,i,90

h≠1), a transcription rate (s0,i, mRNA◊h≠1), a translation rate (s1,i, protein◊mRNA≠1◊91

h≠1), and interaction parameters ◊j,i with either gene or stimulus j. Interactions between92

genes are based on the assumption that kon,i is a function of the proteins P1, P2, P3 and93

stimuli Qs and is given by:94

kon,i(P1, P2, P3, Qs) =
kmin

on,i + kmax
on,i —i�i(P1, P2, P3, Qs)

1 + —i�i(P1, P2, P3, Qs)
(5)
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where95

�i(P1, P2, P3, Qs) =
CD40Ÿ

s=BCR

1 + e◊s,iQs

1 + Qs

3Ÿ

j=1

1 + e◊j,i(Pj/Hj,i)“

1 + (Pj/Hj,i)“
. (6)

In (6), Hj,i represents an interaction threshold for the protein j on gene i , while —i is a96

scaling parameter. The structure of System (4)-(6) for the particular network considered97

in this paper is illustrated in Figure 1.98

A detailed derivation of the model is presented in the supplementary material of [29].99

Starting from a simple biochemical model of gene expression, the authors described100

higher-order interactions and took into consideration possible auto-activations. After101

normalization and simplifcation steps, Herbach et al. [29] and Bonna�oux et al. [32]102

described the promoter switching rates kon,i and ko�,i in the form of (5) and (6) by103

introducing the scaling parameter —i.104

It can be noted that the promoter state evolution of gene i between time t and t + ”t in105

System (4)-(6) is defined, for small ”t, as a Bernoulli-distributed random variable [29, 32]:106

Ei(t + ”t) ≥ Bernoulli(fii(t)),

where probability fii(t), derived by solving the master equation [29, 33], is given by107

fii(t) = Ei(t)e≠”t(kon,i+ko�,i) + kon,i

kon,i + ko�,i

1
1 ≠ e≠”t(kon,i+ko�,i)

2
.

It follows that the promoter state of gene i averages to kon,i/(kon,i + ko�,i) in the fast108

promoter regime (kon,i + ko�,i ∫ 1/”t). This quantity will be used to reduce System109

(4)-(6) into an ordinary di�erential equation (ODE) system in Section 3.1.110

2.4 Simulating the stochastic model111

During B cell di�erentiation in GC, B cells first receive BCR signal, through follicular112

dendritic cells interaction, that represses BCL6. Then, B cells integrate CD40 signals,113

through T follicular helper, that activate IRF4 [3, 6, 34].114

In order to simulate these interactions, we assumed that BCR was acting on BCL6115

from 0h until 25h, and CD40 was acting on IRF4 from 35h until 60h. Stimuli were116

implemented in three steps: first a linear increase (tBCR œ [0.5h; 1.5h]; tCD40 œ [35h; 36h]),117

then a stable stimulus (tBCR œ [1.5h; 24h]; tCD40 œ [36h; 60h]), finally a linear decrease118

(tBCR œ [24h; 25h]; tCD40 œ [60h; 61h]) (see Supplementary Figure S1).119

In all simulations, the system evolves for 500h so it can reach a steady state before120

applying the stimuli (at time t = 0h). After the first stimulus (BCR) is applied, the121

system is simulated for an additional 500h. For each simulation, the amounts of mRNA122

counts have been collected every 0.5h.123

The stochastic system (4)-(6) is defined by 40 parameters, whose values are given in124

Tables 2 to 5.125

5/24

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2023. ; https://doi.org/10.1101/2023.03.29.534713doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.29.534713
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1. A) Schematic representation of the three-gene GRN involved in B cell
di�erentiation. It consists of BCL6 (gene 1), IRF4 (gene 2) and BLIMP1 (gene 3), and
with stimuli BCR and CD40 acting on the network. The interaction j æ i between a
regulating protein j and a target gene i is represented by the interaction parameter ◊j,i.
B) Schematic representation of the associated stochastic model. A gene is represented by
its promoter state (dashed rectangle), which can switch randomly from on to o� (and
vice versa), with rates kon,i (ko�,i). When promoter state is on, mRNA molecules are
continuously produced at s0,i rate. Proteins are constantly translated from mRNA at
s1,i rate. Parameters d0,i and d1,i are degradation rates of mRNA and proteins. The
interaction between a regulator gene j and a target gene i is defined by the dependence
of kon,i and ko�,i on the protein level Pj and the interaction parameter ◊j,i. IRF4 gene
exhibits an autoactivation loop (◊2,2). Additionally, two external stimuli, BCR and CD40,
act on the GRN.
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2.5 Model execution in a computational center126

All models were established as part of the WASABI pipeline [32] and were implemented127

in Python 3. All computations were performed using the computational center of IN2P3128

(Villeurbanne/France).129

2.6 Tuning of the PDMP model130

2.6.1 Parameters estimation for the ODE-reduced model131

In Section 3.1, we use a reduced, deterministic version of System (4)-(6), namely System132

(11). Initial guess of each parameter has been chosen randomly in the same order of133

magnitude as in Bonna�oux et al. [32]. Specifically, the initial value of kon for IRF4134

(kon, init, IRF4) has been estimated by comparison with values of the kinetic model from135

Martinez et al. [3]. Initial values of kon for BCL6 and BLIMP1 were selected in the same136

order of magnitude as kon, init, IRF4.137

2.6.2 Estimation of the parameters for the stochastic model: Automatized138

approach139

After we have established the parameters for the reduced model (11), and we have shown140

that (11) has two steady states, we used these values as initial guess for the stochastic141

model (4)-(6). The goal was then to further tune parameter values so the stochastic142

model (4)-(6) fits the experimental SC data.143

We investigated a possible e�ect of Hj,i values, ◊j,i values and kon, init values on the144

quality of the fitting (for each parameter combination, simulation was performed for145

200 SC). We tested the values of interaction threshold Hj,i within the set {0.01, 0.1, 1}146

for j, i œ {1, 2, 3}, (i ”= j), and the set {0.0001, 0.001, 0.1, 1, 100} for BCR repression147

stimuli on BCL6 node, CD40 activation stimuli on IRF4 and for H2,2. We also tested148

the values of ◊j,i by multiplying by a factor f◊ œ {1, 5} for j, i œ {1, 2, 3}, (i ”= j), and149

by multiplying by a factor f◊ œ {1, 10} for BCR repression stimuli on BCL6 node, CD40150

activation stimuli on IRF4 and for ◊2,2 (IRF4 autoactivation loop). In total we tested two151

di�erent values of ◊j,i for 8 interactions (28), 3 values of Hj,i for 5 interactions (35), and 5152

values of Hj,i for 3 interactions (53), generating 28 ◊ 35 ◊ 53 ¥ 7.8 ◊ 106 combinations of153

parameters.154

During this automatized tuning procedure, we selected a set of parameter values that155

allows the system to provide the best fit of the experimental mRNA values for BCL6,156

IRF4 and BLIMP1 at the GC stage, based on a quality-of-fit criterion. This criterion was157

defined as a comparison between the average model-derived values (�) and the average158

experimental values (�), with an objective function (OF) to minimize for the set of genes159

G = {BCL6, IRF4, BLIMP1} and stages ST = {GC, PB_PC} defined by160

OF =
|G|ÿ

”Õ=1

|ST |ÿ

”ÕÕ=1

-----
�”Õ,”ÕÕ ≠ �”Õ,”ÕÕ

�”Õ,”ÕÕ

----- . (9)
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Parameter Version I, II, III
H12 1
H32 1
H33 1
◊11 -0.2
◊12 0
◊32 0
◊13 -1
◊33 0

d0,BCL6 0.05
d0,IRF4 0.05
s1,BCL6 100
s1,IRF4 160

s1,BLIMP1 40
d1,BCL6 0.138
d1,IRF4 0.173

d1,BLIMP1 0.173
ko�, init, BCL6 1
ko�, init, IRF4 1

ko�, init, BLIMP1 1
Table 2. Parameter set of the stochastic model (4)-(6) and reduced model (11). Version I
- initial parameter set. Version II - parameter set obtained from the automatized approach.
Version III - parameter set obtained after semi-manual tuning. Parameters are defined in
the text.

The quality-of-fit criterion is then161

min
P S

OF, (10)

where PS is the set of parameter values from Tables 2 to 5.162

2.6.3 Estimation of the parameters for the stochastic model: Semi-manual163

tuning164

The automatized estimation procedure was followed by a semi-manual tuning of the165

parameters of the stochastic model (4)-(6) to improve the quality of the fit.166

Values of candidate parameters have been tested in an interval of interest and the rest167

of the parameter values have been fixed at this stage. After model execution, model-168

simulated SC values of gene expression were collected. Then we selected the values169

of the parameters that provided the best qualitative fitting (see Equation (10)) of the170

experimental SC data. Ranges of tested values are summarised in Table 6.171

2.7 Evaluation of model variability using Kantorovich distance172

To compare distributions and to evaluate model variability, we used the Kantorovich173

distance (KD, particular case of Wasserstein distance, WD), as defined by Baba et al. [35]174

and implemented in Python 3 by Bonna�oux et al. [32].175
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Parameter Version I Version II Version III
H11 1 0.001 0.1
H13 0.1 1 0.01

HBCR,1 0.01 1 0.001
HCD40,2 1 0.001 1

◊21 -10 -100 -50
◊31 -2 -20 -0.5
◊22 8 5 11

◊BCR,1 -200 -20 -200
◊CD40,2 10 40 10
s0,IRF4 2 1 2.1

s0,BLIMP1 6.5 1 100
Table 3. Parameter set of the stochastic model (4)-(6) and reduced model (11), presented
parameters are di�erent between all versions. Version I - initial parameter set. Version
II - parameter set obtained from the automatized approach. Version III - parameter set
obtained after semi-manual tuning. Parameters are defined in the text.

Parameter Version I, II Version III
H22 0.01 0.001
H23 0.001 0.1
◊23 40 50

d0,BLIMP1 0.1733 0.007
Table 4. Parameter set of the stochastic model (4)-(6) and reduced model (11), presented
parameters are equal between versions I and II. Version I - initial parameter set. Version
II - parameter set obtained from the automatized approach. Version III - parameter set
obtained after semi-manual tuning. Parameters are defined in the text.

Parameter Version I Version II, III
H21 0.1 0.01
H31 1 0.01

s0,BCL6 6.5 100
kon, init, BCL6 0.1 0.15
kon, init, IRF4 0.0017 0.007

kon, init, BLIMP1 0.1 0.001
Table 5. Parameter set of the stochastic model (4)-(6) and reduced model (11), presented
parameters are equal between versions II and III. Version I - initial parameter set. Version
II - parameter set obtained from the automatized approach. Version III - parameter set
obtained after semi-manual tuning. Parameters are defined in the text.
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Parameter Definition Tested values Selected value
◊11 Interaction parameter [≠200; ≠10≠2] -0.2
◊21 Interaction parameter [≠200; ≠10≠2] -50
◊31 Interaction parameter [≠200; ≠10≠2] -0.5
◊22 Interaction parameter [0.1; 200] 11
◊13 Interaction parameter [≠200; ≠0.1] -1
◊23 Interaction parameter [0.1; 200] 50

◊BCR,1 Interaction parameter [0.1; 200] 200
◊CD40,2 Interaction parameter [0.1; 200] 10
s0,BCL6 Transcription rate [0.1; 625] 100
s0,IRF4 Transcription rate [0.1; 625] 2.1

s0,BLIMP1 Transcription rate [0.1; 625] 100
d0,BCL6 Degradation rate of mRNA [10≠3; 10] 0.05
d0,IRF4 Degradation rate of mRNA [10≠3; 10] 0.05

d0,BLIMP1 Degradation rate of mRNA [10≠3; 10] 0.007
s1,BCL6 Translation rate [1; 1000] 100
s1,IRF4 Translation rate [1; 1000] 160

s1,BLIMP1 Translation rate [1; 1000] 40
d1,BCL6 Degradation rate of protein [0.1; 10] 0.138
d1,IRF4 Degradation rate of protein [0.1; 10] 0.173

d1,BLIMP1 Degradation rate of protein [0.1; 10] 0.173
kon, init, BCL6 Initial value of kon, BCL6 [10≠5; 10] 0.15
kon, init, IRF4 Initial value of kon, IRF4 [10≠5; 10] 0.007

kon, init, BLIMP1 Initial value of kon, BLIMP1 [10≠5; 10] 0.001
Table 6. Parameters tested during the semi-manual tuning of the stochastic model.
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Consider two discrete distributions p and q, defined on N bins of equal sizes, and denote176

by xk the center of the k-th bin. Then the Kantorovich distance between p and q is177

given by178

KD =
Nÿ

n=1

-----

nÿ

k=1
p(xk) ≠

nÿ

k=1
q(xk)

----- .

We chose WD because it suggested to be preferable over alternative methods such179

as Kullback-Leibler (KL) divergence or Jensen-Shannon (JS) divergence [36]. More180

specifically, WD does not require that distributions belong to the same probability space.181

At the same time, WD is more tractable and has higher performance compared to KL182

divergence [37]. JS divergence, in turn, does not provide a gradient for the distributions183

of non-overlapping domains, compared to WD [36]. Also, because WD is a metric and184

accounts both for the "cost" for the transfer (distance) and “the number of counts” to185

transfer, we selected its 1D case of WD (Kantorovich Distance, KD) for comparison of186

discrete experimental distributions versus model-derived distributions [38].187

3 Results188

3.1 Reduced model189

In [3], Martinez et al. applied the kinetic ODE model (1)-(3) to the BCL6-IRF4-BLIMP1190

GRN associated with B cell di�erentiation and successfully simulated GC B cell dynamics191

based on microarray data. Before using the complex, stochastic model (4)-(6) to fit SC192

data, we considered a reduced version of System (4)-(6) that can be compared to model193

(1)-(3), hence providing an initial guess for a key parameter of the model.194

Since model (1)-(3) is deterministic, it is necessary to simplify the stochastic model (4)-(6)195

to perform a comparison of both models dynamics. We assume, in this section, that the196

stochastic process E(t) (promoter status) in (4)-(6) equals its mean value, ÈE(t)Í, given197

by kon/(kon + ko�). System (4)-(6) then reduces to198

Y
________]

________[

ÈE(t)Í = kon(t)
kon(t) + ko�(t) ,

dM

dt
= s0ÈE(t)Í ≠ d0M(t),

dP

dt
= s1M(t) ≠ d1P (t).

(11)

Comparing mathematical formulations of systems (1)-(3) and (11), one can see that it is199

possible to identifiy an initial value of the promoter state E(t) for IRF4 gene in System200

(11) that will correspond to GC di�erentiation stage (see Supplementary Material A.1).201

Indeed, after rewriting System (11) in terms of System (1)-(3), we obtained the candidate202

value of kon, init, IRF4 = 1.7 ◊ 10≠3. Using this value of kon, init, IRF4, System (11) successfully203

simulates two steady states for IRF4, i.e. it recapitulates the qualitative dynamics of204

System (1)-(3) (see Figure 2).205
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Figure 2. Temporal evolution of mRNA counts of IRF4 (A), BCL6 (B) and BLIMP1
(C) (see Figure 1), generated by the reduced model (11). BCR stimulus was applied from
0h until 25h and CD40 stimulus from 35h until 60h. Microarray gene expression dataset
from GEO accession no. GSE12195 was used to estimate model’s parameters (see Tables
2 to 5, version I) and are shown as dots with error bars.

Before application of BCR and CD40 stimuli, the system is at a steady state (simulating206

GC B cell stage) that corresponds to a low amount of IRF4 and BLIMP1 and a high207

amount of BCL6 mRNA molecules. After application of both stimuli, the system has208

transitioned to a second steady state that corresponds to a high number of IRF4 and209

BLIMP1 mRNA molecules and a low number of BCL6 mRNA molecules. However, it210

can be noted that for the current parameter set (see Tables 2-5, version I), System (11)211

underestimates the amount of IRF4 mRNA at both steady states (see Figure 2).212

Dynamics of System (11) shows the existence of two steady-states for the parameter set213

from Tables 2-5, version I. Notably, if we test a random value of kon, init, IRF4 in combination214

with the parameters from Tables 2-5, version I (see Supplementary Table S1), System (11)215

has only one steady-state (see Supplementary Figure S2). To our knowledge, there may216

be more than one set of parameter values associated with two steady states of System217

(11).218

We showed that for the parameter set from Tables 2-5, version I, the reduced model (11) is219

capable to qualitatively recapitulating the expected behavior of GC B cell di�erentiation220
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Figure 3. Model-to-model distributions of KD for GC and PB_PC stages and the three
genes, BCL6, IRF4, BLIMP1. Model (4)-(6) was simulated with parameter values from
Tables 2-5, version I. The violin plots show the shapes of the distributions, median value,
interquartile range and 1.5x interquartile range of the KD values.

GRN (see Figure 2). Next we wanted to understand if the stochastic system (4)-(6) can221

fit the experimental SC data.222

3.2 Stochastic modeling of B cell di�erentiation223

3.2.1 Assessing the variability of the stochastic model224

Due to the stochastic nature of the stochastic system (4)-(6), it is important to first225

evaluate the variability of the model-generated SC data, that is of model’s outputs. Indeed,226

when one repeatedly simulates a finite number of cells from the stochastic system (4)-(6)227

for the same parameter value set (Tables 2-5, version I), the resulting model-derived228

empirical distributions are slightly di�erent between each run due to the stochasticity of229

the model. We investigated how strongly shapes of distributions of simulated SC mRNA230

molecules vary for di�erent executions of model (4)-(6).231

We evaluated the level of variability of model (4)-(6) using the Kantorovich distance232

(KD, see Section 2.7). We simulated 200 datasets, each containing 200 single cells, of233

System (4)-(6) with a fixed parameter set (see Tables 2-5, version I). We estimated234

the KD between pairs of simulated datasets (mRNA counts for three genes at GC and235

PB_PC stages for 200 simulated cells), and obtained a distribution of all KD that we236

call the model-to-model (m-t-m) distribution (Figure 3). Shapes of m-t-m distributions237

are di�erent for each gene and stage of di�erentiation. For instance, for BLIMP1, long238

tails are observed. We can also notice that the mean value of IRF4 at GC stage is low239

compared to other genes.240

In order to get a more accurate evaluation of the variability in model’s outputs, we plotted241

distributions of the number of mRNA molecules (model’s outputs) for each node of the242

GRN with the highest m-t-m distribution at both GC and PB_PC stages (Figure 4).243

Qualitatively, no di�erence is detected in the shapes of model-generated distributions.244

For all 6 nodes, the shapes of distributions are remarkably similar.245

These results suggest that it may be su�cient to perform parameter tuning of the246

stochastic model (4)-(6) using only one simulation run for each parameter value set.247

3.2.2 Initial estimation step based on an automatized approach248

Variability of the stochastic model being assessed, and comparison of experimental data249

and a single model’s output in order to assess their closeness being validated, we now250

focus on the estimation of parameter values. Model (4)-(6) comprises 40 parameters,251

so we first apply a straightforward strategy, that we call automatized approach, which252

consists in solving the stochastic system (4)-(6) for a number of fixed parameter values253
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Figure 4. Histograms of two model-generated mRNA counts of BCL6, IRF4 and BLIMP1
at GC and PB_PC stages with the highest KD. The subgraphs A, C, E represent log2
(molecule+1) transformed values for BCL6, IRF4 and BLIMP1 at GC stage. The
subgraphs B, D, F represent log (molecule+1) transformed values for BCL6, IRF4 and
BLIMP1 at PB_PC stage (Parameters from Tables 2-5, version I).
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and selecting the set of parameter values associated with the best fit (see Section 2.6.2)254

of experimental data [30].255

Approximately 8 ◊ 106 combinations of parameter values have been tested (see Section256

2.6.2), then the best set of parameter values has been selected based on the quality of257

BCL6, IRF4 and BLIMP1 fitting at the GC and PB_PC stages (see Equations (9)-(10)).258

Numbers of mRNA molecules estimated by the stochastic model (4)-(6) are in a similar259

range of magnitude as the experimental SC data (see Supplementary Figure S3). However,260

the selected parameter values (Tables 2-5, version II) generate model-derived mRNA261

distributions that have su�cient overlap with experimental data for GC stage but insu�-262

cient overlap for PB_PC stage (see Supplementary Figure S3). Indeed, distributions of263

numbers of mRNA molecules at PB_PC stage mostly underestimate the experimental264

SC data (see Supplementary Figure S3B, D and F).265

Implementing an automatized approach for estimating parameter values helped to establish266

a set of parameter values that allows System (4)-(6) to correctly estimate the number of267

mRNA molecules for 3 out of 6 nodes of the GRN. In order to improve the quality of268

the fit, a more directed and sensitive tuning of the parameter set is then performed (see269

Section 2.6.3).270

3.2.3 Generation of simulated distributions of mRNA counts describing B271

cell di�erentiation272

Due to the complexity of the stochastic model (4)-(6) that is made of 40 parameters,273

it is important to identifiy which parameters should be targeted to improve the quality274

of fit. To do so, we rely on the properties of the GRN (see Figure 1A). Thanks to the275

topological structure of the BCL6-IRF4-BLIMP1 GRN, where IRF4 activates BLIMP1 and276

autoactivates itself, we hypothesize that System (4)-(6) underestimates the experimental277

SC data at the PB_PC stage due to low values of the parameters responsible for IRF4278

autoactivation (◊22, and to a lesser extent s0, IRF4) and BLIMP1 activation by IRF4 (◊23).279

Further, we improved the quality of the fit, in particular of BLIMP1 distribution, by280

focusing on BLIMP1-related interaction parameters (◊13, ◊31).281

Indeed, if IRF4 autoactivation reaction is not e�cient enough, there are not enough IRF4282

molecules to a�ect BCL6 and BLIMP1 activity at PB_PC stage. Because IRF4 activity283

is only impacted by its autoactivation loop, we first modulated values of the parameter284

related to this reaction (◊22). During preliminary tests, we noticed that this reaction285

is crucial for the transition from GC towards PB_PC stage and that when interaction286

parameter ◊22 and transcription rate s0, IRF4 have low absolute values then the system287

cannot reach PB_PC stage, even after application of the stimuli. It can be explained by288

the insu�cient amount of IRF4 molecules produced (see Supplementary Figure S3, C and289

D). On the other hand, when parameters ◊22 and s0, IRF4 have high values, model (4)-(6)290

transitions from GC towards PB_PC stage even before application of stimuli, exhibiting291

an abnormal behavior.292

After comparison of the stochastic system (4)-(6) outputs for a range of di�erent ◊22 and293

s0, IRF4 values (described in Table 6), we selected the parameter set for which model (4)-(6)294
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correctly fits the IRF4 experimental data at both GC and PB_PC stages. Such model-295

derived SC pattern is obtained using the values (◊22 = 11 and s0, IRF4 = 2.1 molecule.h≠1)296

We additionally performed simulations to improve the quality of the fitting of BLIMP1297

and BCL6 distributions by testing parameters that are directly responsible for the balance298

between BLIMP1 and BCL6, such as interaction parameters ◊13, ◊31 and ◊23. We also299

tested parameters which can influence BCL6 and BLIMP1 indirectly, such as transcription300

rates (s0, BCL6 and s0, BLIMP1), and degradation rates of mRNA (d0, BCL6, d0, IRF4 and301

d0, BLIMP1).302

After comparison of the stochastic system (4)-(6) outputs, we selected the parameters303

which allow the model to have a qualitative fit of the experimental data for all nodes at GC304

and PB_PC stages (see Figure 5, and Tables 2-5, version III). For this tuned parameter305

set, we see that the model (4)-(6) can have a good qualitative fitting of experimental data306

for all nodes. Results also show that for this parameter set (version III), the stochastic307

model (4)-(6) fits SC data at the GC stage for BCL6 (see Figure 5A). The model-derived308

empirical distribution of BLIMP1 was capable of showing overlap with experimental data309

at the PB_PC stage (see Figure 5F), but it overestimated the number of BLIMP1 mRNA310

molecules at the GC stage (see Figure 5E).311

The current parameter set (Tables 2-5, version III) has di�culties to correctly evaluate312

the number of zero values. The model (4)-(6) tends to overestimate the number of BCL6313

mRNA molecules at PB_PC stage, as well as the number of IRF4 mRNA molecules at GC314

stage and number of BLIMP1 mRNA molecules at GC stage (see Figure 5). Nevertheless,315

this parameter set allowed the model to generate SC data with a similar level of magnitude316

of the amount of mRNA as experimentally observed.317

4 Discussion318

In this work, we applied a particular class of stochastic models combining deterministic319

dynamics and random jumps to the simulation of SC data from two stages of B cell320

di�erentiation in germinal centers.321

We first defined a reduced model (11) whose dynamics were compared to the ones of the322

kinetic model (1)-(3) and we established an initial parameter value for the key parameter323

kon, init, IRF4. We then showed that for a given parameter set (Table 2-5, Version I),324

the reduced model (11) admits two steady states. Secondly, we evaluated the e�ect of325

stochasticity on multiple independent generations of the number of mRNA molecules by326

the stochastic model (4)-(6) and we confirmed that for the same parameter set there is327

no noticeable di�erence between each model-generated outputs for BCL6-IRF4-BLIMP1328

GRNs (see Figure 4). These results allow performing a combined parameter screening329

with the confidence that for each candidate parameter set, the algorithm needs to perform330

only one run of the model (4)-(6). Lastly, we showed that the model (4)-(6) can simulate331

distributions of the number of mRNA molecules for BCL6, IRF4, BLIMP1 at GC and332

PB_PC stages with the same order of magnitude as experimental data. However, as333

future scope of this work, a few strategies to improve the final parameter value set (Tables334

2-5, version III) can be investigated.335
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Figure 5. Histograms of model-generated and experimental mRNA counts of BCL6, IRF4,
BLIMP1 at GC and PB_PC stages. The subgraphs A, C, E represent log (molecule+1)
transformed SC values with BCL6, IRF4 and BLIMP1 compared between the model
estimations at GC stage (grey) vs the experimental data from GC B cells (blue). The
subgraphs B, D, F represent log (molecule+1) transformed SC values with BCL6, IRF4
and BLIMP1 compared between the model estimations at PB_PC stage (grey) vs the
experimental data from PB_PC cells (green). Simulation of 200 single cells were used
based on the parameter set, selected after semi-automatized parameter screening (see
Tables 2-5, version III). Performed based on the dataset from Milpied et al. [30]
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Since in BCL6-IRF4-BLIMP1 GRN, IRF4 activity depends only on its autoactivation336

reaction, we have only succeeded, by writing the reduced model (11) in terms of the337

kinetic model (1)-(3), in estimating the value of kon, init, IRF4. It would be advantageous to338

additionally estimate the values of kon, init, BCL6 and kon, init, BLIMP1, using the same logic.339

However, because BLIMP1 depends on BLIMP1, IRF4 and BCL6 (see Equation (1)) and340

BCL6 depends on both IRF4 and BLIMP1 (see Equation (2)), the rewriting of system341

(4)-(6) in terms of (1)-(3) would require additional calculations and simplifications.342

The e�ect of mutual repression between BCL6 and BLIMP1 could be evaluated by343

performing a more extensive parameter value search. The current parameter value set344

(Tables 2-5, version III) makes model (4)-(6) overestimate the number of mRNA molecules345

of BLIMP1 at GC stage. Increasing BCL6 repression of BLIMP1 could potentially346

decrease the quantity of BLIMP1 at the GC stage.347

The e�ect of the duration of the BCR and CD40 stimuli on the di�erentiation from GC348

B cells towards PB_PC could be investigated. Multiscale modeling of GCs performed349

by Tejero et al. [39] showed that CD40 signalling in combination with the asymmetric350

division of B cells results in a switch from memory B cells to plasmablasts. It would be351

relevant to evaluate a possible application of the stochastic model to study the e�ect352

of combined CD40 and BCR signaling with di�erent intensities and durations at the353

SC level.354

Additionally, one can evaluate the impact of including additional genes into the BCL6-355

IRF4-BLIMP1 GRN on the quality of data fitting by the stochastic model. One of the356

possible candidates to incorporation in the GRN is PAX5, which plays an important357

role in directing lymphoid progenitors towards B cell development [40]. PAX5 positively358

regulates IRF8 and BACH2, which indirectly positively regulate IRF4 and negatively359

regulate BLIMP1 at an early stage of B cell di�erentiation. During further development,360

BLIMP1 starts to repress PAX5, consequently decreasing the expression of IRF8 and361

BACH2. The correct orchestration of PAX5-IRF8-BACH2 during B cell di�erentiation is362

important for the successful di�erentiation towards antigen producing cells (PB_PC),363

while its malfunction can cause aberration in GC B cell development [41].364

CD40 stimulation of B cells initiates NF-ŸB signaling which is associated with cellular365

proliferation. In B cells, NF-ŸB activates IRF4, negatively regulates BACH2, what leads366

to positive regulation of BLIMP1 and consecutive repression of BCL6 [5, 34].367

Another important transcription factor in GC development is MYC, which regulates B368

cell proliferation [42] and the DZ B cell phenotype [43]. MYC indirectly activates the369

histone methyltransferase enhancer of zeste homologue 2 (EZH2), which is responsible for370

the repression of IRF4 and BLIMP1 [44, 45, 46, 47].371

The transcription factors mentioned above are present in the SC RT-qPCR dataset from372

Milpied et al. [30] that we used and could be used to extend the current GRN. Inclusion373

of additional transcription factors may have both positive and negative e�ects on the374

application of model (4)-(6). On one side, it can increase the computational time and the375

number of parameters required for simulating System (4)-(6). On the other side, because376

the inclusion of transcription factors can more precisely describe the biological system it377

could improve the quality of the fitting. However, any inclusion of new nodes to GRN378
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should be carefully evaluated and only essential transcription factors should be added.379

For instance, there are no advantages in adding a transcrption factor that would only380

have one downstream output. As an example, MYC activates E2F1 and further activates381

EZH2. For this reason, incorporation of the chain MYC-E2F1-EZH2 should have a similar382

outcome, as the incorporation of the simplified MYC-EZH2 reaction. This is expected383

because in the modeling, intermediate elements of one-to-one redundant reactions can be384

omitted without significant changes in the quality of the simulations.385

To further continue our study, we could also use SC RNA-seq dataset from Milpied et.386

al [30]. The authors have produced SC RNA-seq dataset from GC B cells and analysed the387

similarities between SC RNA-seq and SC RT-qPCR dataset. Even though the gene-gene388

correlation levels were lower in SC RNA-seq compared to SC RT-qPCR, SC RNA-seq389

analysis confirmed the observation obtained by SC RT-qPCR [30]. From the stochastic390

modeling perspective, combining the data from SC RT-qPCR and SC RNA-seq should391

improve our understanding of the SC dataset variability and the quality of the fitting.392

To summarise, the stochastic model (4)-(6) is capable of qualitatively simulating and393

depicting the stochasticity of experimental SC gene expression data of human B cell394

di�erentiation at the GC and PB_PC stages using a GRN made of three-key genes395

(BCL6, IRF4, BLIMP1). These results are encouraging, and suggest that our model may396

be used to test the di�erent B cell exits from GC. Future steps may include testing of397

the model (4)-(6) on alternative SC datasets [48, 49, 50] and investigating the malignant398

formations, by evaluating di�erences of the associated GRN compared to the normal B399

cell di�erentiation from GC towards PB_PC.400
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