

1 Assessing the potential of backscattering as a proxy for 2 phytoplankton carbon biomass

3 **Camila Serra-Pompei¹, Anna Hickman², Gregory L. Britten^{3,4} and Stephanie
4 Dutkiewicz^{1,3}**

5 ¹Center for Climate Change Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
6 ²University of Southampton, National Oceanography Centre Southampton, European Way, Southampton,

7 SO14 3ZH, UK.
8 ³Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology,
9 Cambridge, MA 02139.

10 ⁴Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543.

11 **Key Points:**

12

- 13 Phytoplankton carbon b_{bp} -based algorithms can differ up to an order of magnitude at low b_{bp} values.
- 14 An algorithm fitted to a global model output shows biases ranging between 15% and 40% in most regions.
- 15 Most uncertainties are due to the relative contribution of phytoplankton to total b_{bp} .

18 **Abstract**

19 Despite phytoplankton contributing roughly half of the photosynthesis on earth and
20 fueling marine food-webs, field measurements of phytoplankton biomass remain scarce.
21 The particulate backscattering coefficient (b_{bp}) has often been used as an optical proxy
22 to estimate phytoplankton carbon biomass (C_{phyto}). However, total observed b_{bp} is im-
23 pacted by phytoplankton size, cell composition, and non-algal particles. The lack of phy-
24 toplankton field data has prevented the quantification of uncertainties driven by these
25 factors. Here, we first review and discuss existing b_{bp} algorithms by applying them to
26 b_{bp} data from the BGC-Argo array in surface waters (<10m). We find a b_{bp} threshold
27 where estimated C_{phyto} differs by more than an order of magnitude. Next, we use a global
28 ocean circulation model (the MITgcm Biogeochemical and Optical model) that simu-
29 lates plankton dynamics and associated inherent optical properties to quantify and un-
30 derstand uncertainties from b_{bp} -based algorithms in surface waters. We do so by devel-
31 oping and calibrating an algorithm to the model. Simulated error-estimations show that
32 b_{bp} -based algorithms overestimate/underestimate C_{phyto} between 5% and 100% in sur-
33 face waters, depending on the location and time. This is achieved in the ideal scenario
34 where C_{phyto} and b_{bp} are known precisely. This is not the case for algorithms derived from
35 observations, where the largest source of uncertainty is the scarcity of phytoplankton biomass
36 data and related methodological inconsistencies. If these other uncertainties are reduced,
37 the model shows that b_{bp} could be a relatively good proxy for phytoplankton carbon biomass,
38 with errors close to 20% in most regions.

39 **Plain Language Summary**

40 Phytoplankton contribute roughly half of the photosynthesis on earth and fuel fish-
41 eries around the globe. Yet, few direct measurements of phytoplankton concentration
42 are available. Frequently, concentrations of phytoplankton are instead estimated using
43 the optical properties of water. Backscattering is one of these optical properties, repre-
44 senting the light being scattered backwards. Previous studies have suggested that backscat-
45 tering could be a good method to estimate phytoplankton concentration. However, other
46 particles that are present in the ocean also contribute to backscattering. In this paper
47 we examine how well backscattering can be used to estimate phytoplankton. To address
48 this question, we use data from drifting instruments that are spread across the ocean and
49 a computer model that simulates phytoplankton and backscattering over the global oceans.
50 We find that by using backscattering, phytoplankton can be overestimated/underestimated
51 on average by ~20%. This error differs between regions, and can be larger than 100%
52 at high latitudes. Computer simulations allowed us to quantify spatial and temporal vari-
53 ability in backscattering signal composition, and thereby understand potential errors in
54 inferring phytoplankton with backscattering, which could not have been done before due
55 to the lack of phytoplankton data.

56 **1 Introduction**

57 Phytoplankton drive marine food-webs and play an important role in the global
58 carbon cycle. Despite their importance in marine systems, few field measurements of phy-
59 toplankton carbon biomass (C_{phyto}) exist due to difficulties in separating phytoplank-
60 ton from the rest of the microbial community and other organic particles. To overcome
61 this difficulty, phytoplankton carbon biomass is often estimated using optical proxies.
62 One of these optical proxies is the particulate backscattering coefficient (b_{bp}). The par-
63 ticulate backscattering coefficient is an inherent optical property of particles, and rep-
64 resents the light being scattered backwards. The most common way of estimating C_{phyto}
65 using b_{bp} is by setting a simple linear regression $C_{phyto} = \beta_0 + \beta_1 b_{bp}(\lambda)$ (where β_0 is
66 the intercept, β_1 the slope and λ the wavelength of light). For simplicity, we will use the
67 terms “ b_{bp} -based algorithm” to refer to this type of linear regression. This kind of al-

68 gorithm is often used by the marine ecological and biogeochemical communities to un-
69 derstand phytoplankton dynamics (e.g. Behrenfeld et al., 2017; Britten et al., 2021), fish
70 dynamics (e.g. MacNeil et al., 2015; Cheung et al., 2016), estimate carbon export (Siegel
71 et al., 2014) or estimate net primary production (such as in the Carbon-based Produc-
72 tion Model (CbPM) or The Carbon, Absorption, and Fluorescence Euphotic-resolving
73 (CAFE) net primary production model, Westberry et al., 2008; Silsbe et al., 2016). How-
74 ever, the sparsity of direct phytoplankton field observations makes it difficult to deter-
75 mine the potential uncertainties linked to using b_{bp} as a proxy for C_{phyto} . In this study,
76 we first review existing b_{bp} -based algorithms and examine how they differ from each other.
77 Next, we employ a global coupled optics/ecosystem model to quantify and understand
78 uncertainties in b_{bp} -based algorithms.

79 Backscattering is not a property unique to phytoplankton: all particles in the ocean,
80 such as heterotrophic bacteria, zooplankton, detritus, minerals and water molecules them-
81 selves will scatter light (Stramski et al., 2001, 2004; Morel et al., 2007). Furthermore,
82 b_{bp} is affected by other factors, such as particle size and cell composition (Loisel et al.,
83 2006; Organelli et al., 2018). Small cells are considerably more abundant than larger cells
84 (Sprules & Barth, 2016), and therefore contribute more to the total backscattering than
85 larger cells (Stramski et al., 2001). Organisms with inorganic cell walls, such as coccol-
86 lithophores, have a high refractive index and scatter more light than naked cells (Voss
87 et al., 1998). In particular, it has been shown that plated coccolithophores and coccol-
88 liths (calcite scales detached from cells) are major contributors to b_{bp} when blooming (Balch
89 et al., 1996). The fact that so many factors affect measured backscattering leads us to
90 question how good of a proxy b_{bp} is for phytoplankton carbon.

91 Current C_{phyto} - b_{bp} algorithms are derived by using chlorophyll- b_{bp} relationships from
92 either field samples or satellite remote sensing (Behrenfeld et al., 2005), or by using C_{phyto} -
93 b_{bp} relationships obtained from field samples (Martinez-Vicente et al., 2013; Graff et al.,
94 2015; Qiu et al., 2021). In general, these algorithms are a simple linear regression be-
95 tween these relationships, even though some more complex version have emerged in re-
96 cent years (Bellacicco et al., 2019, 2020). These studies show a relatively good corre-
97 lation between b_{bp} and C_{phyto} , and Graff et al. (2015) also show that b_{bp} has a higher co-
98 efficient of determination (R^2) with C_{phyto} than with chlorophyll (Chl) or any other en-
99 vironmental variable, reinforcing the use of this optical property to estimate phytoplank-
100 ton carbon biomass. However, a problem between these studies is that field samples of
101 C_{phyto} are scarce and biased towards low latitudes, raising issues about their general ap-
102 plicability. Furthermore, each study has used different methods and assumptions to es-
103 timate C_{phyto} (see section 3), preventing direct comparison of phytoplankton carbon data
104 and algorithms between studies, and increasing the uncertainties of the parameters from
105 the C_{phyto} - b_{bp} regression.

106 There are therefore several levels of uncertainties in the relationship between b_{bp}
107 and C_{phyto} . Methodological uncertainties can emerge by the different sensors, methods
108 and assumptions used to estimate C_{phyto} in the field. These uncertainties, together with
109 sampling biases, result in differences across existing algorithms. Other uncertainties come
110 simply from the assumption of using b_{bp} as a proxy for C_{phyto} , which are difficult to val-
111 idate due to the lack of C_{phyto} field data. This scarcity can be overcome by using Chl-
112 b_{bp} relationships, as done in Behrenfeld et al. (2005). However, by using Chl instead of
113 C_{phyto} , a community-averaged C_{phyto} :Chl ratio is implicitly assumed to obtain C_{phyto}
114 from the Chl- b_{bp} relationship (see section 6 in the SI). This, together with an incomplete
115 understanding of the drivers of the Chl- b_{bp} relationship (Barbieux et al., 2018), prevent
116 a reliable derivation of C_{phyto} . To date, despite the wide applications of these b_{bp} -algorithms
117 in the field, the drivers of the b_{bp} - C_{phyto} relationship are not yet well understood, and
118 potential uncertainties linked to the use of b_{bp} as a proxy for C_{phyto} have not yet been
119 quantified.

120 Here, we use Bgc-Argo float data, satellite remote sensing data, as well as a global
121 ocean circulation model, to assess the potential of b_{bp} as a proxy for phytoplankton car-
122 bon biomass (C_{phyto}). First, we review existing C_{phyto} algorithms and apply them to BGC-
123 Argo b_{bp} data to identify the main differences between algorithm parameters and sources
124 of uncertainties. Next, we use a global ocean ecosystem model (the MITgcm Biogeochem-
125 istry and Optical model, referred from now on as MITgcmBgc) that accounts for plank-
126 ton functional types and associated inherent optical properties to understand the drivers
127 of the C_{phyto} - b_{bp} and Chl - b_{bp} relationships and quantify associated uncertainties under
128 the ideal scenario where C_{phyto} is known everywhere and at all times. Here, b_{bp} and Chl
129 from the model are validated against Argo float data. This approach only looks at the
130 uncertainties linked to the use of b_{bp} as a proxy for C_{phyto} , and does not consider other
131 methodological uncertainties or sampling biases. Nevertheless, the model provides new
132 insights into the variability of C_{phyto} and b_{bp} , both emergent properties of the model.

133 2 Methods

134 2.1 BGC-Argo data

135 We used data from the Biogeochemical-Argo floats array (BGC-Argo, [https:////
136 biogeochemical-argo.org/](https://biogeochemical-argo.org/)). BGC-argo floats provide biogeochemical data from the
137 upper 2000 m of the ocean, surfacing around local noon. Sampling time-frequency varies
138 between mission. We extracted the float data using the Bgc-Argo-Mat Matlab toolbox
139 (Frenzel et al., 2021). We extracted quality controlled Chl and b_{bp} data (flags "good"
140 or "probably-good", Wong et al., 2021) between 2011 and 2021 from the upper 10 m of
141 the ocean (0.2 m resolution) to be comparable to satellite products. As our interest is
142 open ocean, we removed the data that was in coastal regions as defined in Longhurst provinces
143 (Figure S8 Longhurst, 2010). We end up with a total of 64902 data points (from 315 pro-
144 files) that span several biomes of the global oceans, with a sampling bias towards the South-
145 ern Ocean (see for example figure 3a).

146 Chl was obtained as a processed data product from the BGC-Argo array, where
147 Chl is derived from fluorescence. Since the ratio of fluorescence to Chl-a can vary due
148 to several reasons (e.g. phytoplankton types, photoacclimation, non-photochemical quench-
149 ing), the error can be large, potentially reaching $\pm 300\%$ (Roesler et al., 2017; Bittig et
150 al., 2019), but can be reduced to a maximum $\pm 40\%$ by locally sampling Chl and obtain-
151 ing ratios between chlorophyll fluorescence and Chl. The applied correction for non-photochemical
152 quenching follows the method suggested in Terrats et al. (2020) (which is a variation from
153 Xing et al., 2018) and can be found in https://www.euro-argo.eu/content/download/157287/file/D4.2_v1.0.pdf.

155 Argo floats measure scattering at 700 nm over a range of angles in a small volume
156 (<10 mL) of seawater. Backscattering is subsequently derived. Errors in the backscat-
157 tering coefficient are at maximum 20% (Bittig et al., 2019). Afterwards, the backscat-
158 tering coefficient is converted into particulate backscattering coefficient by removing the
159 backscattering from seawater (temperature and salinity dependent, Zhang et al., 2009;
160 Schmechtig et al., 2018). The final particulate backscattering values at 700 nm are pro-
161 vided as a BGC-Argo product. The Argo-derived b_{bp} may underestimate scattering by
162 sufficiently motile zooplankton that can avoid the sensor or by large zooplankton that
163 can cause spikes in the data (Bishop & Wood, 2008).

164 2.2 Satellite remote sensing data

165 We use the NASA L-3 (<https://oceancolor.gsfc.nasa.gov/13/>) b_{bp} (443) and
166 Chl data from the MODIS-Aqua sensor. The near-surface chlorophyll-a concentration al-
167 gorithm uses an empirical relationship derived from in situ measurements of chl-a and
168 blue-to-green band ratios of in situ remote sensing reflectances (Rrs). The average Chl

169 error relative to field data ranges between 16% and 68% in open ocean waters (optical
170 water types 1 to 5, Moore et al., 2009). Particulate backscattering output is estimated
171 using the Generalized Inherent Optical Properties model (GIOP) (Werdell et al., 2013),
172 with a median percent error of 24% relative to Argo float data (Bisson, Boss, Werdell,
173 Ibrahim, & Behrenfeld, 2021). We used climatological monthly mean outputs with a 4 km
174 resolution.

175 2.3 The MITgcm Biogeochemical and Optical model

176 The MITgcm Biogeochemical and Optical model (MITgcmBgc) is a global ocean
177 circulation model that simulates plankton functional types. The model has several con-
178 figurations (see section 1 in the SI), and for this study, inherent optical properties of sea-
179 water and particles are also included (Dutkiewicz et al., 2015, 2020). The ecosystem com-
180 ponent is embedded into a $1^\circ \times 1^\circ$ physical global circulation model (the MITgcm, Mar-
181 shall et al., 1997) that simulates ocean circulation and mixing, and has been constrained
182 by observations. The model resolves several dissolved and particulate carbon pools (e.g. plank-
183 ton, detritus, dissolved organic matter, dissolved inorganic carbon) and several nutrients
184 within these pools (nitrogen, phosphorus, silica, iron). Here we briefly describe pertinent
185 components of the the ecological model, the most recent optical implementation, and pa-
186 rameterization of backscattering. We describe the version of the Darwin model model
187 used in this study in section 1 of the SI, and a more in-depth description of equations
188 and optics can be found in (Dutkiewicz et al., 2015). Here, the model accounts for sev-
189 eral plankton functional types: pico-phytoplankton (*Prochlorococcus*, *Synechococcus* and
190 pico-eukaryotes), coccolithophores, diatoms, mixotrophs, diazotrophs, zooplankton and
191 heterotrophic bacteria (Figure S1). Each functional type encompasses several cell sizes
192 (Figures 1 and S1). Size affects physiological rates and predator-prey interactions, where
193 we assume that larger organisms eat smaller ones following a fixed predator-prey size ra-
194 tio (see Dutkiewicz et al., 2020). Community composition in the model emerges from
195 environmental conditions and interactions between organisms (competition and preda-
196 tion).

197 2.3.1 Optics in the MITgcmBgc model

198 Spectral optical properties of water and biology are included in the model (Dutkiewicz
199 et al., 2015, 2018). The model includes a radiative transfer component based on the Ocean–Atmosphere
200 Spectral Irradiance Model (OASIM, Gregg & Casey, 2009), and more fully described
201 in Dutkiewicz et al. (2015). Each type of particle in the water column is represented in
202 the model with its own carbon-specific or Chl-specific absorption, scattering and backscat-
203 tering. Integrated effects of these optical properties affect the light field available for phy-
204 tooplankton. As in earlier versions of the model, each phytoplankton functional type and
205 detritus has a specific spectra for absorption and scattering as suggested by observations,
206 and scaled relative to cell size (Dutkiewicz et al., 2015, 2020). New in this latest version,
207 we explicitly include scattering by zooplankton and scattering and absorption by het-
208 erotrophic bacteria. Thus, all particles in the model have absorption, scattering and backscat-
209 tering cross sections associated with them (see figure 1 for backscattering, sections 2–5
210 in the SI for details on scattering and backscattering, and Dutkiewicz et al. (2015) for
211 absorption).

212 Here, the total backscattering (b_b , in m^{-1}) is simulated as the sum of the backscat-
213 tering from water (b_{bw} , in m^{-1}) and the backscattering by particles (b_{bp} , in m^{-1}). The
214 particulate backscattering is the sum of the product between the backscattering cross-
215 section (σ_{bb} , in $\text{m}^2 \text{mgC}^{-1}$) and the total carbon biomass (C , mgC m^{-3}) of each detri-
216 tal pool or plankton population i (of a total of N_p populations). Thus, the total partic-

217 ulate backscattering in the water column is:

$$b_{bp} = \sigma_{bb,det}(C_{det} + C_{rdet}) + \sum_{i=1}^{N_p} \sigma_{bb,plk,i} C_{plk,i} \quad (1)$$

218 where $\sigma_{bb,plk,i}$ and $\sigma_{bb,det}$ are the backscattering cross sections of phytoplankton and de-
219 tritus respectively (in $\text{m}^2 \text{ mgC}^{-1}$), and $C_{plk,i}$, C_{det} and C_{rdet} are the total biomass of
220 each plankton group i , labile detritus and refractory detritus in the system respectively
221 (all in mgC m^{-3}).

222 Backscattering cross section values were obtained from the literature. For most phy-
223toplankton groups, we use the size-based relation from Vaillancourt et al. (2004) and in-
224troduce a scaling factor to differentiate between functional groups. This scaling factor
225 is based on an informed method (see sections 3 and 4 in the SI) to accommodate the species
226 differences by taking backscattering spectra from representative species in culture. Lit-
227tle data is available for zooplankton backscattering, so we assume that they backscat-
228ter the same or less than other similar sized unicellular eukaryotes. This assumption is
229 reasonable for unicellular nano-sized zooplankton, which, following a negative size-spectrum
230 slope, will dominate in terms of abundance relative to larger zooplankton, and therefore
231 will also typically dominate the b_{bp} signal by zooplankton. All the literature sources and
232 derivation of backscattering parameters can be found in the SI.

233 There are two detrital pools in the Darwin model: an active labile pool and a re-
234fractory background pool. The former is important in cycling of carbon and other el-
235ements, the latter is introduced in this model for its impact on optics and is crudely pa-
236rameterized as constant across the globe. There is a high level of uncertainty in b_{bp} from
237detritus given the difficulties in both estimating backscattering cross sections of a diverse
238pool and the parameters needed to convert bulk detrital concentrations (the model vari-
239able) to number of particles (needed for the optical impact of this pool). We optimize
240these uncertain parameters so that model bulk b_{bp} best matches the BGC-Argo float data
241(a detailed explanation of this process can be found in section 4 of the SI). We define
242a constant q that combines the conversion from detrital carbon concentration to parti-
243cle numbers via the size spectrum and particle carbon density assumptions. This com-
244bined parameter q is optimized. Given the level of uncertainty, we perform a sensitiv-
245ity analysis of this and other parameters (section 2.4).

246 The model does not resolve the optical properties of minerals. Minerals can be a
247major contributors to the b_{bp} signal (Stramski et al., 2001, 2004). However, our model
248focuses on the open ocean where the concentration of minerals might be low relative to
249other optically important constituents. We also implicitly account for particulate inor-
250ganic carbon in that we consider a higher backscattering cross-section for coccolithophores
251(Voss et al., 1998). We do not account for detached coccoliths though. Therefore, the
252Darwin model likely overestimates somewhat the dependence of b_b on phytoplankton.
253Thus the error between C_{phyto} derived using b_{bp} in the model is likely a lower bound on
254the error likely found in the real ocean. The model does, however, allow us to investi-
255gate the magnitude, variability and sources of the errors.

256 2.3.2 b_{bp} -based C_{phyto} algorithm in the MITgcmBgc model

257 Following the procedure used for real ocean algorithms (e.g. Behrenfeld et al., 2005;
258Graff et al., 2015), we calculate model-specific coefficients for a b_{bp} -based algorithm for
259estimating phytoplankton carbon. The coefficients are found by fitting a linear regres-
260sion on the linear scale between C_{phyto} and b_{bp} and between Chl and b_{bp} . In contrast to
261the real world, we are in the ideal situation where we know C_{phyto} , Chl and b_{bp} from the
262model at all locations; this removes any sampling bias effects and measurement errors.

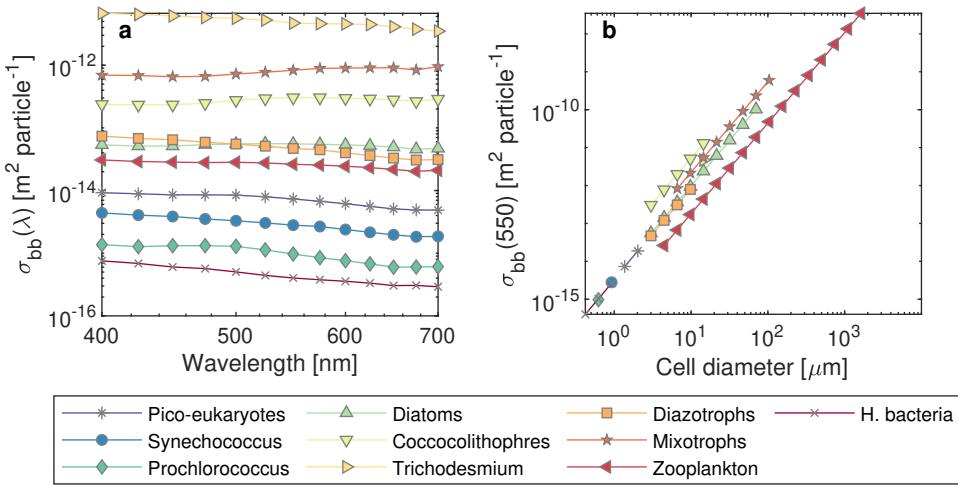


Figure 1. Backscattering cross-sections (σ_{bb} , in $\text{m}^2 \text{ particle}^{-1}$) for each plankton functional type in the MITgcmBgc model against wavelength (a) and plankton body-size (b). The sizes shown in panel (a) are for the smallest organism in each functional group.

The values of C_{phyto} and Chl range over several orders of magnitude. We therefore use a robust regression method to obtain reliable regression parameters at the linear scale. We apply a weighting function to down-weight large outliers in the sum of squares when fitting the regressions and then use Iteratively Reweighted Least Squares (IRLS) to estimate the model parameters. We use the default linear regression MATLAB function with the “robust option” on, which applies a bisquare weighting function to the squared residuals (<https://www.mathworks.com/help/stats/robust-regression-reduce-outlier-effects.html>).

2.3.3 Algorithm performance assessment

We evaluate the performance of the algorithm derived from the MITgcmBgc model by comparing it against the known modelled phytoplankton carbon. As a measure of algorithm performance we look at the coefficient of determination (R^2) and the mean absolute error (MAE, as suggested in Seegers et al., 2018; McKinna et al., 2021). The MAE is calculated at the \log_{10} scale and afterwards back-transformed to the linear scale:

$$R^2 = \left[\frac{\sum_{j=1}^N [(\log_{10}(M_j) - \mu_M)(\log_{10}(O_j) - \mu_O)]}{\sqrt{\sum_{j=1}^N (\log_{10}(M_j) - \mu_M)^2 \sum_{j=1}^N (\log_{10}(O_j) - \mu_O)^2}} \right]^2, \quad (2)$$

$$\text{MAE} = 10^{\left\{ \frac{1}{N} \sum_{j=1}^N |\log_{10}(M_j) - \log_{10}(O_j)| \right\}}, \quad (3)$$

where N is the total number of observations, and O_j and M_j are the j th “observed” and derived data points (i.e “actual” C_{phyto} in the Darwin model and the C_{phyto} derived by the (model) b_{bp} algorithm respectively). μ is the mean of the log-transformed data. The MAE gives a measure of the algorithm absolute bias, that is multiplicative on the back-transformed scale. For example, a MAE of 1.2 means that the algorithm tends to, on average, overestimate/underestimate C_{phyto} by 20% (in the linear scale).

283 **2.4 Sensitivity analysis in the MITgcmBgc**

284 To estimate how parameter uncertainty in the model affect the results of our study,
285 we performed a sensitivity analysis using a Monte Carlo procedure. The uncertain pa-
286 rameters we chose to investigate are the intercept and the slope of the size-scaling re-
287 lationship of backscattering cross sections for plankton (i.e. intercepts and slopes from
288 figure 1b), and the parameter q that encompasses uncertainties for converting detrital
289 concentration to number of particles and implicitly also for the values of the backscat-
290 tering cross section (section 4 in the SI).

291 Assuming a uniform probability distribution, we varied the intercepts of $\sigma_{bb,plk}$ by
292 $\pm 50\%$ and the slope by $\pm 25\%$. This combined range covers the values obtained in an-
293 other study that measured σ_{bb} for phytoplankton (Whitmire et al., 2010). Given the large
294 uncertainties involved, we varied the parameter q over an order of magnitude. We sam-
295 pled the input space of these parameters using the Latin Hypercube Sampling method.
296 We performed 500 samples, each with a different value of each input parameter. The sam-
297 ple input matrix was then propagated through the model. The propagation was done
298 offline (i.e. the optics module alone was run on existing model fields), as running the en-
299 tire model for 500 simulations is computationally unfeasible. The limitation of doing these
300 experiments offline is that there is no feedback between the changes in the inherent op-
301 tical properties, light trajectories and plankton dynamics, but this method does allows
302 us to efficiently identify the most sensitive optical parameters and explore the sensitiv-
303 ity of our results to these choices.

304 **3 Review and further discussion of existing C_{phyto} b_{bp} -based algorithms**

305 Following development of approaches using backscatter to derive information on
306 phytoplankton and particulate organic carbon (Stramski et al., 1999; Balch et al., 1996;
307 Behrenfeld & Boss, 2003), the use of b_{bp} as a proxy for C_{phyto} was presented by Behrenfeld
308 et al. (2005). In that study, the authors argued that even though b_{bp} is likely more in-
309 fluenced by particles outside the phytoplankton size domain (sub-micron particles), a re-
310 lation between b_{bp} and C_{phyto} can be anticipated, as long as the abundance of these par-
311 ticles co-varies with phytoplankton biomass. Following this assumption, the authors de-
312 rived an algorithm by subtracting to the b_{bp} signal a background backscattering value
313 (b_{bckg}) corresponding to a constant stable heterotrophic and detrital components and
314 then by multiplying them by a scalar of $13,000 \text{ mgC m}^{-2}$. This scalar gave global Chl: C_{phyto}
315 values close to 0.01 and a C_{phyto} -to-particulate organic carbon (POC) ratio close to 0.3
316 (average values from the literature). The final equation obtained was $C_{phyto} = 13000(b_{bp} -$
317 $b_{bckg})$. In section 6 of the SI we show that the same equation can be derived by isolat-
318 ing Chl from the linear regression obtained from a b_{bp} -Chl relationship and using an av-
319 eraged C_{Phyto} :Chl ratio to get C_{Phyto} . The authors argued that Chl: C_{phyto} values ob-
320 tained looked reasonable compared to laboratory observations. In later studies, the re-
321 lationship between b_{bp} and C_{phyto} was tested in the field (Martinez-Vicente et al., 2013;
322 Graff et al., 2015; Qiu et al., 2021). These studies showed relatively good correlations
323 between b_{bp} and C_{phyto} , with R^2 ranging between 0.53 to 0.7. Graff et al. (2015) also showed
324 that b_{bp} had a stronger relationship with C_{phyto} than Chl or any other environmental
325 variable, reinforcing the use of this optical property to estimate phytoplankton carbon
326 biomass.

327 There are several limitations related to the studies discussed above. First, most field
328 C_{phyto} and b_{bp} data is biased towards low latitudes. Second, each study has used differ-
329 ent methods and assumptions to estimate in situ C_{phyto} . For instance, Martinez-Vicente
330 et al. (2013) used flow-cytometry and literature cell-mass conversions to obtain the biomass
331 of pico-phytoplankton and some nano-phytoplankton. Qiu et al. (2021) used the same
332 method to estimate pico-phytoplankton biomass and afterwards assumed a size spectrum
333 slope to estimate the biomass for the rest of the phytoplankton community. Graff et al.

334 (2015) used flow cytometry to sort phytoplankton up to cell-sizes of $64\text{ }\mu\text{m}$, and estimated
335 the carbon content through elemental analysis (Graff et al., 2012). The use of these dif-
336 ferent methods prevents direct comparison of phytoplankton carbon data and algorithms
337 between studies, and increases the uncertainties of the parameters from the C_{phyto} - b_{bp}
338 regression.

339 We plotted all the current algorithms for comparison (Figure 2). After wavelength
340 corrections (see section 7 in the SI), b_{bp} -based algorithms differ remarkably at low val-
341 ues of b_{bp} and C_{phyto} (Figure 2): they differ by a factor ~ 3 at $b_{bp}(470)=10^{-3}\text{ m}^{-1}$, and
342 over an order of magnitude for b_{bp} values lower 10^{-3} m^{-1} . These discrepancies arise mainly
343 due to differences in the intercepts used in each algorithm. The algorithm from Graff et
344 al. (2015) has the highest intercept, and is the only one to have a positive intercept ($\beta_0 =$
345 0.59 , table 1). All the other algorithms have negative intercepts that vary between -4.5
346 and -22 gC m^{-3} . On the other hand, algorithms tend to agree at larger value of b_{bp} and
347 have similar slopes (excluding the algorithm of Martinez-Vicente et al., 2013, which only
348 included pico- and nano-phytoplankton).

349 Using Argo float data, we explore the regions and times of year where b_{bp} drops
350 below a threshold where the algorithms diverge markedly ($b_{bp,crit}(443) = 0.001\text{ m}^{-1}$).
351 The b_{bp} drops below this threshold value in high latitude winters and in some oligotrophic
352 gyres (Figure 3). For oligotrophic regions, most data is below $b_{bp,crit}$, and about 30%
353 of the observations fall below b_{bp} values where the algorithms diverge by more than an
354 order of magnitude ($b_{bp,crit2} = 0.0007\text{ m}^{-1}$). Temperate regions in winter can have about
355 60% of their observations below $b_{bp,crit}$ and 30% below $b_{bp,crit2}$. Finally, polar regions
356 in winter are always below these two thresholds. Note that the $b_{bp,crit}$ thresholds relate
357 to the existing algorithms, where the differences below these values emerge out of method-
358 ological issues, and probably not due to photoacclimation or differences in the propor-
359 tion of phytoplankton (we address these later). These are therefore areas where estimated
360 C_{phyto} differ significantly depending on the b_{bp} algorithm chosen. More research is needed
361 to constrain b_{bp} values below $b_{bp,crit}$.

362 When following the same approach but for satellite remote sensing (using the MODIS-
363 GIOP sensor and algorithm), most data tends to be above $b_{bp,crit}$ (Figure S6). For satellite-
364 derived b_{bp} , less than 20% of the data is below $b_{bp,crit}$ in oligotrophic gyres. This sug-
365 gests that b_{bp} derived from satellite (MODIS-GIOP) is overestimated relative to the b_{bp}
366 derived from Argo floats in regions with low b_{bp} values. This result is in agreement with
367 results found in other studies, where b_{bp} derived from different satellite sensors and al-
368 gorithms were compared with Argo floats data (Bisson et al., 2019; Bisson, Boss, Werdell,
369 Ibrahim, & Behrenfeld, 2021; Bisson, Boss, Werdell, Ibrahim, Frouin, & Behrenfeld, 2021).

370 Although the availability of in situ data restricts our ability to validate these C_{phyto}
371 algorithms, we can begin to explore whether the algorithms perform well in certain re-
372 gions or times of the year by applying the algorithms to the b_{bp} Argo data and looking
373 at ranges of C_{phyto} and the Chl: C_{phyto} (Figures S7 and S8). In this case, the algorithm
374 from Martinez-Vicente et al. (2013) and Qiu et al. (2021) give negative C_{phyto} values in
375 oligotrophic regions (Figure S7o and S7u). The algorithm from Graff et al. (2015) gives
376 very low Chl: C_{phyto} ratios in winter in some Polar and sub-polar regions (Figure S8e).
377 These low Chl: C_{phyto} ratios are characteristic of high light regions, indicating that the
378 Graff et al. (2015) algorithm is probably overestimating C_{phyto} (possibly due to the high
379 intercept value).

380 The C_{phyto} values that these algorithms provide might differ depending on the method
381 used to measure b_{bp} . For instance, satellite remote sensing seems to overestimate b_{bp} rel-
382 ative to the BGC-Argo measurements (Figure S6). Therefore, if these algorithms were
383 applied to the remote sensing b_{bp} , many of the C_{phyto} values would not be below $b_{bp,crit}$,
384 or many of the regions that have negative C_{phyto} values would probably be positive. We
385 also do not know how the equipment used to measure b_{bp} in the mentioned field stud-

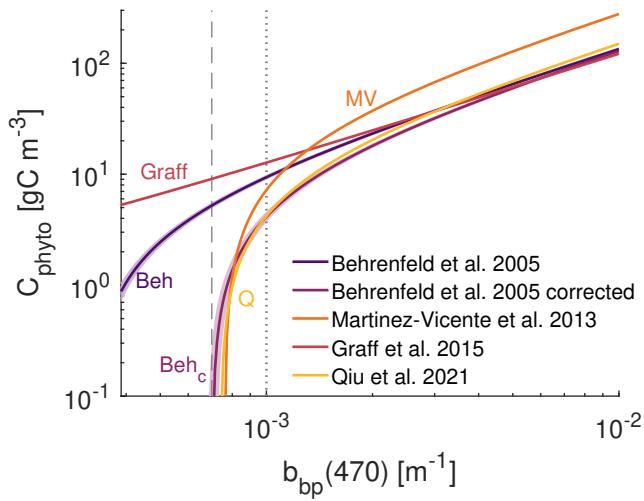


Figure 2. Existing algorithms. All algorithms have been converted to the same wavelength ($\lambda = 443$) using equation 18 in the SI and a b_{bp} spectral slope of -1. Shaded areas show the range taken by the algorithms when assuming the ± 0.5 standard deviation of the spectral slope. Dotted line is the $b_{b,crit}$ threshold and dashed line the $b_{b,crit2}$ threshold. The “Behrenfeld et al. (2005) corrected” comes from the intercept correction suggested in Qiu et al. (2021). Values of coefficients of these algorithms are listed in table 1.

386 ies compare with remote sensing or BGC-Argo. Therefore, reconciling approaches to measure/estimate b_{bp} could decrease uncertainties of C_{phyto} estimates.
 387

388 4 Exploring algorithm uncertainty using the MITgcmBgc model

389 We first compare the b_{bp} and Chl outputs from the global ecosystem model (MIT-
 390 gcmBgc) model with the Argo float data (section 4.1). Afterwards, using the MITgcm-
 391 Bgc model output, we quantify the uncertainties of b_{bp} -based algorithms (section 4.3),
 392 and explore the potential drivers of these uncertainties (section 4.4). Finally, we eval-
 393 uate the sensitivity and robustness of our results (section 4.5).

394 4.1 MITgcmBgc model and Argo comparison

395 We first compare Chl and b_{bp} from the BGC-Argo and MITgcmBgc model output
 396 (Figure 4). Using Bgc-Argo as a reference, the Darwin model is better at simulating b_{bp}
 397 ($R^2 = 0.67$, MAE=1.45) than Chl ($R^2 = 0.49$, MAE=2.65, Figure 4a,b). The model
 398 underestimates Chl by a factor 5 in tropical and some subtropical regions, but follows
 399 relatively well the trend in the rest of regions (Figure 4a). The underestimation of Chl
 400 in tropical and subtropical regions could be due to the model not representing photoac-
 401 climation correctly in these regions (we use Geider, 1987), or due to the coarse resolu-
 402 tion of the model, which does not capture sub-mesoscale dynamics that result in the in-
 403 put of nutrients in these less productive regions (see e.g. Clayton et al., 2017; Gupta et
 404 al., 2022). Regarding b_{bp} , the Darwin model overestimates by less than a factor of 2 in
 405 temperate, sub-polar and polar regions, and slightly underestimates at low latitudes (Fig-
 406 ure 4b).

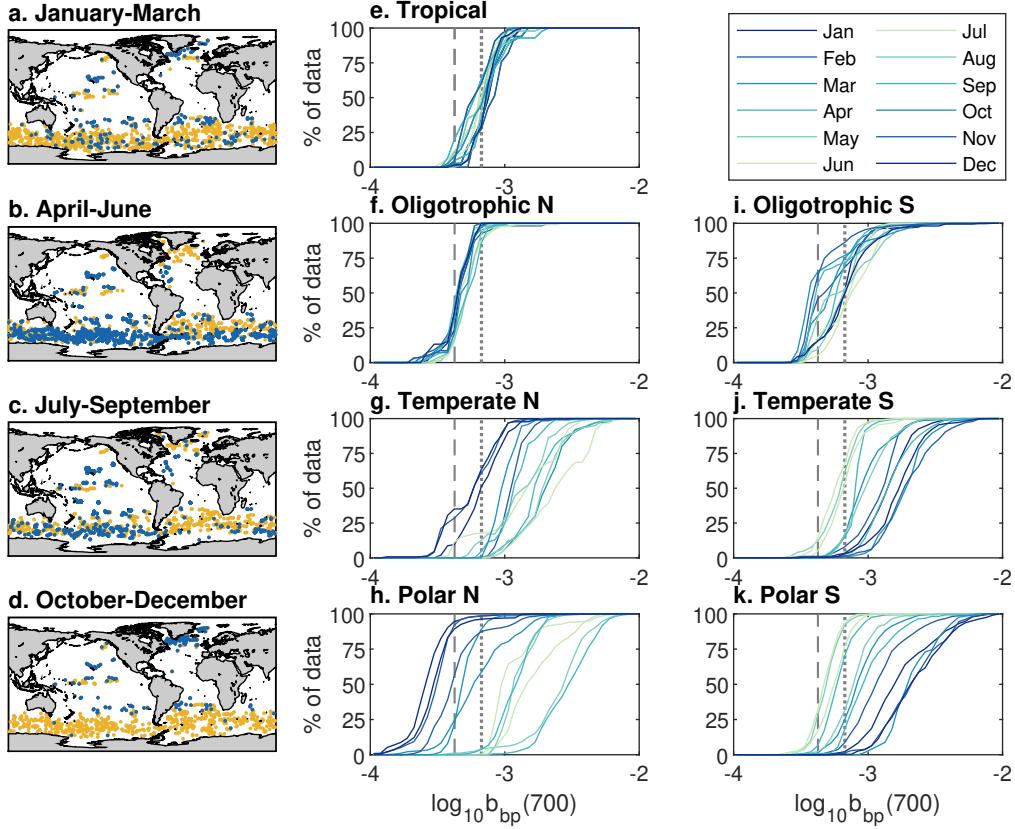


Figure 3. (a-d) location of BGC-Argo data (dots). Data points below the $b_{bp,crit}$ threshold are shown in blue dots. (e-k) cumulative distributions of Argo float b_{bp} data by biomes in the Northern hemisphere (f-h) and southern hemisphere (i-k). Dotted line is $b_{bp,crit}$ (where algorithms differ by more than a factor of 3), dashed line is $b_{bp,crit2}$ (where algorithms differ by more than an order of magnitude). Both thresholds in this figure have been wave-length corrected using equation 18 in the SI. Note that we only use surface data (<10 m), and that coastal areas have been excluded (Figure S10) to be consistent with the output of the model, which does not represent well coastal regions due to its coarse resolution ($1^\circ \times 1^\circ$).

Table 1. Original algorithms from each study and slopes after wavelength correction to a $\lambda = 470$ following equations 18 and 19 in the SI.

	C_{phyto} original	slope if $\lambda = 470$
Existing algorithms:		
Behrenfeld et al. (2005)	$13000 b_{bp}(440) - 4.5$	13886
Behrenfeld et al. (2005) corrected*	$13000 b_{bp}(440) - 9.75$	13886
Graff et al. (2015)	$12128 b_{bp}(470) + 0.59$	12128
Martinez-Vicente et al. (2013)	$30100 b_{bp}(470) - 22.9$	30100
Qiu et al. (2021)	$16200 b_{bp}(470) - 12$	16200
Derived from the MITgcmBgc:		
Using C_{phyto} - b_{bp} **	$18442 b_{bp}(450) - 8.1$	19262
Using Chl- b_{bp} **	$18191 b_{bp}(450) - 8.4$	18999
Using C_{phyto} - b_{bp} (pure auto.)***	$13609 b_{bp}(450) - 5.1$	14214

*Assumes a correction suggested in Qiu et al. (2021).

** C_{phyto} and Chl are the sum of pure autotrophs and mixotrophs.

*** C_{phyto} is only pure autotrophs (see figure S12).

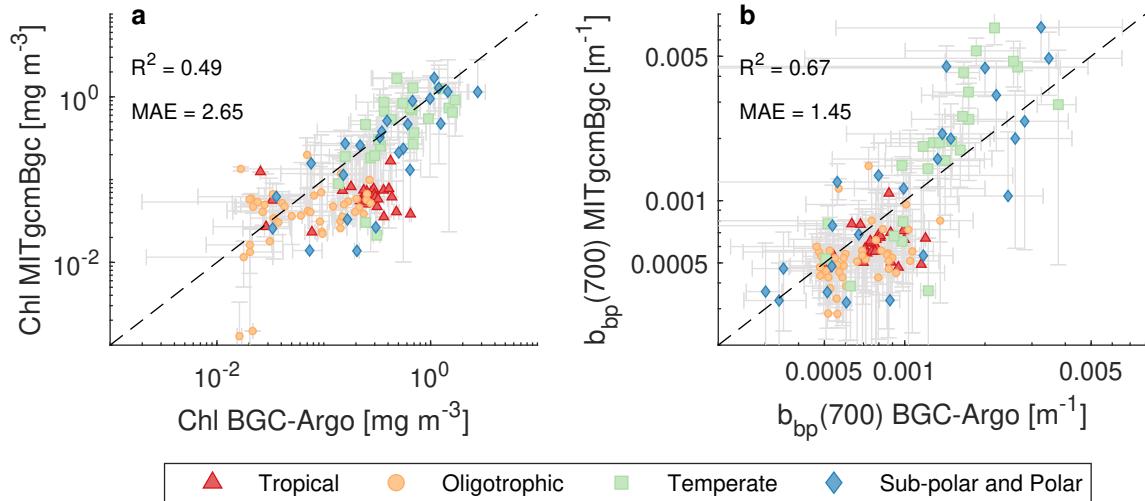


Figure 4. Comparison between the MITgcmBgc model and BGC-Argo surface (<10 m) Chl (a) and b_{bp} (b). Each marker is a monthly average for each biome where there was Argo float data, and grey error bars are the standard deviations. First, bins from the MITgcmBgc were matched to Argo float data-points using a nearest neighbour approach. Afterwards, the data was averaged by month and by biomes, where each biome was defined by grouping Longhurst regions (as seen in figure S10). R^2 was estimated in the log scale, and MAE was estimated in the log scale and back-transformed afterwards, as shown in equation 3. Dashed line is the 1:1 line.

407 **4.2 b_{bp} -based algorithms obtained in the MITgcmBgc model**

408 Since the paucity of real ocean data has prevented a systematic estimation of how
409 well b_{bp} predicts C_{phyto} , we use the MITgcmBgc model to generate a C_{phyto} - b_{bp} algorithm
410 (i.e. a linear regression, Figure 5) and test it on the C_{phyto} from the model. Since cur-
411 rent algorithms are generated either by using C_{phyto} or Chl, we generate two algorithms:
412 one using a C_{phyto} - b_{bp} relationship (Figure 5a) and another using a $[Chl \times Q]$ - b_{bp} re-
413 lationship, where Q is a scaling factor that gives reasonable C_{phyto} values (Figure 5b,
414 the reasoning is similar to the one followed in Behrenfeld et al. (2005) and is described
415 in section 6 of the SI). Each linear regression is fitted to all the surface C_{phyto} (<10 m),
416 Chl and b_{bp} output data of the global ecosystem model.

417 Regression parameter values obtained from the model are shown in table 1. We ob-
418 tain negative intercepts in all cases. Slope values tend to be higher than most algorithms
419 when considering C_{phyto} and Chl to be the sum of pure autotrophs and mixotrophs, whereas
420 the slope is lower and closer to the ones obtained in Behrenfeld et al. (2005) and Graff
421 et al. (2015) when considering C_{phyto} to be the biomass of pure autotrophs alone (see
422 also figure S12 in the SI). This could suggest that (in the model) the proportion of mixotrophs
423 relative to pure autotrophs increases in more productive systems. Since mixotrophs con-
424 tribute to Chl-a, carbon and NPP, from now on we will consider C_{phyto} as the biomass
425 of both pure autotrophs and mixotrophs.

426 **4.3 Error-estimation of the b_{bp} -based algorithms in the MITgcmBgc model**

427 We calibrated two b_{bp} -based C_{phyto} algorithms to all the surface bins of the MIT-
428 gcmBgc model (Figure 5). The first model uses C_{phyto} (Figure 5a), whereas the second
429 model uses $Q \times Chl$ (Figure 5b), which is an equivalent to C_{phyto} following the discus-
430 sion in section 6 of the SI. The regressions performed better when using a robust method
431 rather than ordinary least squares regression method, where the root mean squared er-
432 rors (RMSE) of the robust method were lower for both models (Figure 5). The spread
433 was wider in the $Q \times Chl$ - b_{bp} model, probably due to the use of an averaged community
434 C_{phyto} :Chl ratio (Q , units $[mgC\ mgChl^{-1}]$). Note that using this constant factor still al-
435 lows obtaining variable Chl:C ratios derived from backscattering (Figure S13). In this
436 study, we tried to use a scaling factor Q that gave values close to the one of C_{phyto} in
437 the model. This values is however unknown in the real world, and variations in this pa-
438 rameter can result in substantial overestimation/underestimations of C_{phyto} . Therefore,
439 the overall performance of C_{phyto} algorithms that use a Chl- b_{bp} regression might vary
440 depending on the assumed scaling factor Q .

441 Next, we compare month-to-month predicted C_{phyto} from the algorithm compared
442 to the modeled C_{phyto} (Figure 6). This pair-wise comparison shows that the b_{bp} -algorithm
443 is able to capture the large scale C_{phyto} patterns, with $R^2 > 0.9$ at the global scale (Fig-
444 ure 6e-i). The global monthly MAE (eq. 3) ranges from ~ 1.20 to 1.33 when using the
445 algorithm calibrated with C_{phyto} , and from 1.26 to 1.38 when using the algorithm cal-
446 ibrated with Chl. In other words, a b_{bp} -based algorithm, when applied to the model, can
447 overestimate or underestimate C_{phyto} by $\sim 20\%$ to $\sim 30\%$ on a global average (on the lin-
448 ear scale).

449 The algorithm performance however varies across regions and seasons (Figure 6 and
450 7). In oligotrophic gyres, errors tend to be below 20% for the algorithm calibrated with
451 C_{phyto} and below 40% for the algorithm calibrated with Chl (Figure 6 and 7g and h).
452 At higher latitudes, algorithm performance varies seasonally and by ocean basin. In the
453 sub-polar North Atlantic and North Pacific the algorithm tends to underestimate C_{phyto}
454 by more than 20% in most regions (Figure 6 and 7a-d). In the Southern Ocean, the al-
455 gorithm tends to overestimate in winter $>30\%$ and underestimate during the rest of the
456 year (Figure 6 and Figure 7j). Overall, the algorithms tend to have errors close to 20 %.

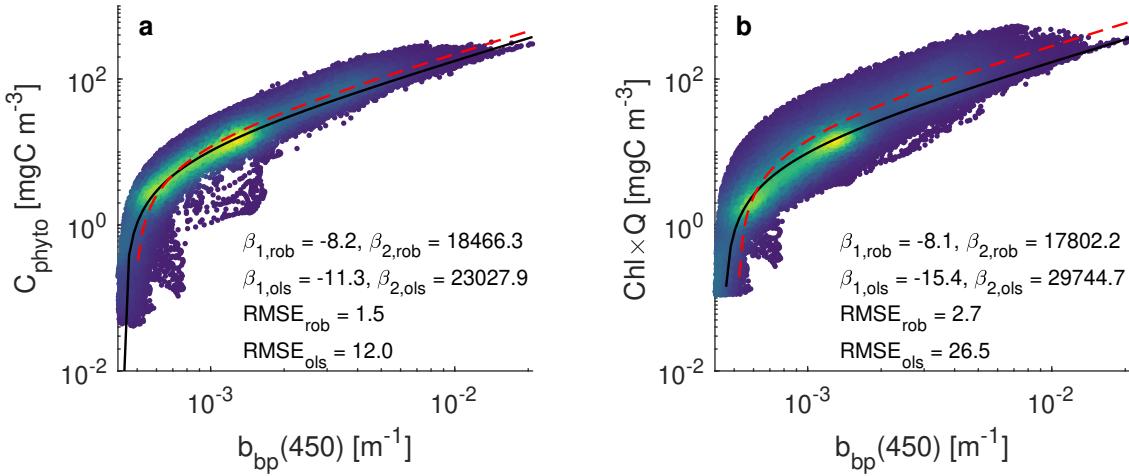


Figure 5. Linear regression of the C_{phyto} - b_{bp} relationship (a) and the Chl- C_{phyto} relationship (b) in the MITgcmBgc model for surface waters (<10 m). $Q = 110$ and represents a community-averaged C:Chl ratio as explained in section 6 of the SI. Black continuous line denotes the regression line using the robust regression method (see section 2.3.2), where $\beta_{1,rob}$ is the intercept and $\beta_{2,rob}$ is the slope. Red dashed line shows the regression line using ordinary least squares (OLS). C_{phyto} is the summed biomass of pure autotrophs and mixotrophs. Colors show normalized data density. Each dot represents a 1 degree bin of the surface ocean in the model. Chl values below 0.001 mg m⁻³ have been removed, as this threshold is close to the detection threshold of the BGC-Argo floats.

4.4 Drivers of the $C_{phyto} - b_{bp}$ relationship

To understand what generates the errors and variability in the C_{phyto} algorithm, we look at the contribution that phytoplankton have on the b_{bp} signal in the Darwin model (Figure 8). Phytoplankton is the main contributor to b_{bp} (60%) in spring and summer of seasonal regions. At low latitudes, detrital particles tend to contribute to more than 60% of the signal, whereas phytoplankton mostly account for the rest. Heterotrophic bacteria has a low contribution, except in winter at high latitudes, where it can contribute up to 30% of the b_{bp} signal. Zooplankton (nano- to meso-) had a negligible contribution to total b_{bp} (not shown). Also, larger zooplankton could interact with the b_{bp} signal in different ways that are not captured in the model (e.g. by generating spikes in the b_{bp} signal due to their size, Bishop & Wood, 2008).

When decomposing the different contributors of the C_{phyto} - b_{bp} relationship (Figure 9, left-side panels), it can be seen that $\log_{10}(b_{bp})$ by phytoplankton alone shows a linear relationship with $\log_{10}(C_{phyto})$ (Figure 9a). When adding the effects of heterotrophic bacteria and zooplankton (Figure 9b), a lower b_{bp} boundary starts to form. However, this lower boundary is much lower than the one set when the contribution by detrital particles is added (Figure 9c). This boundary is higher than most of the b_{bp} signal set by phytoplankton alone (Figure 9a v.s. 9c). This suggests that regions where b_{bp} is at its lowest, the signal is mainly dominated by detrital particles.

To understand the effects of phytoplankton functional groups and cell size, we compare a scenario where we assume all phytoplankton have the same backscattering cross-section (Figure 9, right-side panels). This analysis shows that differences in phytoplankton cross-sections do generate some extra variability in the b_{bp} signal (compare Figure 9a and d). However, at low b_{bp} values, most of the variability is driven by the contribution

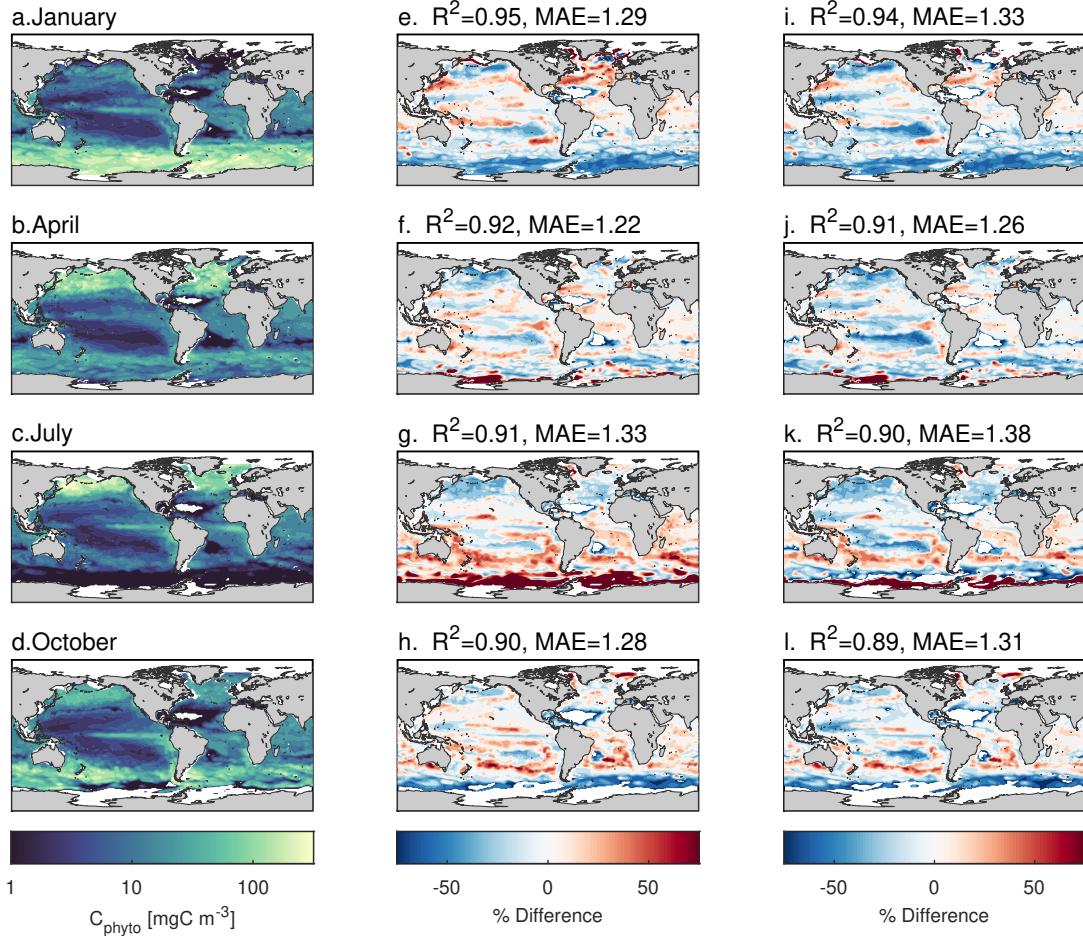


Figure 6. Phytoplankton biomass concentration above 10 m (a-d), and percent difference using the b_{bp} -based algorithm calibrated with C_{phyto} (e-h) and calibrated with $\text{Chl} \times Q$ (i-l) from figure 5a and b respectively. The shown R^2 and MAE were estimated in \log_{10} scale globally for each month (MAE was backs-transformed to the linear scale as shown in equation 3). White areas represent $\text{Chl} < 0.001 \text{ mg m}^{-3}$.

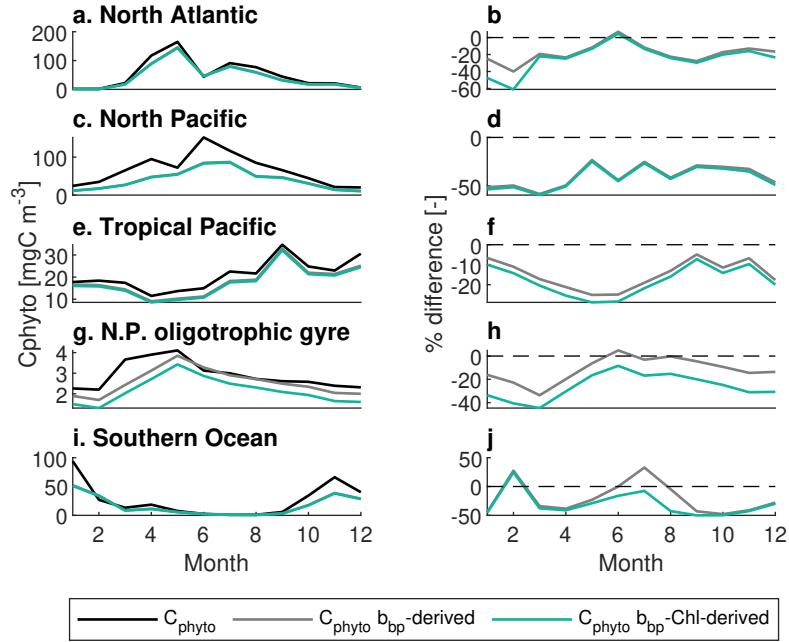


Figure 7. Left-side panels: Seasonal dynamics of phytoplankton biomass (above 10 m) in the MITgcmBgc model (black line), biomass estimated using the b_{bp} -based algorithm using the Cphytp- b_{bp} relationship (grey lines) and using the Chl- b_{bp} relationship from figure 5b (green lines) for four regions. Right-side panels: percent difference between C_{phyto} estimated by the b_{bp} -algorithms relative to the modeled C_{phyto} . Exact locations of each panel are shown in figure S11.

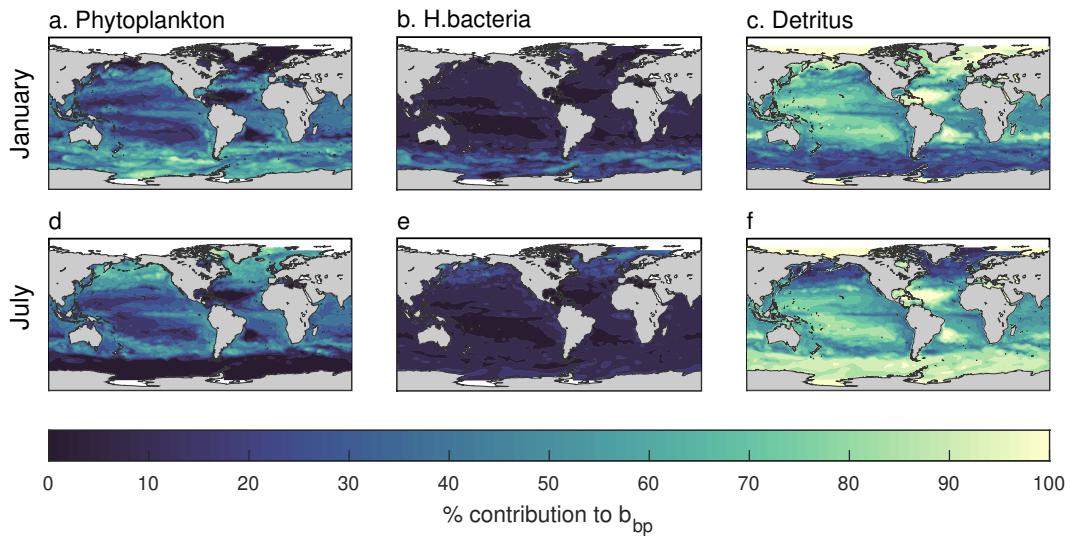


Figure 8. Modeled relative b_{bp} contribution to the total b_{bp} signal by phytoplankton (a,d), heterotrophic bacteria (b,e) and detrital particles (c,f) in the surface ocean.

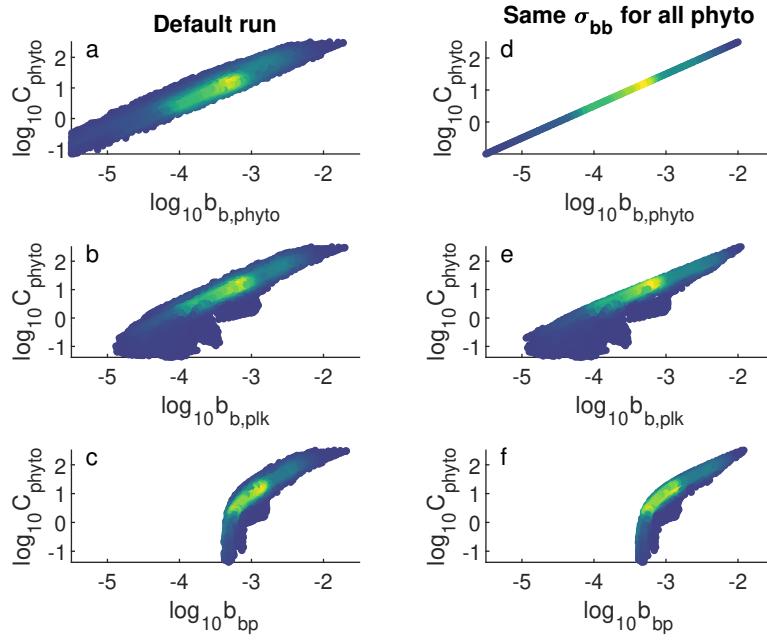


Figure 9. Relationships between C_{phyto} (mgC m^{-3} , phytoplankton+mixotrophs) and b_{bp} (m^{-1}) from different constituents in the default scenario (a-c) and a scenario where all plankton have the same backscattering cross section ($\sigma_{bb} = 10^{-5}$, d-f). Backscattering in each panel corresponds to: backscattering by phytoplankton and mixotrophs (a,d), backscattering by plankton (i.e. phytoplankton, mixotrophs, zooplankton and heterotrophic bacteria) only (b,e), and total particulate backscattering (c,f. i.e. all plankton and detritus). Color is the normalized data density.

481 of non-algal particles (i.e. detritus, heterotrophic bacteria and zooplankton, Figure 9d
482 vs. e and f).

483 4.5 Sensitivity analysis of the optical parameters in the Darwin model

484 The sensitivity analysis shows that the mean absolute error of the C_{phyto} algorithm
485 (MAE from the C_{phyto} - b_{bp} relationship in figure 6f) can range between 15% and 35% (Figure
486 10d). The parameter that has the strongest effect on this variation is the slope of
487 the regression between the b_{bp} cross-section with plankton cell size (Figure 10b, this pa-
488 rameter corresponds to the slope in figure 1b).

489 Two potential drivers of the MAE variation are the relative contribution of phy-
490 totoplankton to total bbp (Figure 10e), and the relative contribution of pico-phytoplankton
491 to the bbp by all plankton (Figure 10f). The slope of the b_{bp} cross-section with plank-
492 ton cell size seems to affect these two emergent properties of the model. Lower MAEs
493 occur at steeper slopes, which result in a higher contribution by phytoplankton to to-
494 tal bbp (Figure 10e) and a lower contribution by pico-phytoplankton to the bbp by all
495 plankton (Figure 10f). It is however unclear why there is a kink in MAE with the slope
496 (Figure 10b).

497 Larger values of the parameter q (parameter that encompasses all the uncertain-
498 ties for the conversion from detritus biomass to number of particles and associated backscat-
499 tering, section 4 in the SI) resulted in higher MAEs. Larger values of q can mean sev-
500 eral things: (i) that σ_{detr} is larger than the one assumed in the default model, (ii) that

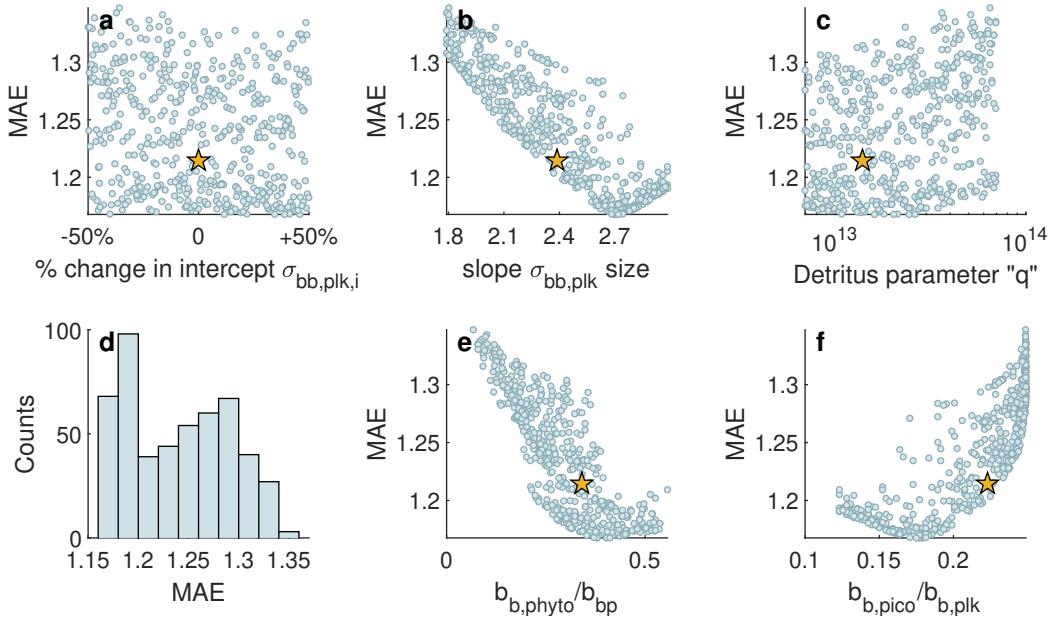


Figure 10. (a-c) Values of MAE for the month of April (corresponding to figure 6f) when randomly varying the three parameters in the sensitivity analysis: intercept and slope of the $\sigma_{bb,phyto}$ -cell size (corresponding to the regression parameters in figure 1b), and the q parameter that encompasses the uncertainties related to detritus (section 4 in SI). (d) Distribution of MAE from figure 6g after the sensitivity analysis for the three parameters. (e) Variation of MAE with the emergent globally averaged contribution of phytoplankton to total b_{bp} , and with (f) globally averaged contribution of pico-phytoplankton to b_{bp} by all plankton ($b_{b,plk}$). Each dot is a run with a random set of parameters. Yellow stars show the values in the default run.

detrital particles are less dense than we have assumed (affecting our conversion of detrital biomass to number of particles, and therefore resulting in a larger number of detrital particles), and (iii) that the slope of the size spectrum for detritus is steeper than the Junge spectrum assumed. All these factors would increase the contribution of detritus to the overall b_{bp} , reducing the contribution of phytoplankton, and therefore increasing the MAEs.

5 Discussion

We have used Bgc-Argo data to identify regions where existing b_{bp} -based C_{phyto} algorithms differ most in surface waters (<10m). Additionally, we have used a global ocean circulation model to assess the magnitude of the potential error in b_{bp} -based algorithms (given perfect knowledge of C_{phyto} to derive algorithm coefficients) and to understand the drivers of the b_{bp} signal in the ocean surface.

We show that: (i) there is a threshold of low b_{bp} where existing algorithms differ up to an order of magnitude. (ii) Regions that are below this threshold are some oligotrophic gyres and high latitudes in winter. Next, in an algorithm calibrated and applied to the Darwin model, we find that (iii) best-case biases in b_{bp} -based algorithms vary markedly across regions and season, ranging from 15% and up to 100%, with most regions having errors close to 20%. Finally, (iv) we show that the variability in the C_{phyto} - b_{bp} relationship is mainly driven by the varying contribution from non-algal particles (mostly

520 by detritus). In the real world, significant additional uncertainties to algorithms come
521 from the insufficient and non-comparable in-situ measurements of C_{phyto} . As such, our
522 estimates should be thought as best-case biases.

523 5.1 Targeting uncertain regions

524 We have identified regions where existing algorithms disagree or where b_{bp} -based
525 algorithms might have a poor performance. For example, current algorithms seem to dis-
526 agree in some oligotrophic regions where the b_{bp} signal is low, such as around Hawaii.
527 But according to the the global ecosystem model, b_{bp} -algorithms should perform fairly
528 well in this region. Targeting these “high disagreement but high potential” areas could
529 be a first step to reduce uncertainties between current algorithms, as this shows that the
530 uncertainties in existing algorithms are probably driven by other methodological pro-
531 cedures and assumptions not considered in the model (e.g. sensors and approximation
532 to obtain C_{phyto} from the field).

533 Winter-time in seasonal regions have several issues: In these regions, currently used
534 algorithms disagree and the model indicates that b_{bp} -based algorithms perform poorly.
535 Obtaining more observations in these regions is also difficult, due to their inaccessibil-
536 ity. However, Chl: C_{phyto} ratios can help constrain which algorithms perform better. For
537 example, when applying the existing algorithms to the Argo data, it can be seen that
538 the Martinez-Vicente et al. (2013) and Qiu et al. (2021) algorithms give negative C_{phyto}
539 values in winter of polar and sub-polar regions (Figure S6q,w,s,y), whereas the Graff et
540 al. (2015) algorithm gives suspiciously low Chl: C_{phyto} ratios in the Northern Polar and
541 sub-polar region (Figure S7e). In these regions, a Chl: C_{phyto} ratio is expected to be high
542 due to low light levels. Again, in this case the problem is driven by the differences in the
543 intercept, where they seem to be either too low (Martinez-Vicente et al., 2013; Qiu et
544 al., 2021) or too high (Graff et al., 2015).

545 Even if most algorithms disagree in regions where b_{bp} values are low, these regions
546 might represent large areas of the ocean (e.g. subtropical gyres). In the MITgcmBgc model,
547 20% to 40% of the global phytoplankton biomass (depending on the season) is in areas
548 where simulated b_{bp} is below the $b_{bp,crit}$ thresholds. Note that the MITgcmBgc model
549 underestimates b_{bp} in these regions (Figure 4), therefore the total area below this thresh-
550 old, and therefore the proportion of phytoplankton biomass, might be lower in the real
551 world. Nonetheless, these regions seem to have a considerable role in global C_{phyto} bud-
552 getts (and probably NPP budgets) and should not be disregarded.

553 5.2 Contribution of phytoplankton to b_{bp}

554 Phytoplankton contribution to the bulk b_{bp} may be larger than previous estimates
555 calculated with Mie theory (Stramski et al., 2001). Using Mie theory, it had been sug-
556 gested that the main contributors to the b_{bp} signal are detrital particles (mostly sub-micron
557 sized) and heterotrophic bacteria (Stramski et al., 2001). However, later studies that mea-
558 sured phytoplankton cross-sections from cultures showed that the cross section of phy-
559 toplankton were up to an order of magnitude larger than the ones estimated using Mie
560 theory (Vaillancourt et al., 2004; Whitmire et al., 2010). We parameterized our phy-
561 toplankton using backscattering cross sections from the latter studies and find that phy-
562 toplankton can contribute up to 80% to the bulk b_{bp} (e.g. during spring blooms). This
563 is in agreement with other studies that suggested that phytoplankton or particles larger
564 than 1 μm could have a significant contribution to the b_{bp} signal (Dall'Olmo et al., 2009;
565 Brewin et al., 2012; Organelli et al., 2018). Our sensitivity experiments suggest that these
566 assumptions are relatively important, and newer laboratory and theoretical studies to
567 more fully understand the role of plankton versus detrital particles in backscattering are
568 recommended.

569 **5.3 Effect of non-algal particles and Chl:C ratios on the Chl- b_{bp} rela-
570 tionship**

571 Chl- b_{bp} relationships are often used to understand the relation between C_{phyto} and
572 b_{bp} as there is far more Chl data than C_{phyto} . However, it is still somewhat unclear whether
573 non-algal particles or the difference in Chl:C ratios drive the shape of this relationship,
574 especially at low b_{bp} values (Behrenfeld et al., 2005; Barbeau et al., 2018). From the MIT-
575 gcmBgc model, it can be seen that the b_{bp} signal is insensitive to C_{phyto} or Chl at low
576 values within the upper 10 m of the surface ocean. This is due to the effect of non-algal
577 particles, which override the phytoplankton b_{bp} signal in oligotrophic regions (setting the
578 intercept of the regressions). These results are partly supported by a study that looked
579 at the drivers of the b_{bp} :Chl relationships using Argo floats (Barbeau et al., 2018). In
580 that study, they found that photoacclimation had practically no effect in the surface layer
581 of the north sub-polar gyre and the Southern Ocean, whereas photoacclimation seemed
582 to affect the b_{bp} :Chl ratio for the highest levels of light (>0.75 of normalized PAR) in the
583 subtropical gyres and for all PAR levels in the Mediterranean and Black seas (figure 7c
584 in Barbeau et al. (2018)). On the other hand, they did find an important effect of pho-
585 toacclimation on the b_{bp} :Chl signal when considering deeper layers or the whole mixed
586 layer. In our study, we have not looked at layers below 10 m and both the Mediterranean
587 and Black Seas are not well represented in this version of the MITgcmBgc model due
588 to the coarse resolution. Thus, photoacclimation might play an important role in regions/layers
589 that are not covered in our study. Still, for the regions covered, our finding regarding the
590 effects of non-algal particles are largely in agreement with the ones suggested by Barbeau
591 et al. (2018).

592 In Behrenfeld et al. (2005), the authors discuss the “bi-linear” trend in the linear
593 scale that they find within the b_{bp} -Chl relationship (i.e. low and high Chl concentrations
594 show different slopes in the linear scale). One of the potential explanations given for this
595 trend are differences in Chl:C ratios. However, we do not find such a clear “bi-linear”
596 trend (in the linear scale) in the Darwin model or in satellite remote sensing output when
597 using the GIOP algorithm with the MODIS-Aqua sensor (Figure S8, noting we used cli-
598 matological monthly data). We believe that the bi-linear trend in their study might be
599 driven by the algorithm used to estimate b_{bp} (Garver-Siegel-Maritorena, GSM, semi-analytical
600 algorithm, Maritorena et al., 2002). This algorithm has been shown to overestimate b_{bp}
601 at low values relative to Argo float data (Bisson et al., 2019), and might not be due to
602 effects of photoacclimation. Nonetheless, whether there is a bi-linear trend or not does
603 not make any difference for the assumptions in their study, and does not change the val-
604 ues of the parameters of their phytoplankton carbon biomass equation.

605 **5.4 Errors and uncertainties in b_{bp} -based algorithms**

606 The error we find due to the assumption of b_{bp} being a good proxy for phytoplank-
607 ton carbon biomass ranges between 20% and 45% in most regions. This error is of sim-
608 ilar magnitude compared to the errors driven by sensor uncertainties and uncertainties
609 related to the approaches to obtain b_{bp} or Chl. For instance, the backscattering and chloro-
610 phyll fluorescence sensors in the BGC-Argo floats have a median error close to 0.11%,
611 and most data showed relative errors lower than 10% (Barbeau et al., 2018). However,
612 errors related to the conversion from fluorescence to Chl increase, reaching up to $\pm 300\%$
613 (Roesler et al., 2017), and being reduced to $\pm 40\%$ if Chl is sampled locally (Bittig et al.,
614 2019). As for b_{bp} , uncertainties for BGC-Argo are close to 20% (Bittig et al., 2019), and
615 for satellite remote sensing, a bias (calculated as the median ratio of $b_{bp,sat}$ to $b_{bp,Argo}$)
616 ranges from 0.77 to 1.6 depending on the algorithm used (Bisson et al., 2019).

617 The largest source of error for any algorithm likely originates from the way that
618 phytoplankton carbon is derived from field samples or from the assumptions used to de-
619 rive the scaling factor (here Q) used to obtain C_{phyto} from a Chl- b_{bp} relationship. Cur-

620 recently a variety of methods are used between field studies (e.g. flow-cytometry and size-
621 spectrum assumptions, or using elemental analysis of carbon and assumption of Chl:C ratios).
622 Therefore, a standardized method to measure phytoplankton carbon from the field
623 is desirable.

624 Ideally, measurements should also specify whether mixotrophic plankton are included
625 or not, as these organisms have been shown to be more common than previously thought
626 (Stoecker et al., 2017). We identify two main issues that can arise regarding mixotrophs.
627 The first one is a methodological issue, where most methods for field observations of C_{phyto}
628 or Chl cannot distinguish mixotrophic contribution. Thus, mixotrophs are included when
629 using field data of Chl and probably of C_{phyto} . The second issue arises when using a Chl-
630 b_{bp} relationship to derive C_{phyto} . In this case, an extra scaling coefficient is needed to
631 obtain C_{phyto} (the Q factor in this study, see section 6 in the SI). The meaning of this
632 Q factor is loosely defined, but considering the units of this factors (mgC mgChl $^{-1}$) it
633 can also be considered as a community-averaged C:Chl ratio. Thus, when using a Chl-
634 b_{bp} relationship to derive C_{phyto} , whether C_{phyto} is the biomass of pure autotrophs or
635 of autotrophs and mixotrophs, will require different scaling factors Q , since mixotrophs
636 might have different C:Chl ratios compared to pure autotrophs.

637 Finally, other IOPs, such as the beam attenuation coefficient, have been shown to
638 be better proxies for C_{phyto} or POC than b_{bp} (Behrenfeld & Boss, 2003; Boss et al., 2015),
639 and can help reduce uncertainties (though note they also encompass both pure autotrophs
640 and mixotrophs). Transmissometers could be mounted on Argo-floats to obtain values
641 of the beam attenuation coefficient (Bernard et al., 2011), complementing estimations
642 derived using b_{bp} or helping develop new algorithms from satellites.

643 6 Conclusion

644 The scarcity of phytoplankton field data and the use of different methods and as-
645 sumptions to determine C_{phyto} in situ prevents us from being able to estimate uncertain-
646 ties in algorithms that aim to quantify phytoplankton carbon biomass. Here, we assessed
647 the performance of b_{bp} -based phytoplankton carbon algorithms and quantified their po-
648 tential uncertainties in the surface ocean (upper 10 m). We showed that existing algo-
649 rithms can differ by up to an order of magnitude at low b_{bp} -values. By using a global ocean
650 circulation model, we showed that b_{bp} -based algorithms have a global best-case mean ab-
651 solute error between 15-30%. The algorithm performance declines when using Chl in-
652 stead of C_{phyto} to calibrate the b_{bp} algorithm. Errors were largest when phytoplankton
653 had less impact on the backscattering than other particles (mainly detritus). These er-
654 ror estimates are made under the assumption that C_{phyto} is known, and therefore do not
655 include other sources of uncertainty. The largest source of uncertainty of any b_{bp} -based
656 algorithm derived from field data will likely be due to the sparsity of in-situ C_{phyto} and
657 also to the discrepancies in the methods used to measure this quantity. If these other
658 uncertainties are targeted and reduced, b_{bp} could potentially be a relatively good proxy
659 for C_{phyto} , with errors close to 20% in most regions (according to our model).

660 Overall, we have shown that a global ecological model can help quantify uncertain-
661 ties that are currently impossible to estimate from the available real world data. The re-
662 sults of this study advance our understanding of observation- and model-based optical
663 variability in the ocean and its connection to phytoplankton biomass and chlorophyll con-
664 centrations. This approach can help reconsider assumptions of some algorithms, and iden-
665 tify ocean conditions to sample that may best improve future algorithms. Continued work
666 in developing accurate remote sensing algorithms for marine ecosystems will improve our
667 ability to monitor marine ecosystems and their response to global change.

668 **7 Open Research**

669 Codes to run the model and generate figures, together with model outputs, are available
670 in Zenodo <https://doi.org/10.5281/zenodo.7576886>.

671 The BGC-Argo data were collected and made freely available by the International
672 Argo Program and the national programs that contribute to it (<https://argo.ucsd.edu>,
673 <https://www.ocean-ops.org>, <https://doi.org/10.17882/42182>). The Argo Program
674 is part of the Global Ocean Observing System. BGC-Argo float data was extracted us-
675 ing the BGC-Argo-Mat Matlab toolbox (Frenzel et al., 2021).

676 Satellite remote sensing data was extracted from NASA Goddard Space Flight Cen-
677 ter, Ocean Ecology Laboratory, Ocean Biology Processing Group; (2014): MODIS-Aqua
678 Ocean Color Data; NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean
679 Biology Processing Group. http://dx.doi.org/10.5067/AQUA/MODIS_OC.2014.0

680 **Acknowledgments**

681 We would like to thank I. Cetinić for constructive discussions, and the reviewers of this
682 study for their valuable feedback. This work builds on prior discussions with participants
683 of the Pools of Carbon in the Ocean (POCO) project led by S. Sathyendranath at Ply-
684 mouth Marine Laboratory and funded by the European Space Agency. We would also
685 like to thank D. Stramski for providing plankton IOPs data that was used to parame-
686 terize the former model configuration and part of the new version. This work was sup-
687 ported by multiple grants from the Simons Foundation: the postdoctoral fellowship in
688 Marine microbial ecology funded CSP (#722859) and GLB (#645921), and SD was funded
689 by the Simons Collaboration on Computational Biogeochemical Modeling of Marine Ecosys-
690 tems (CBIOMES, grant no. 549931). SD additionally acknowledges funding from NASA
691 (Grant 80NSSC22K0153).

692 **References**

693 Balch, W. M., Kilpatrick, K. A., Holligan, P., Harbour, D., & Fernandez, E. (1996).
694 The 1991 coccolithophore bloom in the central north atlantic. 2. relating optics
695 to coccolith concentration. *Limnology and Oceanography*, 41(8), 1684–1696.

696 Barbeau, M., Uitz, J., Bricaud, A., Organelli, E., Poteau, A., Schmechtig, C., ...
697 others (2018). Assessing the variability in the relationship between the par-
698 ticular backscattering coefficient and the chlorophyll a concentration from
699 a global biogeochemical-argo database. *Journal of Geophysical Research: Oceans*, 123(2), 1229–1250.

700 Behrenfeld, M. J., & Boss, E. (2003). The beam attenuation to chlorophyll ratio: an
701 optical index of phytoplankton physiology in the surface ocean? *Deep Sea Re-
702 search Part I: Oceanographic Research Papers*, 50(12), 1537–1549.

703 Behrenfeld, M. J., Boss, E., Siegel, D. A., & Shea, D. M. (2005). Carbon-based
704 ocean productivity and phytoplankton physiology from space. *Global biogeo-
705 chemical cycles*, 19(1).

706 Behrenfeld, M. J., Hu, Y., O’Malley, R. T., Boss, E. S., Hostetler, C. A., Siegel,
707 D. A., ... others (2017). Annual boom–bust cycles of polar phytoplankton
708 biomass revealed by space-based lidar. *Nature Geoscience*, 10(2), 118–122.

709 Bellacicco, M., Corne, M., Organelli, E., Brewin, R., Neukermans, G., Volpe, G.,
710 ... others (2019). Global variability of optical backscattering by non-algal
711 particles from a biogeochemical-argo data set. *Geophysical Research Letters*,
712 46(16), 9767–9776.

713 Bellacicco, M., Pitarch, J., Organelli, E., Martinez-Vicente, V., Volpe, G., &
714 Marullo, S. (2020). Improving the retrieval of carbon-based phytoplankton
715 biomass from satellite ocean colour observations. *Remote Sensing*, 12(21),
716 3640.

717 Bernard, S., Berthon, J., Bishop, J., Boss, E., Claustre, H., Coatanoan, C., ... Ul-
718 loa, O. (2011). Bio-optical sensors on argo floats. reports of the international
719 ocean-colour coordinating group.

720 Bishop, J. K., & Wood, T. (2008). Particulate matter chemistry and dynamics
721 in the twilight zone at vertigo aloha and k2 sites. *Deep Sea Research Part I: Oceanographic Research Papers*, 55(12), 1684–1706.

722 Bisson, K., Boss, E., Werdell, P., Ibrahim, A., & Behrenfeld, M. (2021). Particulate
723 backscattering in the global ocean: A comparison of independent assessments.
724 *Geophysical research letters*, 48(2), e2020GL090909.

725 Bisson, K., Boss, E., Werdell, P. J., Ibrahim, A., Frouin, R., & Behrenfeld, M.
726 (2021). Seasonal bias in global ocean color observations. *Applied optics*,
727 60(23), 6978–6988.

728 Bisson, K., Boss, E., Westberry, T., & Behrenfeld, M. (2019). Evaluating satellite
729 estimates of particulate backscatter in the global open ocean using autonomous
730 profiling floats. *Optics express*, 27(21), 30191–30203.

731 Bittig, H. C., Maurer, T. L., Plant, J. N., Schmechtig, C., Wong, A. P., Claustre, H.,
732 ... others (2019). A bgc-argo guide: Planning, deployment, data handling and
733 usage. *Frontiers in Marine Science*, 6, 502.

734 Boss, E., Guidi, L., Richardson, M. J., Stemmann, L., Gardner, W., Bishop, J. K.,
735 ... Sherrell, R. M. (2015). Optical techniques for remote and in-situ charac-
736 terization of particles pertinent to geotracers. *Progress in Oceanography*, 133,
737 43–54.

738 Brewin, R. J., Dall’Olmo, G., Sathyendranath, S., & Hardman-Mountford, N. J.
739 (2012). Particle backscattering as a function of chlorophyll and phytoplankton
740 size structure in the open-ocean. *Optics express*, 20(16), 17632–17652.

741 Britten, G. L., Padalino, C., Forget, G., & Follows, M. J. (2021). Seasonal pho-
742 toacclimation in the north pacific transition zone. *Global Biogeochemical Cy-
743 cles*, e2022GB007324.

744

746 Cheung, W. W., Reygondeau, G., & Frölicher, T. L. (2016). Large benefits to ma-
747 rine fisheries of meeting the 1.5 °C global warming target. *Science*, *354*(6319),
748 1591–1594.

749 Clayton, S., Dutkiewicz, S., Jahn, O., Hill, C., Heimbach, P., & Follows, M. J.
750 (2017). Biogeochemical versus ecological consequences of modeled ocean
751 physics. *Biogeosciences*, *14*(11), 2877–2889.

752 Dall'Olmo, G., Westberry, T., Behrenfeld, M., Boss, E., & Slade, W. (2009). Signifi-
753 cant contribution of large particles to optical backscattering in the open ocean.
754 *Biogeosciences*, *6*(6), 947–967.

755 Dutkiewicz, S., Cermen, P., Jahn, O., Follows, M. J., Hickman, A. E., Taniguchi,
756 D. A., & Ward, B. A. (2020). Dimensions of marine phytoplankton diversity.
757 *Biogeosciences*, *17*(3), 609–634.

758 Dutkiewicz, S., Hickman, A., Jahn, O., Gregg, W., Mouw, C., & Follows, M. (2015).
759 Capturing optically important constituents and properties in a marine biogeo-
760 chemical and ecosystem model. *Biogeosciences*, *12*(14), 4447–4481.

761 Dutkiewicz, S., Hickman, A. E., & Jahn, O. (2018). Modelling ocean-colour-derived
762 chlorophyll a. *Biogeosciences*, *15*(2), 613–630.

763 Frenzel, H., Sharp, J., Fassbender, A., Buzby, N., Plant, J., Maurer, T., ... Gray, A.
764 (2021). Bgc-argo-mat: A matlab toolbox for accessing and visualizing biogeo-
765 chemical argo data. *Zenodo*. doi: <https://doi.org/10.5281/zenodo.4971318>

766 Geider, R. J. (1987). Light and temperature dependence of the carbon to chloro-
767 phyll a ratio in microalgae and cyanobacteria: implications for physiology and
768 growth of phytoplankton. *New Phytologist*, 1–34.

769 Graff, J. R., Milligan, A. J., & Behrenfeld, M. J. (2012). The measurement of phy-
770 tooplankton biomass using flow-cytometric sorting and elemental analysis of
771 carbon. *Limnology and Oceanography: Methods*, *10*(11), 910–920.

772 Graff, J. R., Westberry, T. K., Milligan, A. J., Brown, M. B., Dall'Olmo, G., van
773 Dongen-Vogels, V., ... Behrenfeld, M. J. (2015). Analytical phytoplankton
774 carbon measurements spanning diverse ecosystems. *Deep Sea Research Part I:*
775 *Oceanographic Research Papers*, *102*, 16–25.

776 Gregg, W. W., & Casey, N. W. (2009). Skill assessment of a spectral ocean-
777 atmosphere radiative model. *Journal of Marine Systems*, *76*(1-2), 49–63.

778 Gupta, M., Williams, R. G., Lauderdale, J. M., Jahn, O., Hill, C., Dutkiewicz, S., &
779 Follows, M. J. (2022). A nutrient relay sustains subtropical ocean productivity.
780 *Proceedings of the National Academy of Sciences*, *119*(41), e2206504119.

781 Loisel, H., Nicolas, J.-M., Sciandra, A., Stramski, D., & Poteau, A. (2006). Spec-
782 tral dependency of optical backscattering by marine particles from satellite
783 remote sensing of the global ocean. *Journal of Geophysical Research: Oceans*,
784 *111*(C9).

785 Longhurst, A. R. (2010). *Ecological geography of the sea*. Elsevier.

786 MacNeil, M. A., Graham, N. A., Cinner, J. E., Wilson, S. K., Williams, I. D.,
787 Maina, J., ... others (2015). Recovery potential of the world's coral reef
788 fishes. *Nature*, *520*(7547), 341–344.

789 Maritorena, S., Siegel, D. A., & Peterson, A. R. (2002). Optimization of a semian-
790 alytical ocean color model for global-scale applications. *Applied optics*, *41*(15),
791 2705–2714.

792 Marshall, J., Adcroft, A., Hill, C., Perelman, L., & Heisey, C. (1997). A finite-
793 volume, incompressible navier stokes model for studies of the ocean on parallel
794 computers. *Journal of Geophysical Research: Oceans*, *102*(C3), 5753–5766.

795 Martinez-Vicente, V., Dall'Olmo, G., Tarhan, G., Boss, E., & Sathyendranath, S.
796 (2013). Optical backscattering is correlated with phytoplankton carbon across
797 the atlantic ocean. *Geophysical Research Letters*, *40*(6), 1154–1158.

798 McKinna, L. I., Cetinić, I., & Werdell, P. J. (2021). Development and validation
799 of an empirical ocean color algorithm with uncertainties: A case study with
800 the particulate backscattering coefficient. *Journal of Geophysical Research:*

801 *Oceans*, 126(5), e2021JC017231.

802 Moore, T. S., Campbell, J. W., & Dowell, M. D. (2009). A class-based approach
803 to characterizing and mapping the uncertainty of the modis ocean chlorophyll
804 product. *Remote Sensing of Environment*, 113(11), 2424–2430.

805 Morel, A., Gentili, B., Claustre, H., Babin, M., Bricaud, A., Ras, J., & Tieche, F.
806 (2007). Optical properties of the “clearest” natural waters. *Limnology and*
807 *oceanography*, 52(1), 217–229.

808 Organelli, E., Dall’Olmo, G., Brewin, R. J., Tarran, G. A., Boss, E., & Bricaud, A.
809 (2018). The open-ocean missing backscattering is in the structural complexity
810 of particles. *Nature Communications*, 9(1), 1–11.

811 Qiu, G., Xing, X., Boss, E., Yan, X.-H., Ren, R., Xiao, W., & Wang, H. (2021).
812 Relationships between optical backscattering, particulate organic carbon, and
813 phytoplankton carbon in the oligotrophic south china sea basin. *Optics Express*,
814 29(10), 15159–15176.

815 Roesler, C., Uitz, J., Claustre, H., Boss, E., Xing, X., Organelli, E., ... others
816 (2017). Recommendations for obtaining unbiased chlorophyll estimates from
817 in situ chlorophyll fluorometers: A global analysis of wet labs eco sensors.
818 *Limnology and Oceanography: Methods*, 15(6), 572–585.

819 Schmechtig, C., Poteau, A., Claustre, H., D’Ortenzio, F., Dall’Olmo, G., & Boss, E.
820 (2018). Processing bgc-argo particle backscattering at the dac level. version
821 1.4, 07 march 2018.

822 Seegers, B. N., Stumpf, R. P., Schaeffer, B. A., Loftin, K. A., & Werdell, P. J.
823 (2018). Performance metrics for the assessment of satellite data products:
824 an ocean color case study. *Optics express*, 26(6), 7404–7422.

825 Siegel, D., Buesseler, K., Doney, S. C., Sailley, S., Behrenfeld, M. J., & Boyd, P.
826 (2014). Global assessment of ocean carbon export by combining satellite obser-
827 vations and food-web models. *Global Biogeochemical Cycles*, 28(3), 181–196.

828 Silsbe, G. M., Behrenfeld, M. J., Halsey, K. H., Milligan, A. J., & Westberry, T. K.
829 (2016). The cafe model: A net production model for global ocean phytoplank-
830 ton. *Global Biogeochemical Cycles*, 30(12), 1756–1777.

831 Sprules, W. G., & Barth, L. E. (2016). Surfing the biomass size spectrum: some re-
832 marks on history, theory, and application. *Canadian Journal of Fisheries and*
833 *Aquatic Sciences*, 73(4), 477–495.

834 Stoecker, D. K., Hansen, P. J., Caron, D. A., & Mitra, A. (2017). Mixotrophy in the
835 marine plankton. *Annu. Rev. Mar. Sci.*, 9(1), 311–335.

836 Stramski, D., Boss, E., Bogucki, D., & Voss, K. J. (2004). The role of seawater con-
837 stituents in light backscattering in the ocean. *Progress in Oceanography*, 61(1),
838 27–56.

839 Stramski, D., Bricaud, A., & Morel, A. (2001). Modeling the inherent optical
840 properties of the ocean based on the detailed composition of the planktonic
841 community. *Applied Optics*, 40(18), 2929–2945.

842 Stramski, D., Reynolds, R. A., Kahru, M., & Mitchell, B. G. (1999). Estimation of
843 particulate organic carbon in the ocean from satellite remote sensing. *Science*,
844 285(5425), 239–242.

845 Terrats, L., Claustre, H., Cornec, M., Mangin, A., & Neukermans, G. (2020). Detec-
846 tion of coccolithophore blooms with biogeochemical-argo floats. *Geophysical re-*
847 *search letters*, 47(23), e2020GL090559.

848 Vaillancourt, R. D., Brown, C. W., Guillard, R. R., & Balch, W. M. (2004). Light
849 backscattering properties of marine phytoplankton: relationships to cell size,
850 chemical composition and taxonomy. *Journal of plankton research*, 26(2),
851 191–212.

852 Voss, K. J., Balch, W. M., & Kilpatrick, K. A. (1998). Scattering and attenuation
853 properties of *emilia* *huxleyi* cells and their detached coccoliths. *Limnology*
854 *and oceanography*, 43(5), 870–876.

855 Werdell, P. J., Franz, B. A., Bailey, S. W., Feldman, G. C., Boss, E., Brando, V. E.,

... others (2013). Generalized ocean color inversion model for retrieving marine inherent optical properties. *Applied optics*, 52(10), 2019–2037.

Westberry, T., Behrenfeld, M., Siegel, D., & Boss, E. (2008). Carbon-based primary productivity modeling with vertically resolved photoacclimation. *Global Biogeochemical Cycles*, 22(2).

Whitmire, A. L., Pegau, W. S., Karp-Boss, L., Boss, E., & Cowles, T. J. (2010). Spectral backscattering properties of marine phytoplankton cultures. *Optics Express*, 18(14), 15073–15093.

Wong, A., Keeley, R., Carval, T., et al. (2021). Argo quality control manual for ctd and trajectory data.

Xing, X., Briggs, N., Boss, E., & Claustre, H. (2018). Improved correction for non-photochemical quenching of in situ chlorophyll fluorescence based on a synchronous irradiance profile. *Optics express*, 26(19), 24734–24751.

Zhang, X., Hu, L., & He, M.-X. (2009). Scattering by pure seawater: Effect of salinity. *Optics express*, 17(7), 5698–5710.