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Abstract18

Despite phytoplankton contributing roughly half of the photosynthesis on earth and19

fueling marine food-webs, field measurements of phytoplankton biomass remain scarce.20

The particulate backscattering coefficient (bbp) has often been used as an optical proxy21

to estimate phytoplankton carbon biomass (Cphyto). However, total observed bbp is im-22

pacted by phytoplankton size, cell composition, and non-algal particles. The lack of phy-23

toplankton field data has prevented the quantification of uncertainties driven by these24

factors. Here, we first review and discuss existing bbp algorithms by applying them to25

bbp data from the BGC-Argo array in surface waters (<10m). We find a bbp threshold26

where estimated Cphyto differs by more than an order of magnitude. Next, we use a global27

ocean circulation model (the MITgcm Biogeochemical and Optical model) that simu-28

lates plankton dynamics and associated inherent optical properties to quantify and un-29

derstand uncertainties from bbp-based algorithms in surface waters. We do so by devel-30

oping and calibrating an algorithm to the model. Simulated error-estimations show that31

bbp-based algorithms overestimate/underestimate Cphyto between 5% and 100% in sur-32

face waters, depending on the location and time. This is achieved in the ideal scenario33

where Cphyto and bbp are known precisely. This is not the case for algorithms derived from34

observations, where the largest source of uncertainty is the scarcity of phytoplankton biomass35

data and related methodological inconsistencies. If these other uncertainties are reduced,36

the model shows that bbp could be a relatively good proxy for phytoplankton carbon biomass,37

with errors close to 20% in most regions.38

Plain Language Summary39

Phytoplankton contribute roughly half of the photosynthesis on earth and fuel fish-40

eries around the globe. Yet, few direct measurements of phytoplankton concentration41

are available. Frequently, concentrations of phytoplankton are instead estimated using42

the optical properties of water. Backscattering is one of these optical properties, repre-43

senting the light being scattered backwards. Previous studies have suggested that backscat-44

tering could be a good method to estimate phytoplankton concentration. However, other45

particles that are present in the ocean also contribute to backscattering. In this paper46

we examine how well backscattering can be used to estimate phytoplankton. To address47

this question, we use data from drifting instruments that are spread across the ocean and48

a computer model that simulates phytoplankton and backscattering over the global oceans.49

We find that by using backscattering, phytoplankton can be overestimated/underestimated50

on average by ∼20%. This error differs between regions, and can be larger than 100%51

at high latitudes. Computer simulations allowed us to quantify spatial and temporal vari-52

ability in backscattering signal composition, and thereby understand potential errors in53

inferring phytoplankton with backscattering, which could not have been done before due54

to the lack of phytoplankton data.55

1 Introduction56

Phytoplankton drive marine food-webs and play an important role in the global57

carbon cycle. Despite their importance in marine systems, few field measurements of phy-58

toplankton carbon biomass (Cphyto) exist due to difficulties in separating phytoplank-59

ton from the rest of the microbial community and other organic particles. To overcome60

this difficulty, phytoplankton carbon biomass is often estimated using optical proxies.61

One of these optical proxies is the particulate backscattering coefficient (bbp). The par-62

ticulate backscattering coefficient is an inherent optical property of particles, and rep-63

resents the light being scattered backwards. The most common way of estimating Cphyto64

using bbp is by setting a simple linear regression Cphyto = β0 + β1bbp(λ) (where β0 is65

the intercept, β1 the slope and λ the wavelength of light). For simplicity, we will use the66

terms “bbp-based algorithm” to refer to this type of linear regression. This kind of al-67
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gorithm is often used by the marine ecological and biogeochemical communities to un-68

derstand phytoplankton dynamics (e.g. Behrenfeld et al., 2017; Britten et al., 2021), fish69

dynamics (e.g. MacNeil et al., 2015; Cheung et al., 2016), estimate carbon export (Siegel70

et al., 2014) or estimate net primary production (such as in the Carbon-based Produc-71

tion Model (CbPM) or The Carbon, Absorption, and Fluorescence Euphotic-resolving72

(CAFE) net primary production model, Westberry et al., 2008; Silsbe et al., 2016). How-73

ever, the sparsity of direct phytoplankton field observations makes it difficult to deter-74

mine the potential uncertainties linked to using bbp as a proxy for Cphyto. In this study,75

we first review existing bbp-based algorithms and examine how they differ from each other.76

Next, we employ a global coupled optics/ecosystem model to quantify and understand77

uncertainties in bbp-based algorithms.78

Backscattering is not a property unique to phytoplankton: all particles in the ocean,79

such as heterotrophic bacteria, zooplankton, detritus, minerals and water molecules them-80

selves will scatter light (Stramski et al., 2001, 2004; Morel et al., 2007). Furthermore,81

bbp is affected by other factors, such as particle size and cell composition (Loisel et al.,82

2006; Organelli et al., 2018). Small cells are considerably more abundant than larger cells83

(Sprules & Barth, 2016), and therefore contribute more to the total backscattering than84

larger cells (Stramski et al., 2001). Organisms with inorganic cell walls, such as coccol-85

ithophores, have a high refractive index and scatter more light than naked cells (Voss86

et al., 1998). In particular, it has been shown that plated coccolithophores and coccol-87

iths (calcite scales detached from cells) are major contributors to bbp when blooming (Balch88

et al., 1996). The fact that so many factors affect measured backscattering leads us to89

question how good of a proxy bbp is for phytoplankton carbon.90

Current Cphyto bbp algorithms are derived by using chlorophyll-bbp relationships from91

either field samples or satellite remote sensing (Behrenfeld et al., 2005), or by using Cphyto-92

bbp relationships obtained from field samples (Martinez-Vicente et al., 2013; Graff et al.,93

2015; Qiu et al., 2021). In general, these algorithms are a simple linear regression be-94

tween these relationships, even though some more complex version have emerged in re-95

cent years (Bellacicco et al., 2019, 2020). These studies show a relatively good correla-96

tion between bbp and Cphyto, and Graff et al. (2015) also show that bbp has a higher co-97

efficient of determination (R2) with Cphyto than with chlorophyll (Chl) or any other en-98

vironmental variable, reinforcing the use of this optical property to estimate phytoplank-99

ton carbon biomass. However, a problem between these studies is that field samples of100

Cphyto are scarce and biased towards low latitudes, raising issues about their general ap-101

plicability. Furthermore, each study has used different methods and assumptions to es-102

timate Cphyto (see section 3), preventing direct comparison of phytoplankton carbon data103

and algorithms between studies, and increasing the uncertainties of the parameters from104

the Cphyto-bbp regression.105

There are therefore several levels of uncertainties in the relationship between bbp106

and Cphyto. Methodological uncertainties can emerge by the different sensors, methods107

and assumptions used to estimate Cphyto in the field. These uncertainties, together with108

sampling biases, result in differences across existing algorithms. Other uncertainties come109

simply from the assumption of using bbp as a proxy for Cphyto, which are difficult to val-110

idate due to the lack of Cphyto field data. This scarcity can be overcome by using Chl-111

bbp relationships, as done in Behrenfeld et al. (2005). However, by using Chl instead of112

Cphyto, a community-averaged Cphyto:Chl ratio is implicitly assumed to obtain Cphyto113

from the Chl-bbp relationship (see section 6 in the SI). This, together with an incomplete114

understanding of the drivers of the Chl-bbp relationship (Barbieux et al., 2018), prevent115

a reliable derivation of Cphyto. To date, despite the wide applications of these bbp-algorithms116

in the field, the drivers of the bbp-Cphyto relationship are not yet well understood, and117

potential uncertainties linked to the use of bbp as a proxy for Cphyto have not yet been118

quantified.119
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Here, we use Bgc-Argo float data, satellite remote sensing data, as well as a global120

ocean circulation model, to assess the potential of bbp as a proxy for phytoplankton car-121

bon biomass (Cphyto). First, we review existing Cphyto algorithms and apply them to BGC-122

Argo bbp data to identify the main differences between algorithm parameters and sources123

of uncertainties. Next, we use a global ocean ecosystem model (the MITgcm Biogeochem-124

istry and Optical model, referred from now on as MITgcmBgc) that accounts for plank-125

ton functional types and associated inherent optical properties to understand the drivers126

of the Cphyto-bbp and Chl-bbp relationships and quantify associated uncertainties under127

the ideal scenario where Cphyto is known everywhere and at all times. Here, bbp and Chl128

from the model are validated against Argo float data. This approach only looks at the129

uncertainties linked to the use of bbp as a proxy for Cphyto, and does not consider other130

methodological uncertainties or sampling biases. Nevertheless, the model provides new131

insights into the variability of Cphyto and bbp, both emergent properties of the model.132

2 Methods133

2.1 BGC-Argo data134

We used data from the Biogeochemical-Argo floats array (BGC-Argo, https://135

biogeochemical-argo.org/). BGC-argo floats provide biogeochemical data from the136

upper 2000 m of the ocean, surfacing around local noon. Sampling time-frequency varies137

between mission. We extracted the float data using the Bgc-Argo-Mat Matlab toolbox138

(Frenzel et al., 2021). We extracted quality controlled Chl and bbp data (flags ”good”139

or ”probably-good”, Wong et al., 2021) between 2011 and 2021 from the upper 10 m of140

the ocean (0.2 m resolution) to be comparable to satellite products. As our interest is141

open ocean, we removed the data that was in coastal regions as defined in Longhurst provinces142

(Figure S8 Longhurst, 2010). We end up with a total of 64902 data points (from 315 pro-143

files) that span several biomes of the global oceans, with a sampling bias towards the South-144

ern Ocean (see for example figure 3a).145

Chl was obtained as a processed data product from the BGC-Argo array, where146

Chl is derived from fluorescence. Since the ratio of fluorescence to Chl-a can vary due147

to several reasons (e.g. phytoplankton types, photoacclimation, non-photochemical quench-148

ing), the error can be large, potentially reaching ±300% (Roesler et al., 2017; Bittig et149

al., 2019), but can be reduced to a maximum ±40% by locally sampling Chl and obtain-150

ing ratios between chlorophyll fluorescence and Chl. The applied correction for non-photochemical151

quenching follows the method suggested in Terrats et al. (2020) (which is a variation from152

Xing et al., 2018) and can be found in https://www.euro-argo.eu/content/download/153

157287/file/D4.2 v1.0.pdf.154

Argo floats measure scattering at 700 nm over a range of angles in a small volume155

(<10 mL) of seawater. Backscattering is subsequently derived. Errors in the backscat-156

tering coefficient are at maximum 20% (Bittig et al., 2019). Afterwards, the backscat-157

tering coefficient is converted into particulate backscattering coefficient by removing the158

backscattering from seawater (temperature and salinity dependent, Zhang et al., 2009;159

Schmechtig et al., 2018). The final particulate backscattering values at 700 nm are pro-160

vided as a BGC-Argo product. The Argo-derived bbp may underestimate scattering by161

sufficiently motile zooplankton that can avoid the sensor or by large zooplankton that162

can cause spikes in the data (Bishop & Wood, 2008).163

2.2 Satellite remote sensing data164

We use the NASA L-3 (https://oceancolor.gsfc.nasa.gov/l3/) bbp(443) and165

Chl data from the MODIS-Aqua sensor. The near-surface chorophyll-a concentration al-166

gorithm uses an empirical relationship derived from in situ measurements of chl-a and167

blue-to-green band ratios of in situ remote sensing reflectances (Rrs). The average Chl168
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error relative to field data ranges between 16% and 68% in open ocean waters (optical169

water types 1 to 5, Moore et al., 2009). Particulate backscattering output is estimated170

using the Generalized Inherent Optical Properties model (GIOP) (Werdell et al., 2013),171

with a median percent error of 24% relative to Argo float data (Bisson, Boss, Werdell,172

Ibrahim, & Behrenfeld, 2021). We used climatological monthly mean outputs with a 4 km173

resolution.174

2.3 The MITgcm Biogeochemical and Optical model175

The MITgcm Biogeochemical and Optical model (MITgcmBgc) is a global ocean176

circulation model that simulates plankton functional types. The model has several con-177

figurations (see section 1 in the SI), and for this study, inherent optical properties of sea-178

water and particles are also included (Dutkiewicz et al., 2015, 2020). The ecosystem com-179

ponent is embedded into a 1◦×1◦ physical global circulation model (the MITgcm, Mar-180

shall et al., 1997) that simulates ocean circulation and mixing, and has been constrained181

by observations. The model resolves several dissolved and particulate carbon pools (e.g. plank-182

ton, detritus, dissolved organic matter, dissolved inorganic carbon) and several nutrients183

within these pools (nitrogen, phosphorus, silica, iron). Here we briefly describe pertinent184

components of the the ecological model, the most recent optical implementation, and pa-185

rameterization of backscattering. We describe the version of the Darwin model model186

used in this study in section 1 of the SI, and a more in-depth description of equations187

and optics can be found in (Dutkiewicz et al., 2015). Here, the model accounts for sev-188

eral plankton functional types: pico-phytoplankton (Prochlorococcus, Synechococcus and189

pico-eukaryotes), coccolithophores, diatoms, mixotrophs, diazotrophs, zooplankton and190

heterotrophic bacteria (Figure S1). Each functional type encompasses several cell sizes191

(Figures 1 and S1). Size affects physiological rates and predator-prey interactions, where192

we assume that larger organisms eat smaller ones following a fixed predator-prey size ra-193

tio (see Dutkiewicz et al., 2020). Community composition in the model emerges from194

environmental conditions and interactions between organisms (competition and preda-195

tion).196

2.3.1 Optics in the MITgcmBgc model197

Spectral optical properties of water and biology are included in the model (Dutkiewicz198

et al., 2015, 2018). The model includes a radiative transfer component based on the Ocean–Atmosphere199

Spectral Irradiance Model (OASIM, Gregg & Casey, 2009), and more fully described200

in Dutkiewicz et al. (2015). Each type of particle in the water column is represented in201

the model with its own carbon-specific or Chl-specific absorption, scattering and backscat-202

tering. Integrated effects of these optical properties affect the light field available for phy-203

toplankton. As in earlier versions of the model, each phytoplankton functional type and204

detritus has a specific spectra for absorption and scattering as suggested by observations,205

and scaled relative to cell size (Dutkiewicz et al., 2015, 2020). New in this latest version,206

we explicitly include scattering by zooplankton and scattering and absorption by het-207

erotrophic bacteria. Thus, all particles in the model have absorption, scattering and backscat-208

tering cross sections associated with them (see figure 1 for backscattering, sections 2-5209

in the SI for details on scattering and backscattering, and Dutkiewicz et al. (2015) for210

absorption).211

Here, the total backscattering (bb, in m−1) is simulated as the sum of the backscat-212

tering from water (bbw, in m−1) and the backscattering by particles (bbp, in m−1). The213

particulate backscattering is the sum of the product between the backscattering cross-214

section (σbb, in m2 mgC−1) and the total carbon biomass (C, mgC m−3) of each detri-215

tal pool or plankton population i (of a total of Np populations). Thus, the total partic-216
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ulate backscattering in the water column is:217

bbp = σbb,det(Cdet + Crdet) +

Np∑
i=1

σbb,plk,iCplk,i (1)

where σbb,plk,i and σbb,det are the backscattering cross sections of phytoplankton and de-218

tritus respectively (in m2 mgC−1), and Cplk,i, Cdet and Crdet are the total biomass of219

each plankton group i, labile detritus and refractory detritus in the system respectively220

(all in mgC m−3).221

Backscattering cross section values were obtained from the literature. For most phy-222

toplankton groups, we use the size-based relation from Vaillancourt et al. (2004) and in-223

troduce a scaling factor to differentiate between functional groups. This scaling factor224

is based on an informed method (see sections 3 and 4 in the SI) to accommodate the species225

differences by taking backscattering spectra from representative species in culture. Lit-226

tle data is available for zooplankton backscattering, so we assume that they backscat-227

ter the same or less than other similar sized unicellular eukaryotes. This assumption is228

reasonable for unicellular nano-sized zooplankton, which, following a negative size-spectrum229

slope, will dominate in terms of abundance relative to larger zooplankton, and therefore230

will also typically dominate the bbp signal by zooplankton. All the literature sources and231

derivation of backscattering parameters can be found in the SI.232

There are two detrital pools in the Darwin model: an active labile pool and a re-233

fractory background pool. The former is important in cycling of carbon and other el-234

ements, the latter is introduced in this model for its impact on optics and is crudely pa-235

rameterized as constant across the globe. There is a high level of uncertainty in bbp from236

detritus given the difficulties in both estimating backscattering cross sections of a diverse237

pool and the parameters needed to convert bulk detrital concentrations (the model vari-238

able) to number of particles (needed for the optical impact of this pool). We optimize239

these uncertain parameters so that model bulk bbp best matches the BGC-Argo float data240

(a detailed explanation of this process can be found in section 4 of the SI). We define241

a constant q that combines the conversion from detrital carbon concentration to parti-242

cle numbers via the size spectrum and particle carbon density assumptions. This com-243

bined parameter q is optimized. Given the level of uncertainty, we perform a sensitiv-244

ity analysis of this and other parameters (section 2.4).245

The model does not resolve the optical properties of minerals. Minerals can be a246

major contributors to the bbp signal (Stramski et al., 2001, 2004). However, our model247

focuses on the open ocean where the concentration of minerals might be low relative to248

other optically important constituents. We also implicitly account for particulate inor-249

ganic carbon in that we consider a higher backscattering cross-section for coccolithophores250

(Voss et al., 1998). We do not account for detached coccoliths though. Therefore, the251

Darwin model likely overestimates somewhat the dependence of bb on phytoplankton.252

Thus the error between Cphyto derived using bbp in the model is likely a lower bound on253

the error likely found in the real ocean. The model does, however, allow us to investi-254

gate the magnitude, variability and sources of the errors.255

2.3.2 bbp-based Cphyto algorithm in the MITgcmBgc model256

Following the procedure used for real ocean algorithms (e.g. Behrenfeld et al., 2005;257

Graff et al., 2015), we calculate model-specific coefficients for a bbp-based algorithm for258

estimating phytoplankton carbon. The coefficients are found by fitting a linear regres-259

sion on the linear scale between Cphyto and bbp and between Chl and bbp. In contrast to260

the real world, we are in the ideal situation where we know Cphyto, Chl and bbp from the261

model at all locations; this removes any sampling bias effects and measurement errors.262
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Figure 1. Backscattering cross-sections (σbb, in m2 particle−1) for each plankton functional

type in the MITgcmBgc model against wavelength (a) and plankton body-size (b). The sizes

shown in panel (a) are for the smallest organism in each functional group.

The values of Cphyto and Chl range over several orders of magnitude. We there-263

fore use a robust regression method to obtain reliable regression parameters at the lin-264

ear scale. We apply a weighting function to down-weight large outliers in the sum of squares265

when fitting the regressions and then use Iteratively Reweighted Least Squares (IRLS)266

to estimate the model parameters. We use the default linear regression MATLAB func-267

tion with the “robust option” on, which applies a bisquare weighting function to the squared268

residuals (https://www.mathworks.com/help/stats/robust-regression-reduce-outlier269

-effects.html).270

2.3.3 Algorithm performance assessment271

We evaluate the performance of the algorithm derived from the MITgcmBgc model272

by comparing it against the known modelled phytoplankton carbon. As a measure of al-273

gorithm performance we look at the coefficient of determination (R2) and the mean ab-274

solute error (MAE, as suggested in Seegers et al., 2018; McKinna et al., 2021). The MAE275

is calculated at the log10 scale and afterwards back-transformed to the linear scale:276

R2 =


N∑
j=1

[
(log10(Mj)− µM )(log10(Oj)− µO)

]
√

N∑
j=1

(log10(Mj)− µM )2
N∑
j=1

(log10(Oj)− µO)2


2

, (2)

MAE = 10

{
1
N

N∑
j=1

| log10(Mj)−log10(Oj)|
}
, (3)

where N is the total number of observations, and Oj and Mj are the jth “observed” and277

derived data points (i.e “actual” Cphyto in the Darwin model and the Cphyto derived by278

the (model) bbp algorithm respectively). µ is the mean of the log-transformed data. The279

MAE gives a measure of the algorithm absolute bias, that is multiplicative on the back-280

transformed scale. For example, a MAE of 1.2 means that the algorithm tends to, on281

average, overestimate/underestimate Cphyto by 20% (in the linear scale).282
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2.4 Sensitivity analysis in the MITgcmBgc283

To estimate how parameter uncertainty in the model affect the results of our study,284

we performed a sensitivity analysis using a Monte Carlo procedure. The uncertain pa-285

rameters we chose to investigate are the intercept and the slope of the size-scaling re-286

lationship of backscattering cross sections for plankton (i.e. intercepts and slopes from287

figure 1b), and the parameter q that encompasses uncertainties for converting detrital288

concentration to number of particles and implicitly also for the values of the backscat-289

tering cross section (section 4 in the SI).290

Assuming a uniform probability distribution, we varied the intercepts of σbb,plk by291

±50% and the slope by ±25%. This combined range covers the values obtained in an-292

other study that measured σbb for phytoplankton (Whitmire et al., 2010). Given the large293

uncertainties involved, we varied the parameter q over an order of magnitude. We sam-294

pled the input space of these parameters using the Latin Hypercube Sampling method.295

We performed 500 samples, each with a different value of each input parameter. The sam-296

ple input matrix was then propagated through the model. The propagation was done297

offline (i.e. the optics module alone was run on existing model fields), as running the en-298

tire model for 500 simulations is computationally unfeasible. The limitation of doing these299

experiments offline is that there is no feedback between the changes in the inherent op-300

tical properties, light trajectories and plankton dynamics, but this method does allows301

us to efficiently identify the most sensitive optical parameters and explore the sensitiv-302

ity of our results to these choices.303

3 Review and further discussion of existing Cphyto bbp-based algorithms304

Following development of approaches using backscatter to derive information on305

phytoplankton and particulate organic carbon (Stramski et al., 1999; Balch et al., 1996;306

Behrenfeld & Boss, 2003), the use of bbp as a proxy for Cphyto was presented by Behrenfeld307

et al. (2005). In that study, the authors argued that even though bbp is likely more in-308

fluenced by particles outside the phytoplankton size domain (sub-micron particles), a re-309

lation between bbp and Cphyto can be anticipated, as long as the abundance of these par-310

ticles co-varies with phytoplankton biomass. Following this assumption, the authors de-311

rived an algorithm by subtracting to the bbp signal a background backscattering value312

(bbckg) corresponding to a constant stable heterotrophic and detrital components and313

then by multiplying them by a scalar of 13,000 mgC m−2. This scalar gave global Chl:Cphyto314

values close to 0.01 and a Cphyto-to-particulate organic carbon (POC) ratio close to 0.3315

(average values from the literature). The final equation obtained was Cphyto = 13000(bbp−316

bbckg). In section 6 of the SI we show that the same equation can be derived by isolat-317

ing Chl from the linear regression obtained from a bbp-Chl relationship and using an av-318

eraged CPhyto:Chl ratio to get CPhyto. The authors argued that Chl:Cphyto values ob-319

tained looked reasonable compared to laboratory observations. In later studies, the re-320

lationship between bbp and Cphyto was tested in the field (Martinez-Vicente et al., 2013;321

Graff et al., 2015; Qiu et al., 2021). These studies showed relatively good correlations322

between bbp and Cphyto, with R2 ranging between 0.53 to 0.7. Graff et al. (2015) also showed323

that bbp had a stronger relationship with Cphyto than Chl or any other environmental324

variable, reinforcing the use of this optical property to estimate phytoplankton carbon325

biomass.326

There are several limitations related to the studies discussed above. First, most field327

Cphyto and bbp data is biased towards low latitudes. Second, each study has used differ-328

ent methods and assumptions to estimate in situ Cphyto. For instance, Martinez-Vicente329

et al. (2013) used flow-cytometry and literature cell-mass conversions to obtain the biomass330

of pico-phytoplankton and some nano-phytoplankton. Qiu et al. (2021) used the same331

method to estimate pico-phytoplankton biomass and afterwards assumed a size spectrum332

slope to estimate the biomass for the rest of the phytoplankton community. Graff et al.333
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(2015) used flow cytometry to sort phytoplankton up to cell-sizes of 64 µm, and estimated334

the carbon content through elemental analysis (Graff et al., 2012). The use of these dif-335

ferent methods prevents direct comparison of phytoplankton carbon data and algorithms336

between studies, and increases the uncertainties of the parameters from the Cphyto-bbp337

regression.338

We plotted all the current algorithms for comparison (Figure 2). After wavelength339

corrections (see section 7 in the SI), bbp-based algorithms differ remarkably at low val-340

ues of bbp and Cphyto (Figure 2): they differ by a factor ∼3 at bbp(470)=10−3 m−1, and341

over an order of magnitude for bbp values lower 10−3 m−1. These discrepancies arise mainly342

due to differences in the intercepts used in each algorithm. The algorithm from Graff et343

al. (2015) has the highest intercept, and is the only one to have a positive intercept (β0 =344

0.59, table 1). All the other algorithms have negative intercepts that vary between -4.5345

and -22 gC m−3. On the other hand, algorithms tend to agree at larger value of bbp and346

have similar slopes (excluding the algorithm of Martinez-Vicente et al., 2013, which only347

included pico- and nano-phytoplankton).348

Using Argo float data, we explore the regions and times of year where bbp drops349

below a threshold where the algorithms diverge markedly (bbp,crit(443) = 0.001 m−1).350

The bbp drops below this threshold value in high latitude winters and in some oligotrophic351

gyres (Figure 3). For oligotrophic regions, most data is below bbp,crit, and about 30%352

of the observations fall below bbp values where the algorithms diverge by more than an353

order of magnitude (bbp,crit2 = 0.0007 m−1). Temperate regions in winter can have about354

60% of their observations below bbp,crit and 30% below bbp,crit2. Finally, polar regions355

in winter are always below these two thresholds. Note that the bbp,crit thresholds relate356

to the existing algorithms, where the differences below these values emerge out of method-357

ological issues, and probably not due to photoacclimation or differences in the propor-358

tion of phytoplankton (we address these later). These are therefore areas where estimated359

Cphyto differ significantly depending on the bbp algorithm chosen. More research is needed360

to constrain bbp values below bbp,crit.361

When following the same approach but for satellite remote sensing (using the MODIS-362

GIOP sensor and algorithm), most data tends to be above bbp,crit (Figure S6). For satellite-363

derived bbp, less than 20% of the data is below bbp,crit in oligotrophic gyres. This sug-364

gests that bbp derived from satellite (MODIS-GIOP) is overestimated relative to the bbp365

derived from Argo floats in regions with low bbp values. This result is in agreement with366

results found in other studies, where bbp derived from different satellite sensors and al-367

gorithms were compared with Argo floats data (Bisson et al., 2019; Bisson, Boss, Werdell,368

Ibrahim, & Behrenfeld, 2021; Bisson, Boss, Werdell, Ibrahim, Frouin, & Behrenfeld, 2021).369

Although the availability of in situ data restricts our ability to validate these Cphyto370

algorithms, we can begin to explore whether the algorithms perform well in certain re-371

gions or times of the year by applying the algorithms to the bbp Argo data and looking372

at ranges of Cphyto and the Chl:Cphyto (Figures S7 and S8). In this case, the algorithm373

from Martinez-Vicente et al. (2013) and Qiu et al. (2021) give negative Cphyto values in374

oligotrophic regions (Figure S7o and S7u). The algorithm from Graff et al. (2015) gives375

very low Chl:Cphyto ratios in winter in some Polar and sub-polar regions (Figure S8e).376

These low Chl:Cphyto ratios are characteristic of high light regions, indicating that the377

Graff et al. (2015) algorithm is probably overestimating Cphyto (possibly due to the high378

intercept value).379

The Cphyto values that these algorithms provide might differ depending on the method380

used to measure bbp. For instance, satellite remote sensing seems to overestimate bbp rel-381

ative to the BGC-Argo measurements (Figure S6). Therefore, if these algorithms were382

applied to the remote sensing bbp, many of the Cphyto values would not be below bbp,crit,383

or many of the regions that have negative Cphyto values would probably be positive. We384

also do not know how the equipment used to measure bbp in the mentioned field stud-385
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Figure 2. Existing algorithms. All algorithms have been converted to the same wavelength

(λ = 443) using equation 18 in the SI and a bbp spectral slope of -1. Shaded areas show the

range taken by the algorithms when assuming the ±0.5 standard deviation of the spectral slope.

Dotted line is the bb,crit threshold and dashed line the bb,crit2 threshold. The “Behrenfeld et al.

(2005) corrected” comes from the intercept correction suggested in Qiu et al. (2021). Values of

coefficients of these algorithms are listed in table 1.

ies compare with remote sensing or BGC-Argo. Therefore, reconciling approaches to mea-386

sure/estimate bbp could decrease uncertainties of Cphyto estimates.387

4 Exploring algorithm uncertainty using the MITgcmBgc model388

We first compare the bbp and Chl outputs from the global ecosystem model (MIT-389

gcmBgc) model with the Argo float data (section 4.1). Afterwards, using the MITgcm-390

Bgc model output, we quantify the uncertainties of bbp-based algorithms (section 4.3),391

and explore the potential drivers of these uncertainties (section 4.4). Finally, we eval-392

uate the sensitivity and robustness of our results (section 4.5).393

4.1 MITgcmBgc model and Argo comparison394

We first compare Chl and bbp from the BGC-Argo and MITgcmBgc model output395

(Figure 4). Using Bgc-Argo as a reference, the Darwin model is better at simulating bbp396

(R2 = 0.67, MAE=1.45) than Chl (R2 = 0.49, MAE=2.65, Figure 4a,b). The model397

underestimates Chl by a factor 5 in tropical and some subtropical regions, but follows398

relatively well the trend in the rest of regions (Figure 4a). The underestimation of Chl399

in tropical and subtropical regions could be due to the model not representing photoac-400

climation correctly in these regions (we use Geider, 1987), or due to the coarse resolu-401

tion of the model, which does not capture sub-mesoscale dynamics that result in the in-402

put of nutrients in these less productive regions (see e.g. Clayton et al., 2017; Gupta et403

al., 2022). Regarding bbp, the Darwin model overestimates by less than a factor of 2 in404

temperate, sub-polar and polar regions, and slightly underestimates at low latitudes (Fig-405

ure 4b).406
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Figure 3. (a-d) location of BGC-Argo data (dots). Data points below the bb,crit threshold are

shown in blue dots. (e-k) cumulative distributions of Argo float bbp data by biomes in the North-

ern hemisphere (f-h) and southern hemisphere (i-k). Dotted line is bb,crit (where algorithms differ

by more than a factor of 3), dashed line is bb,crit2 (where algorithms differ by more than an order

of magnitude). Both thresholds in this figure have been wave-length corrected using equation 18

in the SI. Note that we only use surface data (<10 m), and that coastal areas have been excluded

(Figure S10) to be consistent with the output of the model, which does not represent well coastal

regions due to its coarse resolution (1◦ × 1◦).
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Table 1. Original algorithms from each study and slopes after wavelength correction to a λ =

470 following equations 18 and 19 in the SI.

Cphyto original slope if λ = 470

Existing algorithms:
Behrenfeld et al. (2005) 13000 bbp(440)− 4.5 13886
Behrenfeld et al. (2005) corrected* 13000 bbp(440)− 9.75 13886
Graff et al. (2015) 12128 bbp(470) + 0.59 12128
Martinez-Vicente et al. (2013) 30100 bbp(470)− 22.9 30100
Qiu et al. (2021) 16200 bbp(470)− 12 16200

Derived from the MITgcmBgc:
Using Cphyto-bbp** 18442 bbp(450)− 8.1 19262
Using Chl-bbp** 18191 bbp(450)− 8.4 18999
Using Cphyto-bbp (pure auto.)*** 13609 bbp(450)− 5.1 14214

*Assumes a correction suggested in Qiu et al. (2021).
**Cphyto and Chl are the sum of pure autotrophs and mixotrophs.
***Cphyto is only pure autotrophs (see figure S12).
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Figure 4. Comparison between the MITgcmBgc model and BGC-Argo surface (<10 m) Chl

(a) and bbp (b). Each marker is a monthly average for each biome where there was Argo float

data, and grey error bars are the standard deviations. First, bins from the MITgcmBgc were

matched to Argo float data-points using a nearest neighbour approach. Afterwards, the data was

averaged by month and by biomes, where each biome was defined by grouping Longhurst regions

(as seen in figure S10). R2 was estimated in the log scale, and MAE was estimated in the log

scale and back-transformed afterwards, as shown in equation 3. Dashed line is the 1:1 line.
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4.2 bbp-based algorithms obtained in the MITgcmBgc model407

Since the paucity of real ocean data has prevented a systematic estimation of how408

well bbp predicts Cphyto, we use the MITgcmBgc model to generate a Cphyto-bbp algorithm409

(i.e. a linear regression, Figure 5) and test it on the Cphyto from the model. Since cur-410

rent algorithms are generated either by using Cphyto or Chl, we generate two algorithms:411

one using a Cphyto-bbp relationship (Figure 5a) and another using a [Chl × Q]-bbp re-412

lationship, where Q is a scaling factor that gives reasonable Cphyto values (Figure 5b,413

the reasoning is similar to the one followed in Behrenfeld et al. (2005) and is described414

in section 6 of the SI). Each linear regression is fitted to all the surface Cphyto (<10 m),415

Chl and bbp output data of the global ecosystem model.416

Regression parameter values obtained from the model are shown in table 1. We ob-417

tain negative intercepts in all cases. Slope values tend to be higher than most algorithms418

when considering Cphyto and Chl to be the sum of pure autotrophs and mixotrophs, whereas419

the slope is lower and closer to the ones obtained in Behrenfeld et al. (2005) and Graff420

et al. (2015) when considering Cphyto to be the biomass of pure autotrophs alone (see421

also figure S12 in the SI). This could suggest that (in the model) the proportion of mixotrophs422

relative to pure autotrophs increases in more productive systems. Since mixotrophs con-423

tribute to Chl-a, carbon and NPP, from now on we will consider Cphyto as the biomass424

of both pure autotrophs and mixotrophs.425

4.3 Error-estimation of the bbp-based algorithms in the MITgcmBgc model426

We calibrated two bbp-based Cphyto algorithms to all the surface bins of the MIT-427

gcmBgc model (Figure 5). The first model uses Cphyto (Figure 5a), whereas the second428

model uses Q×Chl (Figure 5b), which is an equivalent to Cphyto following the discus-429

sion in section 6 of the SI. The regressions performed better when using a robust method430

rather than ordinary least squares regression method, where the root mean squared er-431

rors (RMSE) of the robust method were lower for both models (Figure 5). The spread432

was wider in the Q×Chl-bbp model, probably due to the use of an averaged community433

Cphyto:Chl ratio (Q, units [mgC mgChl−1]). Note that using this constant factor still al-434

lows obtaining variable Chl:C ratios derived from backscattering (Figure S13). In this435

study, we tried to use a scaling factor Q that gave values close to the one of Cphyto in436

the model. This values is however unknown in the real world, and variations in this pa-437

rameter can result in substantial overestimation/underestimations of Cphyto. Therefore,438

the overall performance of Cphyto algorithms that use a Chl-bbp regression might vary439

depending on the assumed scaling factor Q.440

Next, we compare month-to-month predicted Cphyto from the algorithm compared441

to the modeled Cphyto (Figure 6). This pair-wise comparison shows that the bbp-algorithm442

is able to capture the large scale Cphyto patterns, with R2 > 0.9 at the global scale (Fig-443

ure 6e-i). The global monthly MAE (eq. 3) ranges from ∼1.20 to 1.33 when using the444

algorithm calibrated with Cphyto, and from 1.26 to 1.38 when using the algorithm cal-445

ibrated with Chl. In other words, a bbp-based algorithm, when applied to the model, can446

overestimate or underestimate Cphyto by ∼20% to ∼30% on a global average (on the lin-447

ear scale).448

The algorithm performance however varies across regions and seasons (Figure 6 and449

7). In oligotrophic gyres, errors tend to be below 20% for the algorithm calibrated with450

Cphyto and below 40% for the algorithm calibrated with Chl (Figure 6 and 7g and h).451

At higher latitudes, algorithm performance varies seasonally and by ocean bassin. In the452

sub-polar North Atlantic and North Pacific the algorithm tends to underestimate Cphyto453

by more than 20% in most regions (Figure 6 and 7a-d). In the Southern Ocean, the al-454

gorithm tends to overestimate in winter >30 % and underestimate during the rest of the455

year (Figure 6 and Figure 7j). Overall, the algorithms tend to have errors close to 20 %.456
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Figure 5. Linear regression of the Cphyto-bbp relationship (a) and the Chl-Cphyto relationship

(b) in the MITgcmBgc model for surface waters (<10 m). Q = 110 and represents a community-

averaged C:Chl ratio as explained in section 6 of the SI. Black continuous line denotes the regres-

sion line using the robust regression method (see section 2.3.2), where β1,rob is the intercept and

β2,rob is the slope. Red dashed line shows the regression line using ordinary least squares (OLS).

Cphyto is the summed biomass of pure autotrophs and mixotrophs. Colors show normalized data

density. Each dot represents a 1 degree bin of the surface ocean in the model. Chl values below

0.001 mg m−3 have been removed, as this threshold is close to the detection threshold of the

BGC-Argo floats.

4.4 Drivers of the Cphyto − bbp relationship457

To understand what generates the errors and variability in the Cphyto algorithm,458

we look at the contribution that phytoplankton have on the bbp signal in the Darwin model459

(Figure 8). Phytoplankton is the main contributor to bbp ( 60%) in spring and summer460

of seasonal regions. At low latitudes, detrital particles tend to contribute to more than461

60% of the signal, whereas phytoplankton mostly account for the rest. Heterotrophic bac-462

teria has a low contribution, except in winter at high latitudes, where it can contribute463

up to 30% of the bbp signal. Zooplankton (nano- to meso-) had a negligible contribution464

to total bbp (not shown). Also, larger zooplankton could interact with the bbp signal in465

different ways that are not captured in the model (e.g. by generating spikes in the bbp466

signal due to their size, Bishop & Wood, 2008).467

When decomposing the different contributors of the Cphyto-bbp relationship (Fig-468

ure 9, left-side panels), it can be seen that log10(bbp) by phytoplankton alone shows a469

linear relationship with log10(Cphyto) (Figure 9a). When adding the effects of heterotrophic470

bacteria and zooplankton (Figure 9b), a lower bbp boundary starts to form. However, this471

lower boundary is much lower than the one set when the contribution by detrital par-472

ticles is added (Figure 9c). This boundary is higher than most of the bbp signal set by473

phytoplankton alone (Figure 9a v.s. 9c). This suggests that regions where bbp is at its474

lowest, the signal is mainly dominated by detrital particles.475

To understand the effects of phytoplankton functional groups and cell size, we com-476

pare a scenario where we assume all phytoplankton have the same backscattering cross-477

section (Figure 9, right-side panels). This analysis shows that differences in phytoplank-478

ton cross-sections do generate some extra variability in the bbp signal (compare Figure 9a479

and d). However, at low bbp values, most of the variability is driven by the contribution480

–14–

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.28.534581doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.28.534581
http://creativecommons.org/licenses/by-nc-nd/4.0/


manuscript submitted to Global Biogeochemical Cycles

A
lk

a.January

A
lk

b.April

A
lk

c.July

A
lk

d.October

1 10 100

C
phyto

 [mgC m-3]

e.  R2=0.95, MAE=1.29

f.  R2=0.92, MAE=1.22

g.  R2=0.91, MAE=1.33

h.  R2=0.90, MAE=1.28

-50 0 50

% Difference

i.  R2=0.94, MAE=1.33

j.  R2=0.91, MAE=1.26

k.  R2=0.90, MAE=1.38

l.  R2=0.89, MAE=1.31

-50 0 50

% Difference

Figure 6. Phytoplankton biomass concentration above 10 m (a-d), and percent difference

using the bbp-based algorithm calibrated with Cphyto (e-h) and calibrated with Chl× Q (i,l) from

figure 5a and b respectively. The shown R2 and MAE were estimated in log10 scale globally for

each month (MAE was backs-transformed to the linear scale as shown in equation 3). White

areas represent Chl< 0.001 mg m−3.
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Figure 7. Left-side panels: Seasonal dynamics of phytoplankton biomass (above 10 m) in

the MITgcmBgc model (black line), biomass estimated using the bbp-based algorithm using the

Cphytp-bbp relationship (grey lines) and using the Chl-bbp relationship from figure 5b (green

lines) for four regions. Right-side panels: percent difference between Cphyto estimated by the
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Figure 9. Relationships between Cphyto (mgC m−3, phytoplankton+mixotrophs) and bbp

(m−1) from different constituents in the default scenario (a-c) and a scenario where all plankton

have the same backscattering cross section (σbb = 10−5, d-f). Backscattering in each panel cor-

responds to: backscattering by phytoplankton and mixotrophs (a,d), backscattering by plankton

(i.e. phytoplankton, mixotrophs, zooplankton and heterotrophic bacteria) only (b,e), and total

particulate backscattering (c,f. i.e. all plankton and detritus). Color is the normalized data den-

sity.

of non-algal particles (i.e. detritus, heterotrophic bacteria and zooplankton, Figure 9d481

vs. e and f).482

4.5 Sensitivity analysis of the optical parameters in the Darwin model483

The sensitivity analysis shows that the mean absolute error of the Cphyto algorithm484

(MAE from the Cphyto-bbp relationship in figure 6f) can range between 15% and 35% (Fig-485

ure 10d). The parameter that has the strongest effect on this variation is the slope of486

the regression between the bbp cross-section with plankton cell size (Figure 10b, this pa-487

rameter corresponds to the slope in figure 1b).488

Two potential drivers of the MAE variation are the relative contribution of phy-489

toplankton to total bbp (Figure 10e), and the relative contribution of pico-phytoplankton490

to the bbp by all plankton (Figure 10f). The slope of the bbp cross-section with plank-491

ton cell size seems to affect these two emergent properties of the model. Lower MAEs492

occur at steeper slopes, which result in a higher contribution by phytoplankton to to-493

tal bbp (Figure 10e) and a lower contribution by pico-phytoplankton to the bbp by all494

plankton (Figure 10f). It is however unclear why there is a kink in MAE with the slope495

(Figure 10b).496

Larger values of the parameter q (parameter that encompasses all the uncertain-497

ties for the conversion from detritus biomass to number of particles and associated backscat-498

tering, section 4 in the SI) resulted in higher MAEs. Larger values of q can mean sev-499

eral things: (i) that σdetr is larger than the one assumed in the default model, (ii) that500
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Figure 10. (a-c) Values of MAE for the month of April (corresponding to figure 6f) when

randomly varying the three parameters in the sensitivity analysis: intercept and slope of the

σbb,phyto-cell size (corresponding tot he regression parameters in figure 1b), and the q parameter

that encompasses the uncertainties related to detritus (section 4 in SI). (e) Distribution of MAE

from figure 6g after the sensitivity analysis for the three parameters. (e) Variation of MAE with

the emergent globally averaged contribution of phytoplankton to total bbp, and with (f) globally

averaged contribution of pico-phytoplankton to bbp by all plankton (bb,plk). Each dot is a run

with a random set of parameters. Yellow stars show the values in the default run.

detrital particles are less dense than we have assumed (affecting our conversion of de-501

trital biomass to number of particles, and therefore resulting in a larger number of de-502

trital particles), and (iii) that the slope of the size spectrum for detritus is steeper than503

the Junge spectrum assumed. All these factors would increase the contribution of de-504

tritus to the overall bbp, reducing the contribution of phytoplankton, and therefore in-505

creasing the MAEs.506

5 Discussion507

We have used Bgc-Argo data to identify regions where existing bbp-based Cphyto508

algorithms differ most in surface waters (<10m). Additionally, we have used a global ocean509

circulation model to assess the magnitude of the potential error in bbp-based algorithms510

(given perfect knowledge of Cphyto to derive algorithm coefficients) and to understand511

the drivers of the bbp signal in the ocean surface.512

We show that: (i) there is a threshold of low bbp where existing algorithms differ513

up to an order of magnitude. (ii) Regions that are below this threshold are some olig-514

otrophic gyres and high latitudes in winter. Next, in an algorithm calibrated and applied515

to the Darwin model, we find that (iii) best-case biases in bbp-based algorithms vary markedly516

across regions and season, ranging from 15% and up to 100%, with most regions hav-517

ing errors close to 20%. Finally, (iv) we show that the variability in the Cphyto-bbp re-518

lationship is mainly driven by the varying contribution from non-algal particles (mostly519
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by detritus). In the real world, significant additional uncertainties to algorithms come520

from the insufficient and non-comparable in-situ measurements of Cphyto. As such, our521

estimates should be thought as best-case biases.522

5.1 Targeting uncertain regions523

We have identified regions where existing algorithms disagree or where bbp-based524

algorithms might have a poor performance. For example, current algorithms seem to dis-525

agree in some oligotrophic regions where the bbp signal is low, such as around Hawaii.526

But according to the the global ecosystem model, bbp-algorithms should perform fairly527

well in this region. Targeting these “high disagreement but high potential” areas could528

be a first step to reduce uncertainties between current algorithms, as this shows that the529

uncertainties in existing algorithms are probably driven by other methodological pro-530

cedures and assumptions not considered in the model (e.g. sensors and approximation531

to obtain Cphyto from the field).532

Winter-time in seasonal regions have several issues: In these regions, currently used533

algorithms disagree and the model indicates that bbp-based algorithms perform poorly.534

Obtaining more observations in these regions is also difficult, due to their inaccessibil-535

ity. However, Chl:Cphyto ratios can help constrain which algorithms perform better. For536

example, when applying the existing algorithms to the Argo data, it can be seen that537

the Martinez-Vicente et al. (2013) and Qiu et al. (2021) algorithms give negative Cphyto538

values in winter of polar and sub-polar regions (Figure S6q,w,s,y), whereas the Graff et539

al. (2015) algorithm gives suspiciously low Chl:Cphyto ratios in the Northern Polar and540

sub-polar region (Figure S7e). In these regions, a Chl:Cphyto ratio is expected to be high541

due to low light levels. Again, in this case the problem is driven by the differences in the542

intercept, where they seem to be either too low (Martinez-Vicente et al., 2013; Qiu et543

al., 2021) or too high (Graff et al., 2015).544

Even if most algorithms disagree in regions where bbp values are low, these regions545

might represent large areas of the ocean (e.g. subtropical gyres). In the MITgcmBgc model,546

20% to 40% of the global phytoplankton biomass (depending on the season) is in areas547

where simulated bbp is below the bbp,crit thresholds. Note that the MITgcmBgc model548

underestimates bbp in these regions (Figure 4), therefore the total area below this thresh-549

old, and therefore the proportion of phytoplankton biomass, might be lower in the real550

world. Nonetheless, these regions seem to have a considerable role in global Cphyto bud-551

gets (and probably NPP budgets) and should not be disregarded.552

5.2 Contribution of phytoplankton to bbp553

Phytoplankton contribution to the bulk bbp may be larger than previous estimates554

calculated with Mie theory (Stramski et al., 2001). Using Mie theory, it had been sug-555

gested that the main contributors to the bbp signal are detrital particles (mostly sub-micron556

sized) and heterotrophic bacteria (Stramski et al., 2001). However, later studies that mea-557

sured phytoplankton cross-sections from cultures showed that the cross section of phy-558

toplankton were up to an order of magnitude larger than the ones estimated using Mie559

theory (Vaillancourt et al., 2004; Whitmire et al., 2010). We parameterized our phyto-560

plankton using backscattering cross sections from the latter studies and find that phy-561

toplankton can contribute up to 80% to the bulk bbp (e.g. during spring blooms). This562

is in agreement with other studies that suggested that phytoplankton or particles larger563

than 1 µm could have a significant contribution to the bbp signal (Dall’Olmo et al., 2009;564

Brewin et al., 2012; Organelli et al., 2018). Our sensitivity experiments suggest that these565

assumptions are relatively important, and newer laboratory and theoretical studies to566

more fully understand the role of plankton versus detrital particles in backscattering are567

recommended.568
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5.3 Effect of non-algal particles and Chl:C ratios on the Chl-bbp rela-569

tionship570

Chl-bbp relationships are often used to understand the relation between Cphyto and571

bbp as there is far more Chl data than Cphyto. However, it is still somewhat unclear whether572

non-algal particles or the difference in Chl:C ratios drive the shape of this relationship,573

especially at low bbp values (Behrenfeld et al., 2005; Barbieux et al., 2018). From the MIT-574

gcmBgc model, it can be seen that the bbp signal is insensitive to Cphyto or Chl at low575

values within the upper 10 m of the surface ocean. This is due to the effect of non-algal576

particles, which override the phytoplankton bbp signal in oligotrophic regions (setting the577

intercept of the regressions). These results are partly supported by a study that looked578

at the drivers of the bbp:Chl relationships using Argo floats (Barbieux et al., 2018). In579

that study, they found that photoacclimation had practically no effect in the surface layer580

of the north sub-polar gyre and the Southern Ocean, whereas photoacclimation seemed581

to affect the bbp:chl ratio for the highest levels of light (>0.75 of normalized PAR) in the582

subtropical gyres and for all PAR levels in the Mediterranean and Black seas (figure 7c583

in Barbieux et al. (2018)). On the other hand, they did find an important effect of pho-584

toacclimation on the bbp:Chl signal when considering deeper layers or the whole mixed585

layer. In our study, we have not looked at layers below 10 m and both the Mediterranean586

and Black Seas are not well represented in this version of the MITgcmBgc model due587

to the coarse resolution. Thus, photoacclimation might play an important role in regions/layers588

that are not covered in our study. Still, for the regions covered, our finding regarding the589

effects of non-algal particles are largely in agreement with the ones suggested by Barbieux590

et al. (2018).591

In Behrenfeld et al. (2005), the authors discuss the “bi-linear” trend in the linear592

scale that they find within the bbp-Chl relationship (i.e. low and high Chl concentrations593

show different slopes in the linear scale). One of the potential explanations given for this594

trend are differences in Chl:C ratios. However, we do not find such a clear “bi-linear”595

trend (in the linear scale) in the Darwin model or in satellite remote sensing output when596

using the GIOP algorithm with the MODIS-Aqua sensor (Figure S8, noting we used cli-597

matological monthly data). We believe that the bi-linear trend in their study might be598

driven by the algorithm used to estimate bbp (Garver-Siegel-Maritorena, GSM, semi-analytical599

algorithm, Maritorena et al., 2002). This algorithm has been shown to overestimate bbp600

at low values relative to Argo float data (Bisson et al., 2019), and might not be due to601

effects of photoacclimation. Nonetheless, whether there is a bi-linear trend or not does602

not make any difference for the assumptions in their study, and does not change the val-603

ues of the parameters of their phytoplankton carbon biomass equation.604

5.4 Errors and uncertainties in bbp-based algorithms605

The error we find due to the assumption of bbp being a good proxy for phytoplank-606

ton carbon biomass ranges between 20% and 45% in most regions. This error is of sim-607

ilar magnitude compared to the errors driven by sensor uncertainties and uncertainties608

related to the approaches to obtain bbp or Chl. For instance, the backscattering and chloro-609

phyll fluorescence sensors in the BGC-Argo floats have a median error close to 0.11%,610

and most data showed relative errors lower than 10% (Barbieux et al., 2018). However,611

errors related to the conversion from fluorescence to Chl increase, reaching up to ±300%612

(Roesler et al., 2017), and being reduced to ±40% if Chl is sampled locally (Bittig et al.,613

2019). As for bbp, uncertainties for BGC-Argo are close to 20% (Bittig et al., 2019), and614

for satellite remote sensing, a bias (calculated as the median ratio of bbp,sat to bbp,Argo)615

ranges from 0.77 to 1.6 depending on the algorithm used (Bisson et al., 2019).616

The largest source of error for any algorithm likely originates from the way that617

phytoplankton carbon is derived from field samples or from the assumptions used to de-618

rive the scaling factor (here Q) used to obtain Cphyto from a Chl-bbp relationship. Cur-619
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rently a variety of methods are used between field studies (e.g. flow-cytometry and size-620

spectrum assumptions, or using elemental analysis of carbon and asusmption f Chl:C ra-621

tios). Therefore, a standardized method to measure phytoplankton carbon from the field622

is desirable.623

Ideally, measurements should also specify whether mixotrophic plankton are included624

or not, as these organisms have been shown to be more common than previously thought625

(Stoecker et al., 2017). We identify two main issues that can arise regarding mixotrophs.626

The first one is a methodological issue, where most methods for field observations of Cphyto627

or Chl cannot distinguish mixotrophic contribution. Thus, mixotrophs are included when628

using field data of Chl and probably of Cphyto. The second issue arises when using a Chl-629

bbp relationship to derive Cphyto. In this case, an extra scaling coefficient is needed to630

obtain Cphyto (the Q factor in this study, see section 6 in the SI). The meaning of this631

Q factor is loosely defined, but considering the units of this factors (mgC mgChl−1) it632

can also be considered as a community-averaged C:Chl ratio. Thus, when using a Chl-633

bbp relationship to derive Cphyto, whether Cphyto is the biomass of pure autotrophs or634

of autotrophs and mixotrophs, will require different scaling factors Q, since mixotrophs635

might have different C:Chl ratios compared to pure autotrophs.636

Finally, other IOPs, such as the beam attenuation coefficient, have been shown to637

be better proxies for Cphyto or POC than bbp (Behrenfeld & Boss, 2003; Boss et al., 2015),638

and can help reduce uncertainties (though note they also encompass both pure autotrophs639

and mixotrophs). Transmissometers could be mounted on Argo-floats to obtain values640

of the beam attenuation coefficient (Bernard et al., 2011), complementing estimations641

derived using bbp or helping develop new algorithms from satellites.642

6 Conclusion643

The scarcity of phytoplankton field data and the use of different methods and as-644

sumptions to determine Cphyto in situ prevents us from being able to estimate uncertain-645

ties in algorithms that aim to quantify phytoplankton carbon biomass. Here, we assessed646

the performance of bbp-based phytoplankton carbon algorithms and quantified their po-647

tential uncertainties in the surface ocean (upper 10 m). We showed that existing algo-648

rithms can differ by up to an order of magnitude at low bbp-values. By using a global ocean649

circulation model, we showed that bbp-based algorithms have a global best-case mean ab-650

solute error between 15-30%. The algorithm performance declines when using Chl in-651

stead of Cphyto to calibrate the bbp algorithm. Errors were largest when phytoplankton652

had less impact on the backscattering than other particles (mainly detritus). These er-653

ror estimates are made under the assumption that Cphyto is known, and therefore do not654

include other sources of uncertainty. The largest source of uncertainty of any bbp-based655

algorithm derived from field data will likely be due to the sparsity of in-situ Cphyto and656

also to the discrepancies in the methods used to measure this quantity. If these other657

uncertainties are targeted and reduced, bbp could potentially be a relatively good proxy658

for Cphyto, with errors close to 20% in most regions (according to our model).659

Overall, we have shown that a global ecological model can help quantify uncertain-660

ties that are currently impossible to estimate from the available real world data. The re-661

sults of this study advance our understanding of observation- and model-based optical662

variability in the ocean and its connection to phytoplankton biomass and chlorophyll con-663

centrations. This approach can help reconsider assumptions of some algorithms, and iden-664

tify ocean conditions to sample that may best improve future algorithms. Continued work665

in developing accurate remote sensing algorithms for marine ecosystems will improve our666

ability to monitor marine ecosystems and their response to global change.667
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7 Open Research668

Codes to run the model and generate figures, together with model outputs, are avail-669

able in Zenodo https://doi.org/10.5281/zenodo.7576886.670

The BGC-Argo data were collected and made freely available by the International671

Argo Program and the national programs that contribute to it (https://argo.ucsd.edu,672

https://www.ocean-ops.org, https://doi.org/10.17882/42182). The Argo Program673

is part of the Global Ocean Observing System. BGC-Argo float data was extracted us-674

ing the BGC-Argo-Mat Matlab toolbox (Frenzel et al., 2021).675

Satellite remote sensing data was extracted from NASA Goddard Space Flight Cen-676

ter, Ocean Ecology Laboratory, Ocean Biology Processing Group; (2014): MODIS-Aqua677

Ocean Color Data; NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean678

Biology Processing Group. http://dx.doi.org/10.5067/AQUA/MODIS OC.2014.0679
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