

1 Nightmare or delight: taxonomic circumscription meets reticulate evolution in the phylogenomic
2 era

3 Ze-Tao Jin^{a,b,c}, Richard G.J. Hodel^d, Dai-Kun Ma^{b,c}, Hui Wang^{b,c,e}, Guang-Ning Liu^c, Chen Ren^f,
4 Bin-Jie Ge^g, Qiang Fan^h, Shui-Hu Jin^e, Chao Xu^{b,c}, Jun Wu^a, Bin-Bin Liu^{b,c};
5

6 ^a *State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of
7 Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China;*

8 ^b *State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese
9 Academy of Sciences, Beijing, Beijing 100093, China;*

10 ^c *China National Botanical Garden, Beijing, Beijing 100093, China;*

11 ^d *Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington,
12 DC 20013-7012, USA;*

13 ^e *College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou,
14 Zhejiang 311300, China;*

15 ^f *Key Laboratory of Plant Resources Conservation and Sustainable Utilization & Guangdong
16 Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of
17 Sciences, Guangzhou, Guangdong 510650, China;*

18 ^g *Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai Chenshan
19 Botanical Garden, Shanghai, Shanghai 201602, China;*

20 ^h *State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant
21 Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China*

22

23 Ze-Tao Jin, Richard G.J. Hodel, and Dai-Kun Ma contributed equally to this article.

24

* Corresponding author.

E-mail addresses: liubinbin@ibcas.ac.cn (B.B. Liu).

25 **Abstract**

26 Phylogenetic studies in the phylogenomics era have demonstrated that reticulate evolution greatly
27 impedes the accuracy of phylogenetic inference, and consequently can obscure taxonomic
28 treatments. However, the systematics community lacks a broadly applicable strategy for taxonomic
29 delimitation in groups identified to have pervasive reticulate evolution. The red-fruit genus,
30 *Stranvaesia*, provides an ideal model for testing the effect of reticulation on generic circumscription
31 when hybridization and allopolyploidy define a group's evolutionary history. Here, we conducted
32 phylogenomic analyses integrating data from hundreds of single-copy nuclear (SCN) genes and
33 plastomes, and interrogated nuclear paralogs to clarify the inter/intra-generic relationship of
34 *Stranvaesia* and its allies in the framework of Maleae. Analyses of phylogenomic discord and
35 phylogenetic networks showed that allopolyploidization and introgression promoted the origin and
36 diversification of the *Stranvaesia* clade, a conclusion further bolstered by cytonuclear and gene tree
37 discordance. The well-inferred phylogenetic backbone revealed an updated generic delimitation of
38 *Stranvaesia* and a new genus, *Weniomeles*, characterized by purple-black fruits, trunk and/or
39 branches with thorns, and fruit core with multilocular separated by a layer of sclereids and a cluster
40 of sclereids at the top of the locules. Here, we highlight a broadly-applicable workflow for inferring
41 how analyses of reticulate evolution in phylogenomic data can directly shape taxonomic revisions.

42

43 *Keywords:* ancient hybridization; allopolyploidization; paralogs; *Stranvaesia*; Rosaceae;
44 *Weniomeles*

45

46 **1. Introduction**

47 Evolutionary biologists have aimed to reconstruct phylogenetic relationships between organisms using
48 multiple lines of evidence, such as phenotypic and molecular characters (Mindell, 2013). Historically,
49 bifurcating phylogenetic trees have been the most tractable model for representing the evolutionary
50 histories of large taxonomic groups (Huson and Bryant, 2006; Mindell, 2013), with monophyly widely
51 accepted as the gold standard for defining groups of taxa. Phylogenetic and phylogenomic data have
52 been widely used to infer phylogeny among species, make taxonomic revisions, and understand the
53 origin of life. Although phylogenetic trees are suitable for reflecting speciation, the strict bifurcating
54 structure of trees limits their use in describing more complex evolutionary scenarios, such as
55 hybridization, incomplete lineage sorting (ILS), and/or allopolyploidy (Huson and Scornavacca, 2011;
56 Morrison, 2014). Increasing evidence has shown that reticulate processes such as hybridization and
57 polyploidization promoted the diversification of many lineages, particularly angiosperms (Mallet,
58 2005; Rothfels, 2021), e.g., nearly one-third of extant vascular plants are estimated to be of polyploid
59 origin (Wood et al., 2009). The genomic age has made it clear that reticulate evolution is pervasive in
60 the tree of life, and a strictly bifurcating phylogeny is rarely the best representation of evolution
61 (Morales-Briones et al., 2021; Cooper et al., 2022; Debray et al., 2022; Smith et al., 2022; Zhao et al.,
62 2022). Many different taxonomic hierarchies have been rearranged in the past decades as we have
63 gained access to more genomic data and inference methods, such as for the flowering plants (APG:
64 Byng et al., 2016), pteridophytes (PPG: Schuettpelz et al., 2016), birds (Jarvis et al., 2014), and

65 mammals (Upham et al., 2019).

66 Phylogenetic networks are an excellent method for representing reticulate evolutionary processes
67 (Debray et al., 2022); this method differs from bifurcating phylogenetic trees by modeling numerous
68 linked networks, and adding hybrid nodes (nodes with two parents) instead of allowing only nodes with
69 a single ancestor (Arenas et al., 2008). The development of related tools for evolutionary network
70 reconstruction has also greatly facilitated their wide use in recent studies of evolution (Huson and
71 Bryant, 2006; Schliep et al., 2017; Solís-Lemus et al., 2017). However, the downstream impact of
72 modeling hybridization and other reticulate processes on taxonomic treatments is understudied, and
73 further investigation of the impact of reticulate evolution on taxonomy is needed. Additional study of
74 angiosperms, and other clades with histories of frequent reticulation, are needed to characterize the
75 strengths and limitations of these approaches when using phylogenomic datasets. Furthermore, the
76 implications of how diagnosing and quantifying reticulate evolution impact systematic and taxonomic
77 revisions need further study in the phylogenomic age.

78 One clade characterized by both reticulate evolution and taxonomic uncertainty, *Stranvaesia*
79 Lindl., is placed in the Rosaceae, a plant family with extensive whole genome duplication (WGD,
80 Xiang et al., 2017; Morales-Briones et al., 2021) and hybridization events (Liu et al., 2019, 2020a,
81 2020b, 2022; Hodel et al., 2021; Su et al., 2021). Robertson et al. (1991) summarized the intergeneric
82 hybrids in the apple tribe Maleae (formerly as subfamily Maloideae; his Fig. 1), and nearly 15 out of 24
83 genera have been involved in hybridization. A recent phylogenomic study (Hodel et al., 2021)
84 successfully explained the observed conflict in the peach subfamily, and elucidated the hybrid origin of

85 the Maleae-Gillenieae clade (i.e., the wide hybridization hypothesis between distantly related tribes in
86 the subfamily Amygdaloideae) using phylogenetic network analyses. Moreover, their study also
87 detected the pervasive nuclear gene tree-species tree conflict and/or cytonuclear conflict in the
88 subfamily Amygdaloideae of Rosaceae. These frequent reticulation events in Maleae obscure
89 diagnostic characters among genera and present significant challenges to generic circumscription.
90 Historically, *Stranvaesia* has been either treated as a separate genus (Roemer, 1847; Decaisne, 1874;
91 Wenzig, 1883; Focke, 1888; Koehne, 1890, 1891; Rehder, 1940, 1949; Yu and Ku, 1974; Lu and
92 Spongberg, 2003) or merged into *Photinia* Lindl. (Lu et al., 1990, 1991; Li et al., 1992; Zhang, 1992).
93 The red-fruit genus *Stranvaesia* and its allies thus represent a good case study for exploring the
94 taxonomic treatment of a lineage with frequent hybridization and/or allo/autopolyploidy.

95 Traditionally, phylogenetic analyses use fragments of certain plastid and/or nuclear genes to
96 reconstruct phylogenies, but these trees often reflect the history of a subset of genes rather than the
97 history of the species (Zou and Ge, 2008). Phylogenomic approaches pave a promising path for
98 utilizing genomic data to clarify relationships between species, infer rapid radiations and hybridization
99 events in diverse lineages, and reconstruct the evolutionary history of organisms (Wen et al., 2013,
100 2017; Wickett et al., 2014). For example, Deep Genome Skimming (DGS, Liu et al., 2021) has often
101 been used to target the high-copy fractions of genomes (Straub et al., 2012; Zimmer and Wen, 2015),
102 including plastomes, mitochondrial genomes (mitogenomes), and nuclear ribosomal DNA (nrDNA)
103 repeats, as well as single-copy nuclear genes (SCNs). Genome-level datasets often result in
104 phylogenies, which even when strongly supported, have extensive underlying conflict, suggesting that

105 in many cases, a network approach may better reflect true evolutionary relationships (Solís-Lemus et
106 al., 2017; Wen et al., 2018). Liu et al. (2022) proposed a general procedure for inferring phylogeny and
107 untangling the causes of gene tree and cytonuclear conflict; this pipeline can integrate multiple sources
108 of sequencing data previously sequenced for one study, e.g., transcriptomic (RNA-Seq), genome
109 resequencing (WGS), target enrichment (Hyb-Seq), and DGS data. Recently, more pipelines have also
110 been proposed for modeling reticulate evolution and explicitly incorporating it into phylogenomic
111 studies (Rose et al., 2020; Debray et al., 2022). However, in the phylogenomic era, taxonomic
112 circumscription and the subsequent consequences on nomenclature have not been thoroughly
113 investigated in lineages with frequent reticulation, such as hybridization and allopolyploidization
114 events. This study aims to develop a pipeline for making robust taxonomic delimitations with guidance
115 from phylogenetic network results. Here, using the red-fruit genus *Stranvaesia* as a test case, we
116 propose a workflow that explicitly considers reticulate evolution in the taxon delimitation process. This
117 workflow is demonstrated using data from *Stranvaesia* and its relatives to show its broad applicability
118 across the Tree of Life (ToL).

119 **2. Materials and Methods**

120 *2.1. Taxon sampling, DNA extraction, and sequencing*

121 To clarify the phylogenetic placement and generic circumstance of *Stranvaesia*, we obtained a
122 comprehensive taxon sampling of *Stranvaesia* and its allies in the framework of Maleae. All six
123 individuals representing three species recognized in the redefined *Stranvaesia* (Liu et al., 2019) were

124 sampled in this study; they were *S. bodinieri*, *S. nussia*, and *S. oblanceolata*. Because of the ambiguous
125 phylogenetic relationship between *Stranvaesia* and *Photinia*, we also sampled 19 individuals in
126 *Photinia*, representing 16 species out of 20 species currently recognized (Yu and Ku, 1974; Lu and
127 Spongberg, 2003). Additionally, 41 species representing 22 genera have been selected as the outgroup,
128 including 21 genera of Maleae and one genus of Gillenieae (*Gillenia stipulata* (Muhl. ex Willd.) Nutt.).
129 A total of 66 individuals were sampled in our study; 23 of them were sequenced for this study, 21 were
130 from our previous study (Liu et al., 2022), and 22 were downloaded from NCBI. The raw data of these
131 newly sequenced samples were uploaded to Sequence Read Archive (BioProject PRJNA859408). The
132 corresponding accession numbers and voucher information are provided in Table S1

133 Total genomic DNAs were extracted from silica-gel dried leaves or herbarium specimens using a
134 modified CTAB (mCTAB) method (Li et al., 2013) in the lab of the Institute of Botany, Chinese
135 Academy of Science (IBCAS) in China. The libraries were prepared in the lab of Novogene, Beijing,
136 China using NEBNext® UltraTM II DNA Library Prep Kit, and then paired-end reads of 2 × 150 bp
137 were generated on the NovoSeq 6000 Sequencing System (Novogene, Beijing) with the sequencing
138 depth up to 15.2×.

139

140 2.2. Single-copy nuclear marker development

141 SCN marker development followed the pipeline presented in Liu et al. (2021). Briefly, the coding
142 regions of three genomes retrieved from GenBank (*Malus domestica* (Suckow) Borkh., accession
143 number: GCF_002114115.1; *Prunus persica* (L.) Batsch, accession number: GCA_000346465.2; and

144 *Pyrus ussuriensis* Maxim. \times *Pyrus communis* L., accession number: GCA_008932095.1) were inputted
145 into MarkerMiner v. 1.0 (Chamala et al., 2015) to identify the putative single-copy genes. The resulting
146 genes were then filtered by successively BLASTing (Altschul et al., 1990, 1997; Camacho et al., 2009)
147 against ten genomes of the family, viz., *Cydonia oblonga* Mill. (accession number:
148 GCA_015708375.1), *Dryas drummondii* Richardson ex Hook. (accession number:
149 GCA_003254865.1), *Fragaria vesca* L. (accession number: GCF_000184155.1), *Geum urbanum* L.
150 (accession number: GCA_900236755.1), *Gillenia trifoliata* (L.) Moench (accession number:
151 GCA_018257905.1), *Malus domestica* (accession number: GCF_002114115.1), *Prunus persica*
152 (accession number: GCF_000346465.2), *Purshia tridentata* (Pursh) DC. (accession number:
153 GCA_003254885.1), *Pyrus ussuriensis* \times *P. communis* (accession number: GCA_008932095.1), and
154 *Rosa chinensis* Jacq. (accession number: GCF_002994745.2) using Geneious Prime (Kearse et al.,
155 2012), with the parameters settings in the Megablast program (Morgulis et al., 2008) as a maximum of
156 60 hits, a maximum E-value of 1×10^{-10} , a linear gap cost, a word size of 28, and scores of 1 for match
157 and -2 for mismatch in alignments. We first excluded genes with mean coverage > 1.1 for alignments,
158 which indicated potential paralogy and/or the presence of highly repeated elements in the sequences.
159 The remaining alignments were further visually examined to exclude those genes receiving multiple
160 hits with long overlapping but different sequences during BLASTing. It should be noted that the
161 alignments with mean coverage between 1.0 and 1.1 were typically caused by tiny pieces of flanking
162 intron sequences in the alignments. These fragments were considered SCN genes here. The resulting
163 SCN gene reference is available from the Dryad Digital Repository:

164 <https://doi.org/10.5061/dryad.hx3ffbghm>.

165

166 *2.3. Reads processing and assembly*

167 We processed the raw reads by trimming low-quality bases and sequence adapters using

168 Trimmomatic v. 0.39 (Bolger et al., 2014), with the average quality per base of a four-base sliding

169 window below 15, and reads less than 36 bases removed. Adapters from the deep genome skimming

170 (DGS) and genome resequencing (WGS) data were removed with TruSeq3-PE.fa as input adapter

171 sequences, and those in the transcriptome (RNA-Seq) data were removed with NexteraPE-PE.fa

172 (available from <https://github.com/usadellab/Trimmomatic/tree/main/adapters>). The trimmed data were

173 then checked with FastQC v. 0.11.9 (Andrews, 2018) to ensure that all adapters were removed and

174 qualified for downstream analysis. The sequencing depth averaged 17.2 \times , assuming an estimated

175 genome size of around 750 Mb based on *Malus domestica* genome (Table S1).

176 Plastome assembly followed a two-step strategy proposed by Liu et al. (2019), integrating

177 NOVOPlasty 3.6 (Dierckxsens et al., 2016) and a successive method (Zhang et al., 2015). The latter

178 method combined mapping-based and de novo assembly, and can handle any amount of data to obtain

179 high-quality plastomes. We generated 66 complete chloroplast genomes, 23 of which were newly

180 assembled for this study, and the remaining 43 were downloaded from NCBI. The circularized

181 plastomes were annotated using Geneious Prime (Kearse et al., 2012) with *Photinia prunifolia* (Hook.

182 & Arn.) Lindl. (GenBank accession number MK920279) downloaded from NCBI as the reference for

183 *Photinia* and *Stranvaesia nussia* (GenBank accession number MK920284) for *Stranvaesia*. We then

184 manually checked each coding gene's start and stop codon in all chloroplast genomes and removed
185 incorrect annotations by translating the sequences into proteins. The final assembled chloroplast
186 genome was converted into the format required by GenBank using GB2sequin (Lehwark and Greiner,
187 2019), and then submitted to NCBI with the corresponding accession number listed in Table S1.

188 We utilized the 'hybpiper assemble' command of HybPiper v. 2.0.1 (Johnson et al., 2016) to
189 assemble the single-copy nuclear locus of each sample with the parameter "--cov_cutoff 5" based on
190 the SCN gene reference mentioned above. We then summarized and visualized the recovery efficiency
191 using the 'hybpiper stats' and 'hybpiper recovery_heatmap' commands. Because paralogous genes may
192 impact phylogenetic inference, especially in groups with prevalent reticulate evolution, we performed a
193 paralogous genes search using the post-processing command 'hybpiper paralog_retriever' in HybPiper
194 v. 2.0.1 (Johnson et al., 2016) and used the genes without paralog warnings in the subsequent
195 phylogenetic analyses. Due to differences in sequence recovery efficiency among samples because of
196 uneven sequencing coverage in this study, we followed Liu et al. (2022)'s pipeline to further process
197 the assembled SCN genes to remove outlier loci and short sequences, and to account for missing data.
198 Briefly, each SCN gene was aligned by MAFFT v. 7.480 (Nakamura et al., 2018) and clipped by
199 trimAL v. 1.2 (Capella-Gutiérrez et al., 2009) to remove aligned columns with gaps in more than 20%
200 of the sequences and retain sequences with average similarity more than 99.9%. The resulting SCN
201 genes were then concatenated using AMAS v. 1.0 (Borowiec, 2016), and the concatenated genes were
202 then used as input to run Spruceup (Borowiec, 2019) for removing outlier sequences. We also used
203 AMAS v. 1.0 (Borowiec, 2016) to split the processed alignment back into single SCN gene alignments

204 and retrimmed these alignments using trimAL v. 1.2 (Capella-Gutiérrez et al., 2009) with the same
205 parameters as above. Given the potentially limited informativeness in short sequences, we keep the
206 aligned sequences with more than 250 bp length for downstream analysis using a python script
207 (`exclude_short_sequences.py`, Liu et al., 2022). To remove possible erroneous sequences in the
208 alignments, we used TreeShrink v. 1.3.9 (Mai and Mirarab, 2018) to detect and remove outlier tips with
209 abnormally long branches in each SCN gene tree. The following phylogenetic analysis is based on
210 these shrunk trees and sequences.

211

212 2.4. Phylogenetic analyses

213 We inferred the phylogenetic relationships of *Stranvaesia* in the context of Maleae using two sets
214 of data, i.e., nuclear SCN genes and plastid coding sequences (CDSs). In this study, both concatenated
215 and coalescent-based methods were carried out on each data type. All 78 plastid CDSs were extracted
216 from 66 plastomes using Geneious Prime (Kearse et al., 2012). They were aligned by MAFFT v. 7.475
217 (Nakamura et al., 2018) independently with the “--auto” option and then concatenated by AMAS v. 1.0
218 (Borowiec, 2016). The best-fit partitioning schemes and/or nucleotide substitution models for
219 downstream analysis were searched using PartitionFinder2 (Stamatakis, 2006; Lanfear et al., 2016),
220 with parameters set to linked branch lengths, Corrected Akaike Information Criterion (AICc) and
221 greedy (Lanfear et al., 2012) algorithm. We first estimated a maximum likelihood (ML) tree with IQ-
222 TREE2 v. 2.1.3 (Minh et al., 2020) with 1000 SH-aLRT and the ultrafast bootstrap replicates, as well as
223 collapsing near zero branches option using the best partitioning schemes and nucleotide substitution

224 models inferred above. An alternative ML tree was inferred using RAxML 8.2.12 (Stamatakis, 2014)
225 with the GTRGAMMA model for each partition and clade support assessed with 200 rapid bootstrap
226 (BS) replicates. Considering possible conflict in evolutionary history among plastid genes, we
227 estimated a coalescent-based species tree based on the 78 plastid CDSs. We inferred individual ML
228 gene tree using RAxML with a GTRGAMMA model, and 200 BS replicates to assess clade support.
229 After collapsing branches with support below 10 using *phyx* (Brown et al., 2017), all 78 gene trees
230 were then used to estimate a species tree using ASTRAL-III (Zhang et al., 2018) with local posterior
231 probabilities (LPP; Sayyari and Mirarab, 2016) to assess clade support. These three trees are available
232 from the Dryad Digital Repository: <https://doi.org/10.5061/dryad.hx3ffbghm>.

233 For the nuclear phylogenetic inference, we concatenated all the previously shrunk SCNs
234 sequences with AMAS v. 1.0 (Borowiec, 2016), then used PartitionFinder2 (Stamatakis, 2006; Lanfear
235 et al., 2016) to estimate the best-fit partitioning schemes and/or nucleotide substitution models under
236 the corrected Akaike information criterion (AICc) and linked branch lengths, as well as with the
237 rcluster algorithm (Lanfear et al., 2014). As described above in the plastid phylogenetic analysis, ML
238 trees were estimated by IQ-TREE2 v. 2.1.3 (Minh et al., 2020) with 1000 SH-aLRT using UFBoot2 and
239 collapsing near zero branches option and RAxML 8.2.12 (Stamatakis, 2014) with GTRGAMMA model
240 for each partition and clade support assessed with 200 rapid bootstrap (BS) replicates. Individual ML
241 gene tree were inferred using RAxML with a GTRGAMMA model, and 200 BS replicates to assess
242 clade support. To decrease the systematic error from low-supported clades, we used *phyx* (Brown et al.,
243 2017) to collapse the branches of these shrunk SCN gene trees with support below 10. The processed

244 trees were then used to estimate a coalescent-based species tree with ASTRAL-III (Zhang et al., 2018)
245 using local posterior probabilities (LPP) to assess clade support. These three trees are available from
246 the Dryad Digital Repository: <https://doi.org/10.5061/dryad.hx3ffbghm>.

247

248 *2.5. Detecting and visualizing nuclear gene tree discordance*

249 Due to the gene tree discordance detected in the inferred phylogeny, we used *phyparts* (Smith et
250 al., 2015) and Quartet Sampling (QS: Pease et al., 2018) to evaluate gene tree conflict in the nuclear
251 datasets. By comparing the gene trees against the ML tree inferred from RAxML, *phyparts* can count
252 the number of concordant and conflicting gene trees at each node of the RAxML tree and yield an
253 Internode Certainty (ICA) score reflecting the degree of conflict. This analysis treated the branch/nodes
254 bootstrap support (BS) of the gene tree inferred from RAxML lower than 50% as uninformative,
255 ignoring such genes. The result of *phyparts* was visualized as pie charts with *phypartspiecharts.py* (by
256 Matt Johnson, available from
257 <https://github.com/mossmatters/MJPythonNotebooks/blob/master/phypartspiecharts.py>). Based on
258 repeated subsampling of quartets from the input tree and alignment to generate counts of the three
259 possible topologies (and uninformative replicates) and calculate the confidence, consistency, and
260 informativeness of each internal branch, QS analysis can better address phylogenetic discordance with
261 comprehensive and specific information on branch support. Therefore, QS analysis was used to
262 evaluate gene tree conflict with paraments set to 100 replicates and the log-likelihood threshold of 2;
263 this can gather more information on these strongly discordant nodes shown in *phyparts*. The QS result

264 was visualized with plot_QC_ggtree.R (by Shuiyin Liu, available from

265 https://github.com/ShuiyinLIU/QS_visualization).

266

267 *2.6. Network analyses and allopolyploidy analyses*

268 Due to frequent hybridization events and rapid radiation that characterize the Maleae, we used the

269 phylogenomic network method SNaQ, which is implemented in PhyloNetworks (Solís-Lemus et al.,

270 2017), to identify reticulation events, which may explain discordance between the nuclear tree and

271 plastid tree within *Stranvaesia*. SNaQ identifies possible hybridization events and calculates the

272 inheritance probabilities γ and $1-\gamma$ representing the transmission of genetic material from two parental

273 lineages to the hybrid. The optimal number of hybridization events is determined based on a

274 pseudolikelihood method. Because of decreasing computational tractability as more species are

275 included, we sampled 12 individuals for use in the SNaQ analysis, consisting of four *Stranvaesia*

276 samples and eight representatives from closely related lineages in Maleae. This sampling strategy

277 covered all potential maternal and paternal lineages of *Stranvaesia*. The quartet concordance factors

278 (CFs) represent the proportion of genes supporting each possible relationship with a given quartet

279 (Larget et al., 2010), and we summarized the CFs based on all 611 nuclear SCN gene trees estimated

280 from RAxML 8.2.12 (Stamatakis, 2014). The species tree estimated with ASTRAL-III (Zhang et al.,

281 2018) was used to generate an optimal starting SNaQ network with no hybridization edges ($h_{max} = 0$).

282 The best network ($h_{max} = 0$) and the CFs were used to estimate the next optimal network ($h_{max} = 1$), and

283 the resulting network was used to estimate the next optimal network ($h_{max} = 2$), and so on. We

284 constructed six optimal networks using h_{max} values ranging from 0 to 5 with 50 independent runs for
285 each h_{max} . The pseudo-deviance score estimated from each run's branch lengths and inheritance
286 probabilities can be used to select the optimal phylogenetic network, with lower pseudo-deviance
287 scores indicating a better fit (Solís-Lemus et al., 2017). We plotted h_{max} (0 to 5) against the log-
288 likelihood score (i.e., network score) of the optimal network for each h_{max} value to assess the optimal
289 number of hybridization edges. Plotting the decrease in the pseudo-deviance score and observing a
290 leveling-off in the rate of change was used to determine the optimal h_{max} value.

291 GRAMPA utilizes the least common ancestor (LCA) mapping algorithm and the representation of
292 multi-labeled trees (MUL-trees) to identify the most probable clade with a polyploid origin. In the
293 absence of polyploidy, a singly-labeled tree would be more parsimonious than any MUL-tree. If a
294 MUL-tree is most parsimonious, the parental lineage(s) involved in a genome doubling event can be
295 inferred from the most parsimonious MUL-tree. Due to frequently reported polyploidy events in some
296 genera in Maleae (Robertson et al., 1991; Liu et al., 2022), we ran the GRAMPA (Thomas et al., 2017)
297 analysis to identify possible allopolyploid and/or autoploid scenarios involved in the origin of the
298 *Stranvaesia* clade. We tested if the *Stranvaesia* clade was a result of allopolyploidization (“-h1”
299 inputs), with the remaining nodes investigated as potential secondary parental branches (“-h2” inputs).
300

301 *2.7. Dating analysis and ancestral area reconstruction*

302 We estimated the divergence age and the ancestral areas of *Stranvaesia* in the framework of
303 Maleae using the nuclear SCN datasets. Divergence times were estimated using treePL (Smith and

304 O'Meara, 2012), which uses a penalized likelihood algorithm. The treePL program is suitable for
305 dealing with large datasets with hundreds of taxa by combining two rounds of gradient-based
306 optimization and a partial simulated annealing procedure to achieve speed optimization as well as avoid
307 issues with local optima. We used the best ML tree inferred from RAxML based on the 426 nuclear
308 SCN gene matrix as the phylogenetic backbone for the dating analysis.

309 A data-driven cross-validation analysis was carried out in treePL (Smith and O'Meara, 2012) to
310 acquire the optimal value for smoothing parameter λ , which determines the appropriate level of rate
311 heterogeneity. We tested 19 smoothing values in multiples of 10 from 1×10^{-12} to 1×10^6 and used $1 \times$
312 10^{-10} as the best smoothing values for the following dating analysis. Fossils of *Amelanchier peritula*
313 and *A. scudderri* have been discovered in the Florissant Formation, Colorado, USA, and they were dated
314 to Chadronian in Late Eocene (37.2-33.9 million years ago [Ma]). We thus set the stem *Amelanchier*
315 Medik. with a minimum age of 33.9 Ma and a maximum age of 37.2 Ma. The leaf fossil of *Vauquelinia*
316 *comptonifolia* from Green River Formation, Colorado, USA has been dated to Eocene (MacGinitie,
317 1969). We constrained this leaf fossil to 40.4 (the minimum age) and 46.2 Ma (the maximum age).
318 Additionally, a leaf fossil of *Malus* or *Pyrus* from the Republic site, Washington was used to constrain
319 the divergence between *Malus* and *Pyrus* at 46 (the maximum age)-44 (the minimum age) Ma
320 (MacGinitie, 1969). The minimum and maximum ages of the stem of *Gillenia* Moench were
321 constrained to 53.3 and 58.7 Ma, respectively (Zhang et al., 2017). The nuclear phylogeny inferred
322 from RAxML 8.2.12 (Stamatakis, 2014) was applied to construct all dated bootstrap time trees in
323 treePL (Smith and O'Meara, 2012). The resulting dated bootstrap time trees were then used to generate

324 maximum credibility trees in TreeAnnotator v1.10 implemented in BEAST2 (Bouckaert et al., 2014),
325 and the dated best time tree with confidence age intervals was visualized in FigTree v1.4.4.

326 Biogeographic analyses were conducted using the SCN data as input for BioGeoBEARS v. 1.1.1
327 (Matzke, 2018) implemented in RASP v. 4.2 (Yu et al., 2015). We delimit five geographical area units
328 according to the distribution of Maleae: (A), East Asia; (B), Europe; (C), Central Asia; (D), North
329 America; (E), South America. The dated best time tree summarized above by TreeAnnotator was used
330 as input to score each taxon to these areas, and the maximum number of areas per node was set to five.
331 We chose the model with the highest AICc_wt value as the best model.

332 **3. Results**

333 *3.1. Single-copy nuclear genes assembly*

334 We filtered a set of 801 SCN genes from thirteen genomes for this phylogenomic study on
335 *Stranvaesia* and its close relatives. The number of genes recovered for each sample varied from 529
336 (66.0%) to 801 (100%) (Table S2 and Fig. S1). The paralogous genes search using the post-processing
337 command ‘hybpiper paralog_retriever’ in HybPiper v. 2.0.1 (Johnson et al., 2016), identified 367 genes
338 with paralog warnings, which were removed from the analysis, leaving 434 genes for further
339 processing. The number of genes after removing outlier loci, short sequences, and missing data ranged
340 from 232 (53.5%) to 417 (96.1%) (Table S2). Due to the low sequencing coverage and poor SCN genes
341 recovery efficiency of two samples (*Photinia lasiogyna* (Franch.) C.K.Schneid. 3 & 4, Table S1 & S2),
342 they were excluded in our following nuclear phylogenomic analyses.

344 3.2. *Plastid phylogenetic relationship and conflict analyses*

345 The aligned plastid supermatrix generated from 78 concatenated CDS sequences of 66 plastomes
346 comprised 68,343 characters, and this data matrix can be accessed from the Dryad Digital Repository:
347 <https://doi.org/10.5061/dryad.hx3ffbghm>. The phylogenetic trees based on concatenated- and
348 coalescent-based methods yielded almost the same topology (Figs. S2, S3, S4). Therefore, we use the
349 RAxML tree as the plastid phylogeny in subsequent analyses (Figs. 1 & S2). Based on the chloroplast
350 data, *Stranvaesia* was strongly supported to be monophyletic and was sister to a large clade containing
351 *Photinia*, *Sorbus* L., *Cotoneaster* Medik., *Eriobotrya* Lindl., *Rhaphiolepis* Lindl., *Aria* (Pers.) Host,
352 and *Pyrus* L. Within *Stranvaesia*, four individuals of *Photinia lasiogyna* were moderately supported as
353 sister to a clade including two samples of *Stranvaesia bodinieri*; however, this combined clade was
354 sister to a clade containing samples of *Stranvaesia nussia* and *Stranvaesia ob lanceolate* with strong
355 support (Figs. 1, S2, S3, S4). Conflict analysis using *phyparts* showed that most gene trees are
356 uninformative with respect to relationships within *Stranvaesia*, and the remaining gene trees were
357 mostly consistent with the topology of the RAxML tree (Fig. S5). The nearly wholly grey pies resulting
358 from limited informative sites demonstrated the limited utility of plastid coding genes to illustrate the
359 degree of discordance in a shallow phylogeny. In contrast, the QS conflict analysis showed strong
360 support (1/-1; these values quantified the relative support among the three possible resolutions of four
361 taxa and represented the extent of conflict in the node) for almost every node within *Stranvaesia*,
362 implying that no significant topological conflicts existed in these gene trees (Fig. S6).

364 3.3. Nuclear phylogenetic relationship and conflict analysis

365 The matrix with 426 concatenated and cleaned SCN genes comprised 651,207 bp in aligned

366 length and is available from the Dryad Digital Repository: <https://doi.org/10.5061/dryad.hx3ffbghm>.

367 Our phylogenetic inference resulted in three nuclear phylogenetic trees based on both concatenated-

368 and coalescent-based methods, and these three trees have nearly similar topologies (Figs. S7, S8, S9).

369 Therefore, we use the RAxML tree as the nuclear topology in the following analyses (Figs. 1 & S7).

370 Our results showed that *Stranvaesia* was recovered as monophyletic in all three nuclear trees, and then371 sister to a clade containing *Photinia* and *Cotoneaster*. Furthermore, two strongly supported clades372 within *Stranvaesia* were recognized in the nuclear tree, i.e., the *Weniomeles* clade and the *Stranvaesia*373 clade (Fig. 1). However, there were some conflicts within *Stranvaesia* between the concatenated-based

374 tree and the species tree. In the ML trees inferred from RAxML (Fig. S7) or IQ-TREE2 (Fig. S8), two

375 samples of *Photinia lasiogyna* were sister to a clade consisting of two individuals of *Stranvaesia*376 *oblanceolata* and *Stranvaesia nussia* with moderate support, and then together sister to a clade377 including samples of *Stranvaesia oblanceolata*. The combined *Stranvaesia* clade was sister to a lineage378 including two samples of *Stranvaesia bodinieri*. In the species tree, a clade including two samples of379 *Stranvaesia bodinieri* was sister to the remaining clades. Then, one individual of *Stranvaesia nussia*380 and a clade consisting of two samples of *Photinia lasiogyna* were successively sister to the clade381 containing three samples of *Stranvaesia oblanceolata*. The conflict analyses using *phyparts* (Fig. S10)

382 and Quartet Sampling (Fig. S11) were performed to explore the potential gene tree conflicts. The result

383 from *phyparts* showed that most nuclear gene trees supported the sister relationship between the
384 *Weniomeles* clade and the *Stranvaesia* clade, but there were strong gene tree conflicts within the
385 *Stranvaesia* clade (Figs. 1 & S10). Furthermore, the sister relationship between the *Weniomeles* clade
386 and the *Stranvaesia* clade (Figs. 1 & S11) was also confirmed with full support (1/-1) by the QS
387 analysis.

388

389 *3.4. Network analyses*

390 Considering the possible hybrid origin of *Stranvaesia*, we conducted a SNaQ network analysis.
391 Due to the limitation of computing, only 12 individuals closely related to *Stranvaesia* were included in
392 our study. The optimal number of hybridization events inferred by the SNaQ network analysis was two,
393 as the pseudo-deviance score gradually stabilized when the h_{max} value exceeded 2 in our pseudo-
394 loglikelihood score plot (Fig. 2b). The optimal network with two hybridization events (Fig. 2a)
395 indicated that *Stranvaesia* resulted from a cross between the lineage of *Stranvaesia bodinieri* ($\gamma =$
396 0.763) and one lineage of a large clade ($\gamma = 0.237$), explaining the observed cytonuclear discordance
397 relating to the placement of *Stranvaesia bodinieri* between the plastid tree and the nuclear phylogeny
398 (Fig. 1). The SNaQ network with $h_{max} = 2$ showed that the second possible hybrid was *Stranvaesia*
399 *nussia*, which may have resulted from hybridization between *Stranvaesia lasiogyna* and *Stranvaesia*
400 *oblanceolate* (Figs. S10 & S11). The other networks with $h_{max} = 3-5$ all included hybridization edges
401 similar to the $h_{max} = 2$ network (Fig. S12).

402

403 3.5. Multi-labeled trees analysis

404 Given the potential allopolyploidy events associated with the origin of the *Stranvaesia* clade, we
405 tested an allopolyploidy hypothesis using GRAMPA, with the *Stranvaesia* clade as the possible hybrid
406 and the other taxa in the Maleae as potential parental lineages. The most parsimonious MUL-tree had a
407 lower reconciliation score (score = 62,319) than the estimated singly labeled tree (score = 62,539),
408 implying evidence of polyploidy. The inferred MUL-tree supported that the *Stranvaesia* clade has been
409 an allopolyploid origin between a lineage sister to *Stranvaesia bodinieri* and another lineage sister to
410 the ancestor of *Stranvaesia* (Figs. 2 & S13), which often is considered as another parental lineage that
411 is extinct or not sampled. Despite the discrepancy between the results of the SNaQ network analysis
412 and the GRAMPA analysis, they both recognized *Stranvaesia bodinieri* as one of the possible parental
413 lineages (Figs. 2, S12, S13). However, GRAMPA did not recover another possible parental lineage
414 involved in allopolyploidization, which may have been extinct or not sampled.

415

416 3.6. Dating analysis and ancestral area reconstruction

417 The dating analysis showed that the divergence age of the ancestor of the *Stranvaesia* clade and
418 the *Weniomeles* clade was estimated at 41.6 Ma (95% highest posterior density (HPD): 41.22-42.08
419 Ma) (Figs. 3 & S14) and the ancestral area reconstruction analysis inferred that *Stranvaesia* originated
420 from East Asia (Fig. 3). The stem *Stranvaesia* was estimated at 21.22 Ma (95% HPD: 20.59-22.05 Ma)
421 (Figs. 3 & S14). The crown *Stranvaesia* were estimated at 18.56 Ma (95% HPD: 18.09-19.20 Ma)
422 (Figs. 3 & S14), and *Stranvaesia nussia* originated from ca. 15.13 Ma (95% HPD: 14.21-16.07 Ma).

423 **4. Discussion**

424 The phylogenomic age has made it clear that reticulate evolution, which may originate from
425 either hybridization and/or genome doubling, is a fundamental process in lineage diversification, and
426 accordingly must be considered when modeling the evolution of lineages throughout the Tree of Life.
427 Although analytical approaches have been developed to address hindrances to phylogenetic inference,
428 such as gene tree-species tree incongruence (e.g., ASTRAL, Zhang et al., 2018; *phyparts*, Smith et al.,
429 2015), hybridization (e.g., SNaQ, Solís-Lemus et al., 2017), and genome doubling (e.g., GRAMPA,
430 Thomas et al., 2017), we lack a coherent approach for using phylogenies characterized by reticulate
431 evolution in taxonomic delimitation applications. Using the red-fruit genus *Stranvaesia* as a test case,
432 we demonstrate a workflow for explicitly considering reticulate evolution in the taxon delimitation
433 process. By combining results from cytonuclear conflict, gene tree conflict, network analyses, multiply-
434 labeled trees, morphology, and dating analyses, we identify an entity (*Stranvaesia bodinieri*) that acted
435 as a maternal participant in multiple hybridizations that promoted the early diversification of the genus.
436 Consequently, this entity should be separated from *Stranvaesia* as a new genus. We highlight a broadly-
437 applicable workflow for inferring how analyses of reticulate evolution in phylogenomic data can
438 directly shape taxonomic revisions.

439

440 *4.1. Reticulate evolution challenged the taxonomic circumscription and a practical pipeline for*
441 *taxonomic treatment*

442 In the past few decades, phylogenomics has revolutionized systematic studies, especially in

443 angiosperm lineages (Leebens-Mack et al., 2019; Li et al., 2019, 2021; Yang et al., 2020; Liu et al.,
444 2021, 2022; Baker et al., 2022). However, phylogenies estimated from hundreds/thousands of nuclear
445 genes and/or plastomes (or mitogenomes in animal studies) often lead to strongly supported
446 phylogenetic inference, although underlying conflict is common despite high support. Hundreds of
447 nuclear genes often result in well-supported bifurcating phylogenetic relationships; however, strongly
448 supported nodes sometimes could not reflect the real evolutionary relationship of taxa, especially in the
449 context of the underlying gene tree conflicts (Smith et al., 2015; Hodel et al., 2021; Liu et al., 2022).
450 Additionally, phylogenetic trees based on different data matrices often result in conflicting relationships
451 (Soltis et al., 1991; Yi et al., 2015; Liu et al., 2017; Liu et al., 2020a). These various topologies may
452 confuse taxonomists and lead to unreasonable taxonomic treatments.

453 Traditionally, bifurcating phylogenetic trees provided a foundation for taxonomic delimitation,
454 especially when using a criterion of monophyly in the target lineages (Huson and Bryant, 2006;
455 Mindell, 2013). However, mounting evidence shows that reticulate evolutionary histories, such as
456 hybridization, introgression, and polyploidy, promoted the diversity of the angiosperm lineages
457 (Rieseberg and Willis, 2007), and necessitates a new model to reflect complex biological processes
458 better and draw reasonable taxonomic conclusions. Therefore, further analysis will be needed to
459 consider the underlying possible biological processes and evolutionary events. Recently, many
460 programs and approaches have been developed to address reticulate evolutionary histories of taxa by
461 examining underlying processes generating reticulation separately to distinguish the individual effect of
462 separate biological processes (Smith et al., 2015; Solís-Lemus et al., 2017; Thomas et al., 2017; Pease

463 et al., 2018). For example, SNaQ can infer phylogenetic networks with maximum pseudolikelihood
464 under ILS, implementing the statistical inference method (Solís-Lemus and Ané, 2016; Solís-Lemus et
465 al., 2017). HyDe can detect the extent of hybridization using phylogenetic invariants arising under the
466 coalescent model with hybridization (Blischak et al., 2018). Thomas et al. (2017) provided a program
467 GRAMPA, which can distinguish hybridization from polyploid by identifying and placing polyploidy
468 events on a phylogeny.

469 The genetic age led taxonomists to believe it is not rational to make taxonomic treatments based
470 solely on morphological similarities. Genealogy approaches advocated by Darwinists (Darwinian
471 classification) based on monophyly or common descent have been widely accepted as two additional
472 criteria for biological classification in addition to the overall morphological similarities (referring to the
473 review by Mayr and Bock 2002; but also see Padian 1999). Integrative taxonomy, combining evidence
474 from multiple disciplines, such as morphology, phylogenomics, cytology, and ecology, has been
475 promoted as a standard practice in taxonomic studies (Dayrat, 2005; Schlick-Steiner et al., 2010; Padial
476 et al., 2010). Lineages characterized by reticulate evolutionary events remain a major impediment to
477 taxonomy in our current framework; we cannot make reasonable taxonomic conclusions without
478 carefully explaining the evolutionary processes. In this study, we utilized the red-fruit genus
479 *Stranvaesia* and its allies as a case study to perform a series of phylogenomic analyses, in which we
480 elucidated the important role of *S. bodinieri* in forming *Stranvaesia* and untangled the reticulate
481 evolutionary history of the redefined *Stranvaesia* under significant cytonuclear discord. Therefore, we
482 propose a practical pipeline for making reliable taxonomic treatments when reticulation is suspected.

483 We follow the pipeline for assembling hundreds of SCN genes and plastomes (Liu et al., 2021) and the
484 general procedure for further phylogenetic conflict and network analyses (Liu et al., 2022).

485 **Step 1. A comprehensive taxon sampling for the target lineages, including their relatives:** Given
486 the potential for reticulation events to be deep or shallow in the evolutionary history of the target
487 group, close or distant relatives of the focal clade may have been involved in its origin. A broad
488 taxon sampling will be helpful for exploring the potential paternal and maternal parents.

489 **Step 2. Accurate phylogenetic inference:** Two distinctly inherited datasets, hundreds/thousands of
490 nuclear SCN genes and plastid (in plant studies) and/or mitochondrial (in animal studies) coding
491 genes, are needed to assess phylogenomic discordance and conduct historical biogeographic
492 analyses. Based on the size of data sets and the targeted lineages, paralogous loci could be
493 discarded directly (e.g., Crowl et al., 2019; Bagley et al., 2020) or estimated by the tree-based
494 orthology inference (Yang and Smith, 2014; Morales-Briones et al., 2022). Additionally, given the
495 sample's uneven and limited sequencing coverage, outlier sites, missing data, and short sequences
496 in the assembled SCN genes need to be trimmed using several programs, such as trimAL,
497 Spruceup, and TreeShrink. Generate nested datasets based on the number of genes and samples
498 and then perform the phylogenetic analysis using concatenated supermatrix (RAxML, IQ-TREE2,
499 and MrBayes) and coalescent-based methods (ASTRAL-III, SVDquartets, MP-EST, Quartet
500 MaxCut, etc.).

501 **Step 3. Phylogenomic conflict analyses:** Compare the plastid (or mitochondrial, in the case of
502 animals) and nuclear topologies. Detect and visualize gene tree discordance using *phyparts* and/or

503 Quartet Sampling. Assessing cytonuclear discord may suggest hypotheses to test using additional
504 analyses in **Step 4**.

505 **Step 4. Phylogenetic network and historical biogeographic analyses:** Observed phylogenomic
506 discordance may be due to ILS, allopolyploidy, and/or hybridization. Coalescent simulations
507 could adequately measure the coalescent model's goodness-of-fit with ILS explaining the gene
508 tree discordance. When ILS cannot explain discordance sufficiently, phylogenetic network
509 analyses are appropriate for testing hybridization, while limiting the number of terminals (not
510 more than 30) for evaluation. If the number of tips exceeds 30, subsampling the species for
511 phylogenetic network analysis is necessary. Subsequent network analyses using different datasets
512 at various taxonomic levels may be adopted as an alternative strategy to circumvent the limitation
513 on the number of species. Multiply-Labeled Tree Analysis (GRAMPA) and/or chromosome data
514 could test the role of allopolyploidization and/or autoploidization. Historical biogeographic
515 analyses, including fossil and living species, will accurately provide the divergence time and area
516 in which the potential evolutionary events occurred.

517 **Step 5. Taxonomic treatments:** Propose appropriate taxonomic treatments integrating evidence from
518 multiple disciplines, such as morphology, phylogenomics, cytology, biogeography, and ecology.
519 Considering the prevalent reticulations in some lineages, we recommend that infrageneric hybrids
520 be treated in the same genus. If the parents are distantly related and do not share many similarities,
521 it would be justified to consider the hybrids to be of the same status as the parents.

522 4.2. *Allopolyploidy and introgression promoted the origin and diversification of Stranvaesia*

523 Reticulate evolution has greatly challenged accurate phylogenetic inference and corresponding

524 taxonomic treatments. Efforts to resolve the generic circumscription of *Photinia* and *Stranvaesia* have

525 been made in the past decades (Guo et al., 2011; Lo and Donoghue, 2012; Liu et al., 2019, 2022);

526 however, significant controversies arose due to extensive reticulate evolution, such as frequent

527 hybridization and allopolyploidy events. Elucidating the evolutionary history of *Stranvaesia* and its

528 allies will provide insights into their generic delimitation. We used hundreds of nuclear SCN genes and

529 plastomes in this study to clarify the complex relationship between *Photinia* and *Stranvaesia* with

530 broad sampling. Our phylogenomic analyses inferred from these two datasets provided a strongly

531 supported phylogenetic backbone of *Stranvaesia* in the framework of Maleae. Cytonuclear discordance

532 was detected between the chloroplast and nuclear gene trees; further gene tree discordance analyses

533 (e.g., *phylogenetic parts* and QS) revealed that the varied phylogenetic position of *Stranvaesia bodinieri* did not

534 solely result from ILS. Furthermore, based on the results from the phylogenetic network analysis and

535 MUL-trees analysis, *Stranvaesia bodinieri* may have acted as one of the maternal lineages involved in

536 multiple hybridization events, promoting the origin of the *Stranvaesia* clade. Therefore, *Stranvaesia*

537 *bodinieri* should be separated from *Stranvaesia* as a new genus, *Weniomeles*. We also discuss the

538 taxonomic delimitation challenged by reticulate evolution events and made nomenclatural treatment.

539 Below we contextualize and discuss the details of our results.

540 Although the monophyly of *Stranvaesia* was recovered in our nuclear and plastid phylogenies

541 with strong support, cytonuclear discordance was detected within this genus. *Stranvaesia bodinieri* was

542 either nested in the *Stranvaesia* clade in plastid topology (Figs. 1, S2, S3, S4) or formed a sister
543 relationship with a lineage containing the remaining *Stranvaesia* species in the nuclear tree (Figs. 1, S7,
544 S8, S9). This conflict may have resulted from several potential processes, such as ILS and gene flow
545 (hybridization, introgression, and allopolyploidy) (Rieseberg and Soltis, 1991). Because discordance
546 between gene trees in each dataset may contribute to cytonuclear discordance, we separately performed
547 conflict analyses on nuclear- and chloroplast-inferred phylogenies. The *phyparts* results from the
548 nuclear phylogeny showed that 271 SCN genes (63.6%) supported the sister relationship between the
549 *Stranvaesia bodinieri* clade and the *Stranvaesia* clade, contrasting with the 37 unsupported SCN genes
550 (8.7%) (Figs. 1 & S10). However, all sampled quartet replicates in the QS analysis supported this node
551 (QC = 1), with all trees informative when likelihood cutoffs are used (QI = 1) (Figs. 1 & S11). Our
552 further phylogenetic network analysis showed that ILS ($h_{max} = 0$) could not fully explain this conflict
553 (Fig. S12). Therefore, the most likely source of the conflict placement of *Stranvaesia bodinieri* is gene
554 flow rather than ILS, especially in the context of the frequent hybridization events of Maleae
555 (Robertson et al., 1991; Lo and Donoghue, 2012; Liu et al., 2019, 2020a, 2020b, 2022).

556 The inferred optimal network with two possible hybridization events demonstrated that the
557 *Stranvaesia* clade in this study possibly originated from hybridization between the ancestor of
558 *Stranvaesia bodinieri* ($\gamma = 0.763$) and the ancestor of a large clade ($\gamma = 0.237$), including *Chaenomeles*
559 Lindl., *Cydonia* Mill., *Malus* Mill., *Photinia* Lindl., *Pourthiaeae* Decne., *Pseudocydonia* (C.K.Schneid.)
560 C.K.Schneid., and *Stranvaesia* (Fig. 2). This uneven proportion could be interpreted as introgression
561 (Solís-Lemus et al., 2017), i.e., the repeated backcrossing between the hybrid and the ancestor of

562 *Stranvaesia bodinieri*. Introgression between different genera leads to speciation and diversification has
563 also been observed in other taxa, such as Fagaceae (Zhou et al., 2022). Polyploidy events are prevalent
564 in plants, and at least 15% of speciation events in angiosperms are estimated to be driven by
565 polyploidization (Wood et al., 2009; Mayrose et al., 2011). Given the potential allopolyploidy events
566 between these two different genera, we tested the possible origin of allopolyploidization for the newly
567 defined *Stranvaesia* using GRAMPA (Thomas et al., 2017). The most parsimonious MUL-tree (Figs. 2
568 & S13), which showed a lower reconciliation score than a singly-labeled tree, supported the
569 allopolyploidy origin of the newly defined *Stranvaesia*. The ancestor of *Stranvaesia bodinieri* may
570 have been the maternal parent, and the paternal parent may have been extinct (Fig. 4). This hypothesis
571 is consistent with the SNaQ result (Fig. 2). Recently, *Malus sikkimensis* (Wenz.) Koehne has been
572 hypothesized to have originated via allopolyploidization based on phylogenomic and chromosome
573 evidence (Liu et al., 2022), and the ploidy level varies from diploid to tetraploid (Liang, 1986, 1987,
574 1997; Liang and Li, 1993; Liang et al., 1996). However, as the only recorded chromosome count in
575 *Stranvaesia*, *Stranvaesia glaucescens* Lindl. (= *Stranvaesia nussia* (D.Don) Decne.) has been registered
576 as diploid with $x = 17$ (Mehra et al., 1973; Singhal et al., 1990). Therefore, we speculated that
577 diploidization may have occurred following the initial allopolyploidization, and the following frequent
578 backcrosses between the hybrid (the ancestor of *Stranvaesia*) and the ancestor of *S. bodinieri* resulted
579 in the uneven inheritance of genetic material. Our dating and ancestral area reconstruction analyses
580 (Figs. 3 & S14) showed that allopolyploidization events may have occurred in the middle Miocene in
581 East Asia, coinciding with the climatic cooling event after the Middle Miocene Climatic Optimum

582 (MMCO, around 15 Mya) (Flower and Kennett, 1994). The paleoclimatic events might have
583 significantly impacted the speciation and diversification of *Stranvaesia* and its allies.

584 *4.3. Phylogenetic and taxonomic implications for Photinia and Stranvaesia*

585 The placement of *Stranvaesia* has been a long-standing taxonomic challenge due to its
586 resemblance to its close relatives. Morphological traits used to distinguish *Stranvaesia* from its related
587 genera have been controversial and have been updated over time (Roemer, 1847; Decaisne, 1874;
588 Wenzig, 1883; Focke, 1888; Koehne, 1890, 1891; Rehder, 1940, 1949; Yu, 1974; Lu et al., 1990, 1991;
589 Li, et al. 1992; Zhang, 1992; Lu and Spongberg, 2003; Guo et al., 2011, 2020; Liu et al., 2019). Our
590 phylogenomic analyses, which integrated data from biparentally inherited nuclear genes (426 SCN
591 genes) and maternally inherited plastid coding sequences (78 CDSs), using concatenated or coalescent-
592 based methods, have well resolved the generic circumscription of *Photinia* and provided solid evidence
593 for transferring *Photinia lasiogyna* to *Stranvaesia* (Figs. 1, S2, S3, S4, S7, S8, S9). Due to shared
594 morphological characteristics, including pollen traits of some *Photinia* species (Yu, 1974; Lu and
595 Spongberg, 2003; Pathak et al., 2019), *Photinia lasiogyna*, an endemic species of China, has been
596 traditionally classified in the genus *Photinia* (Yu, 1974; Lu and Spongberg, 2003; Guo, et al. 2020),
597 albeit rarely in *Eriobotrya* (Franchet and Delavay, 1890) and *Pyrus* (Christenhusz et al., 2018). A recent
598 phylogenetic study based on limited nuclear and/or plastid markers also recovered a close relationship
599 between *Photinia lasiogyna* and other *Photinia* species (Guo et al., 2020), in contrast to our
600 phylogenomic result (Figs. 1, S2, S3, S4, S7, S8, S9). However, this topological conflict may have
601 resulted from the limited informative sites of the nuclear (*PepC*) and chloroplast DNA regions (*trnS*-

602 *trnG*, *psbA-trnH*, and *trnL-trnH*) used in Guo et al. (2020)'s study, given the low resolution of the
603 *Photinia* clade recovered.

604 Our phylogenetic network analysis also provided insights into the potential hybrid origin of
605 *Stranvaesia nussia*, possibly resulting from a cross between *Photinia lasiogyna* ($\gamma = 0.81$) and *S.*
606 *oblanceolata* ($\gamma = 0.19$), with the former acting as the paternal parent and the latter as the maternal
607 parent (Figs. 2 & S12). However, this study did not aim to elucidate the evolutionary history of
608 *Stranvaesia nussia* fully. We hope to further test its hybrid origin with phylogenomic evidence through
609 population-level sampling.

610 *Stranvaesia* has been redefined based on morphological and phylogenomic evidence,
611 characterized by a cluster of sclereids between locules in the flesh of pomes (Kalkman, 1973; Liu et al.,
612 2019). Upon careful examination of specimens of *Photinia lasiogyna* in the herbarium PE, we found
613 that this species also possesses a cluster of sclereids between locules in the flesh of pomes. We, herein,
614 formally transferred *Photinia lasiogyna* and its variety to *Stranvaesia* as below.

615 ***Stranvaesia lasiogyna* (Franch.) B.B.Liu, comb. nov.**

616 \equiv *Eriobotrya lasiogyna* Franch., Pl. Delavay. 225. 1890. \equiv *Photinia lasiogyna* (Franch.) C.K.Schneid.,
617 Repert. Spec. Nov. Regni Veg. 3: 153. 1906. \equiv *Pyrus avalon* M.F.Fay & Christenh., Global Fl. 4:
618 96. 2018. Type: China. Yunnan, in silvis montanis ad fauces San-tchang-kiou supra Hokin, alt.
619 2300 m., 22 May 1884, J.M. Delavay 732 (lectotype, designated by Idrees et al. (2022: 31): P
620 [barcode P02143141]!; isolectotypes: P [barcode P02143142]!, US [barcode 00097489]!, image A
621 [barcode 00026747]! with plant material from P02143141).

622 = *Stranvaesia glaucescens* var. *yunnanensis* Franch., Pl. Delavay. 226. 1890. Type: China. Yunnan, in
623 silvis supra Che-tong, prope Tapin-tze, May 18, 1885, *J.M. Delavay* 1992 (lectotype, designated
624 by Idrees et al. (2022: 31): P [barcode P02143161]!; isolectotype: P [barcode P02143140]!).
625 = *Photinia mairei* H.Lév., Bull. Acad. Int. Géogr. Bot. 17: 28. 1916. Type: China. rochers-brousse des
626 mont a Kiao-me-ti, May 1911-1913, *E.E. Maire* s.n. (holotype: E [barcode E00011316]!; isotype:
627 A [barcode 00038571]!).
628 Distribution: China (Sichuan and Yunnan).
629 *Stranvaesia lasiogyna* var. *glabrescens* (L.T.Lu & C.L.Li) B.B.Liu, **comb. nov.**
630 ≡ *Photinia lasiogyna* var. *glabrescens* L.T.Lu & C.L.Li, Acta Phytotax. Sin. 38(3): 278. 2000. Type:
631 China. Jiangxi, Shangrao, 4 May 1972, *Jiangxi Exped.* 1071 (holotype: PE [barcode 00336583]!;
632 isotype: PE [barcode 00336582]!).
633 Distribution: China (Fujian, Guangdong, Guangxi, Hunan, Jiangxi, Sichuan, Yunnan, and Zhejiang).
634 *4.4. A new genus, Weniomeles: evidence from morphological and phylogenomic data*
635 The phylogenetic trees inferred from plastomes and multiple nuclear loci datasets supported the
636 monophyly of the *Stranvaesia* sensu Liu et al. (2019), including *S. bodinieri*. However, the
637 phylogenetic placement of *S. bodinieri* varied greatly, either embedded in (plastid tree, Figs. 1, S2, S3,
638 S4) or sister to (nuclear tree, Figs. 1, S7, S8, S9) the *Stranvaesia* clade. The nrDNA results presented an
639 alternative topology with nesting in the redefined *Stranvaesia*, which was very similar to the plastid
640 tree (Liu et al., 2019). This conflict may be explained by the incomplete concerted evolution of nrDNA
641 (Weitemier et al., 2015; Fonseca and Lohmann, 2020) and gene tree discordance between nrDNA and

642 the other nuclear genes. Guo et al. (2020) also indicated the close relationship between *Stranvaesia*
643 *bodinieri* and the redefined *Stranvaesia* based on nuclear *PepC* and chloroplast data. In this study,
644 phylogenomic discordance and network analyses indicated that *Stranvaesia bodinieri* was involved in
645 the origin of the *Stranvaesia* clade as the maternal parent, followed by recurrent backcrosses (Figs. 1 &
646 2). Intergeneric hybridization is prevalent in Maleae (Robertson et al., 1991) and some genera such as
647 *Micromeles* Decne., *Phippsiomeles* B.B.Liu & J.Wen, and *Pseudocydonia* have been inferred to have a
648 hybrid origin (Lo and Donoghue, 2012; Liu et al., 2019). Based on the golden criterion (i.e.,
649 monophyly) in classification, it will be reasonable to classify *Stranvaesia bodinieri* (the *Weniomeles*
650 clade) and the *Stranvaesia* clade to be one genus or two genera. However, evolutionary (Darwinian)
651 and cladistic (Hennigian) classifications both request the consideration of common descent (Hörandl,
652 2006). *Stranvaesia bodinieri* and the *Stranvaesia* clade do not have a common ancestor, and the latter
653 originated from allopolyploidization between the former and an extinct clade. We thus propose the
654 *Stranvaesia bodinieri* clade to be a new genus *Weniomeles* rather than a member of *Stranvaesia*.

655 Morphologically, *Weniomeles bodinieri* is distinct from *Stranvaesia nussia* and *S. ob lanceolata* in
656 the number of ovaries, the length of petioles, and the indumentum of rachis, pedicels and hypanthium
657 (Guo et al., 2020). Additionally, this new genus *Weniomeles* has thorns on the stems and/or branches
658 (Fig. 5F, Guo et al., 2011), contrasting to the absence in the *Stranvaesia* clade. Furthermore, the leaf
659 epidermis analysis conducted by Guo et al. (2011) did not detect the same epidermis structure between
660 *Photinia davidsoniae* (= *Stranvaesia bodinieri*) and *Photinia nussia* (= *Stranvaesia nussia*).
661 Below, we formally describe the new genus *Weniomeles* and make the nomenclatural transfer.

662 **Weniomeles** B.B.Liu, gen. nov. Type: *Weniomeles bodinieri* (H.Lév.) B.B.Liu \equiv *Photinia bodinieri*

663 H.Lév.

664 *Diagnosis.* *Weniomeles*, characterized by purple-black fruits (Fig. 5A-C), trunk and/or branches with
665 thorns (Fig. 5F), and fruit core with multilocular (Fig. 5E red and white arrowhead) separated by a
666 layer of sclereids and a cluster of sclereids at the top of the locules (Fig. 5D green arrowhead),
667 could be easily distinguished from its close allies, *Stranvaesia* (Fig. 5G).

668 *Description.* Evergreen trees, usually 6-25 m tall, with a trunk up to 1.4 m in diameter, usually with
669 thorn branches. Unregularly peeling bark, gray-brown when young, brown when old, armed.

670 Petiole (0.8-) 1-1.5 cm, glabrescens; leaf blade oblong, elliptic or obovate to oblanceolate or
671 narrowly lanceolate, 5-10 (-15) \times (1.5-) 2-5 cm, veins 10-16 (-20) pairs, both surfaces glabrous or
672 initially slightly pubescent along veins, glabrescent, base cuneate, margin serrate, apex acute to
673 acuminate, obtuse, rarely concave. Compound corymbs terminal, compact, 5-8 \times 5-10 cm, many
674 flowered; rachis and pedicels appressed pubescent; bracts caducous, lanceolate or linear, 2-4 mm,
675 pubescent. Pedicel 4-8 mm. Flowers 1-1.5 cm in diameter. Hypanthium cupular, abaxially
676 glabrous to sparsely appressed pubescent. Sepals broadly triangular, 1-2 mm, apex acute or
677 obtuse. Petals white, ovate, ellipsoidal, suborbicular, 5-6 mm long, 3.5-4 wide, glabrous, shortly
678 clawed, apex obtuse or emarginate, base pubescent. Stamens 20, shorter than petals. Styles 2 or 3,
679 connate from base to middle, white villous basally; ovary 2-3-loculed. Fruit purple-black, globose
680 or ovoid, 7-10 mm in diam., glabrous; seeds usually 2, rarely 3, 4, brown, ovoid, 4-5 mm.

681 *Distribution.* China (Anhui, Fujian, Guangdong, Guangxi, Guizhou, Hubei, Hunan, Jiangsu, Shaanxi,
682 Sichuan, Yunnan, and Zhejiang), Indonesia, and North Vietnam.

683 *Etymology.* This new genus is named in honor of Prof. Jun Wen (National Museum of Natural History,
684 Smithsonian Institution) for her significant contributions to bridging the Sino-American plant
685 systematic community.

686 ***Weniomeles bodinieri* (H.Lév.) B.B.Liu, comb. nov.**

687 \equiv *Photinia bodinieri* H.Lév., Repert. Spec. Nov. Regni Veg. 4: 334. 1907. \equiv *Pyrus eureka* M.F.Fay &
688 Christenh. Global Fl. 4:103. 2018. \equiv *Stranvaesia bodinieri* (H.Lév.) B.B.Liu & J.Wen, J. Syst.
689 Evol. 57(6): 686. 2019. \equiv *Stranvaesia bodinieri* (H.Lév.) Long Y.Wang, W.B.Liao & W.Guo,
690 Phytotaxa 447(2): 110. 2020, isonym. Type: CHINA, Kouy-Tchéou (now Guizhou): environs de
691 Kouy-Yang, mont. du Collège, ca et là autour des villages, 18 May 1898, *E. Bodinier* 2256
692 (lectotype, designated by Liu et al. (2019: 686): P [barcode P02143207]!, isolectotypes: A
693 [barcode 00045584]!, E [barcode E00010998]!, P [barcode P02143208]!, P [barcode
694 P02143209]!).

695 $=$ *Photinia davidsoniae* Rehder & E.H.Wilson, Pl. Wilson. 1: 185. 1912 \equiv *Pyrus davidsoniae* (Rehder
696 & E.H.Wilson) M.F.Fay & Christenh. Global Fl. 4: 101. 2018. Type: CHINA, Western Hupeh
697 (Hubei): near Ichang (Yichang), alt. 300–600 m., April 1907, *E.H. Wilson* 685 (lectotype, selected
698 by Vidal (1968), first step “type”; second step, designated by Liu et al. (2019: 687): A [barcode
699 00038567]! excl. the fruits and seeds in the packet, isolectotypes: BM [barcode BM000602130]!,
700 E [barcode E00011306]! excl. the fruiting branch, GH [barcode 00045598]! excl. the fruiting

701 branch, HBG [barcode HBG511078]! excl. the fruiting branch, US [barcode 00097494]! excl. the
702 fruiting branch). (the detailed type information refers to Liu et al. (2019)).

703 = *Hiptage esquirolii* H.Lév. Repert. Spec. Nov. Regni Veg. 10:372. 1912. Type: CHINA, Kouy-
704 Tchéou (now as Guizhou): Choui-Teou, route de Tin-Pan-Lo-Fou, alt. 900 m, 4 May 1900, J
705 *Esquirol* 2097 (lectotype, designated by Liu et al. (2019: 687): E [barcode E00011307]!,
706 isolectotypes: A [barcode 00015103]!, A [barcode 00045102]!).

707 Distribution: China (Anhui, Fujian, Guangdong, Guangxi, Guizhou, Hubei, Hunan, Jiangsu, Shaanxi,
708 Sichuan, Yunnan, and Zhejiang), Indonesia, and Vietnam.

709 ***Weniomeles bodinieri* (H.Lév.) B.B.Liu var. *longifolia* (Cardot) B.B.Liu, comb. nov.**

710 \equiv *Photinia bodinieri* H.Lév. var. *longifolia* Cardot, Notul. Syst. (Paris) 3: 374. 1918. \equiv *Stranvaesia*
711 *bodinieri* var. *longifolia* (Cardot) B.B.Liu & J.Wen, J. Syst. Evol. 57(6): 687. 2019. Type:
712 CHINA, Kouei Tchéou (now as Guizhou Province): grande route Kouei Tchéou au Kuangsi
713 (Guangxi Province), Kout'ong (now as Gudong Xiang, Pingtang County), 22 May 1899, *Beauvais*
714 *J. 175* (lectotype, designated by Liu et al. (2019: 687): P [barcode P02143211]!, isolectotype: P
715 [barcode P02143210]!).

716 Distribution: China (Guizhou).

717 ***Weniomeles bodinieri* (H.Lév.) B.B.Liu var. *ambigua* (Cardot) B.B.Liu, comb. nov.**

718 \equiv *Photinia davidsoniae* Rehder & E.H.Wilson var. *ambigua* Cardot, Notul. Syst. (Paris) 3: 374. 1918.
719 Type: CHINA, Su-Tchuen (Sichuan): Eul Se Yug, vallée du Yalory, alt. 2000 m, 5 May 1911,

720 *Legendre* 834 (**lectotype, designated here**: P [barcode P02143164]!; isolectotype: P [barcode
721 P02143165]!).

722 Distribution: China (Sichuan).

723 ***Weniomeles bodinieri* (H.Lév.) B.B.Liu var. *pungens* (Cardot) B.B.Liu, **comb. nov.****

724 \equiv *Photinia davidsoniae* Rehder & E.H.Wilson var. *pungens* Cardot, Notul. Syst. (Paris) 3: 374. 1918.

725 Type: CHINA, Hubei: Ichang, A. Henry 7174 (holotype: P [barcode P02143163]!).

726 Distribution: China (Hubei).

727 ***Weniomeles atropurpurea* (P.L.Chiu ex Z.H.Chen & X.F.Jin) B.B.Liu, **comb. nov.****

728 \equiv *Photinia atropurpurea* P.L.Chiu ex Z.H.Chen & X.F.Jin, J. Hangzhou Univ., Nat. Sci. Ed. 20(4):
729 393. 2021. Type: CHINA, Zhejiang: Taishun, Zuoxi, Lishuqiu, alt. 400 m, 3 May 2020, Z.H.
730 Chen, Z.P. Lei & W.Y. Xie TS20050316 (holotype: ZM; isotype: ZM).

731 Distribution: China (Zhejiang).

732 **5. Conclusions**

733 We developed and demonstrated the utility of a pipeline for explicitly incorporating reticulation
734 into taxonomic treatments, using results quantifying reticulate evolution from phylogenomic datasets.

735 Our results resolved the placement of *Stranvaesia* in the framework of Maleae. All six phylogenetic
736 trees from coalescent- and concatenated-based methods based on nuclear and plastid data support a
737 monophyletic *Stranvaesia*, including *Photinia lasiogyna*. Extensive gene tree conflicts among nuclear
738 gene trees suggest a complex evolutionary history of redefined *Stranvaesia*, in which ILS,

739 hybridization, and allopolyploidy may have been involved in its diversification. The detected
740 cytonuclear discordance of the *Stranvaesia bodinieri* clade can be explained by the allopolyploidization
741 and the subsequent recurrent backcrosses. Allopolyploidy and introgression may have been involved in
742 the origin of the redefined *Stranvaesia*, in which the ancestor of *Stranvaesia bodinieri* may have acted
743 as the maternal parent and an extinct lineage as the paternal parent. We proposed the descendant of the
744 maternal parent (*Stanvaesia bodinieri*) of the redefined *Stranvaesia* as a new genus, *Weniomeles*,
745 characterized by purple-black fruits, trunk and/or branches with thorns, and fruit core with multilocular
746 separated by a layer of sclereids and a cluster of sclereids at the top of the locules. Given the extensive
747 reticulation in *Stranvaesia* and its allies, this lineage represents a good case study to untangle the
748 reticulate evolution scenario using phylogenomic analyses and the following taxonomic
749 circumscription. With an increasing number of reported complex histories of plant lineages based on
750 increased amounts of sequence data and continuously improved analytical approaches, this
751 phylogenomic case study of *Stranvaesia* implies that taxonomic delimitation must consider
752 evolutionary results from many data types.

753 CRediT authorship contribution statement

754 **Ze-Tao Jin:** Methodology, Software, Investigation, Formal analysis, Writing – original draft. **Dai-Kun**
755 **Ma:** Methodology, Software, Formal analysis, Writing – original draft. **Richard G.J. Hodel:**
756 Methodology, Software, Writing – review & editing. **Hui Wang:** Investigation, Formal analysis.
757 **Guang-Ning Liu:** Writing – review & editing. **Chen Ren:** Software, Writing – review & editing. **Bin-**

758 **Jie Ge**: Resources, Formal analysis. **Qiang Fan**: Resources. **Shui-Hu Jin**: Writing – review & editing.
759 **Chao Xu**: Writing – review & editing, Investigation. **Jun Wu**: Writing – review & editing. **Bin-Bin**
760 **Liu**: Conceptualization, Methodology, Writing – review & editing, Resources, Supervision.

761 **Declaration of Competing Interest**

762 The authors declare that they have no known competing financial interests or personal
763 relationships that could have appeared to influence the work reported in this paper.

764 **Data availability**

765 The raw sequence data were deposited in the NCBI Sequence Read Archive (SRA) database
766 under the BioProject PRJNA859408. Alignments and gene trees of all datasets used in this study are
767 available from the Dryad Digital Repository: <https://doi.org/10.5061/dryad.hx3ffbghm>.

768 **Acknowledgements**

769 The phylogenomic analyses have been run on the Dell T7920 workstation (owned by Bin-Bin
770 Liu, Institute of Botany, Chinese Academy of Sciences), and the Bioinformatics Center of Nanjing
771 Agricultural University provides support for the analysis. This work was supported by National Natural
772 Science Foundation of China (grant number 32000163 to Bin-Bin Liu and 32270216 to Bin-Bin Liu);
773 the Youth Innovation Promotion Association CAS (grant number 2023086 to Bin-Bin Liu); Project of
774 National Plant Specimen Resource Center (NPSRC) (grant number E0117G1001); and National Wild

775 Plant Germplasm Resource Center for Shanghai Chenshan Botanical Garden (grant number
776 ZWGX2102).

777 **Appendix A. Supplementary data**

778 Supplementary data to this article can be found online.

779 **References**

780 Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment search
781 tool. *J. Mol. Biol.* 215, 403–410. [https://doi.org/10.1016/S0022-2836\(05\)80360-2](https://doi.org/10.1016/S0022-2836(05)80360-2).

782 Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J.H., Zhang, Z., Miller, W., Lipman, D.J., 1997.
783 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic
784 Acids Res.* 25, 3389–3402. <https://doi.org/10.1093/nar/25.17.3389>.

785 Andrews, S., 2018. FastQC: a quality control tool for high throughput sequence data.
786 <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/> [accessed 17 October 2022].

787 Arenas, M., Valiente, G., Posada, D., 2008. Characterization of reticulate networks based on the
788 coalescent with recombination. *Mol. Biol. Evol.* 25, 2517–2520.
789 <https://doi.org/10.1093/molbev/msn219>.

790 Bagley, J.C., Uribe-Convers, S., Carlsen, M.M., Muchhala, N., 2020. Utility of targeted sequence
791 capture for phylogenomics in rapid, recent angiosperm radiations: Neotropical *Burmeistera*

792 bellflowers as a case study. *Mol. Phylogenet. Evol.* 152, 106769.

793 <https://doi.org/10.1016/j.ympev.2020.106769>.

794 Baker, W.J., Bailey, P., Barber, V., Barker, A., Bellot, S., Bishop, D., Botigué, L.R., Brewer, G.,

795 Carruthers, T., Clarkson, J.J., Cook, J., Cowan, R.S., Dodsworth, S., Epitawalage, N., Françoso,

796 E., Gallego, B., Johnson, M.G., Kim, J.T., Leempoel, K., Maurin, O., Mcginnie, C., Pokorny, L.,

797 Roy, S., Stone, M., Toledo, E., Wickett, N.J., Zuntini, A.R., Eiserhardt, W.L., Kersey, P.J., Leitch,

798 I.J., Forest, F., 2022. A comprehensive phylogenomic platform for exploring the angiosperm tree

799 of life. *Syst. Biol.* 71, 301–319. <https://doi.org/10.1093/sysbio/syab035>.

800 Blischak, P.D., Chifman, J., Wolfe, A.D., Kubatko, L.S., 2018. HyDe: a Python package for genome-

801 scale hybridization detection. *Syst. Biol.* 67(5), 821–829. <https://doi.org/10.1093/sysbio/syy023>.

802 Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence

803 data. *Bioinformatics* 30, 2114–2120. <https://doi.org/10.1093/bioinformatics/btu170>.

804 Borowiec, M.L., 2016. AMAS: a fast tool for alignment manipulation and computing of summary

805 statistics. *PeerJ* 4, e1660. <https://doi.org/10.7717/peerj.1660>.

806 Borowiec, M.L., 2019. Spruceup: fast and flexible identification, visualization, and removal of outliers

807 from large multiple sequence alignments. *J. Open Source Softw.* 4, 1635.

808 <https://doi.org/10.21105/joss.01635>.

809 Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M.A., Rambaut, A.,

810 Drummond, A.J., 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. *PLoS*

811 *Comput. Biol.* 10, e1003537. <https://doi.org/10.1371/journal.pcbi.1003537>.

812 Brown, J.W., Walker, J.F., Smith, S.A., 2017. Phyx: phylogenetic tools for unix. *Bioinformatics*
813 33(12), 1886–1888. <https://doi.org/10.1093/bioinformatics/btx063>.

814 Byng, J.W., Chase, M.W., Christenhusz, M.J.M., Fay, M.F., Judd, W.S., Mabberley, D.J., Sennikov,
815 A.N., Soltis, D.E., Soltis, P.S., Stevens, P.F., 2016. An update of the Angiosperm Phylogeny
816 Group classification for the orders and families of flowering plants: APG IV. *Bot. J. Linn. Soc.*
817 181, 1–20. <https://doi.org/10.1111/boj.12385>.

818 Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L., 2009.
819 BLAST+: architecture and applications. *BMC Bioinformatics* 10, 421.
820 <https://doi.org/10.1186/1471-2105-10-421>.

821 Capella-Gutiérrez, S., Silla-Martínez, J.M., Gabaldón, T., 2009. trimAl: a tool for automated alignment
822 trimming in large-scale phylogenetic analyses. *Bioinformatics* 25, 1972–1973.
823 <https://doi.org/10.1093/bioinformatics/btp348>.

824 Chamala, S., García, N., Godden, G.T., Krishnakumar, V., Jordon-Thaden, I.E., De Smet, R.,
825 Barbazuk, W.B., Soltis, D.E., Soltis, P.S., 2015. MarkerMiner 1.0: a new application for
826 phylogenetic marker development using angiosperm transcriptomes. *Appl. Plant Sci.* 3,
827 apps.1400115. <https://doi.org/10.3732/apps.1400115>.

828 Christenhusz, M.J.M., Fay, M.F., Byng, J.W., 2018. The Global Flora A practical flora to vascular
829 plant species of the world Special Edition, GLOVAP Nomenclature Part 1. Plant Gateway Ltd.,
830 Bradford, 4.

831 Cooper, B.J., Moore, M.J., Douglas, N.A., Wagner, W.L., Johnson, M.G., Overson, R.P., Kinosian,
832 S.P., McDonnell, A.J., Levin, R.A., Raguso, R.A., Flores Olvera, H., Ochoterena, H., Fant, J.B.,
833 Skogen, K.A., Wickett, N.J., 2022. Target enrichment and extensive population sampling help
834 untangle the recent, rapid radiation of *Oenothera* Sect. *Calylophus*. *Syst. Biol.*
835 <https://doi.org/10.1093/sysbio/syac032>.

836 Crowl, A.A., Manos, P.S., McVay, J.D., Lemmon, A.R., Lemmon, E.M., Hipp, A.L., 2019.
837 Uncovering the genomic signature of ancient introgression between white oak lineages (*Quercus*).
838 *New Phytol.* 226, 1158–1170. <https://doi.org/10.1111/nph.15842>.

839 Dayrat, B., 2005. Towards integrative taxonomy. *Biol. J. Linn. Soc.* 85, 407–417.
840 <https://doi.org/10.1111/j.1095-8312.2005.00503.x>.

841 Debray, K., Le Paslier, M.C., Berard, A., Thouroude, T., Michel, G., Marie-Magdelaine, J., Bruneau,
842 A., Foucher, F., Malecot, V., 2022. Unveiling the patterns of reticulated evolutionary processes
843 with phylogenomics: hybridization and polyploidy in the genus *Rosa*. *Syst. Biol.* 71, 547–569.
844 <https://doi.org/10.1093/sysbio/syab064>.

845 Decaisne, M.J., 1874. Mémoire sur la famille des Pomacées. *Nouvelles archives du muséum d'histoire
846 naturelle* 10, 113–192.

847 Dierckxsens, N., Mardulyn, P., Smits, G., 2016. Novoplasty: de novo assembly of organelle genomes
848 from whole genome data. *Nucleic Acids Res.* 45, e18. <https://doi.org/10.1093/nar/gkw955>.

849 Flower, B.P., Kennett, J.P., 1994. The middle Miocene climatic transition: East Antarctic ice sheet
850 development, deep ocean circulation and global carbon cycling. *Paleogeogr. Paleoclimatol.*
851 *Paleoecol.* 108, 537–555. [https://doi.org/10.1016/0031-0182\(94\)90251-8](https://doi.org/10.1016/0031-0182(94)90251-8).

852 Focke, W.O., 1888. Rosaceae, in: Engler, A., Prantl, K. (Eds.), *Die Naturlichen Pflanzenfamilien.*
853 Verlag von Wilhelm Engelmann, Leipzig, 3, 1–61.

854 Fonseca, L.H.M., Lohmann, L.G., 2020. Exploring the potential of nuclear and mitochondrial
855 sequencing data generated through genome-skimming for plant phylogenetics: A case study from
856 a clade of neotropical lianas. *J. Syst. Evol.* 58, 18–32. <https://doi.org/10.1111/jse.12533>.

857 Franchet, A.R., Delavay, J.M., 1890. *Plantae Delavayanae.* P. Klincksieck, Paris.

858 Guo, W., Yu, Y., Shen, R.J., Liao, W.B., Chin, S.-W., Potter, D., 2011. A phylogeny of *Photinia* sensu
859 lato (Rosaceae) and related genera based on nrITS and cpDNA analysis. *Plant Syst. Evol.* 291(1),
860 91–102. <https://doi.org/10.1007/s00606-010-0368-0>.

861 Guo, W., Fan, Q., Zhang, X.Z., Liao, W.B., Wang, L.Y., Wu, W., Potter, D., 2020. Molecular
862 reappraisal of relationships between *Photinia*, *Stranvaesia*, and *Heteromeles* (Rosaceae, Maleae).
863 *Phytotaxa* 447, 103–115. <https://doi.org/10.11646/phytotaxa.447.2.3>.

864 Hodel, R.G.J., Zimmer, E.A., Liu, B.B., Wen, J., 2021. Synthesis of nuclear and chloroplast data
865 combined with network analyses supports the polyploid origin of the apple tribe and the hybrid
866 origin of the Maleae-Gillenieae clade. *Front. Plant Sci.* 12, 820997.
867 <https://doi.org/10.3389/fpls.2021.820997>.

868 Hörandl, E., 2006. Paraphyletic versus monophyletic taxa-evolutionary versus cladistic classifications.

869 *Taxon* 55, 564–570. <https://doi.org/10.2307/25065631>.

870 Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies. *Mol.*
871 *Biol. Evol.* 23, 254–267. <https://doi.org/10.1093/molbev/msj030>.

872 Huson, D.H., Scornavacca, C., 2011. A survey of combinatorial methods for phylogenetic networks.

873 *Genome Biol. Evol.* 3, 23–35. <https://doi.org/10.1093/gbe/evq077>.

874 Jarvis, E.D., Mirarab, S., Aberer, A.J., Li, B., Houde, P., Li, C., Ho, S.Y.W., Faircloth, B.C., Nabholz,
875 B., Howard, J.T., Suh, A., Weber, C.C., da Fonseca, R.R., Li, J.W., Zhang, F., Li, H., Zhou, L.,
876 Narula, N., Liu, L., Ganapathy, G., Boussau, B., Bayzid, M.S., Zavidovych, V., Subramanian, S.,
877 Gabaldón, T., Capella-Gutiérrez, S., Huerta-Cepas, J., Rekepalli, B., Munch, K., Schierup, M.,
878 Lindow, B., Warren, W.C., Ray, D., Green, R.E., Bruford, M.W., Zhan, X.J., Dixon, A., Li, S.B.,
879 Li, N., Huang, Y.H., Derryberry, E.P., Bertelsen, M.F., Sheldon, F.H., Brumfield, R.T., Mello,
880 C.V., Lovell, P.V., Wirthlin, M., Schneider, M.P.C., Prosdocimi, F., Samaniego, J.A., Vargas
881 Velazquez, A.M., Alfaro-Núñez, A., Campos, P.F., Petersen, B., Sicheritz-Ponten, T., Pas, A.,
882 Bailey, T., Scofield, P., Bunce, M., Lambert, D.M., Zhou, Q., Perelman, P., Driskell, A.C.,
883 Shapiro, B., Xiong, Z.J., Zeng, Y.L., Liu, S.P., Li, Z.Y., Liu, B.H., Wu, K., Xiao, J., Xiong, Y.Q.,
884 Zheng, Q.M., Zhang, Y., Yang, H.M., Wang, J., Smeds, L., Rheindt, F.E., Braun, M., Fjeldsa, J.,
885 Orlando, L., Barker, F.K., Jónsson, K.A., Johnson, W., Koepfli, K.-P., O'Brien, S., Haussler, D.,
886 Ryder, O.A., Rahbek, C., Willerslev, E., Graves, G.R., Glenn, T.C., McCormack, J., Burt, D.,
887 Ellegren, H., Alström, P., Edwards, S.V., Stamatakis, A., Mindell, D.P., Cracraft, J., Braun, E.L.,

888 Warnow, T., Jun, W., Gilbert, M.T.P., Zhang, G.J., 2014. Whole-genome analyses resolve early

889 branches in the tree of life of modern birds. *Science*. 346, 1320–1331.

890 <https://doi.org/10.1126/science.1253451>.

891 Johnson, M.G., Gardner, E.M., Liu, Y., Medina, R., Goffinet, B., Shaw, A.J., Zerega, N.J.C., Wickett,

892 N.J., 2016. HybPiper: Extracting coding sequence and introns for phylogenetics from high-

893 throughput sequencing reads using target enrichment. *Appl. Plant Sci.* 4, 1600016.

894 <https://doi.org/10.3732/apps.1600016>.

895 Kalkman, C., 1973. The Malesian species of the subfamily Maloideae. *Blumea* 21, 413–442.

896 Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A.,

897 Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., Drummond, A., 2012. Geneious

898 Basic: an integrated and extendable desktop software platform for the organization and analysis of

899 sequence data. *Bioinformatics* 28, 1647–1649. <https://doi.org/10.1093/bioinformatics/bts199>.

900 Koehne, E., 1890. Die Gattungen der Pomaceen. *Wissenschaftliche Beilage zum Programm des Falk-*

901 *Realgymnasiums zu, Berlin*, pp. 1–33.

902 Koehne, E., 1891. Die Gattungen der Pomaceen, in: Engler, A., Prantl, K. (Eds.), *Garten flora*. Verlag

903 von Paul Parey, Berlin, 40, 4–7.

904 Lanfear, R., Calcott, B., Ho, S.Y., Guindon, S., 2012. PartitionFinder: combined selection of

905 partitioning schemes and substitution models for phylogenetic analyses. *Mol. Biol. Evol.* 29(6),

906 1695–1701. <https://doi.org/10.1093/molbev/mss020>.

907 Lanfear, R., Calcott, B., Kainer, D., Mayer, C., Stamatakis, A., 2014. Selecting optimal partitioning
908 schemes for phylogenomic datasets. *BMC Evol. Biol.* 14, 82. <https://doi.org/10.1186/1471-2148-14-82>.

910 Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T., Calcott, B., 2016. PartitionFinder 2: new
911 methods for selecting partitioned models of evolution for molecular and morphological
912 phylogenetic analyses. *Mol. Biol. Evol.* 34, 772–773. <https://doi.org/10.1093/molbev/msw260>.

913 Larget, B.R., Kotha, S.K., Dewey, C.N., Ané, C., 2010. BUCKy: gene tree/species tree reconciliation
914 with Bayesian concordance analysis. *Bioinformatics* 26(22), 2910–2911.
915 <https://doi.org/10.1093/bioinformatics/btq539>.

916 Leebens-Mack, J.H., Barker, M.S., Carpenter, E.J., Deyholos, M.K., Gitzendanner, M.A., Graham,
917 S.W., Grosse, I., Li, Z., Melkonian, M., Mirarab, S., Porsch, M., Quint, M., Rensing, S.A., Soltis,
918 D.E., Soltis, P.S., Stevenson, D.W., Ullrich, K.K., Wickett, N.J., DeGironimo, L., Edger, P.P.,
919 Jordon-Thaden, I.E., Joya, S., Liu, T., Melkonian, B., Miles, N.W., Pokorny, L., Quigley, C.,
920 Thomas, P., Villarreal, J.C., Augustin, M.M., Barrett, M.D., Baucom, R.S., Beerling, D.J.,
921 Benstein, R.M., Biffin, E., Brockington, S.F., Burge, D.O., Burris, J.N., Burris, K.P., Burtet-
922 Sarramegna, V., Caicedo, A.L., Cannon, S.B., Çebi, Z., Chang, Y., Chater, C., Cheeseman, J.M.,
923 Chen, T., Clarke, N.D., Clayton, H., Covshoff, S., Crandall-Stotler, B.J., Cross, H., dePamphilis,
924 C.W., Der, J.P., Determann, R., Dickson, R.C., Di Stilio, V.S., Ellis, S., Fast, E., Feja, N., Field,
925 K.J., Filatov, D.A., Finnegan, P.M., Floyd, S.K., Fogliani, B., García, N., Gâteblé, G., Godden,
926 G.T., Goh, F., Greiner, S., Harkess, A., Heaney, J.M., Helliwell, K.E., Heyduk, K., Hibberd, J.M.,

927 Hodel, R.G.J., Hollingsworth, P.M., Johnson, M.T.J., Jost, R., Joyce, B., Kapralov, M.V.,
928 Kazamia, E., Kellogg, E.A., Koch, M.A., Von Konrat, M., Könyves, K., Kutchan, T.M., Lam, V.,
929 Larsson, A., Leitch, A.R., Lentz, R., Li, F.-W., Lowe, A.J., Ludwig, M., Manos, P.S., Mavrodiev,
930 E., McCormick, M.K., McKain, M., McLellan, T., McNeal, J.R., Miller, R.E., Nelson, M.N.,
931 Peng, Y., Ralph, P., Real, D., Riggins, C.W., Ruhsam, M., Sage, R.F., Sakai, A.K., Scascitella,
932 M., Schilling, E.E., Schröder, E.-M., Sederoff, H., Servick, S., Sessa, E.B., Shaw, A.J., Shaw,
933 S.W., Sigel, E.M., Skema, C., Smith, A.G., Smithson, A., Stewart, C.N., Stinchcombe, J.R.,
934 Szövényi, P., Tate, J.A., Tiebel, H., Trapnell, D., Villegente, M., Wang, C.-N., Weller, S.G.,
935 Wenzel, M., Weststrand, S., Westwood, J.H., Whigham, D.F., Wu, S.X., Wulff, A.S., Yang, Y.,
936 Zhu, D., Zhuang, C.L., Zuidhof, J., Chase, M.W., Pires, J.C., Rothfels, C.J., Yu, J., Chen, C., Chen,
937 L., Cheng, S.F., Li, J.J., Li, R., Li, X., Lu, H.R., Ou, Y.X., Sun, X., Tan, X.M., Tang, J.B., Tian,
938 Z.J., Wang, F., Wang, J., Wei, X.F., Xu, X., Yan, Z.X., Yang, F., Zhong, X.N., Zhou, F.Y., Zhu,
939 Y., Zhang, Y., Ayyampalayam, S., Barkman, T.J., Nguyen, N.-p., Matasci, N., Nelson, D.R.,
940 Sayyari, E., Wafula, E.K., Walls, R.L., Warnow, T., An, H., Arrigo, N., Baniaga, A.E., Galuska,
941 S., Jorgensen, S.A., Kidder, T.I., Kong, H.H., Lu-Irving, P., Marx, H.E., Qi, X.S., Reardon, C.R.,
942 Sutherland, B.L., Tiley, G.P., Welles, S.R., Yu, R.P., Zhan, S., Gramzow, L., Theissen, G., Wong,
943 G.K.-S., 2019. One thousand plant transcriptomes and the phylogenomics of green plants. *Nature*
944 574, 679–685. <https://doi.org/10.1038/s41586-019-1693-2>.
945 Lehwark, P., Greiner, S., 2019. GB2sequin - A file converter preparing custom GenBank files for
946 database submission. *Genomics* 111(4), 759–761. <https://doi.org/10.1016/j.ygeno.2018.05.003>.

947 Li, G., Lu, L.T., Li, C.L., 1992. Leaf architecture of the *Photinia* complex (Rosaceae: Maloideae) with
948 special reference to its phenetic and phylogenetic significance. *Cathaya* 3, 21–56.

949 Li, H.T., Yi, T.S., Gao, L.M., Ma, P.F., Zhang, T., Yang, J.B., Gitzendanner, M.A., Fritsch, P.W., Cai,
950 J., Luo, Y., Wang, H., van der Bank, M., Zhang, S.D., Wang, Q.F., Wang, J., Zhang, Z.R., Fu,
951 C.N., Yang, J., Hollingsworth, P.M., Chase, M.W., Soltis, D.E., Soltis, P.S., Li, D.Z., 2019. Origin
952 of angiosperms and the puzzle of the Jurassic gap. *Nat. Plants* 5, 461.
953 <https://doi.org/10.1038/s41477-019-0421-0>.

954 Li, H.T., Luo, Y., Gan, L., Ma, P.F., Gao, L.M., Yang, J.B., Cai, J., Gitzendanner, M.A., Fritsch, P.W.,
955 Zhang, T., Jin, J.J., Zeng, C.X., Wang, H., Yu, W.B., Zhang, R., van der Bank, M., Olmstead,
956 R.G., Hollingsworth, P.M., Chase, M.W., Soltis, D.E., Soltis, P.S., Yi, T.S., Li, D.Z., 2021. Plastid
957 phylogenomic insights into relationships of all flowering plant families. *BMC Biol.* 19, 232.
958 <https://doi.org/10.1186/s12915-021-01166-2>.

959 Li, J.L., Wang, S., Yu, J., Wang, L., Zhou, S.L., 2013. A modified CTAB protocol for plant DNA
960 extraction. *Chin. Bull. Bot.* 48, 72–78 (in Chinese).

961 Liang, G.L., 1986. Comparative studies of karyotypes in Chinese species of *Malus*. *J. Southwest Agric.*
962 *Univ.* 1, 104–117 (in Chinese).

963 Liang, G.L., 1987. Observations of chromosomes of *Malus* species in China. *Acta Phytotax. Sin.* 25,
964 437–441 (in Chinese).

965 Liang, G.L., Li, X.L., 1993. Chromosome studies of Chinese species of *Malus* Mill. *Acta Phytotax.*
966 *Sin.* 31, 236–251 (in Chinese).

967 Liang, G.L., Li, Y.N., Li, X.L., 1996. Evolutionary study of the chromosomes at pollen mother cell
968 meiosis in *Malus*. *J. Southwest Agric. Univ.* 18, 299–307 (in Chinese).

969 Liang, G.L., 1997. Induction of Giemsa C-bands and analyses of banding patterns in *Malus*
970 *sikkimensis*. *J. Southwest Agric. Univ.* 19, 95–97 (in Chinese).

971 Liu, B.B., Campbell, C.S., Hong, D.Y., Wen, J., 2020a. Phylogenetic relationships and chloroplast
972 capture in the *Amelanchier-Malacomeles-Peraphyllum* clade (Maleae, Rosaceae): Evidence from
973 chloroplast genome and nuclear ribosomal DNA data using genome skimming. *Mol. Phylogenet.*
974 *Evol.* 147, 106784. <https://doi.org/10.1016/j.ympev.2020.106784>.

975 Liu, B.B., Hong, D.Y., Zhou, S.L., Xu, C., Dong, W.P., Johnson, G., Wen, J., 2019. Phylogenomic
976 analyses of the *Photinia* complex support the recognition of a new genus *Phippsiomeles* and the
977 resurrection of a redefined *Stranvaesia* in Maleae (Rosaceae). *J. Syst. Evol.* 57, 678–694.
978 <https://doi.org/10.1111/jse.12542>.

979 Liu, B.B., Liu, G.N., Hong, D.Y., Wen, J., 2020b. *Eriobotrya* belongs to *Rhaphiolepis* (Maleae,
980 Rosaceae): evidence from chloroplast genome and nuclear ribosomal DNA data. *Front. Plant Sci.*
981 10, 1731. <https://doi.org/10.3389/fpls.2019.01731>.

982 Liu, B.B., Ma, Z.Y., Ren, C., Hodel, R.G.J., Sun, M., Liu, X.Q., Liu, G.N., Hong, D.Y., Zimmer, E.A.,
983 Wen, J., 2021. Capturing single-copy nuclear genes, organellar genomes, and nuclear ribosomal
984 DNA from deep genome skimming data for plant phylogenetics: A case study in Vitaceae. *J. Syst.*
985 *Evol.* 59, 1124–1138. <https://doi.org/10.1111/jse.12806>.

986 Liu, B.B., Ren, C., Kwak, M., Hodel, R.G.J., Xu, C., He, J., Zhou, W.B., Huang, C.-H., Ma, H., Qian,
987 G.Z., Hong, D.Y., Wen, J., 2022. Phylogenomic conflict analyses in the apple genus *Malus* s.l.
988 reveal widespread hybridization and allopolyploidy driving diversification, with insights into the
989 complex biogeographic history in the Northern Hemisphere. *J. Integr. Plant Biol.* 64(5), 1020–
990 1043. <https://doi.org/10.1111/jipb.13246>.

991 Liu, X., Wang, Z.S., Shao, W.H., Ye, Z.Y., Zhang, J.G., 2017. Phylogenetic and taxonomic status
992 analyses of the Abaso Section from multiple nuclear genes and plastid fragments reveal new
993 insights into the North America origin of *Populus* (Salicaceae). *Front. Plant Sci.* 7, 2022.
994 <https://doi.org/10.3389/fpls.2016.02022>.

995 Lo, E.Y.Y., Donoghue, M.J., 2012. Expanded phylogenetic and dating analyses of the apples and their
996 relatives (Pyreae, Rosaceae). *Mol. Phylogenet. Evol.* 63, 230–243.
997 <https://doi.org/10.1016/j.ympev.2011.10.005>.

998 Lu, L.T., Li, C.L., Li, G., 1990. Pollen morphology of *Photinia* (Rosaceae) and its systematic
999 significance. *Cathaya* 2, 127–138.

1000 Lu, L.T., Wang, Z.L., Li, G., 1991. The significance of the leaf epidermis in the taxonomy of the
1001 *Photinia* complex (Rosaceae: Maloideae). *Cathaya* 3, 93–108.

1002 Lu, L.T., Spongberg, S.A., 2003. *Photinia* Lindley, in: Wu, Z.Y., Raven, P.H., Hong, D.Y. (Eds.),
1003 Flora of China. Vol. 9. Science Press, Beijing; Missouri Botanical Garden Press, St. Louis, pp.
1004 121–137.

1005 MacGinitie, H.D., 1969. The Eocene Green River Flora of northwestern Colorado and northeastern
1006 Utah. *Univ. Calif. Publ. Geol. Sci.* 83, 1–140.

1007 Mai, U., Mirarab, S., 2018. TreeShrink: fast and accurate detection of outlier long branches in
1008 collections of phylogenetic trees. *BMC Genomics* 19(S5), 272. <https://doi.org/10.1186/s12864-018-4620-2>.

1009

1010 Mallet, J., 2005. Hybridization as an invasion of the genome. *Trends Ecol. Evol.* 20, 229–237.
1011 <https://doi.org/10.1016/j.tree.2005.02.010>.

1012 Matzke, N.J., 2018. BioGeoBEARS: BioGeography with Bayesian (and likelihood) Evolutionary
1013 Analysis with R Scripts. version 1.1.1, published on GitHub on November 6, 2018.
1014 <http://dx.doi.org/10.5281/zenodo.1478250>.

1015 Mayr, E., Bock, W.J., 2002. Classifications and other ordering systems. *J. Zool. Syst. Evol. Res.* 40,
1016 169–194. <https://doi.org/10.1046/j.1439-0469.2002.00211.x>.

1017 Mayrose, I., Zhan, S.H., Rothfels, C.J., Magnuson-Ford, K., Barker, M.S., Rieseberg, L.H., Otto, S.P.,
1018 2011. Recently formed polyploid plants diversify at lower rates. *Science* 333, 1257.
1019 <https://doi.org/10.1126/science.1207205>.

1020 Mehra, P.N., Sareen, T.S., Hans, A.S., 1973. Cytology of some woody species of Rosaceae from
1021 Himalayas. *Silvae Genet.* 22, 188–190.

1022 Mindell, D.P., 2013. The tree of life: metaphor, model, and heuristic device. *Syst. Biol.* 62, 479–489.
1023 <https://doi.org/10.1093/sysbio/sys115>.

1024 Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., Von Haeseler, A.,

1025 Lanfear, R., 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in

1026 the genomic era. *Mol. Biol. Evol.* 37, 1530–1534. <https://doi.org/10.1093/molbev/msaa015>.

1027 Morales-Briones, D.F., Kadereit, G., Tefarikis, D.T., Moore, M.J., Smith, S.A., Brockington, S.F.,

1028 Timoneda, A., Yim, W.C., Cushman, J.C., Yang, Y., 2021. Disentangling sources of gene tree

1029 discordance in phylogenomic data sets: testing ancient hybridizations in Amaranthaceae s.l. *Syst.*

1030 *Biol.* 70, 219–235. <https://doi.org/10.1093/sysbio/syaa066>.

1031 Morales-Briones, D.F., Gehrke, B., Huang, C.-H., Liston, A., Ma, H., Marx, H.E., Tank, D.C., Yang,

1032 Y., 2022. Analysis of paralogs in target enrichment data pinpoints multiple ancient polyploidy

1033 events in *Alchemilla* s.l. (Rosaceae). *Syst. Biol.* 71, 190–207.

1034 <https://doi.org/10.1093/sysbio/syab032>.

1035 Morgulis, A., Coulouris, G., Raytselis, Y., Madden, T.L., Agarwala, R., Schäffer, A.A., 2008. Database

1036 indexing for production Megablast searches. *Bioinformatics* 24, 1757–1764.

1037 <https://doi.org/10.1093/bioinformatics/btn322>.

1038 Morrison, D.A., 2014. Is the tree of life the best metaphor, model, or heuristic for phylogenetics? *Syst.*

1039 *Biol.* 63, 628–638. <https://doi.org/10.1093/sysbio/syu026>.

1040 Nakamura, T., Yamada, K.D., Tomii, K., Katoh, K., 2018. Parallelization of MAFFT for large-scale

1041 multiple sequence alignments. *Bioinformatics* 34, 2490–2492.

1042 <https://doi.org/10.1093/bioinformatics/bty121>.

1043 Padial, J.M., Miralles, A., De la Riva, I., Vences, M., 2010. The integrative future of taxonomy. *Front. Zool.* 7, 1–14. <https://doi.org/10.1186/1742-9994-7-16>.

1044 Padian, K., 1999. Charles Darwin's views of classification in theory and practice. *Syst. Biol.* 48, 352–364. <https://doi.org/10.1080/106351599260337>.

1045 Pathak, M.L., Idrees, M., Xu, B., Gao, X.F., 2019. Pollen morphology of subfamily Maloideae (Roseaceae) with special focus on the genus *Photinia*. *Phytotaxa* 404(5), 171–189. <https://doi.org/10.11646/phytotaxa.404.5.1>.

1046 Pease, J.B., Brown, J.W., Walker, J.F., Hinchliff, C.E., Smith, S.A., 2018. Quartet sampling distinguishes lack of support from conflicting support in the green plant tree of life. *Am. J. Bot.* 105, 385–403. <https://doi.org/10.1002/ajb2.1016>.

1047 Rehder, A., 1940. Manual of cultivated trees and shrubs hardy in North America exclusive of the subtropical and warmer temperature regions, 2nd ed. The Macmillan Company, New York.

1048 Rehder, A., 1949. Bibliography of cultivated trees and shrubs hardy in the cooler temperature regions of the Northern Hemisphere. The Arnold Arboretum of Harvard University, Jamaica Plain, Massachusetts.

1049 Rieseberg, L.H., Soltis, D.E., 1991. Phylogenetic consequences of cytoplasmic gene flow in plants. *Evol. Trends Plants* 5, 65–84.

1050 Rieseberg, L.H., Willis, J.H., 2007. Plant speciation. *Science* 317, 910–914. <https://doi.org/10.1126/science.1137729>.

1062 Robertson, K.R., Phipps, J.B., Rohrer, J.R., Smith, P.G., 1991. A synopsis of genera in Maloideae
1063 (Rosaceae). *Syst. Bot.* 16, 376–394. <https://doi.org/10.2307/2419287>.

1064 Roemer, M.J., 1847. *Familiarum naturalium regni vegetabilis synopses monographicae*. Vol. 3.

1065 Landes-Industrie-Comptoir, Weimar.

1066 Rose, J.P., Toledo, C.A.P., Lemmon, E.M., Lemmon, A.R., Sytsma, K.J., 2020. Out of sight, out of
1067 mind: widespread nuclear and plastid-nuclear discordance in the flowering plant genus

1068 *Polemonium* (Polemoniaceae) suggests widespread historical gene flow despite limited nuclear
1069 signal. *Syst. Biol.* 70, 162–180. <https://doi.org/10.1093/sysbio/syaa049>.

1070 Rothfels, C.J., 2021. Polyploid phylogenetics. *New Phytol.* 230, 66–72.
1071 <https://doi.org/10.1111/nph.17105>.

1072 Sayyari, E., Mirarab, S., 2016. Fast coalescent-based computation of local branch support from quartet
1073 frequencies. *Mol. Biol. Evol.* 33(7), 1654–1668. <https://doi.org/10.1093/molbev/msw079>.

1074 Schlick-Steiner, B.C., Steiner, F.M., Seifert, B., Stauffer, C., Christian, E., Crozier, R.H., 2010.
1075 Integrative taxonomy: a multisource approach to exploring biodiversity. *Annu. Rev. Entomol.* 55,
1076 421–438. <https://doi.org/10.1146/annurev-ento-112408-085432>.

1077 Schliep, K., Potts, A.J., Morrison, D.A., Grimm, G.W., 2017. Intertwining phylogenetic trees and
1078 networks. *Methods Ecol. Evol.* 8, 1212–1220. <https://doi.org/10.1111/2041-210X.12760>.

1079 Schuettpelz, E., Schneider, H., Smith, A.R., Hovenkamp, P., Prado, J., Rouhan, G., Salino, A., Sundue,
1080 M., Almeida, T.E., Parris, B., Sessa, E.B., Field, A.R., de Gasper, A.L., Rothfels, C.J., Windham,
1081 M.D., Lehnert, M., Dauphin, B., Ebihara, A., Lehtonen, S., Schwartsburd, P.B., Metzgar, J.,

1082 Zhang, L.B., Kuo, L.-Y., Brownsey, P.J., Kato, M., Arana, M.D., 2016. A community-derived
1083 classification for extant lycophytes and ferns. *J. Syst. Evol.* 54, 563–603.

1084 <https://doi.org/10.1111/jse.12229>.

1085 Singhal, V.K., Gill, B.S., Sidhu, M.S., 1990. Cytology of woody members of Rosaceae. *Proc. Plant Sci.*
1086 100, 17–21. <https://doi.org/10.1007/BF03053464>.

1087 Smith, S.A., O'Meara, B.C., 2012. treePL: divergence time estimation using penalized likelihood for
1088 large phylogenies. *Bioinformatics* 28(20), 2689–2690.

1089 <https://doi.org/10.1093/bioinformatics/bts492>.

1090 Smith, S.A., Moore, M.J., Brown, J.W., Yang, Y., 2015. Analysis of phylogenomic datasets reveals
1091 conflict, concordance, and gene duplications with examples from animals and plants. *BMC Evol.*
1092 Biol. 15, 150. <https://doi.org/10.1186/s12862-015-0423-0>.

1093 Smith, B.T., Merwin, J., Provost, K.L., Thom, G., Brumfield, R.T., Ferreira, M., Mauck Iii, W.M.,
1094 Moyle, R.G., Wright, T.F., Joseph, L., 2022. Phylogenomic analysis of the parrots of the world
1095 distinguishes artifactual from biological sources of gene tree discordance. *Syst. Biol.*
1096 <https://dx.doi.org/10.1093/sysbio/syac055>.

1097 Solís-Lemus, C., Ané, C., 2016. Inferring phylogenetic networks with maximum pseudolikelihood
1098 under incomplete lineage sorting. *PLoS Genet.* 12(3), e1005896.

1099 <https://doi.org/10.1371/journal.pgen.1005896>.

1100 Solís-Lemus, C., Bastide, P., Ané, C., 2017. PhyloNetworks: A package for phylogenetic networks.
1101 *Mol. Biol. Evol.* 34, 3292–3298. <https://doi.org/10.1093/molbev/msx235>.

1102 Soltis, D.E., Soltis, P.S., Collier, T.G., Edgerton, M.L., 1991. Chloroplast DNA variation within and
1103 among genera of the *Heuchera* group (Saxifragaceae): evidence for chloroplast transfer and
1104 paraphyly. Am. J. Bot. 78, 1091–1112. <https://doi.org/10.1002/j.1537-2197.1991.tb14517.x>.

1105 Stamatakis, A., 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with
1106 thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
1107 <https://doi.org/10.1093/bioinformatics/btl446>.

1108 Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
1109 phylogenies. Bioinformatics 30, 1312–1313. <https://doi.org/10.1093/bioinformatics/btu033>.

1110 Straub, S.C.K., Parks, M., Weitemier, K., Fishbein, M., Cronn, R.C., Liston, A., 2012. Navigating the
1111 tip of the genomic iceberg: Next-generation sequencing for plant systematics. Am. J. Bot. 99,
1112 349–364. <https://doi.org/10.3732/ajb.1100335>.

1113 Su, N., Liu, B.B., Wang, J.R., Tong, R.C., Ren, C., Chang, Z.Y., Zhao, L., Potter, D., Wen, J., 2021.
1114 On the species delimitation of the *Maddenia* group of *Prunus* (Rosaceae): evidence from plastome
1115 and nuclear sequences and morphology. Front. Plant Sci. 12, 743643.
1116 <https://doi.org/10.3389/fpls.2021.743643>.

1117 Thomas, G.W.C., Ather, S.H., Hahn, M.W., 2017. Gene-tree reconciliation with MUL-trees to resolve
1118 polyploid events. Syst. Biol. 66(6), 1007–1018. <https://doi.org/10.1093/sysbio/syx044>.

1119 Upham, N.S., Esselstyn, J.A., Jetz, W., 2019. Inferring the mammal tree: Species-level sets of
1120 phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494.
1121 <https://doi.org/10.1371/journal.pbio.3000494>.

1122 Weitemier, K., Straub, S.C.K., Fishbein, M., Liston, A., 2015. Infrageneric polymorphisms among
1123 high-copy loci: a genus-wide study of nuclear ribosomal DNA in *Asclepias* (Apocynaceae). PeerJ
1124 3, e718. <https://doi.org/10.7717/peerj.718>.

1125 Wen, J., Harris, A.J., Ickert-Bond, S.M., Dikow, R., Wurdack, K., Zimmer, E.A., 2017. Developing
1126 integrative systematics in the informatics and genomic era, and calling for a global Biodiversity
1127 Cyberbank. *J. Syst. Evol.* 55, 308–321. <https://doi.org/10.1111/jse.12270>.

1128 Wen, J., Xiong, Z.Q., Nie, Z.L., Mao, L.K., Zhu, Y.B., Kan, X.Z., Ickert-Bond, S.M., Gerrath, J.,
1129 Zimmer, E.A., Fang, X.D., 2013. Transcriptome sequences resolve deep relationships of the grape
1130 family. *PLoS One* 8, e74394. <https://doi.org/10.1371/journal.pone.0074394>.

1131 Wen, D.Q., Yu, Y., Zhu, J.F., Nakhleh, L., 2018. Inferring phylogenetic networks using PhyloNet.
1132 *Syst. Biol.* 67, 735–740. <https://doi.org/10.1093/sysbio/syy015>.

1133 Wenzig, T., 1883. Die Pomaceen, Charaktere der Gattungen und Arten. Vol. 2. *Jahrbuch des
1134 Königlichen Botanischen Gartens und des Botanischen Museums zu Berlin*, Berlin, pp. 287–307.

1135 Wickett, N.J., Mirarab, S., Nguyen, N., Warnow, T., Carpenter, E., Matasci, N., Ayyampalayam, S.,
1136 Barker, M.S., Burleigh, J.G., Gitzendanner, M.A., Ruhfel, B.R., Wafula, E., Der, J.P., Graham,
1137 S.W., Mathews, S., Melkonian, M., Soltis, D.E., Soltis, P.S., Miles, N.W., Rothfels, C.J., Pokorny,
1138 L., Shaw, A.J., DeGironimo, L., Stevenson, D.W., Surek, B., Villarreal, J.C., Roure, B., Philippe,
1139 H., dePamphilis, C.W., Chen, T., Deyholos, M.K., Baucom, R.S., Kutchan, T.M., Augustin,
1140 M.M., Wang, J., Zhang, Y., Tian, Z.J., Yan, Z.X., Wu, X.L., Sun, X., Wong, G.K.-S., Leebens-

1141 Mack, J., 2014. Phylogenomic analysis of the origin and early diversification of land plants.

1142 Proc. Natl. Acad. Sci. USA 111, E4859–E4868. <https://doi.org/10.1073/pnas.1323926111>.

1143 Wood, T.E., Takebayashi, N., Barker, M.S., Mayrose, I., Greenspoon, P.B., Rieseberg, L.H., 2009. The
1144 frequency of polyploid speciation in vascular plants. Proc. Natl. Acad. Sci. USA 106(33), 13875–
1145 13879. <https://doi.org/10.1073/pnas.0811575106>.

1146 Xiang, Y.Z., Huang, C.-H., Hu, Y., Wen, J., Li, S.S., Yi, T.S., Chen, H.Y., Xiang, J., Ma, H., 2017.
1147 Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times
1148 and genome duplication. Mol. Biol. Evol. 34, 262–281. <https://doi.org/10.1093/molbev/msw242>.

1149 Yang, Y., Smith, S.A., 2014. Orthology inference in nonmodel organisms using transcriptomes and
1150 low-coverage genomes: improving accuracy and matrix occupancy for phylogenomics. Mol. Biol.
1151 Evol. 31, 3081–3092. <https://doi.org/10.1093/molbev/msu245>.

1152 Yang, Y.Z., Sun, P.C., Lv, L.K., Wang, D.L., Ru, D.F., Li, Y., Ma, T., Zhang, L., Shen, X.X., Meng,
1153 F.B., Jiao, B.B., Shan, L.X., Liu, M., Wang, Q.F., Qin, Z.J., Xi, Z.X., Wang, X.Y., Davis, C.C.,
1154 Liu, J.Q., 2020. Prickly waterlily and rigid hornwort genomes shed light on early angiosperm
1155 evolution. Nat. Plants 6, 215–222. <https://doi.org/10.1038/s41477-020-0594-6>.

1156 Yi, T.S., Jin, G.H., Wen, J., 2015. Chloroplast capture and intra- and inter-continental biogeographic
1157 diversification in the Asian–New World disjunct plant genus *Osmorhiza* (Apiaceae). Mol.
1158 Phylogenetic Evol. 85, 10–21. <https://doi.org/10.1016/j.ympev.2014.09.028>.

1159 Yu, T.T., Ku, T.C., 1974. *Stranvaesia* Lindl, in: Yu, T.T. (Ed.), Flora Reipublicae Popularis Sinicae.
1160 Vol. 36. Science Press, Beijing, pp. 210–216.

1161 Yu, Y., Harris, A.J., Blair, C., He, X.J., 2015. RASP (Reconstruct Ancestral State in Phylogenies): a
1162 tool for historical biogeography. *Mol. Phylogenet. Evol.* 87, 46–49.

1163 <https://doi.org/10.1016/j.ympev.2015.03.008>.

1164 Zhang, C., Rabiee, M., Sayyari, E., Mirarab, S., 2018. ASTRAL-III: polynomial time species tree
1165 reconstruction from partially resolved gene trees. *BMC Bioinformatics* 19, 153.

1166 <https://doi.org/10.1186/s12859-018-2129-y>.

1167 Zhang, N., Wen, J., Zimmer, E.A., 2015. Congruent deep relationships in the grape family (Vitaceae)
1168 based on sequences of chloroplast genomes and mitochondrial genes via genome skimming. *PLoS*
1169 *One* 10, e0144701. <https://doi.org/10.1371/journal.pone.0144701>.

1170 Zhang, S.Y., 1992. Systematic wood anatomy of the Rosaceae. *Blumea: Biodiversity, Evolution and*
1171 *Biogeography of Plants* 37, 81–158.

1172 Zhang, S.D., Jin, J.J., Chen, S.Y., Chase, M.W., Soltis, D.E., Li, H.T., Yang, J.B., Li, D.Z., Yi, T.S.,
1173 2017. Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. *New*
1174 *Phytol.* 214(3), 1355–1367. <https://doi.org/10.1111/nph.14461>.

1175 Zhao, M., Kurtis, S.M., White, N.D., Moncrieff, A.E., Leite, R.N., Brumfield, R.T., Braun, E.L.,
1176 Kimball, R.T., 2022. Exploring conflicts in Whole Genome Phylogenetics: A case study within
1177 Manakins (Aves: Pipridae). *Syst. Biol.* <https://doi.org/10.1093/sysbio/syac062>.

1178 Zhou, B.F., Yuan, S., Crowl, A.A., Liang, Y.Y., Shi, Y., Chen, X.Y., An, Q.Q., Kang, M., Manos, P.S.,
1179 Wang, B.S. 2022. Phylogenomic analyses highlight innovation and introgression in the continental

1180 radiations of Fagaceae across the Northern Hemisphere. *Nat. Commun.* 13, 1320.

1181 <https://doi.org/10.1038/s41467-022-28917-1>.

1182 Zimmer, E.A., Wen, J., 2015. Using nuclear gene data for plant phylogenetics: Progress and prospects

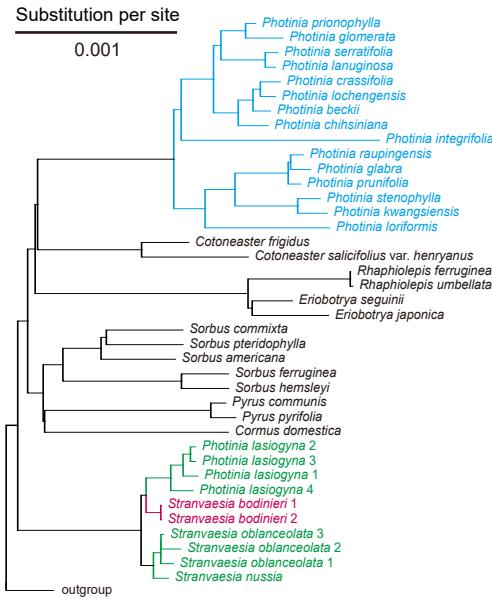
1183 II. Next-gen approaches. *J. Syst. Evol.* 53, 371–379. <https://doi.org/10.1111/jse.12174>.

1184 Zou, X.H., Ge, S., 2008. Conflicting gene trees and phylogenomics. *J. Syst. Evol.* 46(6), 795.

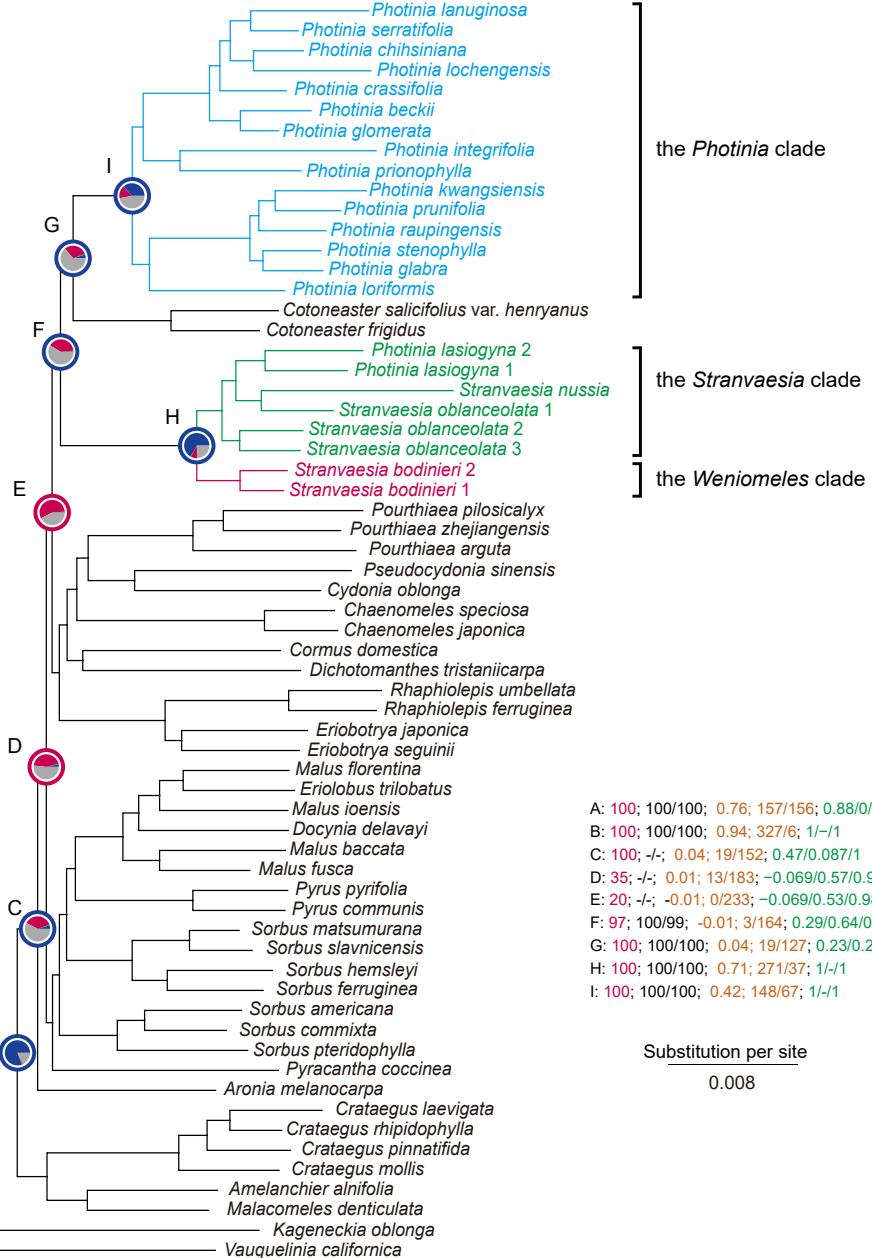
1185 <https://doi.org/10.1093/sysbio/syz078>.

1186 **Figure Caption**

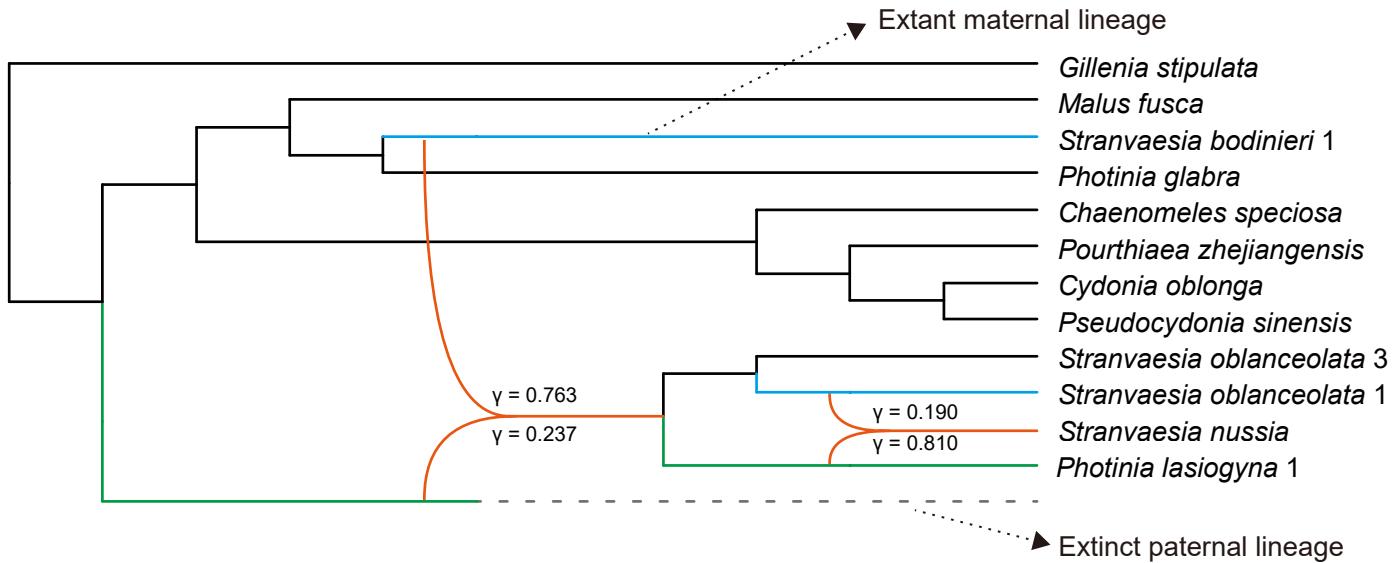
1187 **Fig. 1.** (a) A portion of the RAxML tree of *Stranvaesia* in the context of Maleae using the 78
1188 concatenated plastid coding sequences (CDSs) supermatrix, see Fig. S2 for the whole tree. (b)
1189 Maximum Likelihood (ML) tree of *Stranvaesia* within Maleae inferred from RAxML analysis using
1190 the concatenated 426 single-copy nuclear genes (SCNs) supermatrix. Pie charts on the nine nodes
1191 (A-I) represent the proportion of gene trees that support that clade (blue), the proportion that
1192 support the main alternative bipartition (green), the proportion that support the remaining
1193 alternatives (red), and the proportion (conflict or support) that have < 50% Bootstrap Support (BS,
1194 gray). All the other pie charts in detail refer to Fig. S10. The color of the circle around the pie chart
1195 represents the value range of Quartet Concordance (QC), where QC > 0.2 is painted in dark blue, 0
1196 < QC ≤ 0.2 is painted in light green, -0.05 < QC ≤ 0 is painted in orange, and QC ≤ -0.05 is
1197 painted in red. The QC value of the other nodes refers to Fig. S11. The numbers (bottom right)
1198 indicate values associated with those nodes; they are BS values estimated from RAxML analysis
1199 (e.g., A: 100 labeled by red; see Fig. S7 for all nodes BS), the SH-aLRT support and Ultrafast
1200 Bootstrap (UFBoot) support estimated from IQ-TREE2 (e.g., A: 100/100 labeled by black; see Fig.
1201 S8 for all nodes support), the Internode Certainty All (ICA) score, the number of gene trees
1202 concordant/conflicting with that node in the nuclear topology estimated from *phyparts* (e.g., 0.76;
1203 157/156 labeled by orange; see Fig. S10 for all nodes), and Quartet Concordance/Quartet
1204 Differential/Quartet Informativeness estimated from Quartet Sampling analysis (e.g., 0.88/0/1 labeled
1205 by green; see Fig. S11 for all scores).
1206 **Fig. 2.** Phylogenetic network analysis from the 12-taxon sampling of *Stranvaesia* and its close allies
1207 and GRAMPA allopolyploidy analysis. (a), Species network inferred from SNaQ with a maximum
1208 of two reticulations. Orange curved branches indicate the two possible hybridization events with the
1209 corresponding inheritance probabilities. Solid lines with different colors denote the extant parental
1210 lineages involving hybridization, while dotted lines indicate extinct paternal lineages. (b), The
1211 statistics of pseudo-loglikelihood scores (-ploglik) suggest that the optimal network is $h_{max} = 2$. (c),
1212 Thumbnail of the most parsimonious MUL-trees inferred from GRAMPA analyses based on the

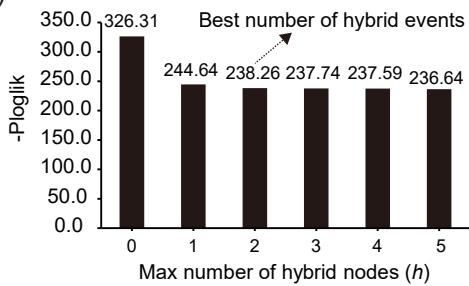

1213 nuclear phylogeny with the *Stranvaesia* clade set as a result of allopolyploidization. The figure in
1214 detail refers to Fig. S13. (d), The enlarged figure of the part enclosed by the dotted line in c. The
1215 clade with multiple labels denotes the polyploid origin, the first tip is indicated by a plus sign and
1216 the second tip is shown using an asterisk. One of the *Stranvaesia* clades is sister to the *Weniomeles*
1217 clade, and the other *Stranvaesia* clade is sister to the ancestor of *Stranvaesia*, suggesting the
1218 allopolyploid origin of the *Stranvaesia* clade.

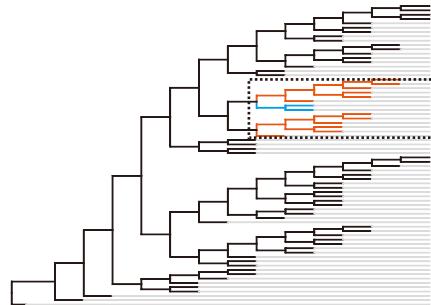
1219 **Fig. 3.** Dated chronogram for the red-fruit genus *Stranvaesia* within Maleae inferred from treePL
1220 based on the nuclear data set. Also shown is the ancestral area reconstruction using BioGeoBEARS
1221 implemented in RASP, with the colored key identifying extant and possible ancestral ranges. (A),
1222 East Asia; (B), Europe; (C), Central Asia; (D), North America; (E), South America. Three fossils,
1223 colored black (nodes 2-4), and one divergence time estimate based on previous research, colored
1224 purple (node 1), are used as constraints.

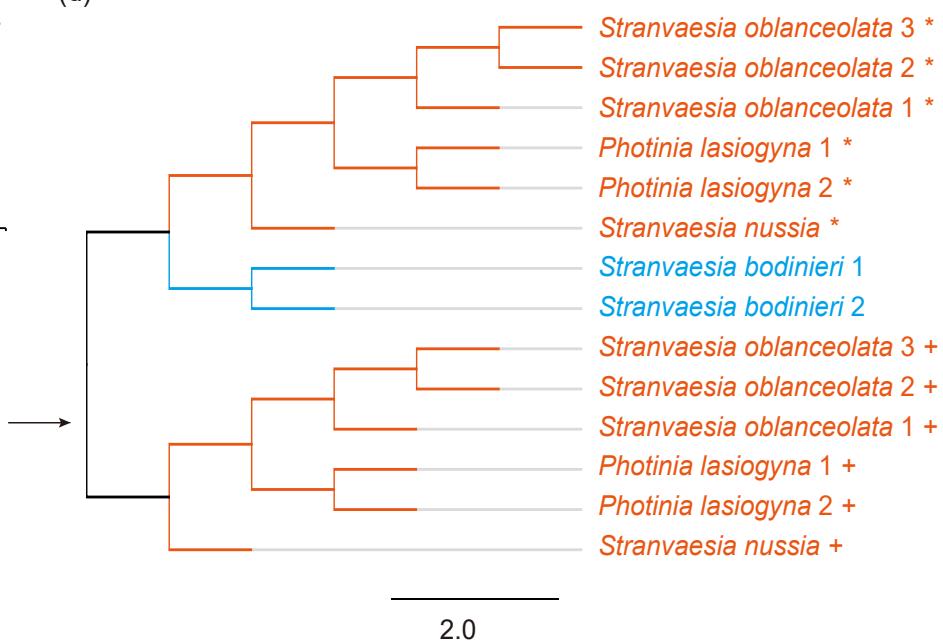

1225 **Fig. 4.** A hypothetical scenario of the origin of *Stranvaesia*. cp, chloroplast genome.

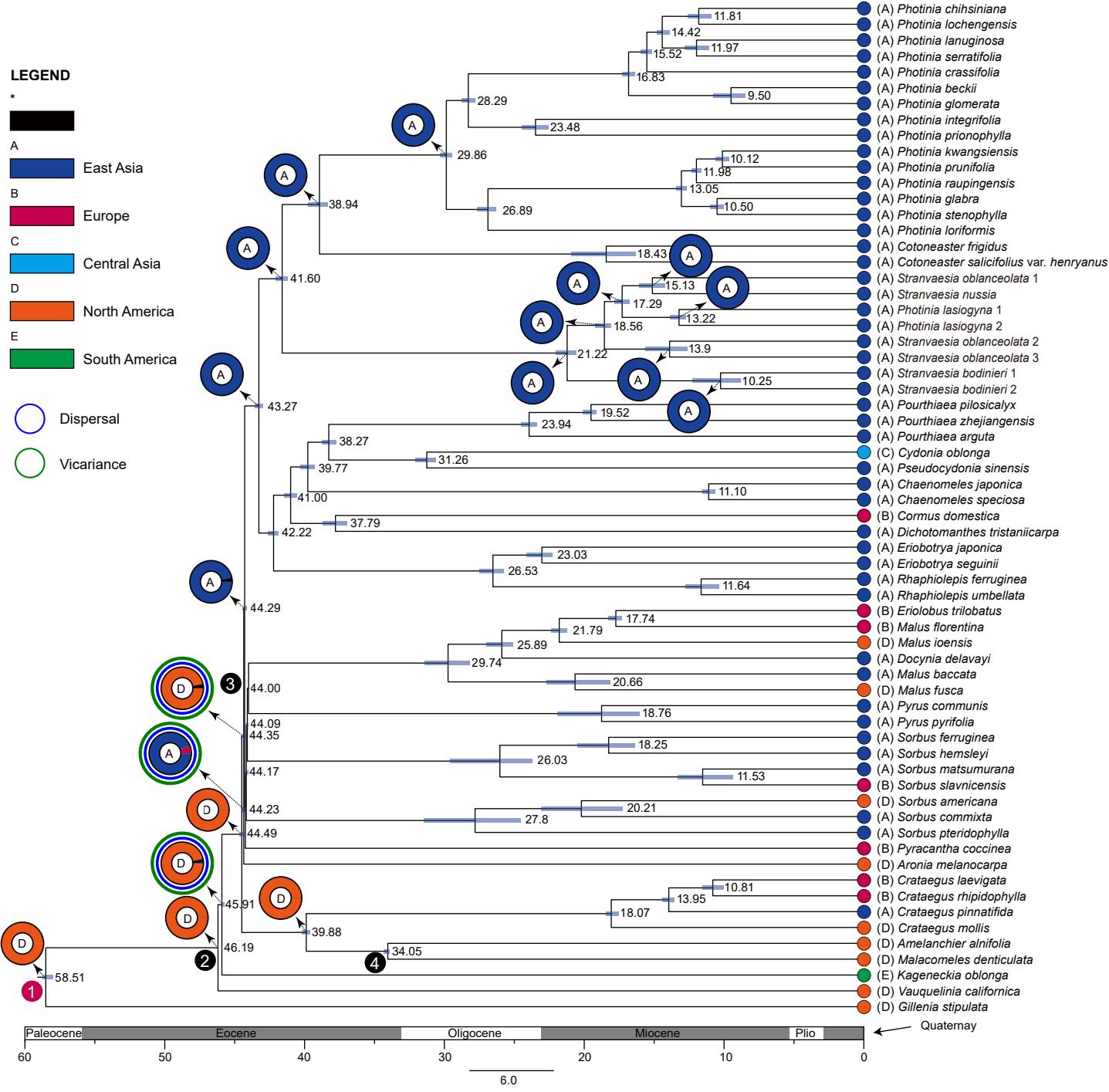
1226 **Fig. 5.** Fine structure and morphological characteristics of the represented clades. a)-f), the
1227 *Weniomeles* clade (*Weniomeles bodinieri*): Bin-Jie Ge; a)-b), infructescence; c), fruit (yellow
1228 arrowhead); d)-e), cross-section of fruit, showing the fruit core with multilocular separated by a
1229 layer of sclereids (red and white arrowhead) and a cluster of sclereids at the top of the locules
1230 (green arrowhead); f) thorns on the stems. g), the *Stranvaesia* clade (*Stranvaesia lasiogyna*): Long-
1231 Yuan Wang. h), the *Photinia* clade (*Photinia serratifolia*): Xin-Xin Zhu.


(a) Plastid Tree (RAxML)

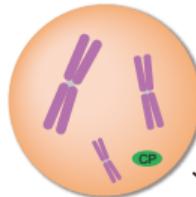

(b) Nuclear Tree (RAxML)


(a)


(b)



(c)

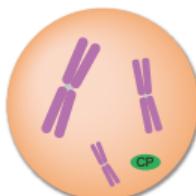


(d)

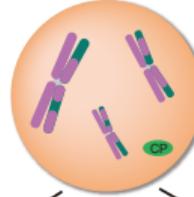
The ancestor of
Stranvaesia bodinieri

The extinct ancestor

Ovule


Pollen

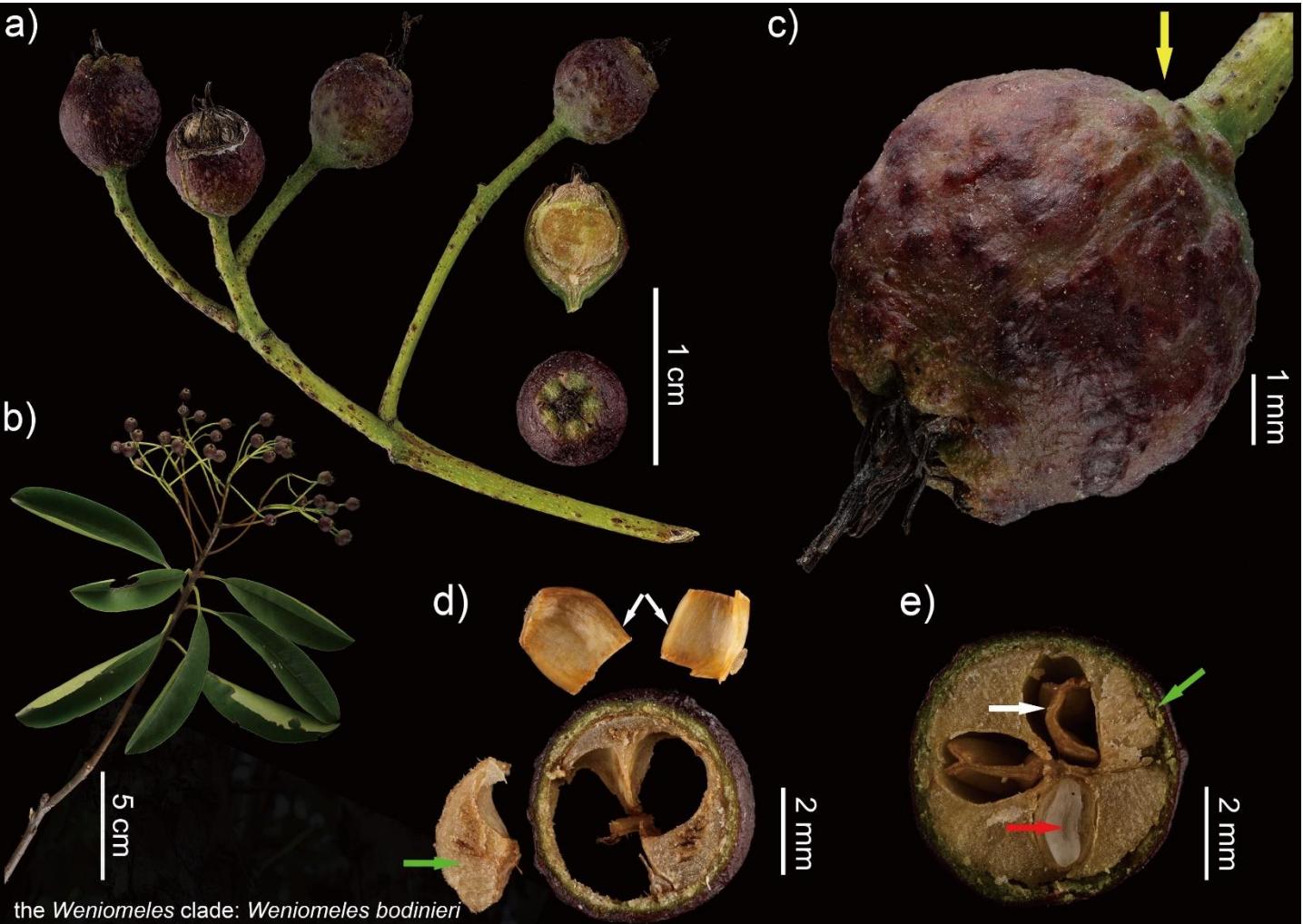
New species: viable,
fertile hybrid
(allopolyploidization)


Diploidization

The ancestor of
the *Stranvaesia* clade

Occurred in East
Asia during Early
Miocene

Recurrent backcrosses



Stranvaesia bodinieri

Stranvaesia lasiogyna

Stranvaesia nussia

Stranvaesia ob lanceolata

