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Abstract

Alternative splicing impacts most multi-exonic human genes. Inaccuracies during this process may

have an important role in ageing and disease. Here, we investigated mis-splicing using

RNA-sequencing data from ~14K control samples and 42 human body sites, focusing on split reads

partially mapping to known transcripts in annotation. We show that mis-splicing occurs at different

rates across introns and tissues and that these splicing inaccuracies are primarily affected by the

abundance of core components of the spliceosome assembly and its regulators. Using publicly

available data on short-hairpin RNA-knockdowns of numerous spliceosomal components and related

regulators, we found support for the importance of RNA-binding proteins in mis-splicing. We also

demonstrated that age is positively correlated with mis-splicing, and it affects genes implicated in

neurodegenerative diseases. This in-depth characterisation of mis-splicing can have important

implications for our understanding of the role of splicing inaccuracies in human disease and the

interpretation of long-read RNA-sequencing data.
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Introduction

RNA splicing is a crucial post-transcriptional process in which introns are excised from messenger

RNA precursors (pre-mRNA), and exons are joined together to form mature mRNAs. It was previously

believed that splicing of exons occurred in the order they appear in a gene. However, ~95% of human

genes undergo alternative splicing (AS) whereby certain exons are differentially skipped resulting in

different combinations of mature mRNA structures1–3. AS occurs within the nuclei of eukaryotic cells

through base pairing between small nuclear ribonucleoproteins (snRNP) that form the spliceosome

and the sequences signalling the intron boundaries, termed splice sites4,5. Splice site (ss) choice is

largely regulated by splicing regulatory elements found throughout the pre-mRNA sequence6–9.

Different RNA-binding proteins (RBPs) are then responsible for interacting with these regulatory

signals to enhance or silence the recognition of introns and so activate or repress intron splicing

accordingly within specific cells and tissues.

Splicing is a complex process and consequently accurate excision of an intron relies on overcoming

multiple challenges. Firstly, the function of the spliceosome depends on the recognition and

processing of a minimum of approximately 25 base pairs (bp) to correctly excise non-coding intronic

sequences. This sets a relatively large mutational target in which germline and somatic variants could

appear, compromising the correct identification of exon-intron boundaries10–13. Secondly, since some

intronic sequences can be long (reaching lengths above 1 Mb14 in humans), cryptic splicing sequences

will commonly exist within15, increasing the risk of decoy splice sites for spliceosome selection. Lastly,

as observable in all biological systems, this process is subject to some stochastic variation16–20.

Accurate splicing is essential for human health21–27. While mechanisms such as the

nonsense-mediated decay (NMD) can mitigate the impact of spurious mRNA transcripts28–33,

differential use of splice sites escaping this mechanisms has demonstrated widespread dysregulation

in a range of diseases34, including Alzheimer’s disease35,36, frontotemporal dementia37,38 and multiple

cancers39–42. It has recently been suggested that ageing may exacerbate splicing errors, with intron

retention events and spurious splicing becoming more prevalent with age and disease incidence43.

However, to the best of our knowledge, no study thus far has made a systematic attempt to evaluate

the precision of splicing across introns, tissues, and age, while also modelling the various factors that

could potentially regulate these processes. To address these questions, we used RNA-sequencing

data provided by both the Genotype-Tissue Expression (GTEx) v844 and the ENCODE consortium, and

studied the accuracy in splicing of >300K annotated introns. We characterised mis-splicing and found

robust patterns in its distribution reflecting the molecular architecture of spliceosome assembly and

action. We identified local sequence conservation at splice sites as the most important and variable

predictor of mis-splicing across tissues, which led us to investigate the role of RBP expression in

tuning noise and changing its distribution. Given that RBP expression levels are already known to

change across an individual’s lifespan, we studied the effect of age on mis-splicing. We demonstrated

that age is positively correlated with mis-splicing and, in the human cortex, age-related increases in

mis-splicing disproportionately affect genes implicated in neurodegenerative diseases. The analyses

performed are summarised in Fig. 1. Altogether, these results show that mis-splicing is detectable
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across human tissues and modelling its characteristics provides novel insights into age-related

human diseases.
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Results

Novel donor and acceptor junctions are commonly detected and exceed

the number of unique annotated introns by an average of 11-fold

Splicing events can be accurately detected from short-read RNA-sequencing data using split reads.

Split reads are reads that map to the genome with a gapped alignment, indicating the excision of an

intron. We focused on three classes of split reads: i) annotated exon-exon junction reads, which

precisely match an intron within annotation (Ensembl-v105), ii) novel donor junctions, where only

the implied acceptor site matches an intron-exon boundary within annotation, and iii) novel acceptor

junctions, where only the implied donor site matches an exon-intron boundary within the annotation

(Fig. 1). To study splicing through these three junction classes, we leveraged RNA-sequencing data

processed by the relational database, IntroVerse45, and originating from the Genotype-Tissue

Expression Consortium44 (GTEx) v8 data set. Using a subset of the data provided by IntroVerse

relating to 324,956 annotated introns (Extended Data Fig. 1a,b), we studied all their linked novel

donor and acceptor junctions. We found that 268,988 (82.8%) annotated introns had at least one

associated novel junction, with only 55,968 annotated introns appearing to be accurately spliced

across all samples and 42 tissues studied. Collectively, we detected 3,865,268 unique novel donor

and acceptor junctions, equating to 14 novel junctions per annotated intron. The detection of unique

novel donor and acceptor junctions was a common finding across all tissues, with the highest

numbers found in “Cells - EBV-transformed lymphocytes” tissue and the lowest in “Whole Blood”.

Over 98% of novel donor and acceptor junctions are likely to be

generated through splicing errors

Unique novel junctions may represent novel transcripts, but given the high numbers detected, novel

junctions could also be the product of splicing errors. To explore this, we leveraged the existence of

multiple reference Ensembl transcriptome builds, namely v97 (May, 2019) and v105 (June, 2021),

assuming an increased accuracy over their 2-year gap. For each tissue, we re-processed and

re-annotated each split read provided by the GTEx v8 to the v97 and v105 annotation builds

(Methods). We found that across all tissues, on average only 0.8% [range:0.55-1.23%] of junctions

defined as novel donor or acceptor junctions using v97 were reclassified as annotated introns in

v105, and thus part of a transcript structure (Fig. 2a). Interestingly, we noted that the highest

re-classification rates were observed amongst human brain tissues, on average 0.8 0.12%. We±
predicted that the re-classification of novel junction reads should decrease with successive

annotations and so we extended our analysis to frontal cortex brain tissue to include Ensembl

versions published from 2014 to 2021. The reclassification rate of novel junctions in frontal cortex

decreased incrementally from 2.36% to 0.33% (Extended Data Fig. 2), consistent with previous

studies reporting that the number of novel junctions has been plateauing since 201346. These

findings suggest that the vast majority of novel junctions are generated through mis-splicing events,

with on average <0.8% being explained by junctions originating from stable transcripts.
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Mis-splicing is more common at acceptor than donor splice sites

The recognition of the donor splice site (5’ss) and acceptor splice site (3’ss) of an intron is performed

by separate components of the splicing machinery34,47,48. We aimed to test whether mis-splicing rates

at these splice sites also differed. To assess this, we compared the numbers of unique novel donor

and acceptor junctions detected in each tissue to the numbers of unique annotated introns. We

found that novel donor and acceptor junctions consistently accounted for the majority of unique

junctions detected (70.6% [range:58.2-79.1%]), and that the novel acceptor category exceeded the

novel donor across the samples of all tissues (Fig. 2b). While we detected an average of 241,044

unique annotated introns across all tissues, unique novel donor and acceptor junctions averaged

249,366 and 360,400, respectively.

We reasoned that while mis-splicing might generate high numbers of unique novel junctions in a

sample, each of these junctions would be expected to have a low number of associated reads.

Consistent with this prediction, we found that novel donor and acceptor junctions together

accounted for 0.32-1.08% of all junction reads whereas annotated introns accounted for

98.92-99.68% of the junction reads across all tissues evaluated (Fig. 2c). Focusing on frontal cortex

brain tissue, we found that this equated to a median read count of 2,694 reads per annotated intron

with novel donor and acceptor junctions having a median read count of only 2 reads in both cases.

These findings were replicated across all human tissues (Supplementary Table 1) and were

consistent with novel junctions generated through splicing errors.

High sequence similarity between novel splice sites and their annotated

pairs explains mis-splicing

Sequences delineating intron boundaries are diverse and cryptic splice sites have the potential to

induce mis-splicing events when present in close proximity to them49. We applied the MaxEntScan50

(MES) algorithm to assess the similarity of all annotated and novel 5’ss and 3’ss to consensus

representative sequences in humans. We found significant overlaps between the distribution of MES

scores assigned to annotated versus novel splice sites, suggesting that the splicing machinery would

be expected to recognise the latter (Extended Data Fig. 3).

Given that splice selection is likely to be a competitive process, we leveraged our paired data

structure to compare MES scores between annotated and novel junction pairs (termed delta MES

score). We found that the majority of novel 5’ss and 3’ss were weaker than the corresponding

annotated site, with 82.6% of novel 5’ss and 85.8% of novel 3’ss having positive delta MES scores

(Fig. 3a,b). Moreover, novel 5’ss and 3’ss had a median delta value of 3.6 and 5.2, respectively, in

keeping with the higher number of novel acceptor as compared to novel donor junctions detected in

all tissues, and similar MES scores to their annotated pairs. Overall, these results suggest that the

strength of local splicing signals is not sufficient to guarantee accurate splicing13,51.

Novel junctions associated with protein-coding transcripts are predicted

to be deleterious in 63.5% of cases

High sequence similarity between novel and annotated splice sites might be expected if these sites

were near each other. Thus, we analysed the relationship between annotated and novel splice sites
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in close proximity, focusing on the distribution of the latter within 30 bp upstream and downstream

of annotated sites in frontal cortex brain tissue (Methods). We noted that: i) both novel 5’ss and 3’ss

were located near to paired annotated sites; ii) the distribution of mis-splicing was different between

annotated 5’ss (mode=-4bp/3bp) and 3’ss (mode=-21bp/4bp); and iii) mis-splicing was highly

asymmetric at annotated acceptor sites, with a very low mis-splicing density upstream this

intron-exon boundary, suggesting that this mis-splicing pattern was driven by the AG exclusion zone

(AGEZ). These results were replicated across all tissues (Supplementary Table 2), consistent with

novel junctions originating from splicing errors.

We also observed regular splice site peaks occurring at 3 bp intervals, most apparent in novel

acceptor events downstream of the paired annotated site, namely within annotated exons. Using

data from frontal cortex brain tissue, we noticed that these peaks were only observed in

protein-coding transcripts (n=35,654) (Fig. 3c,d), suggesting that they could be generated by the

preferential degradation of deleterious transcripts through NMD.

To further explore this possibility, we studied the divisibility by 3, equating to the size of a codon, of

the distances between each novel junction and their linked annotated 5’ss and 3’ss. Focusing on

splice sites exclusively used in protein-coding transcripts in frontal cortex (Methods), this analysis

demonstrated that 62.5% of all novel sites were located at distances not divisible by 3, implying that

these splicing events would result in a deleterious frameshifts for downstream translation events.

When focusing on each modulo3 value independently, we observed an overall preference to

maintain codon reading frame (mod3=0, 37.4%; mod3=1, 31.4%; mod3=2, 31.2%). Across all tissues,

63.55% of the novel junctions would likely disrupt the reading frame (Fig. 3e), supporting the view of

novel junctions originating from splicing errors.

Mis-splicing rates vary across introns and are likely to be underestimated

in bulk RNA-seq data

Next, we wondered if splicing fidelity varies across introns and genes across the genome. We used

the Mis-Splicing Ratio measures to assess the frequency of mis-splicing at both the 5’ss ( ) and𝑀𝑆𝑅
𝐷

3’ss ( ) of each annotated intron (Methods). Focusing on frontal cortex brain tissue, we𝑀𝑆𝑅
𝐴

observed that while splicing errors are detected infrequently, with the and values highly𝑀𝑆𝑅
𝐷

𝑀𝑆𝑅
𝐴

skewed towards low values, there was considerable variation across introns ( IQR=7.2e-04;𝑀𝑆𝑅
𝐷

IQR=1.9e-03). Furthermore, consistent with the overall higher detection of novel acceptor as𝑀𝑆𝑅
𝐴

compared to novel donor junctions, we observed a significant difference in the two and𝑀𝑆𝑅
𝐷

𝑀𝑆𝑅
𝐴

distributions (V=8e7, pval<2.2e-16) (Fig. 4a).

Given that NMD activity would be expected to reduce the detection of splicing errors amongst mRNA

transcripts, we compared mis-splicing of annotated introns in protein-coding versus non-coding

transcripts (Extended Data Fig. 4) (Methods). We found that mis-splicing is more frequent amongst

annotated introns from non-protein-coding transcripts at both the 5’ss (V=1.3e7,pval<2.2e-16) and

3’ss (V=1.5e7, pval<2.2e-16) (Fig. 4b,c), suggesting that the frequency of splicing errors is likely to be

under-estimated. These findings were validated across all tissues (Supplementary Table 3).
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Local sequence conservation is the most important predictor of

mis-splicing

Given the variability in mis-splicing across introns, we wanted to identify features that could

influence its generation. We therefore built two linear regression models to predict the rate of

mis-splicing as defined by and values, and used as predictors different features of each𝑀𝑆𝑅
𝐷

𝑀𝑆𝑅
𝐴

annotated intron and the gene in which it was located (Methods). This analysis yielded three main

findings. Firstly, we found that gene-level features had a small but significant effect on mis-splicing at

both splice sites. Increases in gene length, expression levels and associated transcript number

predicted a reduction in mis-splicing, suggesting that splicing inaccuracies within highly expressed

genes and high transcript diversity might be energetically costly for organisms20,52 and so selected

against (Fig. 4d). Secondly, this analysis provided support for splice site inter-communication34,53, with

sequence properties at the 3’ss impacting on the fidelity of 5’ss splicing and to a lesser extent vice

versa. Finally, we found that sequence conservation in genomic regions flanking the 5’ and 3’ss had

the largest effect on splicing accuracy, with higher conservation scores at both sites associated with

lower mis-splicing. Interestingly, the estimate values for sequence conservation at both splice sites

were much larger ( =[-4.8e-03,-6.5e-03], =[-5.1e-03,-4.6e-03]) than those associated with𝑀𝑆𝑅
𝐷

𝑀𝑆𝑅
𝐴

CDTS scores ( =[-6.5e-06,-6.3e-05], =[1.1e-04,3.5e-05]). Given that the latter is a measure𝑀𝑆𝑅
𝐷

𝑀𝑆𝑅
𝐴

of sequence constraint amongst humans, this would suggest that germline genetic variation across

individuals is not a major driver of mis-splicing.

Accuracy in splicing is affected by RNA-binding protein (RBP) expression

changes

To better understand the factors influencing mis-splicing across tissues, we expanded our analyses to

all tissues, focusing on a common set of annotated introns (n=151,729) (Methods). We found that

gene-level properties were significantly associated with mis-splicing in all tissues and that the effect

of sequence conservation on splicing inaccuracies varied at both splice sites (𝑀𝑆𝑅
𝐷

=[-7.5e-03,-3.2e-03] (Fig. 5a), =[-6.6e-03,-3.7e-03] (Fig. 5b)), despite the conservation scores𝑀𝑆𝑅
𝐴

being the same across tissues. We hypothesised that somatic mutation rates in tissues might affect

critical splicing sequences, causing changes in their recognition by RBPs and resulting in splicing

errors. However, we did not find any significant differences in mis-splicing across annotated introns

between "Skin - Sun Exposed" and "Skin - Not Sun Exposed" ( V=5.2e9, pval=3.9e-01, and𝑀𝑆𝑅
𝐷

𝑀𝑆𝑅
𝐴

V=5.9e9, pval=9.3e-01) (Methods, Extended Data Fig. 5).

Based on these findings, we considered if tissue-specific expression levels of RBPs involved in splicing

processes could explain the effect of sequence conservation on mis-splicing (Methods, Extended

Data Fig. 6, Supplementary Fig. 1,2). To explore this possibility, we analysed ENCODE data involving

knockdowns of 56 genes related to splicing regulation, spliceosome assembly, exon-junction complex

recognition54 and NMD. Our analysis revealed a significant increase in mis-splicing rates in samples

with gene knockdowns compared to untreated controls for 89.3% ( q<7.4e-50,n=50) and 91.1%𝑀𝑆𝑅
𝐷

( q<1.2e-03,n=51) of the 56 genes considered. Knockdowns of the splicing machinery𝑀𝑆𝑅
𝐴
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components tended to have a greater effect on 3’ss than 5’ss mis-splicing (mean effsize=0.09𝑀𝑆𝑅
𝐷

[0.02,0.37]; mean effsize=0.1 [0.01,0.62]), except for 6 genes (Supplementary Table 4, 5).𝑀𝑆𝑅
𝐴

Notably, AQR, EIF4A3, SF3A3, U2AF1, U2AF2, and MAGOH knockdowns resulted in the highest

increases in 5’ss and 3’ss mis-splicing (Fig. 5c).

Our analysis also revealed distinct patterns in mis-splicing distribution depending on the gene

targeted. For instance, knocking down U2AF2 expression led to a significant increase in mis-splicing

within 15-30 bp upstream of the annotated acceptor site. Delta MES values indicated weaker 3'ss

were being targeted for the novel acceptor junctions (W=2.62e+08, pval<9.4e-04), suggesting that

the spliceosome was no longer able to accurately distinguish splicing signals at acceptor sites (Fig. 6a,

b). Similarly, AQR knockdowns resulted in a remarkably high number of mis-splicing within the

15-200 bp sequence window upstream of the annotated 3’ss (Fig. 6c), with a further reduction in the

strength of novel 3’ss compared to paired annotated sites (W=2.2e-09, pval<2.2e-16) (Fig. 6b).

Increasing age is associated with increasing levels of mis-splicing

Previous studies have reported an overall reduction in the expression of multiple RBPs with

increasing age55–61. We formally assessed this in the GTEx data set and, focusing on brain tissue,

found that the expression levels of 20.7% of the 116 RBPs studied were negatively affected by age

(1.1e-07<q<4.2e-02) (Methods, Supplementary Table 6). To investigate if age-related changes in RBP

expression could result in increasing levels of mis-splicing, we grouped samples for each body site

into 2 extreme age clusters, “20-39” and “60-79” years and, after controlling for potential

confounding covariates, we selected a set of n=206,067 annotated introns shared across age groups

and body sites (Methods, Extended Data Fig. 7,8). We found that values in the “60-79” age𝑀𝑆𝑅
𝐷

group were significantly higher than those in the “20-39” cluster in 9 of the 18 body sites analysed

(4.1e-02<effsize<0.1; 2.22e-100<q<1.01e-43). Similarly, values in the “60-79” age group were𝑀𝑆𝑅
𝐴

significantly higher than those in the “20-39” category in 11 of the 18 tissues assessed

(8.1e-03<effsize<1.4e-01; 2.22e-100<q<1.14e-02). In both cases, the highest effect size was found in

blood vessel tissue (Fig. 7a, Supplementary Table 7).

Given the complexity of splicing in the human brain and importance of age-related disorders

affecting this organ, we further investigated the properties of introns with evidence of age-related

increases in mis-splicing in brain. We identified n=14,714 annotated introns of interest based on their

or increasing values (Methods). After assigning these introns to their unique genes𝑀𝑆𝑅
𝐷

𝑀𝑆𝑅
𝐴

n=8,117, we used Gene Ontology (GO) Enrichment analysis to determine if age-related increases in

mis-splicing might have an impact on specific biological processes or pathways. Interestingly, this

analysis identified significant enrichment in terms such as "neuron to neuron synapse" (q<2.3e-06),

"tau protein binding" (q<4.8e-04) and "dendritic spine" (q<4e-04) (Fig. 7b, Supplementary Table 8,9).

Since the former term suggested that mis-splicing might affect neurons more than other cell types,

we assessed cell-type specific expression of RBPs in the human brain. Using single-nucleus

RNA-sequencing data from the Allen Brain Atlas covering multiple cortical regions62, we investigated

the cell-type specificity of 111 splicing-regulator and spliceosomal RBPs54 across all major cell types.

We found that splicing-regulator RBPs were more highly expressed than would be expected by

chance in the following cell-types: oligodendrocyte precursor cells (OPCs), 4 subtypes of GABAergive
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neuron and 5 subtypes of glutamatergic neuron (Fig. 7c, Extended Data Fig. 9, Supplementary Table

10,11). The enrichment of RBPs within specific neuronal cell types suggests that neurons may be

particularly sensitive to changes in RBP expression, and by extension, particularly vulnerable to

age-related increases in mis-splicing.
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Discussion

Here we have shown that mis-splicing events are common across human tissues and occur near

annotated intron-exon boundaries in a distinctive and predictable manner. Mis-splicing rates are

higher at acceptor sites than at donor sites, and non-coding transcripts have higher mis-splicing rates

at both sites in all tissues. We discovered that mis-splicing rates vary across introns and tissues, and

are predictable based largely on local sequence properties. Reduced expression of spliceosome

components and regulators is a significant contributing factor to the variability in mis-splicing, as

evidenced by in vitro knockdowns of RBPs and in vivo with ageing. Additionally, in the ageing human

brain, mis-splicing disproportionately affects genes involved in neuronal function and proteostasis,

with implications for age-related neurodegenerative disorders.

One of the most striking and robust findings in this study was the consistently higher accuracy of 5’ss

as compared to 3’ss recognition. This is likely to reflect intrinsic weaknesses and molecular

differences in these processes. Initial recognition of the 5′ss of an intron is carried out by the U1

snRNP complex of the spliceosome. Even though their base-pairing interactions are often imperfect,

this process is thought to be highly efficient48,63,64. In contrast, recognition of the 3’ end of introns

requires cooperative binding of three interacting proteins to three neighbouring sequence motifs.

Besides, a given 3’ss can be associated with more than one functional branch point65. Our findings

support this view and suggest that this complexity makes this process particularly sensitive to errors.

There are a range of ways in which splicing errors could arise at both splice sites. Most simply, they

could originate from genomic sequence variation due to germline and somatic mutations or

inaccuracies in the recognition of splicing signals by the spliceosome machinery itself. We found

limited evidence to support the former. Using a measure of DNA sequence constraint in humans,

namely CDTS scores66, we found that while germline genetic variation at exon-intron boundaries

influenced mis-splicing rates, the effect was consistently small across tissues. Similarly, when we

assessed the potential impact of somatic mutations by comparing mis-splicing rates in unexposed

versus sun-exposed skin (known to have a higher somatic mutation load67), we found no significant

differences. In fact, local sequence conservation across species had the highest effect on mis-splicing

across tissues, despite conservation scores across exon-intron boundaries being the same in all

tissues.

These findings are consistent with the current understanding of splicing and its evolution. While

splicing is thought to have arisen through the self-removal of introns from primitive RNA molecules68,

it is postulated that their strict sequence and structural requirements progressively relaxed over

time69. Consequently, these introns became more reliant on accurate expression of spliceosome

RNAs and proteins for efficient recognition of cis-intronic splicing sequences and proper splicing. We

suspected that the variable effect of sequence conservation on mis-splicing across human tissues

could be explained by differences in the expression of these components, making mis-splicing

primarily a problem of inaccurate sequence recognition.

We formally assessed this hypothesis using publicly available data from the ENCODE consortium to

measure mis-splicing rates following shRNA knockdown of multiple RBPs54. Interestingly, we found
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that depending on the RBP targeted, there were distinctive patterns of mis-splicing distribution,

suggesting a dependency on adequate levels of expression of each spliceosomal component to

accurately target a splice site. Surprisingly, shRNA knockdowns of core spliceosomal molecules, such

as the U2AF2 and AQR, did not reduce the total levels of splicing activity. Instead, these knockdowns

appeared to change splice site selection, reducing the overall accuracy of this process. Certainly,

mutations in the U2AF heterodimer have been found to be rate-limiting for splice site choice70–72.

Given that changes in the activity of core spliceosomal components have also been linked to a broad

range of pathologies73,74,75,76 and ageing25,60,77,78, we studied mis-splicing changes with age in a range

of tissues. This analysis revealed an increase in mis-splicing in the eldest group across most body

sites. Focusing on human brain due to the known importance of RBPs in brain diseases75,76, we noted

that core spliceosomal genes and genes involved in synaptic function and proteostasis were

disproportionately affected by age-related changes in mis-splicing. This could be due to higher

requirements for RBP expression in neurons, as suggested by our cell-type specificity analysis.

We note that our findings on mis-splicing rates also have the potential to inform long-read

RNA-sequencing analyses which have tended to identify large numbers of novel transcripts

particularly when performed at high depth79. More specifically, an awareness of patterns in splicing

noise could help differentiate between low-expressed novel isoforms of process biological interest

and transcriptional noise. Besides, the success in splicing-modulating RNA therapies in muscular

dystrophy and cancer cells80–82, elucidates the potential that a deeper understanding of splicing and

its regulatory mechanisms can have to help design new therapies that counteract the detrimental

effects of these pathologies.

However, we note some important limitations of this study. Firstly, all analyses have been performed

using bulk RNA-sequencing data despite our own analyses of RBP expression by cell type. This is

likely to impact on our assessment of mis-splicing rates and its biological impact, potentially leading

to an underestimate of its effect on rarer cell types. Furthermore, our analyses have not attempted

to model the impact of the NMD. Given the importance of this pathway for the degradation of

potentially deleterious novel transcripts, we postulate that the mis-splicing events we observe are

primarily those that have partially escaped NMD suggesting that mis-splicing rates are in fact higher

across all human tissues.

Nonetheless, taken together, our results show that mis-splicing is common and that understanding

its patterns will inform our understanding of the role of splicing in senescence, healthy ageing and

disease. We believe that this will be key to the successful application of RNA-targeting therapies

particularly in human brain.
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Online Methods

RNA-sequencing data download and processing

We downloaded and processed data from the IntroVerse database45, which contains the splicing

activity of 332,571 annotated introns (as defined by Ensembl-v105) and a linked set of 1,950,821

novel donor and 2,728,653 novel acceptor junctions, covering 17,510 human control RNA samples

and 54 tissues. This dataset of exon-exon junctions was originally provided by the Genotype-Tissue

Expression Consortium (GTEx) v844 and processed by the recount383 (version 1.0.7,

https://github.com/LieberInstitute/recount3) project.

The Illumina TruSeq library construction protocol (non-stranded 76 bp-long reads, polyA+ selection)

was used in GTEx v8. Samples from GTEx v8 were processed by the recount3 project through

Monorail83 (version 1.0.0, https://github.com/langmead-lab/monorail-external) which uses STAR84

(RRID:SCR_004463, http://code.google.com/p/rna-star/) to detect and summarise exon-exon splice

junctions for each sample. Megadepth85 (version 1.0.3, RRID:SCR_022779,

https://github.com/ChristopherWilks/megadepth) was also used by recount3 to analyse the BAM

files output by STAR (version 2.7.3a, RRID:SCR_004463, http://code.google.com/p/rna-star/).

IntroVerse uses the Bioconductor R package dasper86 (version 1.4.3,

http://www.bioconductor.org/packages/dasper) to annotate the split reads (Ensembl-v105) from

GTEx v8 and processed by recount3. Within IntroVerse each novel donor and acceptor junction is first

carefully quality-controlled (to ensure that novel junctions could feasibly arise through splicing) and

then assigned uniquely to a specific annotated intron. Among the quality-control criteria applied by

IntroVerse, all split reads shorter than 25 base pairs (bp) were discarded as well as all split reads

located within unplaced sequences on the reference chromosomes and overlapping any of the

regions published within the hg38 ENCODE Blacklist87 (v2.0,

https://github.com/Boyle-Lab/Blacklist/blob/master/lists/hg38-blacklist.v2.bed.gz).

We modified the original structure of the pipeline provided by IntroVerse and included the following

data filters. Samples from fresh frozen preserved tissues were prioritised. On this basis, samples from

“Brain - Cortex” and “Brain - Cerebellum” tissues were discarded as well as all sex-specific tissues and

tissues with less than 70 samples (e.g. Bladder, Cells - Leukaemia cell line (CML), Cervix - Ectocervix,

Cervix - Endocervix, Fallopian Tube and Kidney - Medulla). In addition, only samples presenting an

RNA Integrity Number (RIN) higher or equal to 6 were included in this study, as any more stringent

RIN thresholds would have reduced excessively the number of samples available for study:

;𝑅𝐼𝑁 ≥8, 𝑁𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 = 4, 170
;𝑅𝐼𝑁 ≥7, 𝑁𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 = 9, 494
.𝑅𝐼𝑁 ≥6, 𝑁𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 = 14, 408

In addition, we discarded n=555 annotated introns reported to be spliced by the minor spliceosome88

and n=9,252 novel donor and novel acceptor junctions linked to them. We discarded these minor

introns because, even though they represent less than 1% of all intervening sequences in the human
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genome, their consensus splicing sequences differ considerably from the consensus sequences of the

human introns targeted by the major spliceosome89. To avoid biases derived from these differences,

introns targeted by the minor spliceosome were discarded.

The abovementioned modifications resulted in a new relational database, namely Splicing intron

database, which included a set of 324,956 annotated introns (Ensembl-v105) and a linked set of

3,865,268 novel junctions, covering 14,408 different human samples and 42 human tissues

(Extended Data Fig. 1a,b). All types of exon-exon junction reads were considered (jxn_format =

c("ALL"), recount3::create_rse_manual() function, Bioconductor R package recount3 version 1.0.7,

https://bioconductor.org/packages/release/bioc/html/recount3.html).

Calculating the contamination rates across multiple version of the

Ensembl transcriptome

Split reads were first annotated based on the reference transcriptome Ensembl-v97 (v97) released in

July 2019 and using the Bioconductor R package dasper version 1.4.3

(https://bioconductor.org/packages/release/bioc/html/dasper.html).

Per each tissue, we compared the introns that had been classified as novel donor or novel acceptor

junctions using v97 but were also re-annotated as annotated introns in the Ensembl-v105 (v105), and

used them as a measure of “contamination”. To create a normalised measure of contamination rates

across the tissues, we divided the number of novel junctions in v97 that had been classified as

annotated introns in v105 by the total number of novel junctions that had maintained annotation

category between the two aforementioned Ensembl versions. Finally, we converted the resulting

ratio figure into a percent.

𝐶
𝑇
𝑣97 =  𝑗 * 100

𝑦( )
Let denote the total number of unique novel donor and novel acceptor junctions in v97 that had been re-classified as𝑗
annotated introns in v105. Let denote the total number of unique novel donor and novel acceptor junctions in v97 that𝑦
had maintained annotated category in v105. Let denote the tissue studied.𝑇

This approach was mirrored to re-annotate all split reads from the frontal cortex brain tissue using

four different Ensembl versions v76, v81, v90 and v104 published in July 2014, July 2015, July 2017

and March 2021, respectively. Contamination rates in each Ensembl version were again calculated

using v105 as the reference annotation.

Calculating the percentage of unique novel junctions and novel read

counts

Focusing on the novel donor category, the percentage of unique novel donor junctions in a given

tissue was calculated by dividing the cumulative number of unique novel donor junctions across all

samples of the studied tissue by the total number of unique annotated introns, novel donor and

acceptor junctions found across the same set of samples. Finally, we converted the resulting ratio to

a percentage.
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𝑃𝑗
𝑇
𝑥 =  

Σ
𝑖=1
𝑁 𝑥

𝑖

Σ
𝑖=1
𝑁 𝑥

𝑖
 + Σ

𝑖=1
𝑁 𝑦

𝑖
 + Σ

𝑖=1
𝑁 𝑧

𝑖
( ) * 100

Let denote the total number of unique novel donor junctions within one sample of the tissue studied. Let denote the𝑥 𝑇 𝑦
total number of unique novel acceptor junctions within one sample of tissue . Let denote the total number of unique𝑇 𝑧
annotated introns within one sample of tissue . Let denote the total number of samples studied of tissue . Let𝑇 𝑁 𝑇 𝑇
denote the tissue studied.

We mirrored the method detailed above to calculate the percentage of unique annotated introns and

the percentage of unique novel acceptor junctions within a tissue.

Similarly, focusing on the novel donor category, the percentage of novel donor read counts in a given

tissue was calculated by dividing the cumulative number of novel donor reads counts by the total

number of reads mapping to annotated introns, novel donor and acceptor junctions across all

samples of the tissue studied. The resulting ratio was multiplied by 100 to create a percentage.

𝑃𝑟
𝑇
𝑎 =  

Σ
𝑖=1
𝑁 𝑎

𝑖

Σ
𝑖=1
𝑁 𝑎

𝑖
 + Σ

𝑖=1
𝑁 𝑏

𝑖
 + Σ

𝑖=1
𝑁 𝑐

𝑖
( ) * 100

Let denote the total number of read counts that all novel donor junctions presented within one sample of tissue . Let𝑎 𝑇 𝑏
denote the total number of read counts that all novel acceptor junctions presented within one sample of tissue . Let𝑇 𝑐
denote the total number of read counts that all annotated introns presented within one sample of tissue . Let denote𝑇 𝑁
the total number of samples studied of tissue . Let denote the tissue studied.𝑇 𝑇

We mirrored the formula above to calculate the percentage of annotated introns and novel acceptor

read counts within a tissue.

MaxEntScan score analyses

The MaxEntScan50 (MES) algorithm (version 1.0, RRID:SCR_016707,

http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html) was applied to score the 9 bp

sequence at the 5’ss and the 23 bp sequence at the 3’ss of each annotated intron and novel junction

stored on the Splicing intron database. The higher is the MES score assigned to a given sequence, the

stronger that sequence will be considered, as it will be more closely related to a real annotated splice

site. To investigate the differences in the strength implied by each novel splice site and the analogous

annotated splice site of its paired annotated intron, we obtained the delta values of their MES scores.

Focusing on the novel donor junctions, the delta MES was calculated by obtaining the(Δ𝑀𝐸𝑆5𝑠𝑠)
difference between the MES score assigned to the 9 bp sequence at the 5’ss of the annotated intron

minus the MES score assigned to the 9 bp sequence at its paired 5’ss of the novel(𝑀𝐸𝑆𝑎𝑛𝑛5𝑠𝑠)
donor junction :(𝑀𝐸𝑆𝑑𝑜𝑛5𝑠𝑠)

Δ𝑀𝐸𝑆5𝑠𝑠 = 𝑀𝐸𝑆𝑎𝑛𝑛5𝑠𝑠 − 𝑀𝐸𝑆𝑑𝑜𝑛5𝑠𝑠

Similarly, to calculate the delta MES at the acceptor sites , we obtained the difference(Δ𝑀𝐸𝑆3𝑠𝑠)
between the MES score assigned to the 23 bp sequence at the 3’ss of the annotated intron
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minus the MES score assigned to the 23 bp sequence at the 3’ss of its linked novel(𝑀𝐸𝑆𝑎𝑛𝑛3𝑠𝑠)
acceptor junction :(𝑀𝐸𝑆𝑎𝑐𝑐3𝑠𝑠)

Δ𝑀𝐸𝑆3𝑠𝑠 = 𝑀𝐸𝑆𝑎𝑛𝑛3𝑠𝑠 − 𝑀𝐸𝑆𝑎𝑐𝑐3𝑠𝑠

Calculating the Distances and Modulo3

Per each tissue analysed, we calculated the distances lying between each novel splice site and the

analogous annotated splice site of their linked annotated intron. Focusing on the novel donor

junctions, we obtained the distances in bp lying between the novel 5’ss of each novel donor junction

and the annotated 5’ss of their linked annotated intron. We repeated this process to calculate the

distances at 3’ss.

Distances in bp were calculated by following a 0-based genomic-interval approach, as we required

splicing to occur at precise annotated genomic coordinates to consider splicing as accurate. For

instance, focusing in a novel donor junction whose novel 5’ss is located at the genomic𝑔𝑐𝑁𝑜𝑣𝑒𝑙
coordinate, the distance lying between and the 5’ss of its linked annotated intron𝑔𝑐𝑁𝑜𝑣𝑒𝑙

can be expressed as:(𝑔𝑐𝐼𝑛𝑡𝑟𝑜𝑛) 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑏𝑝) =  𝑔𝑐𝐼𝑛𝑡𝑟𝑜𝑛 −  𝑔𝑐𝑁𝑜𝑣𝑒𝑙

Let denote the genomic coordinate corresponding to the 5’ss of the annotated intron (Ensembl-v105).𝑔𝑐𝐼𝑛𝑡𝑟𝑜𝑛 𝐼𝑛𝑡𝑟𝑜𝑛 
Let denote the genomic coordinate corresponding to the 5’ss of the novel donor attached to the𝑔𝑐𝑁𝑜𝑣𝑒𝑙 𝑁𝑜𝑣𝑒𝑙 
annotated intron . Let denote the difference in bp between the two genomic positions and𝐼𝑛𝑡𝑟𝑜𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑔𝑐𝐼𝑛𝑡𝑟𝑜𝑛

within the same strand.𝑔𝑐𝑁𝑜𝑣𝑒𝑙

The formula above was mirrored to calculate the distances lying between each novel acceptor

junction and its linked annotated intron.

For the Modulo3 analysis, we restricted the analysis to the annotated introns belonging to transcripts

categorised as MANE Select90, as these represented exact matches in exonic regions between Refseq

transcript and the Ensembl/GENCODE. Only the novel junctions located less than 100 bp apart from

annotated splice sites were considered. This filter increased the confidence for the novel products to

be located within the adjacent exon and intron sequences, as the average exon size corresponds to

120 bp91 , whereas the mode, median and average length of the annotated introns corresponded to

88 bp, 1,945 bp and 8,388 bp, respectively (Extended Data Fig. 10).

Calculating the Mis-Splicing Ratio measures

Focusing on the mis-splicing activity at the 5’ss of a given annotated intron, the measure𝑀𝑆𝑅
𝐷

represented the ratio of cumulative number of novel donor reads found across all annotated reads

linked to the annotated intron of interest and across all samples of a given tissue.
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𝑀𝑆𝑅
𝐷
𝑋𝑇 =  

Σ
𝑖=1
𝑁 𝑗

𝑖

Σ
𝑖=1
𝑁 𝑗

𝑖
 + Σ

𝑖=1
𝑁 𝑠

𝑖
( )

Let denote the total number of novel donor junction reads assigned to the annotated intron within one sample of the𝑗 𝑋
tissue . Let denote the total number of annotated intron reads for the same intron, , within the same sample of study.𝑇 𝑠 𝑋
Let denote the total number of samples studied from the tissue .𝑁 𝑇

The and measures were normalised to values between 0 and 1. Hence,𝑀𝑆𝑅
𝐷

𝑀𝑆𝑅
𝐴

𝑀𝑆𝑅
𝐷

= 0

represents accurate splicing at the 5’ss of a given annotated intron, whereas represents𝑀𝑆𝑅
𝐷

= 1

complete mis-splicing at the 5’ss of a given annotated intron.

Calculating the Transcript per Million (TPM) measure

To calculate the Transcript Per Million value corresponding to a particular gene within a set of

samples, we obtained the total number of read counts that each gene presented per sample and

divided this number by the length of the gene in kilobases, namely RPK number. We then summed all

the RPK values calculated per sample and divided this number by 1,000,000. This division created a

figure named the per million scaling factor. Finally, the RPK values were divided by the “per million”

scaling factor.

Using linear models to predict the and the measures𝑀𝑆𝑅
𝐷

𝑀𝑆𝑅
𝐴

For each GTEx tissue, we built two linear regression models to discover the characteristics influencing

the rate of mis-splicing at the 5’ss and 3’ss of the set of annotated introns studied.(𝑀𝑆𝑅
𝐷

) (𝑀𝑆𝑅
𝐴

)

To reduce any biases regarding the number of introns considered per tissue, we only included the

annotated introns that were commonly found across all tissues. These were n=151,729 common

annotated introns.

As predictors, we included covariates encompassing diverse gene and intron-level features that were

provided by the IntroVerse database. The gene-level covariates included (1) the gene length in bp, (2)

the median transcript per million (TPM) of the gene calculated across the samples of each tissue

studied (Methods), (3) the total number of transcripts of the gene (Ensembl-v105) and (4) the

percent of protein-coding transcripts in which the assessed intron may appear. The intron-level

covariates included (1) the MES50 scores of the sequences overlapping the 5’ss and 3’ss, (2) the intron

length in bp, (3) the mean interspecies conservation score across 20 species92 (phastCons20)

overlapping the proximal intronic sequences, and (4) the mean context-dependent tolerance score

(CDTS) scores66 overlapping the aforementioned proximal intronic sequences. The proximal intronic

sequences were defined as the -5/+35 bp sequence window around the exon-intron junction at the

5’ss of each annotated intron, and the -35/+5 bp sequence neighbouring the intron-exon junction at

the 3’ss of each annotated intron. The mean phastCons20 scores represented the probability of

negative selection based on the number of substitutions occurring across 20 species (human, 16

primates, dog, mouse and tree shrew) during evolution. The CDTS scores represented the sequence

constraint across humans.
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Focusing on the prediction of the , the formula used to build the corresponding linear model is𝑀𝑆𝑅
𝐷

shown below:

𝑌 = β
0

+ β
1
𝑋

1
+ β

2
𝑋

2
+ β

3
𝑋

3
+ β

4
𝑋

4
+ β

5
𝑋

5
+ β

6
𝑋

6
+ β

7
𝑋

7
+ β

8
𝑋

8
+ β

9
𝑋

9
+ β

10
𝑋

10
+  ε

0

where the dependent variable corresponded to: 𝑌 = 𝑀𝑆𝑅
𝐷

and the independent variables were:

𝑋
1

= 𝑔𝑒𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ;

𝑋
2

= 𝑚𝑒𝑑𝑖𝑎𝑛 𝑇𝑃𝑀 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒 𝑎𝑐𝑟𝑜𝑠𝑠 𝑡ℎ𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑠𝑡𝑢𝑑𝑖𝑒𝑑;

𝑋
3

= 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑠 𝑖𝑛 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒;

𝑋
4

= 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑐𝑜𝑑𝑖𝑛𝑔 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝑖𝑛𝑡𝑟𝑜𝑛 𝑚𝑎𝑦 𝑎𝑝𝑝𝑒𝑎𝑟;

𝑋
5

= 𝑀𝐸𝑆 𝑜𝑓 𝑡ℎ𝑒 5'𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑟𝑜𝑛;

𝑋
6

= 𝑀𝐸𝑆 𝑜𝑓 𝑡ℎ𝑒 3'𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑟𝑜𝑛;

𝑋
7

= 𝑀𝑒𝑎𝑛 𝑃ℎ𝑎𝑠𝑡𝐶𝑜𝑛𝑠20 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 5'𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑟𝑜𝑛;

𝑋
8

= 𝑀𝑒𝑎𝑛 𝑃ℎ𝑎𝑠𝑡𝐶𝑜𝑛𝑠20 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 3'𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑟𝑜𝑛;

𝑋
9

= 𝑀𝑒𝑎𝑛 𝐶𝐷𝑇𝑆 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 5'𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑟𝑜𝑛;

𝑋
10

= 𝑀𝑒𝑎𝑛 𝐶𝐷𝑇𝑆 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 3'𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑟𝑜𝑛;

ε
0

= 𝑁(0,  𝑠𝑖𝑔𝑚𝑎2)

We mirrored the formula above to predict the value of the introns studied.𝑀𝑆𝑅
𝐴

In total, 84 linear regression models were generated. We created 1 linear model to predict the 𝑀𝑆𝑅
𝐷

value of the set of n=151,729 annotated introns studied and another linear model to predict the

value of the same set of introns in each of the 42 tissues considered. P-values were𝑀𝑆𝑅
𝐴

FDR-adjusted, producing values. values were then grouped by MSR, generating two independent𝑞 β
distributions that represented the tissue variability in the effect that each covariate produced in the

prediction of the mis-splicing rates at the 5’ss ( ) and 3’ss ( ) of the set of common𝑀𝑆𝑅
𝐷

 𝑀𝑆𝑅
𝐴

n=151,729 introns studied across the tissues.

Assessing the levels of mis-splicing in sun-exposed versus

non-sun-exposed skin tissues

Using data from the Splicing database, we selected all annotated introns from the "Skin - Sun

Exposed (Lower leg)" and the "Skin - Not Sun Exposed (Suprapubic)" body sites, and evaluated their

differences in mis-splicing rates at their 5’ss and 3’ss .(𝑀𝑆𝑅
𝐷

) (𝑀𝑆𝑅
𝐴

)

“Skin - Not Sun Exposed (Suprapubic)” originally presented a total of n=250,948 annotated introns,

whereas “Skin - Sun Exposed (Lower leg)” presented n=251,769 annotated introns. We next obtained

the common annotated introns overlapping both tissues. This reduced both distributions to a set of

n=232,885 unique common annotated introns. In addition, to reduce any potential biases derived

from differences in the sequencing depth levels of the two sets of samples, we subsampled the set of
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n=232,885 annotated introns between the two skin body sites by pairing them by mean coverage

similarity. The intron pairing was performed by restricting the maximum difference in log10 mean

coverage to 0.005 reads (we used the matchit() function, MatchIt R package93, version 4.4.0,

https://cran.r-project.org/web/packages/MatchIt/vignettes/MatchIt.html). This pairing reduced both

distributions of annotated introns to a total of n=227,038.

Finally, we obtained the and values from each of the n=227,038 annotated introns of𝑀𝑆𝑅
𝐷

𝑀𝑆𝑅
𝐴

either "Skin - Sun Exposed (Lower leg)" and "Skin - Not Sun Exposed (Suprapubic)". To test for any

significant differences in the median distribution of these two mis-splicing ratio measures between

the two skin body sites, we used a paired Wilcoxon signed rank test function with continuity

correction (wilcox_test() function, R package rstatix94 version 0.7.1, RRID:SCR_021240,

https://CRAN.R-project.org/package=rstatix).

Analysing shRNA knockdown of RBPs followed by RNA-sequencing data

from ENCODE

From the list of 356 RBPs published by Nostrand et al. in 202054, we selected 115 RBPs that had been

functionally categorized as splicing regulation, spliceosome or exon-junction complex by the authors.

We also downloaded a second list of 118 human genes published by the Reactome project that had

been classified as involved in NMD processes [R-HSA-927802, NMDv3.7, Browser v82]. In total, 233

genes were considered for study.

From the 233 genes initially considered, only 56 had shRNA knockdown followed by RNA-sequencing

data available on the ENCODE platform. For each of these 56 genes, the same number of

experiments was used. Experiments were chosen based on similarity of metadata and design. Briefly

from ENCODE: (1) 4 experiments with RNA-seq data available on K562 and HepG2 cells treated with

an shRNA knockdown against a given gene, and (2) 4 control shRNA experiments against no target

gene were chosen for each gene. Details and metadata of all the shRNA knockdown experiments

downloaded from ENCODE are shown in (Supplementary Table 12).

A total of 8 alignment BAM files (GRCh38 v29) were downloaded per gene, each one corresponding

to a different ENCODE experiment. In total, 448 BAM files were downloaded from the ENCODE

platform. To extract the splicing junctions from the BAM files to a BED12 format, we made use of the

command ‘regtools junction extract’ made available through the regtools software package (version

0.5.2, http://regtools.org/). We required a minimum and maximum intron size of 25 and 1,000,000

bp respectively, and the strand information was provided by the aligner. Prior to the extraction,

alignment reads were sorted and indexed using the commands ‘samtools sort’ and ’samtools index’,

both made available through the SAMTOOLS95 software (version 1.16.1, RRID:SCR_002105,

http://htslib.org/).

We then applied a similar data analysis to the one originally published by IntroVerse (Methods), and

created a separate database for each ENCODE shRNA knockdown project, in which samples were

clustered following a case/control grouping criteria. Case samples corresponded to the experiments

in which a gene had been targeted for knockdown, whereas control samples corresponded to

untreated controls in which no gene had been targeted. To account for any differences in read-depth
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or RIN numbers across the different samples and experiments compared, we only considered the

annotated introns that were common across all samples and projects. These represented a total of

n=109,950 annotated introns (Ensembl-v105). For more details about how the MES, distances,

Modulo3 and MSR measures were calculated, please refer to the following sections (Methods:

“MaxEntScan score analyses”, “Calculating the Distances and Modulo3”, and “Calculating the

Mis-Splicing Ratio measures”).

To detect any significant differences for each gene between case versus control samples in the MSR

median values of the common introns, we made use of the wilcox_test function (R package rstatix94

version 0.7.1, RRID:SCR_021240, https://CRAN.R-project.org/package=rstatix). Focusing on the study

of mis-splicing at the 5’ss, the null hypothesis ) tested corresponded to: “the set of common(𝐻
0

introns studied do not present different median values in case versus control samples”. On the𝑀𝑆𝑅
𝐷

contrary, the alternative hypothesis ) tested corresponded to: “the set of common introns studied(𝐻
1

present higher median values in case versus control samples”. We then repeated these𝑀𝑆𝑅
𝐷

hypothesis to test for differences in the values. A total of 112 Wilcoxon tests were run, one per𝑀𝑆𝑅
𝐴

ENCODE knockdown project and splice site. The p-values obtained from each test were adjusted

using the Bonferroni correction method. In those cases in which the alternative hypothesis was(𝐻
1
)

accepted, we calculated the probability of superior MSR outcome in case vs control samples by using

the function wilcox_effsize() (R package rstatix, version 0.7.1, RRID:SCR_021240,

https://CRAN.R-project.org/package=rstatix).

Knockdown efficiency extraction

To obtain a measurement of the knockdown efficiency for each ENCODE experiment, we identified a

'biosample preparation and characterization' document attached to 46 out of the 56 studied genes.

The efficiency is calculated by comparing protein levels in control and knockdown cells using a

western blot analysis, and reported in figures embedded in the document. To extract the figures, we

made use of the 'fitz' module available from the python package PyMuPDF96 (version 1.21.1,

https://github.com/pymupdf/PyMuPDF). We employed the Tesseract-OCR (Optical Character

Recognition) algorithm, available through the python package pytesseract (version 0.3.10,

https://pypi.org/project/pytesseract/) to extract the text from the images. To ensure high accuracy in

the image to text conversion, figures were: (1) cropped to only contain the depletion percentages,

and (2) resized to a lower resolution to better match the training data of the OCR algorithm. No

additional configuration was specified to the Tesseract-OCR engine. A perfect accuracy was observed

when tested in 15% of the samples, and outliers were manually verified. The final reported

knockdown efficiency is the average of the measurements for all four samples.

RBP expression levels across tissues

We visualised the gene expression for 115 important spliceosomal RBP genes across all 42 GTEx v8

tissues, deriving the RBP gene list from Van Nostrand et al. 2020. In order to gauge cross-tissue

variation in expression for each gene, the following calculations were performed on a per-gene basis.

Firstly, we obtained the cross-sample expression for each tissue, identifying the tissue with the

median expression value, namely tissue Y. Next, we calculated the log2 fold-change in expression for
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each of the remaining 41 tissues in relation to expression in tissue Y. Finally, the log2 fold-change

expression values for each gene were visualised as a heatmap facetted by gene functional group. The

functional categories used were “Splicing Regulation”, “Spliceosomal” and “Exon-Junction complex”,

obtained from Van Nostrand et al. 2020. The code to reproduce this analysis can be accessed at

https://github.com/ainefairbrother/RBP_expression_analysis (version 1.0.0, DOI:

10.5281/zenodo.7736907).

Changes in RBP expression levels with age in brain tissue

We downloaded the read counts from all genes expressed within the Brain GTEx v8 tissue from the

recount3 project and using the function create_rse_manual() (R package recount3, version 1.0.7,

https://bioconductor.org/packages/release/bioc/html/recount3.html). Raw counts were transformed

using the function transform_counts() (R package recount3, version 1.0.7,

https://bioconductor.org/packages/release/bioc/html/recount3.html).

To calculate the gene expression within each sample, we normalized the read counts using the TPM

method (Methods: Calculating the Transcript per Million (TPM) measure). TPM data was used in

this analysis because all samples had been obtained from the same tissue (i.e. brain), and all samples

had been sequenced using the same library protocol, polyA-selection, reducing the risk of misleading

TPM comparisons97.

To know whether the expression levels of the 116 RBPs involved in splicing regulation, spliceosomal

and exon-junction recognition54 functions were affected by age in brain tissue samples, we built a

linear regression model per RBP. The independent variable to predict corresponded to the TPM value

of each RBP in each sample. The dependent variables corresponded to a set of covariates providing

information about the sample: age, center, gebtch, gebtchd, nabtc, nabtchd, nabtcht, hhrdy, sex and

rin. These covariates were chosen by following the results from the principal component analysis

(PCA) published by Fairbrother-Browne, A. et. al98 using data from GTEx v6. Some of these covariates

were categorical, so we transformed them into numerical values prior inclusion to the linear models.

In total, 116 linear models were run, one per RBP studied. Each linear model was built to predict

2,363 TPM values per RBP, equating to the total number of brain samples available. P-values

produced by each linear model were corrected for multiple testing using the Benjamini-Hochberg

method, producing q values. Finally, in those cases in which the age covariate produced a negative

estimate value in the prediction of the TPM for a given RBP, it was considered that age negatively

affected the expression levels of that given RBP across the set of brain samples studied.

Age stratification and sample clustering

GTEx tissues were grouped by tissue following the original classification made by recount383

(Supplementary Table 13). Samples from each body region were then binned by age within one of

these three categories “20-39”, “40-59” and “60-79”. Only the body sites presenting a minimum of

75 samples, equating to at least 25 samples per age category, were considered. These were 18 body

sites in total: "ADIPOSE TISSUE", "ADRENAL GLAND", "BLOOD", "BLOOD VESSEL", "BRAIN",

"COLON", "ESOPHAGUS", "HEART", "LUNG", "MUSCLE", "NERVE", "PANCREAS", "SALIVARY GLAND",

"SKIN", "SMALL INTESTINE", "SPLEEN", "STOMACH" and "THYROID".

21

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2023. ; https://doi.org/10.1101/2023.03.29.534370doi: bioRxiv preprint 

https://github.com/ainefairbrother/RBP_expression_analysis
https://bioconductor.org/packages/release/bioc/html/recount3.html
https://bioconductor.org/packages/release/bioc/html/recount3.html
https://sciwheel.com/work/citation?ids=8792056&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9357087&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12907587&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12229723&pre=&suf=&sa=0
https://doi.org/10.1101/2023.03.29.534370
http://creativecommons.org/licenses/by/4.0/


To account for differences in the RIN numbers presented by the samples grouped in each age

category, we down sampled the clusters “40-59” and “60-79” to meet similarity with the “20-39”

group, as the overall sample size of the latter was always lower than the two former categories

across all body sites studied. The sample pairing was performed only when two samples from each

age group presented a maximum difference of 0.05 in their RIN numbers (matchit(), MatchIt R

package93, version 4.4.0, https://cran.r-project.org/web/packages/MatchIt/vignettes/MatchIt.html)

(Extended Data Fig. 7, Supplementary Table 14).

We then applied our modified version of the pipeline published by IntroVerse (Methods:

RNA-sequencing data download and processing) and created a relational database to study the

changes occurring in the splicing activity of the n=308,717 annotated introns (Ensembl-v105) that

were found across the three age categories and 18 body sites studied. We named it the

“Age-Stratification” intron database (Extended Data Fig. 8), and it contained a total of 308,717

annotated introns, from which 228,534 presented evidence of at least one type of mis-splicing event.

It also included 719,069 novel donor and 999,041 novel acceptor junctions, covering 199,191

transcripts, 30,580 genes and 6,111 samples from 40 body sites and 18 tissues.

To study the effect size of mis-splicing produced by age at the 5’ss and 3’ss of the annotated introns

stored on the “Age Stratification” intron database, we made use of their and values. To𝑀𝑆𝑅
𝐷

𝑀𝑆𝑅
𝐴

reduce any biases in the number of annotated introns considered in this comparative analysis across

multiple body sites, we only included the introns that were common across the three age categories

and all 18 tissues studied. These were a total of n=137,713 annotated introns. Then, to further

reduce the likelihood of including borderline samples between the three age groups, we only

considered samples from the two most extreme age clusters “20-39” and “60-79”.

Focusing on the 5’ss of the n=137,713 common annotated introns overlapping the “20-39” and

“60-79” age groups, we calculated the Wilcoxon effect size that the covariate age (i.e. “20-39” and

“60-79”) was producing over their values. We then repeated this approach to measure the𝑀𝑆𝑅
𝐷

effect size between age and the mis-splicing activity at the 3’ss of the same set of n=137,713(𝑀𝑆𝑅
𝐴

)

annotated introns. In both cases, we made use of the function wilcox_effsize (R package rstatix94,

version 0.7.0, RRID:SCR_021240, https://CRAN.R-project.org/package=rstatix).

Gene Ontology enrichment of genes containing introns with increasing

levels of MSR values in ageing samples

Using data from the ‘Age-Stratification´ database, we selected all introns overlapping the three age

categories for the brain tissue. These were n=206,067 annotated introns. To assess any changes

occurring in their splicing activity, we compared their and measures and evaluated the𝑀𝑆𝑅
𝐷

𝑀𝑆𝑅
𝐴

changes occurring as the age of each cluster increased. Focusing on the value, we selected the𝑀𝑆𝑅
𝐷

introns presenting increasing levels of mis-splicing with age at their 5’ss ( 20-39yrs < 40-59yrs <𝑀𝑆𝑅
𝐷

 

60-79 yrs). We mirrored this approach focusing on their .𝑀𝑆𝑅
𝐴
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Then, we obtained the gene symbol of all introns showing increasing and/or values with𝑀𝑆𝑅
𝐷

𝑀𝑆𝑅
𝐴

age. These were a total of n=8,117 unique genes. Using as background the list of all genes (n=19,140)

parenting the complete set of annotated introns found across brain sites, we ran a GO and KEGG

enrichment analysis of the set of n=8,117 unique genes. For the GO enrichment analysis, we used

the R function enrichGO (R package clusterProfiler, version 3.18.1, RRID:SCR_016884,

http://yulab-smu.top/biomedical-knowledge-mining-book/clusterprofiler-go.html). For the KEGG

enrichment analysis, we used the R function enrichKEGG (R package clusterProfiler, version 3.18.1,

RRID:SCR_016884,

http://yulab-smu.top/biomedical-knowledge-mining-book/clusterprofiler-kegg.html?q=enrichKEGG#

clusterprofiler-kegg-pathway-ora).

RBP cell-type enrichment calculation

We used Expression Weighted Cell Type Enrichment (EWCE)99

(https://bioconductor.org/packages/EWCE) to determine whether genes involved in splicing

regulation have higher expression within particular brain-related cell types than would be expected

by chance. We used two gene lists: (i) a list of 115 RBPs that had been functionally categorized as

splicing regulation, spliceosome or exon-junction complex by Nostrand et al.54, and (ii) a list of 118

human genes published by the Reactome project that had been classified as involved in NMD

processes [R-HSA-927802, NMDv3.7, Browser v82]. In total, 233 genes were considered for study.

Our aim was to evaluate the average level of expression of the 233 aforementioned genes within the

data set Human Multiple Cortical Areas SMART-seq, which includes single-nucleus transcriptomes

from 49,495 nuclei across multiple human cortical areas. These data are freely available through the

Allen Brain Atlas62 data portal (https://portal.brain-map.org/atlases-and-data/rnaseq). To achieve this

aim, we first downloaded the EWCE docker image

(https://hub.docker.com/r/neurogenomicslab/ewce), which includes the EWCE100 R package (version

0.99.3, https://bioconductor.org/packages/release/bioc/html/EWCE.html). Second, we downloaded

the single-nucleus transcriptomes from 49,495 nuclei across multiple human cortical areas from

https://portal.brain-map.org/atlases-and-data/rnaseq/human-multiple-cortical-areas-smart-seq. We

made use of the matrices including exon and intron counts. For this analysis, all brain regions

sampled were included, which corresponded to:

● Middle temporal gyrus (MTG)

● Anterior cingulate cortex (ACC; also known as the ventral division of medial prefrontal cortex,

A24)

● Primary visual cortex (V1C)

● Primary motor cortex (M1C) - upper (ul) and lower (lm) limb regions

● Primary somatosensory cortex (S1C) - upper (ul) and lower (lm) regions

● Primary auditory cortex (A1C)

Then, we generated the cell type annotations:

● Level 1: Allen Brain Atlas provided a class and subclass label. Class had only 3 levels

(GABAergic, glutamatergic and non-neuronal), thus instead we used the subclass label, which

subdivided glutamatergic neurons into 7 subtypes, GABAergic neurons into 5 subtypes, and
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non-neuronal cell types into Astrocyte, Endothelial, Microglia, Oligodendrocyte, OPC,

Pericyte, VLMC. As the number of endothelial cells (n = 70), pericytes (n = 32) and VLMC (n =

11) nuclei was low, these were merged into the class “vascular cell”.

● Level 2: used the original clusters defined by the Allen Brain Atlas.

A total of 1,985 nuclei were labelled as “outlier calls” and were removed during generation of the

celltype dataset. We used the function fix_bad_hgnc_symbols() (R package EWCE, version 0.99.3,

https://bioconductor.org/packages/release/bioc/html/EWCE.html) to remove any symbols from the

gene-cell matrix that were not official HGNC symbols. A total of 30,792 genes were retained.

We then used the function drop_uninformative_genes() (R package EWCE, version 0.99.3,

https://bioconductor.org/packages/release/bioc/html/EWCE.html), which removes “uninformatic

genes” to reduce compute time in subsequent steps. The following steps were performed:

● Drop non-expressed genes (n=1,263). This step removed the genes that are not expressed

across any cell types.

● Drop non-differentially expressed genes (n=6,304), which removes genes that are not

significantly differentially expressed across level 2 cell types with an adjusted p-value

threshold of 1e-05.

Finally, we used the function generate_celltype_data() from the R package EWCE (version 0.99.3,

https://bioconductor.org/packages/release/bioc/html/EWCE.html) to generate the celltype dataset.

This dataset can be accessed at:

https://github.com/RHReynolds/MarkerGenes (version 0.99.1, DOI: 10.5281/zenodo.6418604).

In a separate analysis run in R 4.2.0, we used this cell type data reference in EWCE. The goal of this

analysis was to determine whether the genes of interest had significantly higher expression in certain

cell types than might be expected by chance. Bootstrap gene lists controlled for transcript length and

GC-content were generated with EWCE iteratively (n=10,000) using “bootstrap_enrichment_test()”

function. In brief, this function takes the inquiry gene list and a single cell type transcriptome data set

and determines the probability of enrichment of this list in a given cell type when compared to the

gene expression of bootstrapped gene lists; the probability of enrichment and fold-change of

enrichment are the returned. P-values were corrected for multiple testing using the

Benjamini-Hochberg method. The code, plotting and library versions used for this analysis can be

accessed at: https://github.com/mgrantpeters/RBP_EWCE_analysis (version 1.0, DOI:

10.5281/zenodo.7734035).

Code availability

The repository https://github.com/SoniaRuiz/splicing-accuracy-manuscript (version 1.0.1, DOI:

10.5281/zenodo.7717150), contains the code to (1) generate the two “Splicing” and “Age

Stratification” intron databases, and (2) replicate all the main and supplementary analyses and

figures described in this manuscript.

The code to calculate the expression levels of the RBPs known to contribute to splicing and its

regulation across body sites can be accessed at
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https://github.com/ainefairbrother/RBP_expression_analysis (version 1.0.0, DOI:

10.5281/zenodo.7736907).

The code to obtain the metadata from an ENCODE experiment can be accessed at

https://github.com/guillermo1996/ENCODE_Metadata_Extraction (version 1.0.2, DOI:

10.5281/zenodo.7733986).

The code to reproduce the shRNA knockdown comparison between cases and control ENCODE

experiments is available at: https://github.com/guillermo1996/ENCODE_Splicing_Analysis (version

1.0.1, DOI: 10.5281/zenodo.7733984).

The code to reproduce the cell type specificity analysis of the set of RBPs known to contribute to

splicing and its regulation, and using as reference the drop-seq data from multiple cortical regions

(Allen Brain Atlas) is available at: https://github.com/mgrantpeters/RBP_EWCE_analysis (version 1.0,

DOI: 10.5281/zenodo.7734035).

The code to generate the celltype dataset using the function generate_celltype_data() from the R

package EWCE, can be accessed at: https://github.com/RHReynolds/MarkerGenes (version 0.99.1,

DOI: 10.5281/zenodo.6418604).

The Supplementary Tables are available at https://zenodo.org/record/7732872 (DOI:

10.5281/zenodo.7732872).
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Figures

Fig. 1. Overview of the analyses performed in this study. a. We studied splicing through three classes of split
reads spanning exon-exon junctions: annotated, novel donor and novel acceptor split reads. The
RNA-sequencing dataset used originated from the Genotype-Tissue Expression Consortium v8. In all 42 GTEx
tissues studied, junctions from the novel acceptor category exceeded the number of unique novel donor
junctions. b. Novel splice sites from the novel donor and novel acceptor junctions present high sequence
similarity to annotated splice sites. Variability in mis-splicing rates across tissues is highly affected by
inter-species sequence conservation at exon-intron boundaries. c. Novel junctions associated with protein-coding
transcripts are predicted to be deleterious in 2/3 of cases. d. Reduced expression levels of the RNA-binding
proteins (RBPs) responsible for sequence recognition appear to change splice site selection, which reduces the
overall accuracy of the splicing process and increases mis-splicing rates. Age is positively correlated with
mis-splicing increases in multiple human tissues.
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Fig. 2. Mis-splicing can be measured using short-read RNA-sequencing data. a. Contamination rates in
Ensembl v97 as compared to Ensembl v105 per GTEx tissue. Bars in dark grey represent the percentage of split
reads classified as novel junctions using Ensembl v97 that entered annotation as annotated introns in Ensembl
v105. Bars in light grey represent the percentage of novel junctions in Ensembl v97 that maintained novel
category in Ensembl v105. b. Percentage of unique novel donor and novel acceptor junctions per GTEx tissue in
Ensembl v105. The crossing lines link the percentage of novel donor and novel acceptor junctions found in each
body site. c. Percentage of cumulative number of read counts that the novel donor and novel acceptor junctions
present per GTEx tissue in Ensembl v105. The crossing lines link the percentage of cumulative number of novel
donor and novel acceptor read counts found in each body site.

27

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2023. ; https://doi.org/10.1101/2023.03.29.534370doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.29.534370
http://creativecommons.org/licenses/by/4.0/


Fig. 3. Mis-splicing is explained by the high sequence feature similarity between novel splice sites and
their annotated pairs. a. MaxEntScan (MES) Delta scores between the scores assigned to the 9-bp sequence
at the 5’ss of the annotated introns and their novel donor pairs across all tissues. b. MES Delta scores between
the scores assigned to the 23-bp sequence located at the 3’ss of the annotated introns and their novel acceptor
pairs across all tissues. c. Distances lying between the novel splice site of each novel junction and their
annotated pairs from protein-coding transcripts in frontal cortex brain tissue. d. Distances lying between the novel
splice site of each novel junction and their annotated pairs from non-protein-coding transcripts in frontal cortex
brain tissue. e. Modulo3 of the distances between each novel junction and linked annotated intron to a maximum
distance of 100 bp within MANE transcripts from all body sites.
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Fig. 4. Mis-splicing rates vary across introns and local sequence conservation is its most important
predictor. a. Mis-splicing rates occurring at the 5’ss and 3’ss of the annotated introns in samples of frontal cortex
brain tissue. Bottom right: mis-splicing rates for mis-spliced introns across binned values. Bottom left: a zoomed
in view of the bottom right panel, with the y-axis cropped. b. Mis-splicing rates occurring at the 5’ss of the
annotated introns located within protein-coding vs non-protein-coding transcripts in samples from frontal cortex
brain tissue. The black dashed vertical line separates the bars represented under the two different y-scales
displayed. Right y-scale: a zoomed in view of the y-axis scale on the left side. c. Mis-splicing rates at the 3’ss of
the annotated introns located within protein-coding vs non-protein-coding transcripts in samples from frontal
cortex brain tissue. d. Linear regression models to predict the mis-splicing rates at the 5’ss and 3’ss of the
annotated introns in samples from frontal cortex brain tissue. P-values were corrected for multiple testing using
the Benjamini-Hochberg method, resulting in q-values. Grey values represent non-significant q-values.
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Fig. 5. Mis-splicing rates vary across tissues and it could be explained by variable RNA-binding protein
(RBP) expression. a. Prediction of the mis-splicing rates at the 5’ss of the introns studied across 42 body sites.
Every boxplot contains 42 beta estimate values. b. Prediction of the mis-splicing rates at the 3’ss of the introns
studied across 42 body sites. Every boxplot contains 42 beta estimate values. c. Probability of superior
mis-splicing rates at the 5’ss and 3’ss of the annotated introns in samples with the shRNA knockdown of each
gene as compared to untreated samples. The top heatmap track contains the knockdown efficiency of the
associated protein. Grey values represent no available data for the knockdown efficiency of the associated
protein.
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Fig. 6. shRNA knockdown of U2AF2 and AQR produces different patterns of mis-splicing distribution. a.
Distances lying between the novel 3’ss of each novel acceptor junction and their annotated pairs in samples with
the shRNA knockdown of the U2AF2 and AQR genes, respectively, as compared to untreated controls. b. MES
Delta scores between the scores assigned to the 23-bp sequence located at the 3’ss of the annotated introns and
their novel acceptor pairs in samples with the shRNA knockdown of the U2AF2 and AQR genes, respectively, as
compared to untreated controls. Dashed vertical lines represent the median value of each distribution. c.
Distances lying between the novel 3’ss of each novel acceptor junction and their annotated pairs in samples with
the shRNA knockdown of the AQR gene and compared to untreated samples up to a distance of 200 bp.
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Fig. 7. Mis-splicing increases with age and affects genes involved in neuronal function. a. Probability of
superior mis-splicing rates at the 5’ss and 3’ss of the annotated introns in samples from donors aged between
60-79 years-old as compared to 20-39 yrs. b. GO and KEGG enrichment analysis of the genes containing introns
with increasing levels of mis-splicing rates with age (i.e. 20-39yrs < 60-79yrs) at their 5’ss and/or 3’ss in samples
from brain tissues. c. Cell-type specific expression of 111 splicing-regulator and spliceosomal RBPs (Van
Nostrand et al. 2020) in cell types derived from multiple cortical regions of the human brain (Shen et al. 2012).
The cell type annotations used correspond to 7 subtypes of glutamatergic neurons, 5 subtypes of GABAergic
neurons, Astrocyte, Microglia, Oligodendrocyte, OPC, and vascular cell (Endothelial, Pericyte and, VLMC) as
non-neuronal cell types. The dashed grey horizontal lines represent the minimum level of significance, with dots
displayed above the line showing significant specific expression for a given cell type. P-values were corrected for
multiple testing using the Benjamini-Hochberg method, resulting in q-values.
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Extended Data Figures

Extended Data Fig. 1: Generation of the Splicing database. a. Overview of the quality-control steps applied to
the dataset of exon-exon junctions provided by IntroVerse to produce the Splicing database. b. SQL schema of
the Splicing database.
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Extended Data Fig. 2: Contamination rates in Ensembl v97 as compared to Ensembl v105 in samples
from the frontal cortex brain tissue. Each point represents the percentage of novel junctions in each Ensembl
version (x-axis) that entered annotation as annotated introns in Ensembl v105 (2021).
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Extended Data Fig 3: Comparison of the MES scores assigned to the donor and acceptor splice sites of
the annotated introns compared to the MES scores assigned to donor and acceptor splice sites of their
paired novel junctions. a. MaxEntScan scores assigned to the donor splice site (i.e. 5’ss) of all novel donor
junctions found across all tissues (in orange) and compared with the MES scores assigned to the annotated
donor splice site of their linked annotated introns (in dark pink). b. MaxEntScan scores assigned to the acceptor
splice site (i.e. 3’ss) of all novel acceptor junctions found across all tissues (in dark blue) and compared with the
MES scores assigned to the annotated acceptor splice site of their linked annotated introns (in dark pink).
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Extended Data Fig 4: Mean read coverage of the annotated introns found across the samples of the
frontal cortex brain tissue. a. Mean read coverage of the annotated introns from non-protein-coding transcripts
compared to annotated introns from protein-coding transcripts (PC) before subsampling by mean read coverage
similarity. Data from frontal cortex brain tissue. Only annotated introns presenting a maximum difference of 0.005
in their mean read coverage between the two data sets were considered, paired and kept for downstream
analyses. b. Mean read coverage of the annotated introns from non-protein-coding transcripts (non PC)
compared to protein-coding transcripts (PC) after subsampling by mean read coverage similarity. Data from
frontal cortex brain tissue. Only annotated introns presenting a maximum difference of 0.005 in their mean read
coverage between the two data sets were considered, paired and kept for downstream analyses.
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Extended Data Fig. 5: Mean read coverage of the annotated introns from “Skin non-sun-exposed” and
“Skin sun-exposed” tissue before and after subsampling them by mean read coverage. a. Mean read
coverage of the annotated introns from “Skin non-sun-exposed” tissue versus the annotated introns from “Skin
sun-exposed” tissue before subsampling both distributions to meet for mean read coverage similarity. Only
annotated introns showing a maximum difference of 0.005 in their mean read coverage between the two tissues
were paired and kept for downstream analyses. b. Mean read coverage of the annotated introns from “Skin
non-sun-exposed” tissue versus the annotated introns from “Skin sun-exposed” tissue after subsampling and
pairing them by mean read coverage similarity. Only annotated introns showing a maximum difference of 0.005 in
their mean read coverage between the two tissues were paired and kept for downstream analyses.
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Extended Data Fig. 6: Median expression level of 98 RBPs in 42 GTEx body sites. Log fold-change median
expression level of 98 splicing-regulator RBPs defined by Van Nostrand et al. 2020 across the samples of each
one of the 42 GTEx body sites studied.
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Extended Data Fig. 7: Metadata of the samples included in the “Age Stratification” intron database. All
samples considered had been selected after subsampling and balancing them to meet by RIN number similarity
across the three age groups.
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Extended Data Fig. 8: SQL schema of the “Age Stratification” intron database. To facilitate the visualisation
of the database structure, only tables from the brain body site are shown.
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Extended Data Fig. 9: Cell-type specific expression of 98 splicing-regulator and 35 spliceosomal RBPs,
defined by Van Nostrand et al. 2020, in multiple cortical regions from the human brain. The cell type
annotations used correspond to the original clusters defined by the Allen Brain Atlas (Shen et al. 2012). The
dashed grey vertical lines represent the minimum level of significance, with dots displayed on the right of the
dashed line showing a significant expression for a given cell type. P-values were corrected for multiple testing
using the Benjamini-Hochberg method, resulting in q-values.

41

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2023. ; https://doi.org/10.1101/2023.03.29.534370doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.29.534370
http://creativecommons.org/licenses/by/4.0/


Extended Data Fig. 10: Overview of the implied intron length of the dataset of annotated and novel split
reads studied. Distribution of the implied intron length corresponding to all novel donor and novel acceptor split
reads studied (represented in green) compared to the implied intron length of the annotated split reads (in
brown).
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Supplementary Figures

Supplementary Fig. 1: Median expression level of 35 RBPs in 42 GTEx body sites. Log fold-change median
expression level of 35 spliceosome RBPs defined by Van Nostrand et al. 2020 across the samples of each one of
the 42 GTEx body sites studied.
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Supplementary Fig. 2: Median expression level of 5 RBPs in 42 GTEx body sites. Log fold-change median
expression level of 5 exon-junction complex RBPs defined by Van Nostrand et al. 2020 across the samples of
each one of the 42 GTEx body sites studied.

44

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2023. ; https://doi.org/10.1101/2023.03.29.534370doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.29.534370
http://creativecommons.org/licenses/by/4.0/


Abbreviations

Term Description

5’ss Donor splice site.

3’ss Acceptor slice site.

AGEZ AG Exclusion Zone.

bp Base pair.

BP Branch Point .

CDTS Context-dependent tolerance score. It

represents a measure of DNA sequence

constraint in humans66.

effsize Probability of superior outcome between two

compared groups101. It represents the

probability that a randomly selected

observation from group A will have a higher

score than a randomly selected observation

from group B. Unlike p-values, effect sizes are

independent of the sample size.

FCTX Frontal cortex brain tissue.

GO Gene Ontology enrichment analysis.

GTEx v8 Genotype-Tissue Expression (GTEx) v8 project44

(https://gtexportal.org/home/tissueSummaryPa

ge).

IQR Interquartile range.

KEGG Kyoto Encyclopedia of Genes and Genomes

MES Maximum Entropy Scan score,

http://hollywood.mit.edu/burgelab/maxent/Xm

axentscan_scoreseq.html

mod3 Modulo3 of a distance in base pairs. The

modulo3 was calculated by dividing a distance

figure in base pairs by 3 and obtaining the

remainder of this division. mod3=0 reflects that

the division by 3 has been exact; mod3=1
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reflects that the division by 3 has produced

value 1 as remainder; mod3=2 reflects that the

division by 3 has produced value 2 as

remainder.

mRNA Messenger RNA

𝑀𝑆𝑅
𝐷

Mis-splicing Ratio calculated at the 5’ss (donor

splice site) of a given annotated intron.

𝑀𝑆𝑅
𝐴

Mis-splicing Ratio calculated at the 3’ss

(acceptor splice site) of a given annotated

intron.

NMD Nonsense-mediated decay pathway.

phastCons20 The mean interspecies conservation score

across for 20 alignments (human, 16 primates,

dog, mouse and tree shrew) to the human

genome of the proximal intronic sequences

(-5/+35bp, -35/+5bp, ‘/’ meaning exon-intron

junction) tested.

http://hgdownload.cse.ucsc.edu/goldenPath/hg

38/phastCons20way/

PPT Polypyrimidine Tract.

pre-mRNA Messenger RNA precursor.

q FDR-adjusted p-value. The False Discovery Rate

(FDR) multiple testing adjustment method102

was formally described by Yoav Benjamini and

Yosef Hochberg (i.e. Benjamini-Hochberg

method) in 1995.

RBP RNA-binding Protein.

shRNA Short Hairpin RNA.

TPM Transcripts Per Million.

V V-statistic produced by a paired Wilcoxon rank

sum test with continuity correction.
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