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Abstract

This paper explicates a solution to the problem of building correspon-
dences between molecular-scale transcriptomics and tissue-scale atlases.
The central model represents spatial transcriptomics as generalized func-
tions encoding molecular position and high-dimensional transcriptomic-
based (gene, cell type) identity. We map onto low-dimensional atlas
ontologies by modeling each atlas compartment as a homogeneous
random field with unknown transcriptomic feature distribution. The
algorithm presented solves simultaneously for the minimizing geodesic
diffeomorphism of coordinates and latent atlas transcriptomic feature
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2 A Universal Method for Crossing Molecular and Atlas Modalities

fractions by alternating LDDMM optimization for coordinate trans-
formations and quadratic programming for the latent transcriptomic
variables. We demonstrate the universality of the algorithm in mapping
tissue atlases to gene-based and cell-based MERFISH datasets as well as
to other tissue scale atlases. The joint estimation of diffeomorphisms and
latent feature distributions allows integration of diverse molecular and
cellular datasets into a single coordinate system and creates an avenue of
comparison amongst atlas ontologies for continued future development.

Keywords: Image Varifold, Spatial Transcriptomics, Atlas Mapping,
Multi-scale

1 Introduction

Since the 17th century, scientists have seen living organisms as a hierarchy
of biological mechanisms at work across scales. To understand the interplay
of these mechanisms, reference atlases that incorporate genetic, cellular, and
connectivity measures into a single coordinate space have been constructed
and which aim to summarize the mass of data across scales through a set
of discrete partitions. An instance of the more general segmentation problem
in computer vision, atlas construction relies on the underlying assumption of
homogeneity within each region. The optimal partitioning assigns a label to
each region based on this homogeneity and the presence of sharp changes at
the boundaries between regions.

In biology, this label frequently reflects behavior or function, as seen in two
of the most common mouse brain atlases: the Allen Reference Atlas (ARA)
[1] and the Franklin and Paxinos Atlas [2]. Together, the common coordinate
framework an atlas provides in addition to its ontology have guided research
efforts in facilitating the comparison of different types or replicates of data in
a single coordinate system and in honing efforts of study to particular regions
relevant to each unique investigation.

The widespread use of these atlases, particularly in the fields of digital
pathology and neuroimaging, has motivated efforts to develop image registra-
tion tools to align individual images to such reference atlases. A large family
of methods, all diffeomorphism based [3], have been developed within the field
of Computational Anatomy (CA) [4, 5] for transforming coordinate systems
at the tissue scales. These come particularly from multiple labs in the mag-
netic resonance imaging (MRI) community [6, 7, 8, 9, 10, 11, 12, 13, 14]. More
recently, Molecular CA [15] has emerged which unifies the dense tissue scales
of MRI with high resolution micron scales of digital pathology imagery. These
approaches are hierarchical [16], constructing what are termed image varifold
representations, which are geometric measures of the brain existing at multi-
ple scales, and therefore allowing for the simultaneous representation of both
micron scale particle phenomena, such as the transcriptional or cell type data
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A Universal Method for Crossing Molecular and Atlas Modalities 3

studied herein, and millimeter scale tissue phenomena, as traditionally studied
in CA.

A central challenge that remains within these representations is the neces-
sity of crossing between those reflecting different imaging modalities and
therefore different functional range spaces, which exist at different scales. In the
setting of classical images on a regular grid, this challenge has been addressed
through different approaches including matching based on analytical methods
using cross-correlation [17] or localized texture features [18], and methods for
transforming one range space to another in crossing modalities and scales based
on polynomial transformations [19], scattering transforms [20] and machine
learning [21, 22, 23]. More recently, methods in deep learning have also been
applied to align single-cell datasets, modeled as regular grid images, both to
atlases at the histological scale [24] as well as reference transcriptional atlases
that are beginning to emerge [25].

We should however expect even more diversity in the types and scales of
data that can be measured with the rapidly developing technologies in imag-
ing and spatial transcriptomics. These aim to detect up to thousands of genes
simultaneously with spatial information, and thus, allow us to view both the
micro and even nanometer scales with exquisite detail [26]. Both the diver-
sity and magnitude of this data pushes the limits of our ability to model such
datasets as classical continuous images, discretized on regular grids. Indeed, as
seen in those repositories generated in the BRAIN Initiative Cell Census Net-
work (BICCN) and archived at the Brain Image Library (BIL), these datasets
are already on the order of terabytes and will only continue to increase as tech-
nologies shift from mouse to human measurements. Hence, the need remains for
a modeling framework equally equipped to represent datasets in both forms of
traditional continuous imagery sampled on a regular grid, and those of discrete
particles with attached functional description; and for an associated registra-
tion mechanism to align objects in this framework across different functional
modalities at different scales.

This paper focuses on the use of mesh-based image varifolds, as described
in [27], for simultaneously modeling molecular and tissue scale data. A sub-
problem covered by the mesh based image-varifold theory outlined in [27]
is the mapping of molecular scale data to atlas coordinate systems. Image
varifolds are geometric measures [15], which allow us to provide a single rep-
resentation that supports molecular transcriptomics measurements, cell-based
measurements, and tissue scale atlases. We explicate, here, the construction of
a universal method rooted in this framework for transferring molecular scale
data to tissue scale “cartoon” atlases, which are devoid of gene measurements,
and rather, only contain a fixed partition into structures in their description.

Our solution couples coordinate system transformation via geodesic genera-
tion of minimal energy diffeomorphisms to estimation of a family of probability
laws, which give for each atlas label, a distribution over molecular features that
is the most reasonable explanation of the target transcriptomic dataset. Specif-
ically, we model each atlas region as homogeneous and stationary with respect
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4 A Universal Method for Crossing Molecular and Atlas Modalities

to space, giving an optimal alignment between atlas and target that maximizes
similarity in distribution over features across each site in a single atlas region
while minimizing the energy of the geometric deformation (diffeomorphism).
This consequently skews emphasis away from the foreground-background
boundaries that almost exclusively govern image alignment and instead high-
lights the underlying assumptions in the architecture of the cartoon atlas,
whose boundaries were initially constructed so as to maximize the homogene-
ity of the region. We estimate the diffeomorphism and probability laws jointly
via an alternating algorithm, as explicated here, that iterates large deforma-
tion diffeomorphic metric mapping (LDDMM) with quadratic programming
for minimizing the normed distance between the template and target, and as
a result, yields both spatial alignment and functional correspondence between
template and target.

We demonstrate the efficacy of this methodology in mapping 2D sections
of the ARA [1] to corresponding sections of both cell-independent and cell-
based spatial transcriptomics datasets, both generated via the MERFISH
imaging-based spatial transcriptomics technology, which yields single molecule
resolution. We present methods for sparsifying the functional transcriptome
descriptions via gene selection based on mutual information with spatially dis-
criminating variables and subsequently illustrate the stability of our estimated
diffeomorphisms to choices of subsets of features. Finally, given the plethora of
existing reference atlases, each of which might define a different partitioning
scheme over the same area of tissue, questions of comparison and relevance of
each atlas to emerging molecular and cellular signatures naturally arise [28].
We show through the use of our methodology to map not just atlas to molec-
ular dataset, but one atlas to another, that the correspondence yielded by our
method serves as an anchor for re-examining existing ontologies and creating
new ones for the future.

2 Results

2.1 Image Varifolds and Transformations for Molecular
Scales Based on Varifold Norms

In Computational Anatomy, correspondence between tissue sections is com-
puted using coordinate transformation between the sections by solving an
optimization problem characterized by the set of possible transformations to
optimize the image similarity function that specifies the alignment of the
sections. These transformations are modeled as affine motions and diffeomor-
phisms φ which act to generate the space of all configurations. For classical
images such as for MRI, LDDMM [29] uses the action of diffeomorphisms on
images I as classical functions using function composition on the right with
the inverse of the diffeomorphism: φ · I(x) = I ◦φ−1(x) for x ∈ Rd. The image
similarity function used is often a norm on functions, and solving the prob-
lem of minimization of the norm in the space of diffeomorphisms gives the
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metric theory of LDDMM for generating geodesic matching between exemplar
anatomies [30, 31].

Spatial transcriptomics generates measurements that while often repre-
sented as regular lattice images, are fundamentally lists of point measure-
ments across the different technologies and thus, often dispersed irregularly
over space. In spot-resolution technologies including Visium, DBiTseq, and
SlideSeq, these point measurements are the magnitudes of gene expression
in the neighborhood of each “spot”, which could be placed in a regular grid
pattern. In contrast, in imaging-based spatial transcriptomics technologies
including STARmap, Barseq, SeqFISH, and MERFISH, as illustrated here,
these point measurements are single mRNA molecules or single cells, therefore
dispersed in space according to the given tissue architecture and instanta-
neous cell dynamics measured. In both cases, we can represent these point
measurements as “particles”.

Natural fluctuation in gene expression over time and space coupled to the
dynamics of each spatial transcriptomics technology leads each tissue section,
at the molecular (1-100 micron) scale, to have a varying number of such
particles with no natural ordering of particles consistently apparent between
sections. To build correspondences between these datasets of point measures,
we unify the molecular scales with image-like functions as has been developed
for building correspondences at tissue scales in MRI [4]. For this we repre-
sent the particles as “generalized functions” [15]. Since they carry gene or cell
image data we call them image varifolds [27], linking to the rich literature on
the geometric measure theory of varifolds. This allows us to represent particle
clouds at any scale in both spatial and imaging function dimensions. We note
landmark-based methods [32] that assume direct permutation correspondence
between particles across images are not applicable, as a MERFISH section may
have 100,000 particles requiring an unfathomable number of permutations to
specify.

Varifolds are defined as follows. We consider a Euclidean space in d dimen-
sions with d = 2, 3, to which we add function dimensions represented by a
set F . In spatial transcriptomics datasets, the functional dimensions repre-
sent the gene types of detected mRNA transcripts, treated as independent
measures or aggregated into cells or small neighborhoods. At the finest scale,
we model a discrete set of point measures (particles) reflecting the individual
reads recorded by the given technology, whether they be single transcripts or
distributions of transcripts in a given cell or neighborhood. To a single read
(xi, fi) ∈ Rd×F , we associate the elementary “Dirac” measure, δxi⊗δfi , which
acts on a set A ∈ Rd × F as δxi ⊗ δfi(A) = 1 if (xi, fi) ∈ A and 0 otherwise.
The point measures carry weights wi, giving the multiplicity, typically as num-
ber of transcripts or number of cells measured by each individual read. The
discrete image varifold is defined as the weighted sum of Diracs representative
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6 A Universal Method for Crossing Molecular and Atlas Modalities

of the collection of particles and functional features (wi, xi, fi), i = 1, 2 . . . :

µ =
∑
i∈I

wiδxi
⊗ δfi . (1)

While for the molecular scales, each data point is a measurement of a single
mRNA transcript or local (e.g. cell’s) distribution on the feature space of gene
type F , in contrast, a data point in a given atlas is interpreted as a single
voxel with a label prescribed to it from the overall ontology, L.

It is natural to associate a density in mass per unit volume to the varifold
through the classical decomposition of measures as a product. This gives the
marginal distribution ρ on physical space, ρ(A) = µ(A×F), A ⊂ Rd, and the
field of conditional probability measures over the feature space µx, x ∈ Rd on
F the feature space:

µ(dx, df) = ρ(dx)µx(df) . (2)

For molecular scales, ρ(·) on Rd is typically the spatial distribution of
total gene expression, while for atlas images at tissue scales, it is a continuous
uniform distribution over the support of the tissue. Cross-modality mappings
from molecular to tissue scales thus imbue the atlases with estimates ρ(·) and
the field of conditional probabilities µx(·), x ∈ Rd of the molecular feature
space (e.g. gene type).

2.2 Quadratic Program for Cross Modality Mapping on
Meshes

A central goal is to imbue the atlas with molecular or cellular information
by estimating a cross-modality mapping between the atlas and a finer scale,
single-cell or subcellular dataset, such as those emerging particularly from
imaging-based spatial transcriptomics technologies. To compute this mapping,
we model each modality as an image varifold, a product of measures over
physical and feature space, by instantiating each measurement as a triangu-
lated or simplex mesh following [27]. Each mesh carries a collection of vertices
x = (xi ∈ R2)i∈I . From the vertices we construct the simplex triangles γj(x)
and their centroids mj(x) for j ∈ J , with vertex numbers |I| and simplices |J |
determined by the resolution selected.

We denote the target mesh as τ throughout the paper; see Section 4.1 for
detailed construction. We note the triangles and centers are a function of the
underlying vertices, but we will often suppress their explicit dependence except
when necessary. To complete the image varifold we append to the mesh τ the
density α = (αj)j∈J and the field of probability laws ζ = (ζj)j∈J on F :

µτ =
∑
j∈J

αj |γj |(δmj ⊗ ζj) . (3)
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Importantly, in spite of the apparent differences between equations (1), (2)
and (3), they all belong to the same category of mathematical objects, and
can be addressed together in the framework of image varifolds.

At the molecular scales presented in this paper, the density is number of
cells or number of mRNA transcripts per mm2 and is defined for each simplex,
area |γj |, as

αj = ρ(γj)/|γj | .
The field ζj , j ∈ J are probabilities over genes or cell types with finite dimen-
sional feature spaces f ∈ F , with |F| ≃ 1000 in the case of genes and
|F| < 50 for cell types. Each ζj(f) is a probability of gene or cell type, with∑

F ζj(f) = 1, indexed by location in the image.
We take the ARA [1] as the template to be mapped onto the molecular

data. For mapping the atlas to molecular scales, we have to estimate both
the diffeomorphisms φ : Rd → Rd transforming atlas coordinates. as well
as the unknown densities and conditional feature distributions, απ, ζπ which
we take as latent variables for the atlas. We denote the mesh for the tem-
plate as τ0 representing its vertices x0 = (xi)i∈I0 and simplices and centers
(γj ,mj), j ∈ J0.

The atlas carries a finite ontology, L, dividing it into disjoint spatial par-
titions. We model each atlas region as having a distribution (non-normalized)
over the molecular features (πℓ)ℓ∈L on F viewed as latent variables that are
homogeneous across the partition region. The simplex law is determined by the
contribution of each ontology region to the vertex for j ∈ J0, given by the mix-
ture distribution pj(ℓ),

∑
L pj(ℓ) = 1. The atlas has appended the molecular

feature space estimated from the target (απ, ζπ) and is given as:

µπ
τ0 =

∑
j∈J0

απ
j |γj |(δmj

⊗ ζπj ) (4a)

with

{
ζπj = 1

απ
j

∑
ℓ∈L pj(ℓ)πℓ

απ
j =

∑
ℓ∈L pj(ℓ)πℓ(F)

.

The group action carrying the atlas onto the target becomes

φ · µπ
τ0 =

∑
j∈J0

απ
j |Dφ|mj |γj |(δφ(mj) ⊗ ζπj ) . (4b)

Here, |Dφ|mj is the Jacobian determinant of φ at mj .
Figure 1 shows a mesh-based image varifold for two coronal sections (Z =

385, Z = 485) of the Allen Atlas, with finest granularity ontology (|L| ≈ 700)
and with meshes rendered at 50 µm resolution. The right panel of Figure 1
illustrates the physical densities αj , j ∈ J of mRNA transcripts per mm2 in
coronal sections of MERFISH from the Allen Institute [33].



323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

Springer Nature 2021 LATEX template

8 A Universal Method for Crossing Molecular and Atlas Modalities

Fig. 1 Coronal sections of mouse brain rendered as mesh from Allen Reference Atlas (left)
and MERFISH-spatial transcriptomics (right). Selected sections of atlas chosen by visual
inspection to match MERFISH architecture. Meshes are rendered at 50 µm, with tissue
sections corresponding to Z-sections 385 (top row) and 485 (bottom row) in 10 µm Allen
reference atlas. Colors in the left column indicate a region in the Allen ontology, while
colors in the right column indicate the density of mRNA transcripts given by the number of
transcripts per simplex area αj = # transcripts/|γj |.

To map the mRNA measures to atlases we follow [27] and define the space
of image varifolds µ ∈ W ∗ to have a norm ∥ · ∥2W∗ , and transform the atlas
coordinates onto the targets to minimize the norm. The space of varifold norms
is associated to a reproducing kernel Hilbert space [34, 15] (see (7) below)
defined by the inner-product of the space as ⟨µ, ν⟩W∗ , ∥µ∥2W∗ = ⟨µ, µ⟩W∗ .

The mapping variational problem constructs φ : Rd → Rd and feature
laws (πℓ)ℓ∈L on F to carry φ1 ·µπ

τ0 onto µτ minimizing the normed difference.
Densities that are estimated are constrained to fall in the range 0 ≤ αmin ≤
απ
j ≤ αmax < ∞ to ensure positive values for the density and incorporate prior

knowledge of cellular or molecular distributions.



369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

Springer Nature 2021 LATEX template

A Universal Method for Crossing Molecular and Atlas Modalities 9

Variational Problem 1

inf
v∈L2([0,1],V ),

πℓ,ℓ∈L

1

2

∫ 1

0
∥vt∥2V dt+ ∥φ1 · µπ

τ0 − µτ∥2W∗ (5)

with

{
φ̇t = vt ◦ φt, φ0 = Id

αmin ≤ απ
j ≤ αmax, j ∈ J0.

Throughout, we take αmin to be the 5th percentile of values of (αj)j∈J in the target.

The variational problem maximizes the overlap of homogeneous regions in
the atlas (e.g. each partition in the ontology) with those in the target (e.g.
regions where conditional feature distributions are stationary over space) by
deforming coordinates using LDDMM to optimize the vector field vt, t ∈ [0, 1].
The quadratic programming calculations solve for πℓ, ℓ ∈ L for the atlas to gene
expression and cell-type problem and are described in the methods section 4.3.

Figure 2 illustrates the results of mapping the Allen Atlas coronal sections
to Allen MERFISH spatial transcriptomics sections, shown in Figure 1. Allen
Atlas sections were chosen based on correspondence through visual inspec-
tion. Estimated mRNA densities, απ

j = π̄j(F), as depicted on left and middle
columns, were achieved through solution of the quadratic program as defined
in (9), and reflect total mRNA densities from a full set of 702 genes as features.
Leftmost column shows estimated mRNA densities on transformed geome-
try of atlas mesh under the action of the diffeomorphism φ, while middle
column shows estimated mRNA densities on original atlas geometry. Right
column shows the action of the diffeomorphism φ on each atlas section, with
vertex positions, φ(x0), and with approximate determinant jacobian, |Dφ|mj

indicated by the color at each simplex site j ∈ J0.
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10 A Universal Method for Crossing Molecular and Atlas Modalities

Fig. 2 Results of cross-modality atlas mapping to Allen MERFISH spatial transcriptomics
[33] for coronal sections of tissue at approximate Allen atlas Z-sections of 385 (top) and 485
(bottom). Left column shows estimated mRNA densities, απ

j = π̄j(F), j ∈ J0, per deformed
simplex site under the action of the diffeomorphism of atlas to target space φ1 ·µπ

τ0
; middle

column shows the same pulled back onto original atlas geometry µπ
τ0
; right column shows

the diffeomorphism applied to the mesh τ0, with depicted approximation of the determinant
of the Jacobian |Dφ1|mj , j ∈ J0, as described in Section 4.3.

2.3 Dimension Reduction of Gene Distributions via
Mutual Information

In mapping atlases to distributions of mRNA, we are typically interested not
just in overall mRNA density, but the distribution of expression across a par-
ticular set of genes. The size of the total gene set measured varies across
technologies, ranging from hundreds to tens of thousands of different genes
[26]. However, both computational time and memory frequently dictate the
analysis of only a subset of these genes at a time, together with their rel-
evance to each particular application. A common selection mechanism is to
consider those genes that are most “spatially variable” [35] or “differentially
expressed” [36], under the assumption that expression pattern thereby varies
per biologically different regions of tissue. This is particularly relevant, here,
in the context of mapping spatial transcriptomics to atlases where we aim to
estimate distributions over genes for each region in our atlas that we assume
is homogenous within the region.

Various methods have been described for identifying which genes in a
spatial transcriptomics dataset are more spatially varying than others, some
examples being Gaussian process registration, Laplacian Score, [35] and
Moran’s I [37]. In order to score genes which are most spatially varying we
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introduce Mutual Information scoring which assesses the differential expres-
sion of genes in space in a cell-independent manner. Specifically, we score each
gene with the mutual information between the two random variables X,M
which capture, respectively, an orientation in space and a relative density of
mRNA expression for that gene (see Section 4.4). In the case of serial sections,
as in the MERFISH data from the Allen Institute, each gene is assigned a score
per section, with tallies taken across all sections to deduce which genes are
most spatially variable across the entire brain. We note this approach is sim-
ilar in spirit but not identical to that in [36] which uses the Kullback-Leibler
divergence to find genes with differential expression across cells distributed in
space.

Shown in Figure 3 is a single section of Allen Institute MERFISH data
depicting the distribution of three example genes with the lowest mutual
information scores (top row, Chodl, Brs3, Hpse2 ) and the highest mutual infor-
mation scores (middle row, Gfap, Trp53i11, Wipf3 ) computed across the whole
set of 60 serial sections. In each case, conditional probabilities, ζj(·) reflect the
relative occurrence of each gene in the context of a subset of 20 total genes
of either lowest (top row) or highest (middle row) mutual information. In line
with expectations, 75% of the genes comprising those with scores in the bot-
tom 25% of the total 700 genes were decoy genes (e.g. ‘BLANK’) without
biological meaning but used as controls for assuring the quality of the dataset.
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Fig. 3 Relative expression per simplex, ζj(·), of three genes with lowest (top row) and
highest (middle row) mutual information score, computed across the entire set of 60 coronal
sections in Allen Institute MERFISH sample, and shown on one section at approximately
the coronal slice level of Z = 485 in the Allen atlas. Estimated probabilities ζπj (·) for each

of the three genes with highest mutual information (Gfap, Trp53i11, Wipf3 ) shown for each
atlas region with the native atlas geometry (bottom row).

Shown in the bottom row of Figure 3 is the estimated probability, (ζπj )j∈J0 ,
for each of the three genes with highest mutual information score (Gfap,
Trp53i11, Wipf3 ), shown for each region on the Allen atlas section. For cal-
culating these estimates we solve the variational algorithm with LDDMM and
quadratic programming estimation of the gene feature distributions to map
the Allen atlas section, Z = 485 to the Allen MERFISH target image-varifold
. For this result, the smaller feature space of 20 total gene types corresponding
to those with the highest mutual information scores are used for the mapping
algorithm.
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2.4 Mapping of Cell Distributions to Atlases

The two previous sections presented results solving the mapping problem
between atlas and MERFISH based on the mRNA reads directly. Alternatively,
these raw mRNA reads can be segmented into discrete cells as a mode of data
reduction followed by downstream analyses clustering the cells into discrete
cell types. The mesh-based image varifold framework is ideal for taking the
measure representation directly on the aggregated cells and solving the vari-
ational problem of mapping to atlas coordinates. Figure 4 shows the results
of mapping an Allen atlas section at Z = 675 to a section of cell-segmented
MERFISH transcriptional data (courtesy of the JEFworks Lab, Johns Hopkins
University). The total gene set measured is ≈ 500 genes, with each transcript
assigned to a single cell. Transcriptional profiles per cell are clustered into 33
distinct clusters using Leiden graph-based clustering [38] and annotated as cell
types based on known marker genes. This gives a cell-based dataset analogous
to the transcript-based dataset discussed in Section 2.2 in which densities,
αj(·), reflect the spatial density of data points (here, # cells

mm2 ), and conditional
probability distributions, ζj(·), are defined over the feature space of cell types,
|F| = 33.

The essential part of the model for estimating the atlas distribution over
cell types is the stationarity of the model across each atlas partition. It is
therefore natural to examine the entropy of the distribution within each atlas
compartment as a measure of the multiplicity of cell types within a compart-
ment. Shown in the right column is the entropy of the estimated probability
distribution over cell types for each simplex in both target and atlas, with
nonzero probabilities assigned to ∼ 3− 5 distinct cell types in each simplex of
the target versus ∼ 1− 20 cell types in each simplex of the atlas, varying per
region in the original ontology.
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14 A Universal Method for Crossing Molecular and Atlas Modalities

Fig. 4 Cell densities and cell-type probabilities for MERFISH sections (top row). Esti-
mated cell densities and cell type probabilities, απ

j , ζ
π
j , j ∈ J0 in Allen atlas section Z = 675

(bottom). Spatial density of cells given in units of # cells
|γj |

(left) and cell type probabilities

summarized by depiction of cell type with highest probability for each simplex (middle),
and entropy of probability distribution over cell types for each simplex (right). Specific sub-
types of cell types (e.g. astrocytes type 1, astrocytes type 2, assigned same color according
to labels shown in bottom of figure). Abbreviations of cell types: Astrocytes (Ast), Cortical
Excitatory Neurons (Cort Exc), Endothelial Cells (Endo), Ependymal Cells (Epen), Exci-
tatory Granule Cells (Ex Gran), Excitatory Neurons (Ex), Excitatory Pyramidal Neurons
(Ex Pyr), GABAergic inhibitory neurons (GABA In), GABAergic Estrogen Receptor Neu-
rons (GABA er), Inhibitory Neurons (Inh), Microglia (Mic), Oligodendrocytes / Neurons
(OLs/N), Oligodendrocyte Progenitor Cells (OL Pro), Oligodendrocytes (OLs), Pericytes
(Per).

We emphasize that there are various methods for solving the segmentation
to cells and thereby dimension reduction as determined by the specific imag-
ing technology. Some of the methods are rooted in image-based segmentation
schemes such as the Watershed algorithm, operating jointly on transcriptional
data and immunofluorescence images such as DAPI stains [39], while others
utilize learning-based methods [40] for accommodating often a wider diver-
sity of cell shapes and sizes. In either case, the assignment of mRNA reads to
specific cells introduces a layer of functional information at the micron scale,
which can now be modeled in lieu of or in tandem with the functional infor-
mation at the nanometer scale (e.g. raw mRNA reads) as the feature space
of a target image varifold to which we wish to map sections of an atlas. The
image-varifold method is universal in the sense that it is agnostic to which dis-
crete object is forming the information that provides the substrate for building
correspondence.
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In addition to cell type as the features associated to the cell aggregated
transcriptome data, the feature space can remain gene type generated by
aggregating the individual mRNA transcripts into an average gene expression
feature per cell across the span of tissue. Shown in Figure 5 are the distribu-
tion of two genes (Ntrk3, Fzd3 ) out of a subset of 7 chosen to have the highest
mutual information score. By normalizing the total mRNA per cell to 1, we
estimate for an atlas section, a density, απ in units of # cells

mm2 , and a condi-
tional distribution over gene types, ζπ, reflecting the probability per cell in the
given simplex, of mRNA belonging to each gene type. Figure 5 shows these
estimated probabilities ζπ for those genes whose probability of expression per
cell is correspondingly shown in the MERFISH target section.

Fig. 5 Gene type probabilities per cell for MERFISH section (top) for two genes Ntrk3
gene type (left) and Fzd3 gene type (right) out of a selected subset of 7 genes with high
spatial discriminance according to mutual information score (see Section 4.4). Bottom shows
estimated probabilities, ζπ , for corresponding coronal Allen slice Z = 675.
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2.5 Stability of Geometric Transformations Across
Varying Feature Spaces

The previous section demonstrated the efficacy and flexibility of our algorithm
at mapping cartoon atlases to a molecular target in the settings of that target
carrying either gene-based or cell-based functional information. The assumed
biological correlation between cell type and pattern of gene expression implies
that signals of variation across cell types at the scale of microns should also
exist across gene types at the scale of nanometers. Consequently, we might
expect similar spatial deformation of a tissue scale atlas in mapping onto the
same geometric target, but with conditional feature distributions defined over
either gene or cell types, with partition boundaries deforming to match regions
of homogeneity that would be roughly consistent across genes and cells.

Figure 6 shows the diffeomorphisms estimated for mapping Allen atlas
sections at Z = 890 and Z = 675 onto two MERFISH target sections carry-
ing three different feature spaces constructed from the same starting spatial
transcriptomics data. Comparing left to middle and right columns, we see sim-
ilar geometric transformations, φ, estimated to bring atlas onto target image
varifold carrying cell type (left) versus gene type (middle, right) functional fea-
tures. Regions of shrinkage (blue) versus expansion (red) occur in consistent
areas across the different cases, and the magnitude of that change, as measured
by the determinant jacobian, |Dφ|, is also similar in each case. Furthermore,
we illustrate the effect of using two different subsets of 7 spatially discrimi-
nating gene types as the feature space. The first carries a high score based
on Moran’s I (middle) and the second with a high mutual information score
(right), as described in Sections 2.3 and 4.4. Here again, we observe similarity in
the geometric mappings estimated for carrying atlas onto target between these
two independent feature spaces. Hence, the manifest stability in the geometric
mappings jointly estimated with the feature laws, (πℓ)ℓ∈L, over three different
feature spaces supports the stability of our alternating algorithm in the face
of different numbers and types of features, but also speaks to the stability of
the biological organization across tissue, cellular, and molecular scales.
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Fig. 6 Diffeomorphism mappings of Allen atlas sections Z = 890 (top) and Z = 675
(bottom) to corresponding MERFISH sections for different feature spaces (e.g. cell types or
gene types for a chosen subset of 7 genes). Top rows show the determinant of the Jacobian
of the mapping |Dφ1| displaying areas of expansion (red) and contraction (blue). Bottom
rows display different features on MERFISH sections including cell type (left), gene type
in 7-gene subset selected with Moran’s I (middle), and gene type in 7-gene subset selected
with Mutual Information (right). Cell types plotted as that with maximum probability; gene
types plotted as probabilities for one specific gene in each subset.

2.6 Generalizing the Methodology to Compare Atlas to
Atlas

The variational problem we solve via quadratic programming and LDDMM
mapping between coordinates in (5) is universal in the sense that varifold
representations can not only be used to represent the MERFISH sections of
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cellular and molecular data, as described in sections 2.3 and 2.4, but as well
can be used to represent atlases, themselves. This allows us to map multiple
atlas ontologies, one to another.

This is important because widespread variations in brain atlas ontologies
have been developed to represent the molecular, chemical, genetic, and electro-
physiological signals being measured across institutions. With different levels
of granularity and different intended applications, multiple atlases per species
now exist and are continuing to emerge [1, 2, 41, 42, 43, 44]. While some
atlases have been defined in the same coordinate framework—often achieved
through existing methods of image registration or manual alignment [28]—
many exist in different coordinate frameworks. Together with mismatches in
number, type, and positioning of partitions, this poses a challenge not only to
the evaluation of each atlas ontology’s fit to a molecular target, but also the
ready comparison of atlas to atlas and the establishment of a clear metric of
similarity between them.

Figure 7 shows the results of mapping corresponding sections of both the
ARA and Kim Lab Developmental atlas [43] to the cell-segmented MERFISH
section of Figure 4. The images of predicted cell types with the highest prob-
ability (left column) for each compartment are shown for each ontology in
the left column. The areas of the hippocampus (dashed circle) and striatum
and amygdala (arrow) are partitioned with different levels of granularity. This
leads to different optimal geometric transformations, as characterized by the
determinant Jacobian (middle column), and different predicted cell type dis-
tributions (right column). Though both atlases are published as geometrically
aligned [43], the diffeomorphism solving the variational problem transforms
geometrically the homogenous regions between the atlas and target. Hence,
regions of the amygdala and striatum undergo significant contraction in the
optimal mapping of Kim but not Allen atlas to MERFISH given the parti-
tioning of this region into fewer and thus larger presumed homogenous regions
in the Kim atlas. The right column exhibits the entropy of the distributions
over cell types estimated for each region in each atlas. Here, the hippocam-
pus is more finely partitioned in the Kim atlas, which yields lower entropy
distributions over cell types than in those estimated for the Allen atlas.

The universality of the variational problem allows for direct mapping
across atlas ontologies. Here, atlases are taken to have constant density,
αmin = αmax = 1. Thus, the mapping problem from atlas with ontology L0

onto the target with ontology L1 optimizes over the feature laws, (πℓ)ℓ∈L0 ,
with the target atlas ontology L1 taken as the target feature space,∑

f∈L1

πℓ(f) = 1, ℓ ∈ L0 .

The joint estimation of geometric transformation, φ and conditional feature
laws, (πℓ)ℓ∈L in our mapping methodology offers two modes of quantitative
comparison of these atlas ontologies. First, as in classical image setting of
LDDMM, the determinant jacobian, |Dφ|, of the estimated diffeomorphism,
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Fig. 7 Comparison of mappings of Z section 675 of ARA (top) and Kim atlas (bottom) to
cell-segmented MERFISH section. Left shows cell type with highest probability per simplex
in each atlas. Middle shows estimated geometric transformation, φ1, in each setting applied
to each atlas, with areas of expansion (red) and contraction (blue) as measured by the
determinant Jacobian, |Dφ1|, of each mapping. Right shows entropy of estimated cell type
distribution per simplex in atlas. Circled area of hippocampus and arrow pointing to area
of amygdala and striatium highlight differences in estimated mappings for each atlas.

can be used as metric of how similar the atlas ontologies are, reflective of how
much boundaries of partitions move to maximize overlap between homogenous
regions. However, unlike in classical image settings, the estimation of the addi-
tional family of feature laws here affords a second metric of similarity with
computation of the entropy of the estimated conditional feature distributions.

Figure 8 shows the results of mapping one mouse atlas ontology to another
with the Z section 680 in the ARA mapped to the corresponding section in
the Kim Lab Developmental atlas (top row) and vice versa (bottom row). The
leftmost column depicts the geometry of the section under each ontology, with
the Allen section hosting ≈ 140 independent regions and the Kim section ≈ 80.
In this setting, both atlases are published in the same coordinate framework,
giving φ = Id and thus, highlighting, instead, the estimated distributions over
the other ontologies. The middle column depicts the estimated conditional
probability distributions, ζπ, for each atlas section over the other atlas section’s
ontology. The label with the highest probability in these distributions is plotted
for each simplex in the mesh and which is consistent across each partition
of each original atlas, given the homogeneity assumption in our model (i.e. a
single πℓ for each ℓ ∈ L0). The comparatively larger set of labels in the Allen
ontology results in labels being omitted from the corresponding estimated set of
labels on the Kim ontology section (middle column, bottom row) while multiple
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regions in the Allen ontology carry the same most probable region in the Kim
ontology. The right column of Figure 8 captures this difference in depicting the
entropy of the estimated conditional feature distributions, (ζπj )j∈J0 , for each
simplex of the mesh. The entropy of the distributions estimated for the Kim
ontology over the Allen ontology (bottom) is on average, higher, than that of
the distributions estimated for the Allen ontology (top), with probability mass
distributed across ∼ 5−7 different Allen regions for each Kim region of cortex.
Nevertheless, we see close to 1:1 correspondence between Allen and Kim labels
in the center section of the slice, where entropy of the estimated distributions
is near 0.

Fig. 8 Original and predicted ontologies for Allen (top) and Kim (bottom) atlases. Left
column illustrates original ontologies. Middle column illustrates Allen atlas geometry with
Kim atlas ontology (top) and Kim atlas geometry with Allen atlas ontology (bottom). Right
column shows entropy of predicted ontologies, with higher entropy values (light) indicating
less 1:1 correspondence between ontologies.

Atlas ontologies can be mapped not just within species but also across
them, where both geometric transformations and estimated ontology distribu-
tions, together reflect metrics of comparison between the two. Figure 9 shows
the mapping of coronal section, Z = 537, in the ARA to a coronal section,
Z = 628 in the Waxholm Rat Brain Atlas [44], with both sections chosen
to correspond as sections through the anterior commissure. The left column
shows both atlas ontologies with |L0| ≈ 120 for the the Allen atlas section and
|L1| ≈ 30 for the Waxholm atlas section. The middle column depicts the ini-
tial differences in size and shape (top) between the two tissue sections. After
scaling the volume of the mouse brain by 1.5, additional deformation, with
magnitude given by the determinant jacobian, |Dφ|, distorts both internal and
external tissue boundaries to align homogeneous regions in each atlas, such as
cingulate area to cingulate area (white arrow). Estimated distributions over
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Fig. 9 Results of mapping coronal section Z = 537 of ARA to corresponding coronal
section of Waxholm Rat Brain Atlas at Z = 628, both chosen to be through the ante-
rior commissure. Left shows both original atlas sections. Middle column shows initial tissue
overlap between mouse and rat section (top) and resulting overlap following action of esti-
mated diffeomorphism on mouse tissue (bottom). Determinant of Jacobian highlights areas
of expansion (red) and contraction (blue) in mouse section deforming to match rat section,
with white arrow highlighting expansion in cingulate area needed to match region in mouse
to corresponding region in rat. Right column shows entropy for each mouse region’s predicted
distribution of rat labels (top) and predicted rat label with highest probability (bottom).

the Waxholm ontology labels for each region in the Allen atlas are shown in
the right column, summarized by the maximum probability label (bottom) and
measures of entropy (top), which highlight in gray, Allen regions mapping to
≈ 3− 4 Waxholm regions versus those in black achieving 1:1 correspondence.

3 Discussion

We have introduced, here, a universal method for mapping tissue scale, ‘car-
toon’ atlases to molecular and cellular datasets arising in the context of
emerging transcriptomics technologies. We root our method in the modeling of
each object as a mesh-based image varifold, as previously described [27], and
outline an alternating algorithm that simultaneously incorporates the classi-
cal deformation tools of LDDMM [29] with quadratic programming to jointly
estimate an optimal geometric transformation and conditional feature law that
maps atlas onto target.
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As presented, our method fills a current need, as highlighted previously
[35], for universal tools that can integrate the diverse types and large quanti-
ties of data emerging from the evolution of both transcriptomics and imaging
technologies over the last decade. With each technology generating a slightly
different perspective and different set of animal or human samples to com-
pare, a method that can stably handle the format of past, current, and future
datasets will be paramount to integrate both new findings with the vast
number of datastores currently available across institutes. The image varifold
framework used here is general enough to model emerging transcriptional data
from both image-based and spot-resolution technologies and classical imaging
data (as demonstrated in our atlas-to-atlas mappings). Therefore, it provides
a gateway for comparing data historically curated through immunohistochem-
istry, MRI, and other techniques in addition to the emerging transcriptomics
methods.

In parallel to the development and dispersion of diverse molecular datasets,
there has been continued development on the side of reference atlases to reflect
trends in these new measures and integrate these trends across even more
samples of particular species. Our method offers a tool for re-examining and
comparing existing atlas ontologies in the context of new data [35], and serves
as a means for developing new atlases in the future. As described in Section 2.6,
examination of the mappings achieved between different atlases and the same
molecular target offers an indirect comparison between atlases in the context
of a particular molecular setting. However, this comparison can also be made
directly in a context-independent setting by harnessing our method to map
atlas to atlas. In the field of evolutionary biology, for instance, our method
could aid in the mapping and comparison of atlases across species [45, 46] and
in the field of developmental neurobiology, the available atlases of the brain at
different stages of development [42, 41]. With regard to atlas refinement and
creation, the invertibility of the estimated diffeomorphism in the setting of
mapping atlas to molecular target, enables the carrying of each target into the
same coordinate space of the atlas. Here, the molecular and cellular scale raw
reads could be averaged across individual samples, thus providing a mode for
defining new atlas segmentation schemes of homogenous regions across these
samples.

While the results presented here survey a wide variety of potential appli-
cations of our method to mapping atlas modalities to diverse targets, there
remain uncertainties and potential modes of improvement that are the sub-
ject of current and future work. First, we have presented results mapping 2D
sections of 3D atlases to corresponding 2D sections of MERFISH data. The
Allen MERFISH data showcased here is part of an entire set of serial sections
that span the whole brain. Consequently, we are optimizing our method to com-
pute mappings of atlas to molecular target in 3D, where both added dimensions
and added magnitudes of data contribute to the theoretical and computational
complexity of the problem. Indeed, with ≈ 6 billion individual transcripts mea-
sured across the span of the brain, treatment of this data as a regular lattice
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image would require on the order of 1000 billion voxels at 1 µm resolution,
which is coarser than that needed even to resolve two molecules of mRNA.
Hence, it becomes even more vital to treat such data in the particle setting, as
presented here, where we capture the sparsity and irregularity of the data in
modeling it effectively in its lowest dimension, as 6 billion individual particle
measures. Second, though we have highlighted both gene-based and cell-based
datasets achieved with image-based MERFISH technologies, we are currently
investigating the use of our method to map data from spot-resolution tech-
nologies such as SlideSeq [47] and additional image-based technologies such as
BarSeq [48], which introduce variations in both the number of genes measured
and the scope of tissue (whole versus hemi-brain) measured.

Finally, we emphasize that central to the model posed here is the underly-
ing assumption that each compartment has a homogeneous distribution over
molecular features that is stationary with respect to space. This assumption
holds in many settings, as we might expect, given the inherent construction
of atlases often to delineate regions of particular cell types and thus, where
we see a set of predominant cell types or gene types consistently across the
region in the molecular scale data, as in Figures 4 and 5. However, we also
see examples where this homogeneity assumption may not be appropriate. An
example of this is seen in Figure 3 where the expression of Trp53i11 appears
to be distributed along a decreasing gradient medial to lateral within the stria-
tum. Notably, the results presented here reflect a particular balance between
expected deformation and this homogeneity assumption, imposed by the rel-
ative weighting of the separate terms in the cost function. Current work at
controlling this balance further includes the addition of a term controlling the
divergence of the vector field to the energy defined in the variational problem
5, which leads to solutions more robust to deformation within the interior of
the tissue. Future work will also include more rigorous evaluation of how well
this homogeneity assumption holds and the effect the given balance between
the two terms might have in different settings.

4 Methods

4.1 Construction of Mesh-based Image Varifold for
Different Modalities

As introduced in Section 2.2, we represent each image varifold object as a
triangulated mesh. Each mesh is built from a collection of vertices, x = (xi)i∈I

with each xi ∈ R2, here. Each simplex in the mesh is defined from the vertices
denoted as γ(x) and is paired with a 3-tuple with components that index the
vertices of the simplex, (γ(x), c = (c1, c2, c3) ∈ I3) and determine the center
m(x) = 1

3 (xc1 + xc2 + xc3). Each triangle simplex is defined by

γ(x) =

{
y ∈ R2 : y =

3∑
k=1

akxck , ak ≥ 0,

3∑
k=1

ak = 1

}
, (6)
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with positive orientation and volume |γc(x)| := 1
2 (xc2 −xc1)× (xc3 −xc1) > 0.

The total mesh τ is the collection of vertices x, and simplices and centers
(γj(x), cj = (c1j , c

2
j , c

3
j ),mj(x))j∈J with the resolution determining the com-

plexity as total numbers of vertices |I| and the number of simplices |J | in the
mesh.

Meshes were constructed using Delauney triangulation [49] on a grid
defined over the support of the starting dataset with the size of each square
dictated by the input resolution. Varifold measures, α, ζ, were associated to
the simplices of the mesh following assignment of each individual data point
(e.g. mRNA or cell read) into its single nearest simplex. Meshes were pruned of
simplices that both contained fewer than 1 data point and existed outside the
largest connected component of simplices containing at least one data point.
In this manner, both for atlas images and transcriptomics data sets, resulting
simplex meshes spanned the entire tissue foreground.

4.2 Molecular Scale Varifold Norm

To specify the image varifold norm for µ ∈ W ∗, ∥ · ∥2W∗ , it suffices to provide
the inner product between Diracs ⟨δx ⊗ δf , δx′ ⊗ δf ′⟩W∗ = K((x, f), (x′, f ′)),
the right-hand side the kernel with for any weighted sum µ in Eqn. (1) then

∥µ∥2W∗ =
∑
i,j

wiwjK((xi, fi), (xj , fj)) . (7)

Throughout we use the kernel product K((x, f), (x′, f ′)) =
K1(x, x

′)K2(f, f
′) chosen as a Gaussian over physical space K1(x, y) =

exp(−∥x−x′∥2

2σ2 ) with K2(f, f
′) = 1 if f = f ′, 0 otherwise giving:

∥µτ∥2W∗ =
∑
j,k∈J

K1(mj ,mk)
∑
f∈F

ζj(f)ζk(f) . (8)

4.3 Alternating LDDMM and Quadratic Program
Algorithm for Joint Optimization

For solving the variational problem of (5) we follow [27] using an alternat-
ing optimization, fixing the laws (πℓ)ℓ∈L and optimizing over the control
v(t), t ∈ [0, 1] and integrating it to generate the diffeomorphim φ1, then fix-
ing the diffeomorphm and using quadratic programming to estimate the laws.
The variational problem of (5) is optimized using LDDMM by flowing the
atlas φt · µπ

τ0 to minimize the target norm to the endpoint µτ . Smoothness is
enforced via the reproducing kernel Hilbert space norm on the control ∥ · ∥V
which controls the differentiability of the flow of vector fields, which is suffi-
cient to guarantee an invertible diffeomorphic result [50]. Holding that fixed
we alternately optimize (5) with respect to the laws (πℓ)ℓ∈L using quadratic
programming, such as OSQP [51]. We loop until convergence.



1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

Springer Nature 2021 LATEX template

A Universal Method for Crossing Molecular and Atlas Modalities 25

Algorithm 1

Initialize: πℓ(f) =
1

|F| , f ∈ F
A: Solve for v:

1. Update and fix (πℓ(f))f∈F .
2. Solve LDDMM, optimizing (5) with respect to vector field vt, t ∈ [0, 1].

3. Solve for φ1, integrating O.D.E φ1 =
∫ 1

0
vt ◦ φtdt+ Id.

4. Flow µπ
τ0 according to φ1, giving φ1 · µπ

τ0 .

B: Solve for (πℓ)ℓ∈L:

1. Fix vertex positions in deformed template, φ(x0).
2. Optimize quadratic program (9) with respect to (πℓ)ℓ∈L.

Return to A

For the atlas, take the mesh τ0 with vertices x0 = (xi)i∈I0 and with sim-
plices and centers (γj(x

0), cj = (c1j , c
2
j , c

3
j )),mj(x

0))j∈J0 . Estimated densities

and conditional probabilities are denoted (απ
j , ζ

π
j )j∈J0 . Define mj(φ1(x

0)) =
mφ

j , π̄j =
∑

ℓ∈L pj(ℓ)πℓ, giving απ
j = π̄j(F). The quadratic program is given

by:

inf
πℓ,ℓ∈L

∥φ1 · µπ
τ0 − µτ∥2W∗ (9)

= inf
πℓ,ℓ∈L

∑
j,j′∈J2

0

|Dφ1|mj |γj | |Dφ1|mj′ |γj′ | K1(m
φ
j ,m

φ
j′)

∑
f∈F

π̄j(f)π̄j′(f)

− 2
∑

j′∈J0,j∈J

|Dφ1|mj′ |γj′ | |γj | K1(m
φ
j′ ,mj)

∑
f∈F

αjζj(f)π̄j′(f)

subject to αmin ≤ απ
j ≤ αmax, j ∈ J0 .

Remark 1 In the algorithm, we can use two approximations that are convenient. The
first approximates the determinant of the Jacobian. Denoting γφj = |γj(φ1(x

0))|,
then approximating |γj(φ1(x

0))| ≈ |Dφ1|mj(x0)|γj(x0)| gives the simplified cost of
the quadratic program:

inf
πℓ,ℓ∈L

∑
j,j′∈J2

0

|γφj | |γ
φ
j′ | K1(m

φ
j ,m

φ
j′)

∑
f∈F

π̄j(f)π̄j′(f)

− 2
∑

j′∈J0,j∈J

|γφj′ | |γj | K1(m
φ
j′ ,mj)

∑
f∈F

αjζj(f)π̄j′(f).

This can be simplified by representing the estimated laws π̄ via the labels which
have greatest area for the simplex. Defining the greedy maximizer map ℓ∗(j) =
argmaxℓ∈L pj(ℓ) ∈ L, then the inner product can be approximated by∑

f∈F
π̄j(f)π̄j′(f) =

∑
f∈F

πℓ∗(j)(f)πℓ∗(j′)(f);∑
f∈F

αjζj(f)π̄j′(f) =
∑
f∈F

αjζj(f)πℓ∗(j′)(f) .
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For simplex triangles within the interior of each atlas region, denoted j ∈ J0 \ ∂J0,
then π̄j = πℓ∗(j), j ∈ J0\∂J0 and these approximations are an equality for all interior
pairs of vertices.

For all results shown, the template and target are initially aligned through
separate estimation of rigid transformations (translation and rotation) and a
single isotropic scaling applied to the template to bring the total area of the
template to equal that of the target. Rigid transformations are estimated by
minimizing the varifold normed difference Eqn. (9) between the rotated and
translated template atlas µπ

τ0 transformed to the target µτ .
Everything being specified, gradient based optimization is performed until

convergence or a specified number of iterations. In LDDMM, we use L-BFGS
optimization combined with a line search using the Wolfe condition. In rigid
registration, we directly optimize the varifold norm of the difference, also using
the L-BFGS method.

4.4 Mutual Information Score for Discriminating
Spatially Informative Genes

To deduce which genes are spatially variant with respect to their expression
patterns, we assign to each gene a score based on mutual information. This
score specifically measures the mutual information between a random variable,
Mg, that reflects the number of counts of gene g in a given neighborhood,
and a random variable, X, that partitions this neighborhood vertically or
horizontally into two domains. We describe, here, a method for computing this
score particularly in settings of large amounts of data, where discretization is
favorable for computational efficiency. This method, as illustrated in Figure
10, is applied for each gene independently on each measured section of tissue,
where collective scores per gene be be garnered by tallying each gene’s score
per section across the entire set of sections.

The support of the tissue section is first covered by a grid, as shown in
the left panel of Figure 10, with squares of size σ × σ. In the results shown
in Sections 2.3 and 2.4, we choose σ = 50µm. In each square, we compute
the total number of mRNA expressed per each gene in that square, denoted
by Ng for gene g. Let F g(t) = P (Ng ≤ t) be the cumulative distribution
function for gene g, estimated from the empirical distribution of Ng across all
squares in our grid. We define the binning function ϕg(n) =

∑q
k=1 1n≥tk for

tk = inf{t ≥ 0|F g(t) ≥ k/q} and with k ∈ [1, q] denoting the k-th q-quantile.
This gives a discrete (normalized) value of mRNA counts for gene g in each
square of the grid, as shown in the middle panel of Figure 10 for g = Gfap.

We define our discrete neighborhoods as megasquares, denoted (Qc)c∈C ,
with each comprised of a continguous set of 2K × 2K grid squares. We con-
sider all possible megasquares that can be defined across the grid, and index
the squares within each megasquare by column index i = 1 · · · 2K and row
index j = 1 · · · 2K, giving Qc =

⋃
(i,j)∈{1,··· ,2K}2 Qc,i,j . Finally, we define two
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Fig. 10 Steps in computing mutual information score for each gene in each tissue section.
Left shows individual mRNA reads for gene g = Gfap. The support of the tissue is covered
by a grid with squares of size σ × σ, with σ = 100µm shown here. Middle shows output
of binning function, ϕg on the counts of gene g in each grid square, with q = 4. Right
shows zoomed in portion of tissue with sample of 4 megacubes out of the entire set (Qc)c∈C .
Example ω given for the individual grid square located at the bottom left corner of Q4.

partitioning schemes, denoted ↕ and ↔, corresponding to the partitioning of
a megasquare into two equal vertical or two equal horizontal domains, each
consequently containing 2K2 squares. The right panel of Figure 10 shows a
sample of 4 megasquares from the entire set (Qc)c∈C that cover the grid.

The random variables of interest, X and Mg are specified as functions of
ω = (c, i, j, d) ∈ Ω with Ω = C × [1, 2K]2 × {↕,↔}, the set of all possible
selections of megasquare, square within the megasquare, and partitioning of
the megasquare. Specifically, we denote C(ω) = c, the index of the megasquare,
Ng(ω) the counts of gene g for the square Qc,i,j in megasquare, c, giving
Mg(ω) = ϕ(Ng(ω)) ∈ [1, q], the q-quantile of the gene count, and X(ω) ∈
{b, t, l, r}, the partition Qc,i,j belongs to, dictated by direction d in ω as:

X(ω) =


l if d = ↔, i ≤ K
r if d = ↔, i > K
b if d = ↕, j ≤ K
t if d = ↕, j > K

(10)

Choice of ω is made uniformly, with P = 1
|Ω|

∑
ω∈Ω δω. Our score is thus,

the conditional mutual information between X and Mg given C:

I(X ; Mg | C) =∑
c,x,m

P (X = x,Mg = m,C = c) log

(
P (X = x,Mg = m|C = c)

P (X = x|C = c)P (Mg = m|C = c)

)
(11)
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J.: Waxholm space atlas of the rat brain: A 3d atlas supporting data
analysis and integration (2023)

[45] Garin, C.M., Garin, M., Silenzi, L., Jaffe, R., Constantinidis, C.: Multi-
level atlas comparisons reveal divergent evolution of the primate brain.
Proceedings of the National Academy of Sciences 119(25), 2202491119

https://doi.org/10.1142/s2339547814500010
https://doi.org/10.1109/83.855431
{arXiv:1304.6108}
https://doi.org/10.1137/130918885
https://doi.org/10.1137/130918885
https://doi.org/10.17632/2svx788ddf.1
https://doi.org/10.17632/2svx788ddf.1


1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472

Springer Nature 2021 LATEX template

32 REFERENCES

(2022)
[46] Beauchamp, A., Yee, Y., Darwin, B.C., Raznahan, A., Mars, R.B., Lerch,

J.P.: Whole-brain comparison of rodent and human brains using spatial
transcriptomics. Elife 11, 79418 (2022)

[47] Rodriques, S.G., Stickels, R.R., Goeva, A., Martin, C.A., Murray, E.,
Vanderburg, C.R., Welch, J., Chen, L.M., Chen, F., Macosko, E.Z.: Slide-
seq: A scalable technology for measuring genome-wide expression at high
spatial resolution. Science 363(6434), 1463–1467 (2019)

[48] Chen, X., Sun, Y.-C., Zhan, H., Kebschull, J.M., Fischer, S., Matho, K.,
Huang, Z.J., Gillis, J., Zador, A.M.: High-throughput mapping of long-
range neuronal projection using in situ sequencing. Cell 179(3), 772–786
(2019)

[49] Cheng, S.-W., Dey, T.K., Shewchuk, J., Sahni, S.: Delaunay Mesh
Generation. CRC Press Boca Raton, Florida (2013)

[50] Dupuis, P., Grenander, U., Miller, M.I.: Variational problems on flows of
diffeomorphisms for image matching. Quarterly of Applied Mathematics
56(3), 587–600 (1998)

[51] Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd, S.: OSQP:
an operator splitting solver for quadratic programs. Mathematical Pro-
gramming Computation 12(4), 637–672 (2020). https://doi.org/10.1007/
s12532-020-00179-2

https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2

	Introduction
	Results
	Image Varifolds and Transformations for Molecular Scales Based on Varifold Norms
	Quadratic Program for Cross Modality Mapping on Meshes
	Dimension Reduction of Gene Distributions via Mutual Information
	Mapping of Cell Distributions to Atlases
	Stability of Geometric Transformations Across Varying Feature Spaces
	Generalizing the Methodology to Compare Atlas to Atlas

	Discussion
	Methods
	Construction of Mesh-based Image Varifold for Different Modalities
	Molecular Scale Varifold Norm
	Alternating LDDMM and Quadratic Program Algorithm for Joint Optimization
	Mutual Information Score for Discriminating Spatially Informative Genes
	Funding
	Competing Interests
	Author Contributions
	Materials and Correspondence
	Data Availability
	Code Availability





