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Abstract

Introduction: Statistical effect sizes are systematically overestimated in small samples, leading to
poor generalizability and replicability of findings in all areas of research. Due to the large number of
variables, this is particularly problematic in neuroimaging research. While cross-validation is
frequently used in multivariate machine learning approaches to assess model generalizability and
replicability, the benefits for mass-univariate brain analysis are yet unclear. We investigated the
impact of cross-validation on effect size estimation in univariate voxel-based brain-wide associations,

using body mass index (BMI) as an exemplary predictor.

Methods: A total of n=3401 adults were pooled from three independent cohorts. Brain-wide

associations between BMI and gray matter structure were tested using a standard linear mass-


https://doi.org/10.1101/2023.03.29.534696
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.29.534696; this version posted March 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

univariate voxel-based approach. First, a traditional non-cross-validated analysis was conducted to
identify brain-wide effect sizes in the total sample (as an estimate of a realistic reference effect size).
The impact of sample size (bootstrapped samples ranging from n=25 to n=3401) and cross-validation
on effect size estimates was investigated across selected voxels with differing underlying effect sizes
(including the brain-wide lowest effect size). Linear effects were estimated within training sets and
then applied to unseen test set data, using 5-fold cross-validation. Resulting effect sizes (explained

variance) were investigated.

Results: Analysis in the total sample (n=3401) without cross-validation yielded mainly negative
correlations between BMI and gray matter density with a maximum effect size of R%,=.036 (peak
voxel in the cerebellum). Effects were overestimated exponentially with decreasing sample size, with
effect sizes up to R%,=.535 in samples of n=25 for the voxel with the brain-wide largest effect and up
to R%,=.429 for the voxel with the brain-wide smallest effect. When applying cross-validation, linear
effects estimated in small samples did not generalize to an independent test set. For the largest
brain-wide effect a minimum sample size of n=100 was required to start generalizing (explained
variance >0 in unseen data), while n=400 were needed for smaller effects of R%,=.005 to generalize.
For a voxel with an underlying null effect, linear effects found in non-cross-validated samples did not
generalize to test sets even with the maximum sample size of n=3401. Effect size estimates obtained

with and without cross-validation approached convergence in large samples.

Discussion: Cross-validation is a useful method to counteract the overestimation of effect size
particularly in small samples and to assess the generalizability of effects. Train and test set effect
sizes converge in large samples which likely reflects a good generalizability for models in such
samples. While linear effects start generalizing to unseen data in samples of n>100 for large effect
sizes, the generalization of smaller effects requires larger samples (n>400). Cross-validation should
be applied in voxel-based mass-univariate analysis to foster accurate effect size estimation and
improve replicability of neuroimaging findings. We provide open-source python code for this purpose

(https://osf.io/cy7fp/?view_only=a10fd0ee7b914f50820b5265f65f0cdb).
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Introduction

Neuroimaging methods such as magnetic resonance imaging (MRI) have been used for several
decades now to gain insights into the neurobiological underpinnings of psychological phenotypes. A
plethora of scientific publications describes imaging-derived biomarkers of mental health disorders
and perpetuates the hope to hope of utilizing such methods to aid clinical decision-making (Nour et
al., 2022). However, recently the validity of findings involving relationships between neuroimaging
and psychological phenotypes have been questioned due to accumulating reports of low replicability
(Boekel et al., 2015; Genon et al., 2022; Marek et al., 2022). While such a replication crisis is not
specific to neuroimaging research (e.g., for the field of psychology see Open Science Collaboration,
2015), its contributing factors may be particularly potent in this research domain due to high analytic
flexibility in combination with a large number of statistical tests, which is likely to amplify publication
bias (Botvinik-Nezer et al., 2020; loannidis, 2005; Jennings & Van Horn, 2012). Relatedly, replicability
is undermined by small samples (Turner et al., 2018) which lead to unreliable and overestimated
effect sizes (Button et al., 2013; Lane & Dunlap, 1978; Maxwell et al., 2008; Schonbrodt & Perugini,
2013). As studies particularly in neuroimaging research frequently use small samples (Elliott et al.,
2020; Szucs & loannidis, 2020), this likely further contributes to low replicability. Recently, Marek et
al. (2022) demonstrated that even without publication bias, associations between psychological and
brain phenotypes are not replicable unless thousands of participants are included in the analysis. This
seminal study has led to a vibrant discussion regarding replicability, sample size and effect size in the
neuroimaging domain (Bandettini et al., 2022; Genon et al., 2022; Nour et al., 2022; Rosenberg &
Finn, 2022; Spisak et al., 2023; Tervo-Clemmens et al., 2023). Notably, the demonstrated
overestimation of effect sizes in small samples also occurs in statistically significant effects and,
paradoxically, using more stringent significance thresholds even aggravates the problem (Lane &

Dunlap, 1978; Marek et al., 2022).

In summary, the outlined evidence emphasizes an urgent need for solutions to increase the

replicability of psychiatric neuroimaging findings. One possible solution that has been suggested
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repeatedly is to validate brain effects in independent data via cross-validation (Klapwijk et al., 2021;
Kriegeskorte et al., 2010; Rosenberg & Finn, 2022). While cross-validation methods are standardly
used in multivariate brain analyses to identify and counteract overfitting and assure generalizability
of models (e.g., Redlich et al., 2014, 2016; Repple et al., 2023; Schaffer, 1993), they are rarely ever
used on univariate brain effects, likely also because common neuroimaging analysis software
packages do not offer options to conduct cross-validation. However, specifically in the domain of
neuroimaging research, cross-validation methods may be useful even for univariate models as the
outlined overestimation of effects can be seen as an overfitting of models in the face of high analytic
flexibility in combination with a high number of tests in this domain. Thus, we investigate the utility
of cross-validation for accurate estimation of effect size in univariate voxel-based brain analysis. Body
mass index (BMI) is used as an exemplary predictor due to previous reports of good replicability of
BMI with brain structure, as well as its pivotal relevance for various mental disorders (Bond et al.,
2014; McWhinney et al., 2022; Opel et al., 2015, 2021). Due to reports of relatively large effect size
estimates of the association between BMI and brain structure even in large samples (maximum
effect size corresponding to approximately 2.7% explained variance; Opel et al., 2021), this predictor
is suitable to investigate the impact of cross-validation for a broader range of effect size, as
compared to other predictors where effect size estimates across brain modalities have been shown
to be considerably smaller (Marek et al., 2022; Winter et al., 2022). In order to evaluate the
relevance of cross-validation for generalizability of effects sizes as a function of the sample size, we

conducted our analyses across different sample sizes.

In light of the current lack of brain analysis software implementations regarding this matter, we
provide open-source Python code to enable other researchers to apply cross-validation for voxel-

based brain analysis.
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Method

Participants

A total of n=3401 participants were included from three independent German cohorts: the Marburg-
Munster Affective Disorders Cohort Study (MACS; n=1655), the Minster Neuroimaging Cohort (MNC;
n=722) and the BiDirect cohort (n=1024). All three cohorts include individuals with major depressive
disorder (MDD) and healthy controls (HC) free from any lifetime mental disorder diagnoses. General
study methods, exclusion criteria and cohort characteristics were comprehensively described
elsewhere (MACS: Kircher et al., 2019 and Vogelbacher et al., 2018; MNC: Dannlowski et al., 2016
and Opel et al., 2019; BiDirect: Teismann et al., 2014). See supplements for an additional description

of data exclusion steps and sample characteristics specific to the current analysis.

Measures and procedure

BMI was calculated based on self-reported height and weight of participants. T1-weighted high-
resolution anatomical brain images were acquired using 3T MRI scanner in all three studies. For the
MACS sample two different MRI scanners were used at the recruitment sites in Marburg (Tim Trio,
Siemens, Erlangen, Germany; combined with a 12-channel head matrix Rx-coil) and Miinster (Prisma,
Siemens, Erlangen, Germany; combined with a 20-channel head matrix Rx-coil). Data from the MNC
and BiDirect samples were acquired using the same Gyroscan Intera scanner (later with Achieva
update; Philips Medical Systems, Best, The Netherlands). Image preprocessing was conducted using

the CAT12-toolbox (Gaser et al., 2022; https://neuro-jena.github.io/cat/) using default parameters

for all samples. Briefly, images were bias-corrected, tissue classified, and normalized to MNI-space
using linear (12-parameter affine) and non-linear transformations, within a unified model including
high-dimensional geodesic shooting normalization (Ashburner & Friston, 2011). The modulated gray
matter images were smoothed with a Gaussian kernel of 8 mm FWHM. Absolute threshold masking

with a threshold value of 0.2 was used for all second level analyses as recommended for VBM
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analyses (https://neuro-jena.github.io/cat12-help/). Image quality was assessed by visual inspection

as well as by using the check for homogeneity function implemented in the CAT12 toolbox.

Statistical analysis

We investigated the association between BMI and gray matter brain structure using an established
mass-univariate voxel-based morphometry (VBM) approach. To that end, BMI was used as a
predictor in a general linear model (GLM) to predict voxel-wise gray matter density. The following
nuisance parameters were included in the model: age, sex, total intracranial volume (TIV) and four
dummy-coded scanner variables to control for scanner hardware differences. Two-sided whole brain
effects of BMI were tested and partial R? (R?,) was used as a measure of effect size. To assess the
impact of sample size and cross-validation on the estimation of voxel-based effect sizes the following

steps were undertaken (for a schematic overview see Figure 1):

1. Classical non-cross-validated analysis was conducted in the maximum available sample
without bootstrapping (n=3401). The resulting voxel-wise explained variance of BMI was
used as an estimate for the realistic underlying effect size (in the following referred to as the
reference effect size). Subsequently, voxels were selected covering a range of different
representative effect sizes, including the voxel with the largest brain-wide reference effect
size. In addition, the voxel with the smallest brain-wide reference effect size was selected to
investigate effect size estimation based on an underlying null effect. An uncorrected
significance threshold of p<.001 and extent threshold of k>200 was used for visualization
purposes of brain-wide associations.

2. Based on the findings of Marek et al. (2022) we subsequently investigated the influence of
sample size on the non-cross-validated effect sizes. Sample size was manipulated using
samples of 18 different sizes: n=25, 35, 50, 70, 100, 150, 200, 300, 400, 600, 800, 1000, 1300,

1600, 2000, 2400, 2900, 3401. For each preselected voxel a bootstrapped resampling
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distribution of effect size was obtained containing k=500 bootstrap runs per sample size. For
each sample size the mean effect size was calculated across all bootstrap runs, as well as a
95% confidence interval (Cl).

3. Finally, the impact of cross-validation on effect size estimates in the selected voxels was
investigated across samples created with the resampling procedure described above. To this
end, 5-fold cross-validation was applied by estimating linear effects using the GLM described
above within respective train sets and then applying the resulting linear coefficients to the
respective test sets. To this end the resulting beta coefficients yielded by model estimation
within the train set was applied to the design matrix (individual predictor values) of the test
set (i.e., data new to the trained linear model). The predictive value of the BMI predictor was
evaluated by calculating the explained variance (based on residuals) with and without BMI as
a predictor in the model. Then the mean R?, for BMI was calculated across the five test sets.
This was used to quantify the extent to which the linear voxel-wise coefficients for BMI
obtained from the train sets explain variance within unknown test data (i.e., generalization of
effects to unseen data). Note that while R?, usually has a range from 0-1, it can become
negative (and even exceed -1) in this case due to the application of linear coefficients to
unseen data which can result in an effect size lower than prediction by the mean within the
same sample (normally the baseline reference corresponding to an effect size R?,=0). A point
of initial generalizability was defined as the minimum sample size necessary to achieve
positive effect sizes in the test sets (i.e., the lower bound of the 95% Cl above R%,=0). This
point of initial generalizability can be interpreted as the minimum sample size needed for
linear effects of a given effect size to generalize to unknown samples in a 5-fold cross-
validation framework. The 5-fold cross-validation was chosen over a higher number of folds
to be able to simulate very small (but commonly used) samples sizes. In order investigate the
impact of this cross-validation on effect size estimation across different sample sizes we
applied the same bootstrap approach described above also to cross-validation-based effect

size estimates, resulting in resampling distributions of average test set effect sizes for each
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sample size (95% Cl were based on these bootstrap runs). To allow this combination of cross-
validation and bootstrapping, we first conducted the 5-fold split of the total sample and then
performed the bootstrapped resampling for each sample size by drawing with replacement
from each split separately — thus only allowing replacement within one split but not across

splits. This is necessary to avoid data leakage between train and test sets.

All analyses were conducted in Python (version 3.9.12) using the nilearn package (version 0.9.1) for
voxel-based GLMs and k-Fold from the sklearn package (version 1.1.1) for cross-validation. The
complete analysis code is provided online

(https://osf.io/cy7fp/?view_only=a10fd0ee7b914f50820b5265f65f0cdb).
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Figure 1

Analysis steps to obtain voxel-wise effect size estimates across sample sizes with and without cross-

validation
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Note. CV, cross-validation; BMI, Body Mass Index; GLM, general linear model.

Results
Associations between BMI and gray matter — identification of reference effect sizes in n=3401

The association between BMI and gray matter density in a non-cross-validated standard analysis is

shown in Figure 2a and supplementary Figure S1. Liberal thresholding at uncorrected p<.001, k>200
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resulted in widespread clusters across the brain. Effect size in significant voxels ranged up to
R?,=.036. Peak voxel coordinates of significant clusters covering a wide range of effect sizes, as well
as the voxel with the brain-wide smallest effect size were selected for further analysis (see Figure 2a).
The selected voxels from largest to smallest effects were located in 1) the cerebellum (R%,=.036,
p<.0001, x-24, y-72, z-60), 2) the posterior medial orbitofrontal cortex (mOFC; R?,=.024, p<.0001, x-4,
y25, z-30), 3) the thalamus (R%=.016, p<.0001, x6, y-12, z10), 4) the anterior mOFC (R%,=.005,

p<.0001, x4, y69, z-6) and 5) the calcarine (R%*<.0001, p=.999, x-3, y-80, z12).

The impact of sample size on non-cross-validated effect size estimation

Effect size was systematically overestimated in small samples in the non-cross-validated analysis.
Averaged across all bootstrapped samples with size n=25, effect size was inflated approximately .06
R?, units for all five voxels, resulting in a 2.5-fold inflation for the voxel with the largest reference
effect size (R%,=.091 instead of R%,=.036) and 11.9-fold inflation for the voxel with a reference effect
size of R%,=.005. Maximum effect size estimates went as high as R?,=.734 in samples of n=25. Even
the voxel with the brain-wide lowest reference effect size (null-effect) reached a maximum effect size
of up to R%=.429 (average R*,=.056) in these samples with n=25. Average estimates of effect size (as

well as maximum estimates) decreased exponentially with increasing sample size.

Inspection of partial correlation coefficients showed that a broad range of associations was found
across bootstrapped samples, particularly with small sample sizes. For the voxel with the largest
brain-wide reference effect size, associations ranging from a negative correlation r=-.73 to a positive

correlation r=.60 were found in samples with n=25 (see supplementary Figure S2).

Detailed summary statistics for effect size estimates across sample sizes and voxels are presented in
supplementary Tables S2-6. While the average effect size estimate across bootstrapped samples may

be informative, it should be noted that the distribution of estimates was highly skewed with some
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extreme outliers. This distribution across single runs from the resampling procedure is further

visualized in supplementary Figure S3.

The impact of cross-validation on effect size estimation

On average test set effect size estimates were descriptively lower compared to non-cross-validated
effect sizes across all sample sizes and all voxels (this was true for 93.83% of bootstrapped samples
across all sample sizes). This disparity was particularly strong in small samples where non-cross-
validated effect sizes were largest while test set effect sizes were mostly negative (indicating no

generalization of linear effects to unknown samples).

A point of initial generalizability was reached after n=100 for the largest reference effect size, while
larger samples were needed to reach this point for voxels with smaller effect size: n=100 for
R%,=.024, n=150 for R%,=.016, and n=400 for R%,=.005. For the voxel with the minimum brain-wide
effect size this point of initial generalizability was never reached, as expectable for an underlying
null-effect. In fact, for this voxel even the mean and upper bound of the 95% Cl were always below
an effect size of zero at any sample size, when applying cross-validation, indicating effective

protection against false-positives (see supplementary Tables S2-6).

Estimates derived from non-cross-validated analysis and from test sets using cross-validation
approached convergence in larger samples. In samples with n=3401, non- cross-validated and test set
effect sizes differed only marginally (average difference across voxels: R%,=.001). However, full
convergence was never reached between non-cross-validated and test set effect size estimates,
meaning that confidence intervals did not overlap, even at largest sample sizes. Detailed descriptive
statistics for effect size estimates across sample sizes, voxels and cross-validation are given in

supplementary Tables S2-6.
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Figure 2

The association between Body Mass Index and gray matter density - selected voxel locations and their

effect size estimates across sample sizes, with and without and cross-validation
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Note. a) Shows non-cross-validated two-sided effect of BMI on gray matter density at a liberal
uncorrected threshold of p<.001 in the maximum sample of n=3401. The location of selected peak voxel
coordinates in the cerebellum (largest brain-wide effect), posterior medial prefrontal cortex (mOFC),
thalamus, anterior mOFC and calcarine (smallest brain-wide effect) are shown. Color bars represent R?,
values. b) Shows effect size estimates for the five different voxels across sample sizes (resampling with
k=500 per sample size). Non-cross-validated (non-CV) effect sizes are presented with solid lines and test
set effect sizes with dotted lines. Error bands represent the 95% confidence interval. Respective effect
sizes of selected voxels in non-cross-validated analysis of full sample are presented in the legend

(ranging from n?,=.036 to n?,<.0001).
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Discussion

Using BMI as an exemplary predictor variable, we investigated the utility of cross-validation for the
accurate estimation of effect sizes of univariate brain-wide associations. Replicating previous findings
(Marek et al., 2022), we find that effect size estimates are highly overestimated and unreliable in
small samples if no cross-validation is applied. Furthermore, we demonstrate that cross-validation
can be used to reveal poor generalizability to new data of these overestimated effects in small
samples (indicated by negative effect size estimates). In larger samples, cross-validation-derived test
set effect sizes start becoming positive, suggesting a point of initial generalizability that can be
interpreted as the minimum sample size necessary to achieve generalizable linear effect estimates.
Importantly, sample sizes of several hundreds of participants may be sufficient to accurately estimate
brain-wide associations, given sufficiently large underlying effect sizes. The cross-validation approach
could facilitate a differentiation between artificially inflated large effects and robust ‘true’ large
effects. The standardly implementation of cross-validation to assess the generalizability of brain-wide
effects should be considered in addition to conventional reporting of significance and traditional
effect size estimates. The utilization of cross-validation to facilitate generalizability of neuroimaging
findings has been repeatedly suggested (Klapwijk et al., 2021; Kriegeskorte et al., 2010; Rosenberg &
Finn, 2022). However, to the best of our knowledge, we are the first to systematically investigate the

utility of cross-validation for effect size estimation in brain-wide univariate analysis.

The presented overestimation of effect sizes in small samples falls in line with previous findings in the
literature (Button et al., 2013; Lane & Dunlap, 1978; Maxwell et al., 2008; Schonbrodt & Perugini,
2013). Marek et al. (2022) demonstrated that even the largest brain-wide associations of compound
cognitive and psychopathological variables with brain structure and function corresponded to less
than 0.5% explained variance, which was inflated to up to approximately 40% explained variance in
small samples. The authors conclude that thousands of individuals are needed for robust and
replicable estimates in this research domain. While these findings are striking and important, the

authors’ conclusion has been questioned by various scholars. The main critique is that true effect
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sizes may be considerably higher under ideal conditions leading to smaller sample sizes necessary for
accurate estimation of effects (DeYoung et al., 2022). In a study of over 1800 adults, Winter et al.
(2022) investigated univariate brain-wide, cross-modal brain differences between HC and lifetime
MDD individuals and conclude that largest effect sizes go up to 1.7% explained variance. However,
they further report that comparisons of HC with chronic or acute MDD individuals yield higher effects
sizes of up to 2.7% explained variance (in n>900). Further, studies suggest that effect sizes are larger
in other diagnostic groups such as psychotic disorders (Hettwer et al., 2022). Similarly, Repple and
Gruber et al. (2022) present transdiagnostic structural connectome alterations, with largest effect
sizes found in patients with schizophrenia, possibly rendering smaller samples sufficient to detect

effects.

Our findings expand the results by Marek et al. (2022) to a voxel-based analysis framework and to a
broader range of effect sizes. Importantly, we provide evidence that for larger effect sizes — which
can occur under specific conditions as outlined above — hundreds of participants could suffice to
accurately estimate linear brain-wide effects. When smaller effect sizes are assumed, our findings are
highly comparable to the findings by Marek et al. as we similarly find that a ‘true’ effect size of
approximately ~0.5% explained variance requires very large samples to obtain robust estimates of
effects, although cross-validation may enable the robust detection of accurate estimates already in
somewhat smaller samples (n>400). The ongoing debate surrounding effect size and sample size in
the neuroimaging domain stresses the importance of consistent reporting of effect sizes in

publications, as well as interpreting effect sizes in the context of sample size.

While the above considerations could guide sample size planning of neuroimaging studies, a problem
arises when the ‘true’ effect size is unknown (and effect size inflations in small samples make it
particularly difficult to estimate this solely from existing literature). How can researchers know if an
obtained effect size is accurate or inflated? Using a cross-validation framework, we demonstrate that
the application of identified linear effects to unseen data can be utilized to identify inflated, non-

generalizable effect sizes. Notably, this procedure can be applied in smaller studies to verify if a
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putative large effect size is robust and may warrant the use of a smaller sample. Importantly, our
findings are in line with low test set performance merely reflecting an underpowered sample and not
necessarily meaning that an effect does not exist (Helwegen et al., 2023). In other words, even
substantial effects of 3.6% explained variance can barely be differentiated from null effects in small
samples based on cross-validation-derived effect sizes alone. However, the relative congruence
between non-cross-validated and cross-validation-derived effect sizes can provide a strong argument
for robust and replicable linear associations with realistic effect size estimates. Thus, calculating non-
cross-validated and cross-validation-derived effect sizes combined with a thorough inspection of the
similarity between the resulting estimates could be informative. Notably, while cross-validation
decreases the probability of effect size inflation, it does not eliminate it. Even unrealistically high
effect size estimates can in rare cases generalize to unseen test set data, particularly in small

samples, as shown by some extreme outliers in our results.

While it is difficult to deduct a clear recommendation for sample sizes based on our cross-validation
analyses, we propose that a point of initial generalizability can be defined as the sample size where
linear effects start explaining variance in unseen data. This aspect could expand the traditional power
analysis framework by the question of generalizability in addition to significance. In other words,
while traditional power analysis answers the question of how large a sample needs to be for a given
effect to become significant, our results open up the possibility for defining sample sizes necessary

for linear effects to generalize to unseen data.

In large samples effect sizes became highly stable and barely differed whether cross-validation was
applied or not. This finding implicates that if several thousands of individuals are available (e.g., due
to consortia data), within sample k-fold cross-validation may barely alter the result, regardless of the

underlying true effect size.

The current study entails several important limitations. Firstly, it is unclear whether our findings can
be generalized to other cross-validation methods. While 5-fold cross-validation was chosen for the

current analysis so that small samples of n=25 could be included, other splits (e.g., 10-fold) could in
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principle also be suitable to be applied in voxel-based univariate brain analysis. While a systematic
comparison of different cross-validation methods for the application to univariate voxel-based
analysis is beyond the scope of this work, this may be a fruitful task for future studies. Further, it is
open for discussion to what extent our findings are generalizable to other MRI modalities, such as
functional MRI and parcellation-based brain analysis, as well as to predictors of other domains. We
believe that generalizability to other voxel-based imaging modalities and other predictors is given, as
the general pattern of results should not be specific to VBM effects of BMI. Parcellation-based brain
analysis approaches could also profit from cross-validation. However, cross-validation could possibly
be particularly beneficial in settings that are at higher risk for overfitting statistical models. Such risk
is likely to be higher in more complex models, and in settings with higher analytical flexibility and a
higher number of statistical tests (the latter being higher in voxel-based as compared to parcellation-
based analysis). Interestingly, cross-validation does not seem to ultimately protect from an inflation
of effect size in all settings. It has been shown that in complex multivariate modelling of voxel-based
associations with psychopathology, even cross-validation-based performance measures are inflated
in underpowered studies (Flint et al., 2021). In the same vein, we demonstrated that even cross-
validation-derived effect sizes can be inflated in small samples although the probability of an

overestimation of effects is lower as compared to non-cross-validated estimates (as outlined above).

In summary the utilization of cross-validation can contribute two major benefits: 1) identify if a study
is underpowered and corresponding effect size estimates are likely to be highly inflated and 2)
corroborate the accuracy of an effect size estimate of a sufficiently powered study (also for
underlying null-effects). Thus, we propose that cross-validation procedures should be applied to
foster replicability of neuroimaging research and facilitate accurate estimation of effect sizes.
Further, we provide concrete steps for an application of cross-validation to mass-univariate voxel-

based analysis, as well as corresponding open-source Python code.
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