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Abstract 

Introduction: Statistical effect sizes are systematically overestimated in small samples, leading to 

poor generalizability and replicability of findings in all areas of research. Due to the large number of 

variables, this is particularly problematic in neuroimaging research. While cross-validation is 

frequently used in multivariate machine learning approaches to assess model generalizability and 

replicability, the benefits for mass-univariate brain analysis are yet unclear. We investigated the 

impact of cross-validation on effect size estimation in univariate voxel-based brain-wide associations, 

using body mass index (BMI) as an exemplary predictor.  

Methods: A total of n=3401 adults were pooled from three independent cohorts. Brain-wide 

associations between BMI and gray matter structure were tested using a standard linear mass-
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univariate voxel-based approach. First, a traditional non-cross-validated analysis was conducted to 

identify brain-wide effect sizes in the total sample (as an estimate of a realistic reference effect size). 

The impact of sample size (bootstrapped samples ranging from n=25 to n=3401) and cross-validation 

on effect size estimates was investigated across selected voxels with differing underlying effect sizes 

(including the brain-wide lowest effect size). Linear effects were estimated within training sets and 

then applied to unseen test set data, using 5-fold cross-validation. Resulting effect sizes (explained 

variance) were investigated.  

Results: Analysis in the total sample (n=3401) without cross-validation yielded mainly negative 

correlations between BMI and gray matter density with a maximum effect size of R²p=.036 (peak 

voxel in the cerebellum). Effects were overestimated exponentially with decreasing sample size, with 

effect sizes up to R²p=.535 in samples of n=25 for the voxel with the brain-wide largest effect and up 

to R²p=.429 for the voxel with the brain-wide smallest effect. When applying cross-validation, linear 

effects estimated in small samples did not generalize to an independent test set. For the largest 

brain-wide effect a minimum sample size of n=100 was required to start generalizing (explained 

variance >0 in unseen data), while n=400 were needed for smaller effects of R2
p=.005 to generalize. 

For a voxel with an underlying null effect, linear effects found in non-cross-validated samples did not 

generalize to test sets even with the maximum sample size of n=3401. Effect size estimates obtained 

with and without cross-validation approached convergence in large samples. 

Discussion: Cross-validation is a useful method to counteract the overestimation of effect size 

particularly in small samples and to assess the generalizability of effects. Train and test set effect 

sizes converge in large samples which likely reflects a good generalizability for models in such 

samples. While linear effects start generalizing to unseen data in samples of n>100 for large effect 

sizes, the generalization of smaller effects requires larger samples (n>400). Cross-validation should 

be applied in voxel-based mass-univariate analysis to foster accurate effect size estimation and 

improve replicability of neuroimaging findings. We provide open-source python code for this purpose 

(https://osf.io/cy7fp/?view_only=a10fd0ee7b914f50820b5265f65f0cdb).  
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Introduction 

Neuroimaging methods such as magnetic resonance imaging (MRI) have been used for several 

decades now to gain insights into the neurobiological underpinnings of psychological phenotypes. A 

plethora of scientific publications describes imaging-derived biomarkers of mental health disorders 

and perpetuates the hope to hope of utilizing such methods to aid clinical decision-making (Nour et 

al., 2022). However, recently the validity of findings involving relationships between neuroimaging 

and psychological phenotypes have been questioned due to accumulating reports of low replicability 

(Boekel et al., 2015; Genon et al., 2022; Marek et al., 2022). While such a replication crisis is not 

specific to neuroimaging research (e.g., for the field of psychology see Open Science Collaboration, 

2015), its contributing factors may be particularly potent in this research domain due to high analytic 

flexibility in combination with a large number of statistical tests, which is likely to amplify publication 

bias (Botvinik-Nezer et al., 2020; Ioannidis, 2005; Jennings & Van Horn, 2012). Relatedly, replicability 

is undermined by small samples (Turner et al., 2018) which lead to unreliable and overestimated 

effect sizes (Button et al., 2013; Lane & Dunlap, 1978; Maxwell et al., 2008; Schönbrodt & Perugini, 

2013). As studies particularly in neuroimaging research frequently use small samples (Elliott et al., 

2020; Szucs & Ioannidis, 2020), this likely further contributes to low replicability. Recently, Marek et 

al. (2022) demonstrated that even without publication bias, associations between psychological and 

brain phenotypes are not replicable unless thousands of participants are included in the analysis. This 

seminal study has led to a vibrant discussion regarding replicability, sample size and effect size in the 

neuroimaging domain (Bandettini et al., 2022; Genon et al., 2022; Nour et al., 2022; Rosenberg & 

Finn, 2022; Spisak et al., 2023; Tervo-Clemmens et al., 2023). Notably, the demonstrated 

overestimation of effect sizes in small samples also occurs in statistically significant effects and, 

paradoxically, using more stringent significance thresholds even aggravates the problem (Lane & 

Dunlap, 1978; Marek et al., 2022).  

In summary, the outlined evidence emphasizes an urgent need for solutions to increase the 

replicability of psychiatric neuroimaging findings. One possible solution that has been suggested 
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repeatedly is to validate brain effects in independent data via cross-validation (Klapwijk et al., 2021; 

Kriegeskorte et al., 2010; Rosenberg & Finn, 2022). While cross-validation methods are standardly 

used in multivariate brain analyses to identify and counteract overfitting and assure generalizability 

of models (e.g., Redlich et al., 2014, 2016; Repple et al., 2023; Schaffer, 1993), they are rarely ever 

used on univariate brain effects, likely also because common neuroimaging analysis software 

packages do not offer options to conduct cross-validation. However, specifically in the domain of 

neuroimaging research, cross-validation methods may be useful even for univariate models as the 

outlined overestimation of effects can be seen as an overfitting of models in the face of high analytic 

flexibility in combination with a high number of tests in this domain. Thus, we investigate the utility 

of cross-validation for accurate estimation of effect size in univariate voxel-based brain analysis. Body 

mass index (BMI) is used as an exemplary predictor due to previous reports of good replicability of 

BMI with brain structure, as well as its pivotal relevance for various mental disorders (Bond et al., 

2014; McWhinney et al., 2022; Opel et al., 2015, 2021). Due to reports of relatively large effect size 

estimates of the association between BMI and brain structure even in large samples (maximum 

effect size corresponding to approximately 2.7% explained variance; Opel et al., 2021), this predictor 

is suitable to investigate the impact of cross-validation for a broader range of effect size, as 

compared to other predictors where effect size estimates across brain modalities have been shown 

to be considerably smaller (Marek et al., 2022; Winter et al., 2022). In order to evaluate the 

relevance of cross-validation for generalizability of effects sizes as a function of the sample size, we 

conducted our analyses across different sample sizes. 

In light of the current lack of brain analysis software implementations regarding this matter, we 

provide open-source Python code to enable other researchers to apply cross-validation for voxel-

based brain analysis. 
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Method 

Participants 

A total of n=3401 participants were included from three independent German cohorts: the Marburg-

Münster Affective Disorders Cohort Study (MACS; n=1655), the Münster Neuroimaging Cohort (MNC; 

n=722) and the BiDirect cohort (n=1024). All three cohorts include individuals with major depressive 

disorder (MDD) and healthy controls (HC) free from any lifetime mental disorder diagnoses. General 

study methods, exclusion criteria and cohort characteristics were comprehensively described 

elsewhere (MACS: Kircher et al., 2019 and Vogelbacher et al., 2018; MNC: Dannlowski et al., 2016 

and Opel et al., 2019; BiDirect: Teismann et al., 2014). See supplements for an additional description 

of data exclusion steps and sample characteristics specific to the current analysis.  

 

Measures and procedure 

BMI was calculated based on self-reported height and weight of participants. T1-weighted high-

resolution anatomical brain images were acquired using 3T MRI scanner in all three studies. For the 

MACS sample two different MRI scanners were used at the recruitment sites in Marburg (Tim Trio, 

Siemens, Erlangen, Germany; combined with a 12-channel head matrix Rx-coil) and Münster (Prisma, 

Siemens, Erlangen, Germany; combined with a 20-channel head matrix Rx-coil). Data from the MNC 

and BiDirect samples were acquired using the same Gyroscan Intera scanner (later with Achieva 

update; Philips Medical Systems, Best, The Netherlands). Image preprocessing was conducted using 

the CAT12-toolbox (Gaser et al., 2022; https://neuro-jena.github.io/cat/) using default parameters 

for all samples. Briefly, images were bias-corrected, tissue classified, and normalized to MNI-space 

using linear (12-parameter affine) and non-linear transformations, within a unified model including 

high-dimensional geodesic shooting normalization (Ashburner & Friston, 2011). The modulated gray 

matter images were smoothed with a Gaussian kernel of 8 mm FWHM. Absolute threshold masking 

with a threshold value of 0.2 was used for all second level analyses as recommended for VBM 
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analyses (https://neuro-jena.github.io/cat12-help/). Image quality was assessed by visual inspection 

as well as by using the check for homogeneity function implemented in the CAT12 toolbox.  

 

Statistical analysis 

We investigated the association between BMI and gray matter brain structure using an established 

mass-univariate voxel-based morphometry (VBM) approach. To that end, BMI was used as a 

predictor in a general linear model (GLM) to predict voxel-wise gray matter density. The following 

nuisance parameters were included in the model: age, sex, total intracranial volume (TIV) and four 

dummy-coded scanner variables to control for scanner hardware differences. Two-sided whole brain 

effects of BMI were tested and partial R2 (R2
p) was used as a measure of effect size. To assess the 

impact of sample size and cross-validation on the estimation of voxel-based effect sizes the following 

steps were undertaken (for a schematic overview see Figure 1):  

1. Classical non-cross-validated analysis was conducted in the maximum available sample 

without bootstrapping (n=3401). The resulting voxel-wise explained variance of BMI was 

used as an estimate for the realistic underlying effect size (in the following referred to as the 

reference effect size). Subsequently, voxels were selected covering a range of different 

representative effect sizes, including the voxel with the largest brain-wide reference effect 

size. In addition, the voxel with the smallest brain-wide reference effect size was selected to 

investigate effect size estimation based on an underlying null effect. An uncorrected 

significance threshold of p<.001 and extent threshold of k>200 was used for visualization 

purposes of brain-wide associations.  

2. Based on the findings of Marek et al. (2022) we subsequently investigated the influence of 

sample size on the non-cross-validated effect sizes. Sample size was manipulated using 

samples of 18 different sizes: n=25, 35, 50, 70, 100, 150, 200, 300, 400, 600, 800, 1000, 1300, 

1600, 2000, 2400, 2900, 3401. For each preselected voxel a bootstrapped resampling 
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distribution of effect size was obtained containing k=500 bootstrap runs per sample size. For 

each sample size the mean effect size was calculated across all bootstrap runs, as well as a 

95% confidence interval (CI).  

3. Finally, the impact of cross-validation on effect size estimates in the selected voxels was 

investigated across samples created with the resampling procedure described above. To this 

end, 5-fold cross-validation was applied by estimating linear effects using the GLM described 

above within respective train sets and then applying the resulting linear coefficients to the 

respective test sets. To this end the resulting beta coefficients yielded by model estimation 

within the train set was applied to the design matrix (individual predictor values) of the test 

set (i.e., data new to the trained linear model). The predictive value of the BMI predictor was 

evaluated by calculating the explained variance (based on residuals) with and without BMI as 

a predictor in the model. Then the mean R2
p for BMI was calculated across the five test sets. 

This was used to quantify the extent to which the linear voxel-wise coefficients for BMI 

obtained from the train sets explain variance within unknown test data (i.e., generalization of 

effects to unseen data). Note that while R2
p usually has a range from 0-1, it can become 

negative (and even exceed -1) in this case due to the application of linear coefficients to 

unseen data which can result in an effect size lower than prediction by the mean within the 

same sample (normally the baseline reference corresponding to an effect size R2
p=0). A point 

of initial generalizability was defined as the minimum sample size necessary to achieve 

positive effect sizes in the test sets (i.e., the lower bound of the 95% CI above R2
p=0). This 

point of initial generalizability can be interpreted as the minimum sample size needed for 

linear effects of a given effect size to generalize to unknown samples in a 5-fold cross-

validation framework. The 5-fold cross-validation was chosen over a higher number of folds 

to be able to simulate very small (but commonly used) samples sizes. In order investigate the 

impact of this cross-validation on effect size estimation across different sample sizes we 

applied the same bootstrap approach described above also to cross-validation-based effect 

size estimates, resulting in resampling distributions of average test set effect sizes for each 
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sample size (95% CI were based on these bootstrap runs). To allow this combination of cross-

validation and bootstrapping, we first conducted the 5-fold split of the total sample and then 

performed the bootstrapped resampling for each sample size by drawing with replacement 

from each split separately – thus only allowing replacement within one split but not across 

splits. This is necessary to avoid data leakage between train and test sets.  

All analyses were conducted in Python (version 3.9.12) using the nilearn package (version 0.9.1) for 

voxel-based GLMs and k-Fold from the sklearn package (version 1.1.1) for cross-validation. The 

complete analysis code is provided online 

(https://osf.io/cy7fp/?view_only=a10fd0ee7b914f50820b5265f65f0cdb).  
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Figure 1  

Analysis steps to obtain voxel-wise effect size estimates across sample sizes with and without cross-

validation 

 

 

Results 

Associations between BMI and gray matter – identification of reference effect sizes in n=3401 

The association between BMI and gray matter density in a non-cross-validated standard analysis is 

shown in Figure 2a and supplementary Figure S1. Liberal thresholding at uncorrected p<.001, k>200 

Note. CV, cross-validation; BMI, Body Mass Index; GLM, general linear model.  
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resulted in widespread clusters across the brain. Effect size in significant voxels ranged up to 

R2
p=.036. Peak voxel coordinates of significant clusters covering a wide range of effect sizes, as well 

as the voxel with the brain-wide smallest effect size were selected for further analysis (see Figure 2a). 

The selected voxels from largest to smallest effects were located in 1) the cerebellum (R2
p=.036, 

p<.0001, x-24, y-72, z-60), 2) the posterior medial orbitofrontal cortex (mOFC; R2
p=.024, p<.0001, x-4, 

y25, z-30), 3) the thalamus (R2
p=.016, p<.0001, x6, y-12, z10), 4) the anterior mOFC (R2

p=.005, 

p<.0001, x4, y69, z-6) and 5) the calcarine (R2
p<.0001, p=.999, x-3, y-80, z12).  

 

The impact of sample size on non-cross-validated effect size estimation 

Effect size was systematically overestimated in small samples in the non-cross-validated analysis. 

Averaged across all bootstrapped samples with size n=25, effect size was inflated approximately .06 

R2
p units for all five voxels, resulting in a 2.5-fold inflation for the voxel with the largest reference 

effect size (R2
p=.091 instead of R2

p=.036) and 11.9-fold inflation for the voxel with a reference effect 

size of R2
p=.005. Maximum effect size estimates went as high as R2

p=.734 in samples of n=25. Even 

the voxel with the brain-wide lowest reference effect size (null-effect) reached a maximum effect size 

of up to R2
p=.429 (average R2

p=.056) in these samples with n=25. Average estimates of effect size (as 

well as maximum estimates) decreased exponentially with increasing sample size.  

Inspection of partial correlation coefficients showed that a broad range of associations was found 

across bootstrapped samples, particularly with small sample sizes. For the voxel with the largest 

brain-wide reference effect size, associations ranging from a negative correlation r=-.73 to a positive 

correlation r=.60 were found in samples with n=25 (see supplementary Figure S2).  

Detailed summary statistics for effect size estimates across sample sizes and voxels are presented in 

supplementary Tables S2-6. While the average effect size estimate across bootstrapped samples may 

be informative, it should be noted that the distribution of estimates was highly skewed with some 
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extreme outliers. This distribution across single runs from the resampling procedure is further 

visualized in supplementary Figure S3.   

 

The impact of cross-validation on effect size estimation 

On average test set effect size estimates were descriptively lower compared to non-cross-validated 

effect sizes across all sample sizes and all voxels (this was true for 93.83% of bootstrapped samples 

across all sample sizes). This disparity was particularly strong in small samples where non-cross-

validated effect sizes were largest while test set effect sizes were mostly negative (indicating no 

generalization of linear effects to unknown samples). 

A point of initial generalizability was reached after n=100 for the largest reference effect size, while 

larger samples were needed to reach this point for voxels with smaller effect size: n=100 for 

R2
p=.024, n=150 for R2

p=.016, and n=400 for R2
p=.005. For the voxel with the minimum brain-wide 

effect size this point of initial generalizability was never reached, as expectable for an underlying 

null-effect. In fact, for this voxel even the mean and upper bound of the 95% CI were always below 

an effect size of zero at any sample size, when applying cross-validation, indicating effective 

protection against false-positives (see supplementary Tables S2-6).  

Estimates derived from non-cross-validated analysis and from test sets using cross-validation 

approached convergence in larger samples. In samples with n=3401, non- cross-validated and test set 

effect sizes differed only marginally (average difference across voxels: R2
p=.001). However, full 

convergence was never reached between non-cross-validated and test set effect size estimates, 

meaning that  confidence intervals did not overlap, even at largest sample sizes. Detailed descriptive 

statistics for effect size estimates across sample sizes, voxels and cross-validation are given in 

supplementary Tables S2-6.  
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Note. a) Shows non-cross-validated two-sided effect of BMI on gray matter density at a liberal 

uncorrected threshold of p<.001 in the maximum sample of n=3401. The location of selected peak voxel 

coordinates in the cerebellum (largest brain-wide effect), posterior medial prefrontal cortex (mOFC), 

thalamus, anterior mOFC and calcarine (smallest brain-wide effect) are shown. Color bars represent R2
p 

values. b) Shows effect size estimates for the five different voxels across sample sizes (resampling with 

k=500 per sample size). Non-cross-validated (non-CV) effect sizes are presented with solid lines and test 

set effect sizes with dotted lines. Error bands represent the 95% confidence interval. Respective effect 

sizes of selected voxels in non-cross-validated analysis of full sample are presented in the legend 

(ranging from η²p=.036 to η²p<.0001). 

Figure 2  

The association between Body Mass Index and gray matter density - selected voxel locations and their 

effect size estimates across sample sizes, with and without and cross-validation 
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Discussion 

Using BMI as an exemplary predictor variable, we investigated the utility of cross-validation for the 

accurate estimation of effect sizes of univariate brain-wide associations. Replicating previous findings 

(Marek et al., 2022), we find that effect size estimates are highly overestimated and unreliable in 

small samples if no cross-validation is applied. Furthermore, we demonstrate that cross-validation 

can be used to reveal poor generalizability to new data of these overestimated effects in small 

samples (indicated by negative effect size estimates). In larger samples, cross-validation-derived test 

set effect sizes start becoming positive, suggesting a point of initial generalizability that can be 

interpreted as the minimum sample size necessary to achieve generalizable linear effect estimates. 

Importantly, sample sizes of several hundreds of participants may be sufficient to accurately estimate 

brain-wide associations, given sufficiently large underlying effect sizes. The cross-validation approach 

could facilitate a differentiation between artificially inflated large effects and robust ‘true’ large 

effects. The standardly implementation of cross-validation to assess the generalizability of brain-wide 

effects should be considered in addition to conventional reporting of significance and traditional 

effect size estimates. The utilization of cross-validation to facilitate generalizability of neuroimaging 

findings has been repeatedly suggested (Klapwijk et al., 2021; Kriegeskorte et al., 2010; Rosenberg & 

Finn, 2022). However, to the best of our knowledge, we are the first to systematically investigate the 

utility of cross-validation for effect size estimation in brain-wide univariate analysis.  

The presented overestimation of effect sizes in small samples falls in line with previous findings in the 

literature (Button et al., 2013; Lane & Dunlap, 1978; Maxwell et al., 2008; Schönbrodt & Perugini, 

2013). Marek et al. (2022) demonstrated that even the largest brain-wide associations of compound 

cognitive and psychopathological variables with brain structure and function corresponded to less 

than 0.5% explained variance, which was inflated to up to approximately 40% explained variance in 

small samples. The authors conclude that thousands of individuals are needed for robust and 

replicable estimates in this research domain. While these findings are striking and important, the 

authors’ conclusion has been questioned by various scholars. The main critique is that true effect 
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sizes may be considerably higher under ideal conditions leading to smaller sample sizes necessary for 

accurate estimation of effects (DeYoung et al., 2022). In a study of over 1800 adults, Winter et al. 

(2022) investigated univariate brain-wide, cross-modal brain differences between HC and lifetime 

MDD individuals and conclude that largest effect sizes go up to 1.7% explained variance. However, 

they further report that comparisons of HC with chronic or acute MDD individuals yield higher effects 

sizes of up to 2.7% explained variance (in n>900). Further, studies suggest that effect sizes are larger 

in other diagnostic groups such as psychotic disorders (Hettwer et al., 2022). Similarly, Repple and 

Gruber et al. (2022) present transdiagnostic structural connectome alterations, with largest effect 

sizes found in patients with schizophrenia, possibly rendering smaller samples sufficient to detect 

effects.  

Our findings expand the results by Marek et al. (2022) to a voxel-based analysis framework and to a 

broader range of effect sizes. Importantly, we provide evidence that for larger effect sizes – which 

can occur under specific conditions as outlined above – hundreds of participants could suffice to 

accurately estimate linear brain-wide effects. When smaller effect sizes are assumed, our findings are 

highly comparable to the findings by Marek et al. as we similarly find that a ‘true’ effect size of 

approximately ~0.5% explained variance requires very large samples to obtain robust estimates of 

effects, although cross-validation may enable the robust detection of accurate estimates already in 

somewhat smaller samples (n>400). The ongoing debate surrounding effect size and sample size in 

the neuroimaging domain stresses the importance of consistent reporting of effect sizes in 

publications, as well as interpreting effect sizes in the context of sample size.  

While the above considerations could guide sample size planning of neuroimaging studies, a problem 

arises when the ‘true’ effect size is unknown (and effect size inflations in small samples make it 

particularly difficult to estimate this solely from existing literature). How can researchers know if an 

obtained effect size is accurate or inflated? Using a cross-validation framework, we demonstrate that 

the application of identified linear effects to unseen data can be utilized to identify inflated, non-

generalizable effect sizes. Notably, this procedure can be applied in smaller studies to verify if a 
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putative large effect size is robust and may warrant the use of a smaller sample. Importantly, our 

findings are in line with low test set performance merely reflecting an underpowered sample and not 

necessarily meaning that an effect does not exist (Helwegen et al., 2023). In other words, even 

substantial effects of 3.6% explained variance can barely be differentiated from null effects in small 

samples based on cross-validation-derived effect sizes alone. However, the relative congruence 

between non-cross-validated and cross-validation-derived effect sizes can provide a strong argument 

for robust and replicable linear associations with realistic effect size estimates. Thus, calculating non-

cross-validated and cross-validation-derived effect sizes combined with a thorough inspection of the 

similarity between the resulting estimates could be informative. Notably, while cross-validation 

decreases the probability of effect size inflation, it does not eliminate it. Even unrealistically high 

effect size estimates can in rare cases generalize to unseen test set data, particularly in small 

samples, as shown by some extreme outliers in our results.   

While it is difficult to deduct a clear recommendation for sample sizes based on our cross-validation 

analyses, we propose that a point of initial generalizability can be defined as the sample size where 

linear effects start explaining variance in unseen data. This aspect could expand the traditional power 

analysis framework by the question of generalizability in addition to significance. In other words, 

while traditional power analysis answers the question of how large a sample needs to be for a given 

effect to become significant, our results open up the possibility for defining sample sizes necessary 

for linear effects to generalize to unseen data.  

In large samples effect sizes became highly stable and barely differed whether cross-validation was 

applied or not. This finding implicates that if several thousands of individuals are available (e.g., due 

to consortia data), within sample k-fold cross-validation may barely alter the result, regardless of the 

underlying true effect size.  

The current study entails several important limitations. Firstly, it is unclear whether our findings can 

be generalized to other cross-validation methods. While 5-fold cross-validation was chosen for the 

current analysis so that small samples of n=25 could be included, other splits (e.g., 10-fold) could in 
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principle also be suitable to be applied in voxel-based univariate brain analysis. While a systematic 

comparison of different cross-validation methods for the application to univariate voxel-based 

analysis is beyond the scope of this work, this may be a fruitful task for future studies. Further, it is 

open for discussion to what extent our findings are generalizable to other MRI modalities, such as 

functional MRI and parcellation-based brain analysis, as well as to predictors of other domains. We 

believe that generalizability to other voxel-based imaging modalities and other predictors is given, as 

the general pattern of results should not be specific to VBM effects of BMI. Parcellation-based brain 

analysis approaches could also profit from cross-validation. However, cross-validation could possibly 

be particularly beneficial in settings that are at higher risk for overfitting statistical models. Such risk 

is likely to be higher in more complex models, and in settings with higher analytical flexibility and a 

higher number of statistical tests (the latter being higher in voxel-based as compared to parcellation-

based analysis). Interestingly, cross-validation does not seem to ultimately protect from an inflation 

of effect size in all settings. It has been shown that in complex multivariate modelling of voxel-based 

associations with psychopathology, even cross-validation-based performance measures are inflated 

in underpowered studies (Flint et al., 2021). In the same vein, we demonstrated that even cross-

validation-derived effect sizes can be inflated in small samples although the probability of an 

overestimation of effects is lower as compared to non-cross-validated estimates (as outlined above).   

In summary the utilization of cross-validation can contribute two major benefits: 1) identify if a study 

is underpowered and corresponding effect size estimates are likely to be highly inflated and 2) 

corroborate the accuracy of an effect size estimate of a sufficiently powered study (also for 

underlying null-effects). Thus, we propose that cross-validation procedures should be applied to 

foster replicability of neuroimaging research and facilitate accurate estimation of effect sizes. 

Further, we provide concrete steps for an application of cross-validation to mass-univariate voxel-

based analysis, as well as corresponding open-source Python code.  
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