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Key Points:

» Phytoplankton carbon by,-based algorithms can differ up to an order of magni-
tude at low by, values.

+ An algorithm fitted to a global model output shows biases ranging between 15%
and 40% in most regions.

¢ Most uncertainties are due to the relative contribution of phytoplankton to total
bup.
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Abstract

Despite phytoplankton contributing roughly half of the photosynthesis on earth and
fueling marine food-webs, field measurements of phytoplankton biomass remain scarce.
The particulate backscattering coefficient (by,) has often been used as an optical proxy
to estimate phytoplankton carbon biomass (Cppyto). However, total observed by, is im-
pacted by phytoplankton size, cell composition, and non-algal particles. The lack of phy-
toplankton field data has prevented the quantification of uncertainties driven by these
factors. Here, we first review and discuss existing by, algorithms by applying them to
by, data from the BGC-Argo array in surface waters (<10m). We find a by, threshold
where estimated Cppyto differs by more than an order of magnitude. Next, we use a global
ocean circulation model (the MITgem Biogeochemical and Optical model) that simu-
lates plankton dynamics and associated inherent optical properties to quantify and un-
derstand uncertainties from by,-based algorithms in surface waters. We do so by devel-
oping and calibrating an algorithm to the model. Simulated error-estimations show that
byp-based algorithms overestimate/underestimate Cppyio between 5% and 100% in sur-
face waters, depending on the location and time. This is achieved in the ideal scenario
where Cppyto and by, are known precisely. This is not the case for algorithms derived from
observations, where the largest source of uncertainty is the scarcity of phytoplankton biomass
data and related methodological inconsistencies. If these other uncertainties are reduced,
the model shows that by, could be a relatively good proxy for phytoplankton carbon biomass,
with errors close to 20% in most regions.

Plain Language Summary

Phytoplankton contribute roughly half of the photosynthesis on earth and fuel fish-
eries around the globe. Yet, few direct measurements of phytoplankton concentration
are available. Frequently, concentrations of phytoplankton are instead estimated using
the optical properties of water. Backscattering is one of these optical properties, repre-
senting the light being scattered backwards. Previous studies have suggested that backscat-
tering could be a good method to estimate phytoplankton concentration. However, other
particles that are present in the ocean also contribute to backscattering. In this paper
we examine how well backscattering can be used to estimate phytoplankton. To address
this question, we use data from drifting instruments that are spread across the ocean and
a computer model that simulates phytoplankton and backscattering over the global oceans.
We find that by using backscattering, phytoplankton can be overestimated /underestimated
on average by ~20%. This error differs between regions, and can be larger than 100%
at high latitudes. Computer simulations allowed us to quantify spatial and temporal vari-
ability in backscattering signal composition, and thereby understand potential errors in
inferring phytoplankton with backscattering, which could not have been done before due
to the lack of phytoplankton data.

1 Introduction

Phytoplankton drive marine food-webs and play an important role in the global
carbon cycle. Despite their importance in marine systems, few field measurements of phy-
toplankton carbon biomass (Cphyto) exist due to difficulties in separating phytoplank-
ton from the rest of the microbial community and other organic particles. To overcome
this difficulty, phytoplankton carbon biomass is often estimated using optical proxies.
One of these optical proxies is the particulate backscattering coefficient (byy). The par-
ticulate backscattering coefficient is an inherent optical property of particles, and rep-
resents the light being scattered backwards. The most common way of estimating Cppnyio
using by, is by setting a simple linear regression Cphyto = Bo + B1byp(A) (where Sy is
the intercept, §; the slope and A the wavelength of light). For simplicity, we will use the
terms “byy,-based algorithm” to refer to this type of linear regression. This kind of al-
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gorithm is often used by the marine ecological and biogeochemical communities to un-
derstand phytoplankton dynamics (e.g. Behrenfeld et al., 2017; Britten et al., 2021), fish
dynamics (e.g. MacNeil et al., 2015; Cheung et al., 2016), estimate carbon export (Siegel
et al., 2014) or estimate net primary production (such as in the Carbon-based Produc-
tion Model (CbPM) or The Carbon, Absorption, and Fluorescence Euphotic-resolving
(CAFE) net primary production model, Westberry et al., 2008; Silsbe et al., 2016). How-
ever, the sparsity of direct phytoplankton field observations makes it difficult to deter-
mine the potential uncertainties linked to using by, as a proxy for Cppyse. In this study,
we first review existing by,-based algorithms and examine how they differ from each other.
Next, we employ a global coupled optics/ecosystem model to quantify and understand
uncertainties in by,-based algorithms.

Backscattering is not a property unique to phytoplankton: all particles in the ocean,
such as heterotrophic bacteria, zooplankton, detritus, minerals and water molecules them-
selves will scatter light (Stramski et al., 2001, 2004; Morel et al., 2007). Furthermore,
by is affected by other factors, such as particle size and cell composition (Loisel et al.,
2006; Organelli et al., 2018). Small cells are considerably more abundant than larger cells
(Sprules & Barth, 2016), and therefore contribute more to the total backscattering than
larger cells (Stramski et al., 2001). Organisms with inorganic cell walls, such as coccol-
ithophores, have a high refractive index and scatter more light than naked cells (Voss
et al., 1998). In particular, it has been shown that plated coccolithophores and coccol-
iths (calcite scales detached from cells) are major contributors to by, when blooming (Balch
et al., 1996). The fact that so many factors affect measured backscattering leads us to
question how good of a proxy by, is for phytoplankton carbon.

Current Cppyto bip algorithms are derived by using chlorophyll-by, relationships from
either field samples or satellite remote sensing (Behrenfeld et al., 2005), or by using Cpryto-
byp relationships obtained from field samples (Martinez-Vicente et al., 2013; Graff et al.,
2015; Qiu et al., 2021). In general, these algorithms are a simple linear regression be-
tween these relationships, even though some more complex version have emerged in re-
cent years (Bellacicco et al., 2019, 2020). These studies show a relatively good correla-
tion between by, and Cpnyto, and Graff et al. (2015) also show that by, has a higher co-
efficient of determination (R?) with Cppyt, than with chlorophyll (Chl) or any other en-
vironmental variable, reinforcing the use of this optical property to estimate phytoplank-
ton carbon biomass. However, a problem between these studies is that field samples of
Cphyto are scarce and biased towards low latitudes, raising issues about their general ap-
plicability. Furthermore, each study has used different methods and assumptions to es-
timate Cpnyto (see section 3), preventing direct comparison of phytoplankton carbon data
and algorithms between studies, and increasing the uncertainties of the parameters from
the Cphyto-bpp regression.

There are therefore several levels of uncertainties in the relationship between by,
and Cphryto. Methodological uncertainties can emerge by the different sensors, methods
and assumptions used to estimate Cppyto in the field. These uncertainties, together with
sampling biases, result in differences across existing algorithms. Other uncertainties come
simply from the assumption of using by, as a proxy for Cppyi0, which are difficult to val-
idate due to the lack of Cppyt, field data. This scarcity can be overcome by using Chl-
by relationships, as done in Behrenfeld et al. (2005). However, by using Chl instead of
Cphyto, & community-averaged Cpnyio:Chl ratio is implicitly assumed to obtain Cppyto
from the Chi-by, relationship (see section 6 in the SI). This, together with an incomplete
understanding of the drivers of the Chl-by, relationship (Barbieux et al., 2018), prevent
a reliable derivation of Cppyt.. To date, despite the wide applications of these by,-algorithms
in the field, the drivers of the by,-Cphyto relationship are not yet well understood, and
potential uncertainties linked to the use of by, as a proxy for Cppyt, have not yet been
quantified.
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Here, we use Bge-Argo float data, satellite remote sensing data, as well as a global
ocean circulation model, to assess the potential of by, as a proxy for phytoplankton car-
bon biomass (Cphyto). First, we review existing Cppyio algorithms and apply them to BGC-
Argo by, data to identify the main differences between algorithm parameters and sources
of uncertainties. Next, we use a global ocean ecosystem model (the MITgcm Biogeochem-
istry and Optical model, referred from now on as MITgcmBgc) that accounts for plank-
ton functional types and associated inherent optical properties to understand the drivers
of the Cppyto-byp and Chl-by, relationships and quantify associated uncertainties under
the ideal scenario where Cppyt, is known everywhere and at all times. Here, by, and Chl
from the model are validated against Argo float data. This approach only looks at the
uncertainties linked to the use of by, as a proxy for Cpnyto, and does not consider other
methodological uncertainties or sampling biases. Nevertheless, the model provides new
insights into the variability of Cppyio and by, both emergent properties of the model.

2 Methods
2.1 BGC-Argo data

We used data from the Biogeochemical-Argo floats array (BGC-Argo, https://
biogeochemical-argo.org/). BGC-argo floats provide biogeochemical data from the
upper 2000 m of the ocean, surfacing around local noon. Sampling time-frequency varies
between mission. We extracted the float data using the Bge-Argo-Mat Matlab toolbox
(Frenzel et al., 2021). We extracted quality controlled Chl and by, data (flags ”good”
or ”"probably-good”, Wong et al., 2021) between 2011 and 2021 from the upper 10 m of
the ocean (0.2 m resolution) to be comparable to satellite products. As our interest is
open ocean, we removed the data that was in coastal regions as defined in Longhurst provinces
(Figure S8 Longhurst, 2010). We end up with a total of 64902 data points (from 315 pro-
files) that span several biomes of the global oceans, with a sampling bias towards the South-
ern Ocean (see for example figure 3a).

Chl was obtained as a processed data product from the BGC-Argo array, where
Chl is derived from fluorescence. Since the ratio of fluorescence to Chl-a can vary due
to several reasons (e.g. phytoplankton types, photoacclimation, non-photochemical quench-
ing), the error can be large, potentially reaching +300% (Roesler et al., 2017; Bittig et
al., 2019), but can be reduced to a maximum +40% by locally sampling Chl and obtain-
ing ratios between chlorophyll fluorescence and Chl. The applied correction for non-photochemical
quenching follows the method suggested in Terrats et al. (2020) (which is a variation from
Xing et al., 2018) and can be found in https://www.euro-argo.eu/content/download/
157287/file/D4.2_v1.0.pdf.

Argo floats measure scattering at 700 nm over a range of angles in a small volume
(<10 mL) of seawater. Backscattering is subsequently derived. Errors in the backscat-
tering coefficient are at maximum 20% (Bittig et al., 2019). Afterwards, the backscat-
tering coefficient is converted into particulate backscattering coefficient by removing the
backscattering from seawater (temperature and salinity dependent, Zhang et al., 2009;
Schmechtig et al., 2018). The final particulate backscattering values at 700 nm are pro-
vided as a BGC-Argo product. The Argo-derived by, may underestimate scattering by
sufficiently motile zooplankton that can avoid the sensor or by large zooplankton that
can cause spikes in the data (Bishop & Wood, 2008).

2.2 Satellite remote sensing data

We use the NASA L-3 (https://oceancolor.gsfc.nasa.gov/13/) by, (443) and
Chl data from the MODIS-Aqua sensor. The near-surface chorophyll-a concentration al-
gorithm uses an empirical relationship derived from in situ measurements of chl-a and
blue-to-green band ratios of in situ remote sensing reflectances (Rrs). The average Chl
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169 error relative to field data ranges between 16% and 68% in open ocean waters (optical

170 water types 1 to 5, Moore et al., 2009). Particulate backscattering output is estimated

n using the Generalized Inherent Optical Properties model (GIOP) (Werdell et al., 2013),
172 with a median percent error of 24% relative to Argo float data (Bisson, Boss, Werdell,

173 Ibrahim, & Behrenfeld, 2021). We used climatological monthly mean outputs with a 4 km
174 resolution.

175 2.3 The MITgcm Biogeochemical and Optical model

176 The MITgcm Biogeochemical and Optical model (MITgemBgc) is a global ocean

177 circulation model that simulates plankton functional types. The model has several con-

178 figurations (see section 1 in the SI), and for this study, inherent optical properties of sea-

179 water and particles are also included (Dutkiewicz et al., 2015, 2020). The ecosystem com-
180 ponent is embedded into a 1°x1° physical global circulation model (the MITgem, Mar-

181 shall et al., 1997) that simulates ocean circulation and mixing, and has been constrained

182 by observations. The model resolves several dissolved and particulate carbon pools (e.g. plank-
183 ton, detritus, dissolved organic matter, dissolved inorganic carbon) and several nutrients

184 within these pools (nitrogen, phosphorus, silica, iron). Here we briefly describe pertinent

185 components of the the ecological model, the most recent optical implementation, and pa-

186 rameterization of backscattering. We describe the version of the Darwin model model

187 used in this study in section 1 of the SI, and a more in-depth description of equations

188 and optics can be found in (Dutkiewicz et al., 2015). Here, the model accounts for sev-

189 eral plankton functional types: pico-phytoplankton (Prochlorococcus, Synechococcus and

190 pico-eukaryotes), coccolithophores, diatoms, mixotrophs, diazotrophs, zooplankton and

191 heterotrophic bacteria (Figure S1). Each functional type encompasses several cell sizes

192 (Figures 1 and S1). Size affects physiological rates and predator-prey interactions, where

103 we assume that larger organisms eat smaller ones following a fixed predator-prey size ra-

104 tio (see Dutkiewicz et al., 2020). Community composition in the model emerges from

105 environmental conditions and interactions between organisms (competition and preda-

196 tion).

107 2.3.1 Optics in the MITgemBgc model

108 Spectral optical properties of water and biology are included in the model (Dutkiewicz
199 et al., 2015, 2018). The model includes a radiative transfer component based on the Ocean—Atmosphere
200 Spectral Irradiance Model (OASIM, Gregg & Casey, 2009), and more fully described

201 in Dutkiewicz et al. (2015). Each type of particle in the water column is represented in

202 the model with its own carbon-specific or Chl-specific absorption, scattering and backscat-
203 tering. Integrated effects of these optical properties affect the light field available for phy-
204 toplankton. As in earlier versions of the model, each phytoplankton functional type and

208 detritus has a specific spectra for absorption and scattering as suggested by observations,

206 and scaled relative to cell size (Dutkiewicz et al., 2015, 2020). New in this latest version,

207 we explicitly include scattering by zooplankton and scattering and absorption by het-

208 erotrophic bacteria. Thus, all particles in the model have absorption, scattering and backscat-
200 tering cross sections associated with them (see figure 1 for backscattering, sections 2-5

210 in the SI for details on scattering and backscattering, and Dutkiewicz et al. (2015) for
211 absorption).

212 Here, the total backscattering (b, in m~1) is simulated as the sum of the backscat-
213 tering from water (bpy, in m~!) and the backscattering by particles (bpp, in m™'). The
214 particulate backscattering is the sum of the product between the backscattering cross-
215 section (opp, in m? mgC~1) and the total carbon biomass (C, mgC m~3) of each detri-

216 tal pool or plankton population i (of a total of IV, populations). Thus, the total partic-
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ulate backscattering in the water column is:

NP
bop = Opb,det (Caet + Craet) + Z Ovb,pik,i Cplk,i (1)

i=1

where opp pii,; and opp,qet are the backscattering cross sections of phytoplankton and de-
tritus respectively (in m? mgC~1), and Chik,i, Caer and Cyrqer are the total biomass of
each plankton group i, labile detritus and refractory detritus in the system respectively
(all in mgC m~3).

Backscattering cross section values were obtained from the literature. For most phy-
toplankton groups, we use the size-based relation from Vaillancourt et al. (2004) and in-
troduce a scaling factor to differentiate between functional groups. This scaling factor
is based on an informed method (see sections 3 and 4 in the SI) to accommodate the species
differences by taking backscattering spectra from representative species in culture. Lit-
tle data is available for zooplankton backscattering, so we assume that they backscat-
ter the same or less than other similar sized unicellular eukaryotes. This assumption is
reasonable for unicellular nano-sized zooplankton, which, following a negative size-spectrum
slope, will dominate in terms of abundance relative to larger zooplankton, and therefore
will also typically dominate the by, signal by zooplankton. All the literature sources and
derivation of backscattering parameters can be found in the SI.

There are two detrital pools in the Darwin model: an active labile pool and a re-
fractory background pool. The former is important in cycling of carbon and other el-
ements, the latter is introduced in this model for its impact on optics and is crudely pa-
rameterized as constant across the globe. There is a high level of uncertainty in by, from
detritus given the difficulties in both estimating backscattering cross sections of a diverse
pool and the parameters needed to convert bulk detrital concentrations (the model vari-
able) to number of particles (needed for the optical impact of this pool). We optimize
these uncertain parameters so that model bulk by, best matches the BGC-Argo float data
(a detailed explanation of this process can be found in section 4 of the SI). We define
a constant g that combines the conversion from detrital carbon concentration to parti-
cle numbers via the size spectrum and particle carbon density assumptions. This com-
bined parameter g is optimized. Given the level of uncertainty, we perform a sensitiv-
ity analysis of this and other parameters (section 2.4).

The model does not resolve the optical properties of minerals. Minerals can be a
major contributors to the by, signal (Stramski et al., 2001, 2004). However, our model
focuses on the open ocean where the concentration of minerals might be low relative to
other optically important constituents. We also implicitly account for particulate inor-
ganic carbon in that we consider a higher backscattering cross-section for coccolithophores
(Voss et al., 1998). We do not account for detached coccoliths though. Therefore, the
Darwin model likely overestimates somewhat the dependence of b, on phytoplankton.
Thus the error between Cipyt, derived using by, in the model is likely a lower bound on
the error likely found in the real ocean. The model does, however, allow us to investi-
gate the magnitude, variability and sources of the errors.

2.3.2 byp-based Cppyio algorithm in the MITgecmBgc model

Following the procedure used for real ocean algorithms (e.g. Behrenfeld et al., 2005;
Graff et al., 2015), we calculate model-specific coefficients for a by,-based algorithm for
estimating phytoplankton carbon. The coefficients are found by fitting a linear regres-
sion on the linear scale between Cppyio and by, and between Chl and byy,. In contrast to
the real world, we are in the ideal situation where we know Cppyt0, Chl and by, from the
model at all locations; this removes any sampling bias effects and measurement errors.
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Figure 1. Backscattering cross-sections (o, in m? particle™!) for each plankton functional
type in the MITgemBge model against wavelength (a) and plankton body-size (b). The sizes

shown in panel (a) are for the smallest organism in each functional group.

263 The values of Cppyo and Chl range over several orders of magnitude. We there-

264 fore use a robust regression method to obtain reliable regression parameters at the lin-

265 ear scale. We apply a weighting function to down-weight large outliers in the sum of squares
266 when fitting the regressions and then use Iteratively Reweighted Least Squares (IRLS)

267 to estimate the model parameters. We use the default linear regression MATLAB func-

268 tion with the “robust option” on, which applies a bisquare weighting function to the squared
269 residuals (https://www.mathworks.com/help/stats/robust-regression-reduce-outlier
270 -effects.html).

o 2.3.3 Algorithm performance assessment

o2 We evaluate the performance of the algorithm derived from the MITgcmBgc model

213 by comparing it against the known modelled phytoplankton carbon. As a measure of al-

274 gorithm performance we look at the coefficient of determination (R?) and the mean ab-

215 solute error (MAE, as suggested in Seegers et al., 2018; McKinna et al., 2021). The MAE

276 is calculated at the log;, scale and afterwards back-transformed to the linear scale:

M=

- [(1og10(M;) — ) om0 05) — o)

=
[}
Il
<.
—~
[\
~

(10810(0M5) = par)? 3- (10810(05) — 10)?

P
™=

{ Z [log1o(M;)—log10(O; )‘}

MAE =10 7= : 3)
277 where IV is the total number of observations, and O; and M; are the jth “observed” and
278 derived data points (i.e “actual” Cppyio in the Darwin model and the Cppyio derived by
279 the (model) by, algorithm respectively). p is the mean of the log-transformed data. The
280 MAE gives a measure of the algorithm absolute bias, that is multiplicative on the back-
281 transformed scale. For example, a MAE of 1.2 means that the algorithm tends to, on
282 average, overestimate/underestimate Cppyio by 20% (in the linear scale).
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2.4 Sensitivity analysis in the MITgcmBgc

To estimate how parameter uncertainty in the model affect the results of our study,
we performed a sensitivity analysis using a Monte Carlo procedure. The uncertain pa-
rameters we chose to investigate are the intercept and the slope of the size-scaling re-
lationship of backscattering cross sections for plankton (i.e. intercepts and slopes from
figure 1b), and the parameter ¢ that encompasses uncertainties for converting detrital
concentration to number of particles and implicitly also for the values of the backscat-
tering cross section (section 4 in the SI).

Assuming a uniform probability distribution, we varied the intercepts of opp pii by
+50% and the slope by +25%. This combined range covers the values obtained in an-
other study that measured oy, for phytoplankton (Whitmire et al., 2010). Given the large
uncertainties involved, we varied the parameter ¢ over an order of magnitude. We sam-
pled the input space of these parameters using the Latin Hypercube Sampling method.
We performed 500 samples, each with a different value of each input parameter. The sam-
ple input matrix was then propagated through the model. The propagation was done
offline (i.e. the optics module alone was run on existing model fields), as running the en-
tire model for 500 simulations is computationally unfeasible. The limitation of doing these
experiments offline is that there is no feedback between the changes in the inherent op-
tical properties, light trajectories and plankton dynamics, but this method does allows
us to efficiently identify the most sensitive optical parameters and explore the sensitiv-
ity of our results to these choices.

3 Review and further discussion of existing Cppyio bpp-based algorithms

Following development of approaches using backscatter to derive information on
phytoplankton and particulate organic carbon (Stramski et al., 1999; Balch et al., 1996;
Behrenfeld & Boss, 2003), the use of by, as a proxy for Cppyto was presented by Behrenfeld
et al. (2005). In that study, the authors argued that even though by, is likely more in-
fluenced by particles outside the phytoplankton size domain (sub-micron particles), a re-
lation between by, and Cppyto can be anticipated, as long as the abundance of these par-
ticles co-varies with phytoplankton biomass. Following this assumption, the authors de-
rived an algorithm by subtracting to the by, signal a background backscattering value
(boerg) corresponding to a constant stable heterotrophic and detrital components and
then by multiplying them by a scalar of 13,000 mgC m~2. This scalar gave global Chl:Cppyto
values close to 0.01 and a Cppyo-to-particulate organic carbon (POC) ratio close to 0.3
(average values from the literature). The final equation obtained was Cppyto = 13000(bpp—
bockg)- In section 6 of the SI we show that the same equation can be derived by isolat-
ing Chl from the linear regression obtained from a by,-Chl relationship and using an av-
eraged Cppyo:Chl ratio to get Cppyio. The authors argued that Chl:Cppy, values ob-
tained looked reasonable compared to laboratory observations. In later studies, the re-
lationship between by, and Cppyio Was tested in the field (Martinez-Vicente et al., 2013;
Graff et al., 2015; Qiu et al., 2021). These studies showed relatively good correlations
between by, and Cppyto, with R? ranging between 0.53 to 0.7. Graff et al. (2015) also showed
that by, had a stronger relationship with Cphyto than Chl or any other environmental
variable, reinforcing the use of this optical property to estimate phytoplankton carbon
biomass.

There are several limitations related to the studies discussed above. First, most field
Cphyto and by, data is biased towards low latitudes. Second, each study has used differ-
ent methods and assumptions to estimate in situ Cpnyio. For instance, Martinez-Vicente
et al. (2013) used flow-cytometry and literature cell-mass conversions to obtain the biomass
of pico-phytoplankton and some nano-phytoplankton. Qiu et al. (2021) used the same
method to estimate pico-phytoplankton biomass and afterwards assumed a size spectrum
slope to estimate the biomass for the rest of the phytoplankton community. Graff et al.
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334 (2015) used flow cytometry to sort phytoplankton up to cell-sizes of 64 pum, and estimated
335 the carbon content through elemental analysis (Graff et al., 2012). The use of these dif-

336 ferent methods prevents direct comparison of phytoplankton carbon data and algorithms

337 between studies, and increases the uncertainties of the parameters from the Cppyto-byp

338 regression.

339 We plotted all the current algorithms for comparison (Figure 2). After wavelength

340 corrections (see section 7 in the SI), by,-based algorithms differ remarkably at low val-

341 ues of by, and Cppyro (Figure 2): they differ by a factor ~3 at by, (470)=10"% m~!, and

342 over an order of magnitude for by, values lower 1073 m~!. These discrepancies arise mainly
343 due to differences in the intercepts used in each algorithm. The algorithm from Graff et

34 al. (2015) has the highest intercept, and is the only one to have a positive intercept (8y =
345 0.59, table 1). All the other algorithms have negative intercepts that vary between -4.5

346 and -22 gC m™3. On the other hand, algorithms tend to agree at larger value of by, and
347 have similar slopes (excluding the algorithm of Martinez-Vicente et al., 2013, which only
38 included pico- and nano-phytoplankton).

349 Using Argo float data, we explore the regions and times of year where by, drops

350 below a threshold where the algorithms diverge markedly (bpp,crit(443) = 0.001 m™1).

351 The by, drops below this threshold value in high latitude winters and in some oligotrophic
352 gyres (Figure 3). For oligotrophic regions, most data is below by cri¢, and about 30%

353 of the observations fall below by, values where the algorithms diverge by more than an

354 order of magnitude (byp, criz2 = 0.0007 m~1). Temperate regions in winter can have about
355 60% of their observations below by crir and 30% below by, cri2. Finally, polar regions

356 in winter are always below these two thresholds. Note that the by, o+ thresholds relate

357 to the existing algorithms, where the differences below these values emerge out of method-
358 ological issues, and probably not due to photoacclimation or differences in the propor-

359 tion of phytoplankton (we address these later). These are therefore areas where estimated
360 Cphyto differ significantly depending on the by, algorithm chosen. More research is needed
361 to constrain by, values below by crit-

362 When following the same approach but for satellite remote sensing (using the MODIS-

363 GIOP sensor and algorithm), most data tends to be above by crir (Figure S6). For satellite-
364 derived by, less than 20% of the data is below byp,crit in oligotrophic gyres. This sug-

365 gests that by, derived from satellite (MODIS-GIOP) is overestimated relative to the by,

366 derived from Argo floats in regions with low b, values. This result is in agreement with

367 results found in other studies, where by, derived from different satellite sensors and al-

368 gorithms were compared with Argo floats data (Bisson et al., 2019; Bisson, Boss, Werdell,
369 Ibrahim, & Behrenfeld, 2021; Bisson, Boss, Werdell, Ibrahim, Frouin, & Behrenfeld, 2021).

370 Although the availability of in situ data restricts our ability to validate these Cppyio
37 algorithms, we can begin to explore whether the algorithms perform well in certain re-
372 gions or times of the year by applying the algorithms to the by, Argo data and looking
373 at ranges of Cppyio and the Chl:Cppyio (Figures S7 and S8). In this case, the algorithm

374 from Martinez-Vicente et al. (2013) and Qiu et al. (2021) give negative Cppyso values in
375 oligotrophic regions (Figure S7o and S7u). The algorithm from Graff et al. (2015) gives
376 very low Chl:Cpryto ratios in winter in some Polar and sub-polar regions (Figure S8e).

377 These low Chl:Cppyo ratios are characteristic of high light regions, indicating that the
378 Graff et al. (2015) algorithm is probably overestimating Cppyio (possibly due to the high
379 intercept value).

380 The Cppyto values that these algorithms provide might differ depending on the method
381 used to measure by,. For instance, satellite remote sensing seems to overestimate by, rel-

382 ative to the BGC-Argo measurements (Figure S6). Therefore, if these algorithms were

383 applied to the remote sensing by,, many of the Cppyio values would not be below byp crit,

384 or many of the regions that have negative Cppy¢0 values would probably be positive. We

385 also do not know how the equipment used to measure by, in the mentioned field stud-
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Figure 2. Existing algorithms. All algorithms have been converted to the same wavelength

(A = 443) using equation 18 in the SI and a by, spectral slope of -1. Shaded areas show the
range taken by the algorithms when assuming the +0.5 standard deviation of the spectral slope.
Dotted line is the by crir threshold and dashed line the by, crit2 threshold. The “Behrenfeld et al.
(2005) corrected” comes from the intercept correction suggested in Qiu et al. (2021). Values of

coefficients of these algorithms are listed in table 1.

386 ies compare with remote sensing or BGC-Argo. Therefore, reconciling approaches to mea-
387 sure/estimate by, could decrease uncertainties of Cppy1o estimates.

388 4 Exploring algorithm uncertainty using the MITgcmBgc model

389 We first compare the by, and Chl outputs from the global ecosystem model (MIT-
390 gemBge) model with the Argo float data (section 4.1). Afterwards, using the MITgem-
301 Bgc model output, we quantify the uncertainties of by,-based algorithms (section 4.3),
392 and explore the potential drivers of these uncertainties (section 4.4). Finally, we eval-
303 uate the sensitivity and robustness of our results (section 4.5).

304 4.1 MITgcmBgc model and Argo comparison

305 We first compare Chl and b, from the BGC-Argo and MITgcmBge model output
396 (Figure 4). Using Bgc-Argo as a reference, the Darwin model is better at simulating by,
307 (R? = 0.67, MAE=1.45) than Chl (R? = 0.49, MAE=2.65, Figure 4a,b). The model
398 underestimates Chl by a factor 5 in tropical and some subtropical regions, but follows
399 relatively well the trend in the rest of regions (Figure 4a). The underestimation of Chl
400 in tropical and subtropical regions could be due to the model not representing photoac-
s01 climation correctly in these regions (we use Geider, 1987), or due to the coarse resolu-
102 tion of the model, which does not capture sub-mesoscale dynamics that result in the in-
403 put of nutrients in these less productive regions (see e.g. Clayton et al., 2017; Gupta et
404 al., 2022). Regarding by, the Darwin model overestimates by less than a factor of 2 in
405 temperate, sub-polar and polar regions, and slightly underestimates at low latitudes (Fig-
406 ure 4b).
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Figure 3. (a-d) location of BGC-Argo data (dots). Data points below the by ¢r;¢ threshold are
shown in blue dots. (e-k) cumulative distributions of Argo float by, data by biomes in the North-
ern hemisphere (f-h) and southern hemisphere (i-k). Dotted line is by criz (where algorithms differ
by more than a factor of 3), dashed line is by crit2 (where algorithms differ by more than an order
of magnitude). Both thresholds in this figure have been wave-length corrected using equation 18

in the SI. Note that we only use surface data (<10 m), and that coastal areas have been excluded
(Figure S10) to be consistent with the output of the model, which does not represent well coastal

regions due to its coarse resolution (1° x 1°).
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Table 1. Original algorithms from each study and slopes after wavelength correction to a A\ =

470 following equations 18 and 19 in the SI.

Cphyto original slope if A =470

Existing algorithms:

Behrenfeld et al. (2005) 13000 by, (440) — 13886
Behrenfeld et al. (2005) corrected®™ 13000 by, (440) — 9 75 13886
Graff et al. (2015) 12128 by, (470) + 0.59 12128
Martinez-Vicente et al. (2013) 30100 by, (470) — 22.9 30100
Qiu et al. (2021) 16200 by, (470) — 12 16200
Derived from the MITgcmBgc:

Using Cphyro-bp™ 18442 by, (450) — 8.1 19262
Using Chl-by,** 18191 by, (450) — 8.4 18999
Using Cphyto-bep (pure auto.)*** 13609 by (450) — 5.1 14214

* Assumes a correction suggested in Qiu et al. (2021).
**Cphyto and Chl are the sum of pure autotrophs and mixotrophs.
*EXCphyto 1s only pure autotrophs (see figure S12).
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Figure 4. Comparison between the MITgemBge model and BGC-Argo surface (<10 m) Chl
(a) and bpp (b). Each marker is a monthly average for each biome where there was Argo float
data, and grey error bars are the standard deviations. First, bins from the MITgcmBgc were
matched to Argo float data-points using a nearest neighbour approach. Afterwards, the data was
averaged by month and by biomes, where each biome was defined by grouping Longhurst regions
(as seen in figure S10). R? was estimated in the log scale, and MAE was estimated in the log

scale and back-transformed afterwards, as shown in equation 3. Dashed line is the 1:1 line.
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407 4.2 bpp-based algorithms obtained in the MITgcmBgc model

408 Since the paucity of real ocean data has prevented a systematic estimation of how
409 well by, predicts Cphyto, we use the MITgecmBge model to generate a Cppyio-byp algorithm
410 (i.e. a linear regression, Figure 5) and test it on the Cppyio from the model. Since cur-

ant rent algorithms are generated either by using Cppys, or Chl, we generate two algorithms:
a2 one using a Cppyro-byp relationship (Figure 5a) and another using a [Chl x Q]-byy, re-

13 lationship, where @ is a scaling factor that gives reasonable Cpryto values (Figure 5b,

414 the reasoning is similar to the one followed in Behrenfeld et al. (2005) and is described

415 in section 6 of the SI). Each linear regression is fitted to all the surface Cppyio (<10 m),

a16 Chl and by, output data of the global ecosystem model.

a7 Regression parameter values obtained from the model are shown in table 1. We ob-

418 tain negative intercepts in all cases. Slope values tend to be higher than most algorithms

419 when considering Cppyto and Chl to be the sum of pure autotrophs and mixotrophs, whereas
420 the slope is lower and closer to the ones obtained in Behrenfeld et al. (2005) and Graff

21 et al. (2015) when considering Cppyto to be the biomass of pure autotrophs alone (see

2 also figure S12 in the SI). This could suggest that (in the model) the proportion of mixotrophs
3 relative to pure autotrophs increases in more productive systems. Since mixotrophs con-

a tribute to Chl-a, carbon and NPP, from now on we will consider Cppy¢o as the biomass

s of both pure autotrophs and mixotrophs.

26 4.3 Error-estimation of the by,-based algorithms in the MITgcmBgc model
a7 We calibrated two by,-based Cpnyto algorithms to all the surface bins of the MIT-

a8 gemBgc model (Figure 5). The first model uses Cpnyto (Figure 5a), whereas the second

29 model uses QxChl (Figure 5b), which is an equivalent to Cppyt, following the discus-

430 sion in section 6 of the SI. The regressions performed better when using a robust method

31 rather than ordinary least squares regression method, where the root mean squared er-

a2 rors (RMSE) of the robust method were lower for both models (Figure 5). The spread

433 was wider in the @) xChl-by, model, probably due to the use of an averaged community

134 Cphyto:Chl ratio (Q, units [mgC mgChl™!]). Note that using this constant factor still al-
435 lows obtaining variable Chl:C ratios derived from backscattering (Figure S13). In this

436 study, we tried to use a scaling factor @) that gave values close to the one of Cppyt, in

437 the model. This values is however unknown in the real world, and variations in this pa-

438 rameter can result in substantial overestimation/underestimations of Cppyto. Therefore,

430 the overall performance of Cppyto algorithms that use a Chl-by, regression might vary

240 depending on the assumed scaling factor Q.

a1 Next, we compare month-to-month predicted Cppnyio from the algorithm compared
a2 to the modeled Cppyio (Figure 6). This pair-wise comparison shows that the by,-algorithm

a3 is able to capture the large scale Cppyto patterns, with R? > 0.9 at the global scale (Fig-
a4 ure 6e-i). The global monthly MAE (eq. 3) ranges from ~1.20 to 1.33 when using the
a5 algorithm calibrated with Cppyto, and from 1.26 to 1.38 when using the algorithm cal-
446 ibrated with Chl. In other words, a by,-based algorithm, when applied to the model, can

a7 overestimate or underestimate Cppyio by ~20% to ~30% on a global average (on the lin-
a8 ear scale).
™ The algorithm performance however varies across regions and seasons (Figure 6 and

450 7). In oligotrophic gyres, errors tend to be below 20% for the algorithm calibrated with
451 Cphyto and below 40% for the algorithm calibrated with Chl (Figure 6 and 7g and h).

452 At higher latitudes, algorithm performance varies seasonally and by ocean bassin. In the
453 sub-polar North Atlantic and North Pacific the algorithm tends to underestimate Cppyio
454 by more than 20% in most regions (Figure 6 and 7a-d). In the Southern Ocean, the al-
455 gorithm tends to overestimate in winter >30 % and underestimate during the rest of the
456 year (Figure 6 and Figure 7j). Overall, the algorithms tend to have errors close to 20 %.
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Figure 5. Linear regression of the Cphyto-byp relationship (a) and the Chl-Cppyio relationship
(b) in the MITgecmBgc model for surface waters (<10 m). @ = 110 and represents a community-
averaged C:Chl ratio as explained in section 6 of the SI. Black continuous line denotes the regres-
sion line using the robust regression method (see section 2.3.2), where (1 r0p is the intercept and
B2,rob is the slope. Red dashed line shows the regression line using ordinary least squares (OLS).
Chphyto is the summed biomass of pure autotrophs and mixotrophs. Colors show normalized data
density. Each dot represents a 1 degree bin of the surface ocean in the model. Chl values below
0.001 mg m™3 have been removed, as this threshold is close to the detection threshold of the
BGC-Argo floats.

457 4.4 Drivers of the Cppyto — byp relationship

458 To understand what generates the errors and variability in the Cppyeo algorithm,

450 we look at the contribution that phytoplankton have on the by, signal in the Darwin model
460 (Figure 8). Phytoplankton is the main contributor to by, (60%) in spring and summer

461 of seasonal regions. At low latitudes, detrital particles tend to contribute to more than

a2 60% of the signal, whereas phytoplankton mostly account for the rest. Heterotrophic bac-
463 teria has a low contribution, except in winter at high latitudes, where it can contribute

464 up to 30% of the by, signal. Zooplankton (nano- to meso-) had a negligible contribution

465 to total by, (not shown). Also, larger zooplankton could interact with the by, signal in

266 different ways that are not captured in the model (e.g. by generating spikes in the by,

467 signal due to their size, Bishop & Wood, 2008).

468 When decomposing the different contributors of the Cppyto-byp relationship (Fig-
469 ure 9, left-side panels), it can be seen that log;,(by,) by phytoplankton alone shows a
a0 linear relationship with log;o(Cphyto) (Figure 9a). When adding the effects of heterotrophic

an bacteria and zooplankton (Figure 9b), a lower by, boundary starts to form. However, this
a2 lower boundary is much lower than the one set when the contribution by detrital par-

a3 ticles is added (Figure 9c). This boundary is higher than most of the by, signal set by

ara phytoplankton alone (Figure 9a v.s. 9¢). This suggests that regions where by, is at its

a7 lowest, the signal is mainly dominated by detrital particles.

476 To understand the effects of phytoplankton functional groups and cell size, we com-
ar7 pare a scenario where we assume all phytoplankton have the same backscattering cross-
a78 section (Figure 9, right-side panels). This analysis shows that differences in phytoplank-
a1 ton cross-sections do generate some extra variability in the by, signal (compare Figure 9a
480 and d). However, at low by, values, most of the variability is driven by the contribution
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Figure 6. Phytoplankton biomass concentration above 10 m (a-d), and percent difference
using the by,-based algorithm calibrated with Cphyto (e-h) and calibrated with Chlx @ (i,1) from
figure 5a and b respectively. The shown R? and MAE were estimated in log,, scale globally for

each month (MAE was backs-transformed to the linear scale as shown in equation 3). White

areas represent Chl< 0.001 mg m~2.
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Figure 7. Left-side panels: Seasonal dynamics of phytoplankton biomass (above 10 m) in
the MITgemBge model (black line), biomass estimated using the byp-based algorithm using the
Cphytp-bs, relationship (grey lines) and using the Chl-by, relationship from figure 5b (green

lines) for four regions. Right-side panels: percent difference between Cphyto estimated by the

byp-algorithms relative to the modeled Cpnyto. Exact locations of each panel are shown in figure
S11.
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Figure 8. Modeled relative by, contribution to the total by, signal by phytoplankton (a,d),

heterotrophic bacteria (b,e) and detrital particles (c,f) in the surface ocean.
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Figure 9. Relationships between Cppyio (mgC m™2, phytoplankton-mixotrophs) and by,
(m™!) from different constituents in the default scenario (a-c) and a scenario where all plankton
have the same backscattering cross section (o, = 1077, d-f). Backscattering in each panel cor-
responds to: backscattering by phytoplankton and mixotrophs (a,d), backscattering by plankton
(i.e. phytoplankton, mixotrophs, zooplankton and heterotrophic bacteria) only (b,e), and total

particulate backscattering (c,f. i.e. all plankton and detritus). Color is the normalized data den-

sity.
481 of non-algal particles (i.e. detritus, heterotrophic bacteria and zooplankton, Figure 9d
ag2 vs. e and f).
483 4.5 Sensitivity analysis of the optical parameters in the Darwin model
a8 The sensitivity analysis shows that the mean absolute error of the Cppyeo algorithm
485 (MAE from the Cppyio-byy relationship in figure 6f) can range between 15% and 35% (Fig-
286 ure 10d). The parameter that has the strongest effect on this variation is the slope of
187 the regression between the by, cross-section with plankton cell size (Figure 10b, this pa-
488 rameter corresponds to the slope in figure 1b).
489 Two potential drivers of the MAE variation are the relative contribution of phy-

490 toplankton to total bbp (Figure 10e), and the relative contribution of pico-phytoplankton
401 to the bbp by all plankton (Figure 10f). The slope of the by, cross-section with plank-

192 ton cell size seems to affect these two emergent properties of the model. Lower MAEs

403 occur at steeper slopes, which result in a higher contribution by phytoplankton to to-

404 tal bbp (Figure 10e) and a lower contribution by pico-phytoplankton to the bbp by all

405 plankton (Figure 10f). It is however unclear why there is a kink in MAE with the slope
496 (Figure 10Db).

a07 Larger values of the parameter ¢ (parameter that encompasses all the uncertain-

408 ties for the conversion from detritus biomass to number of particles and associated backscat-
209 tering, section 4 in the SI) resulted in higher MAEs. Larger values of ¢ can mean sev-

500 eral things: (i) that o4, is larger than the one assumed in the default model, (ii) that
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Figure 10. (a-c) Values of MAE for the month of April (corresponding to figure 6f) when
randomly varying the three parameters in the sensitivity analysis: intercept and slope of the
Obb,phyto-cell size (corresponding tot he regression parameters in figure 1b), and the ¢ parameter
that encompasses the uncertainties related to detritus (section 4 in SI). (e) Distribution of MAE
from figure 6g after the sensitivity analysis for the three parameters. (e) Variation of MAE with
the emergent globally averaged contribution of phytoplankton to total byp, and with (f) globally
averaged contribution of pico-phytoplankton to by, by all plankton (by pix). Each dot is a run

with a random set of parameters. Yellow stars show the values in the default run.

detrital particles are less dense than we have assumed (affecting our conversion of de-
trital biomass to number of particles, and therefore resulting in a larger number of de-
trital particles), and (iii) that the slope of the size spectrum for detritus is steeper than
the Junge spectrum assumed. All these factors would increase the contribution of de-
tritus to the overall by,, reducing the contribution of phytoplankton, and therefore in-
creasing the MAEs.

5 Discussion

We have used Bgc-Argo data to identify regions where existing by,-based Cppyto
algorithms differ most in surface waters (<10m). Additionally, we have used a global ocean
circulation model to assess the magnitude of the potential error in by,-based algorithms
(given perfect knowledge of Cppyto to derive algorithm coefficients) and to understand
the drivers of the by, signal in the ocean surface.

We show that: (i) there is a threshold of low by, where existing algorithms differ
up to an order of magnitude. (ii) Regions that are below this threshold are some olig-
otrophic gyres and high latitudes in winter. Next, in an algorithm calibrated and applied
to the Darwin model, we find that (iii) best-case biases in by,-based algorithms vary markedly
across regions and season, ranging from 15% and up to 100%, with most regions hav-
ing errors close to 20%. Finally, (iv) we show that the variability in the Cppyio-bop re-
lationship is mainly driven by the varying contribution from non-algal particles (mostly
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520 by detritus). In the real world, significant additional uncertainties to algorithms come

521 from the insufficient and non-comparable in-situ measurements of Cppyt0. As such, our
522 estimates should be thought as best-case biases.

523 5.1 Targeting uncertain regions

504 We have identified regions where existing algorithms disagree or where by,-based

525 algorithms might have a poor performance. For example, current algorithms seem to dis-
526 agree in some oligotrophic regions where the by, signal is low, such as around Hawaii.

527 But according to the the global ecosystem model, byy,-algorithms should perform fairly
528 well in this region. Targeting these “high disagreement but high potential” areas could
529 be a first step to reduce uncertainties between current algorithms, as this shows that the
530 uncertainties in existing algorithms are probably driven by other methodological pro-

531 cedures and assumptions not considered in the model (e.g. sensors and approximation

532 to obtain Cppyie from the field).

533 Winter-time in seasonal regions have several issues: In these regions, currently used
534 algorithms disagree and the model indicates that by,-based algorithms perform poorly.
535 Obtaining more observations in these regions is also difficult, due to their inaccessibil-

536 ity. However, Chl:Cpp,y1, ratios can help constrain which algorithms perform better. For
537 example, when applying the existing algorithms to the Argo data, it can be seen that

538 the Martinez-Vicente et al. (2013) and Qiu et al. (2021) algorithms give negative Cppyto
530 values in winter of polar and sub-polar regions (Figure S6q,w,s,y), whereas the Graff et
540 al. (2015) algorithm gives suspiciously low Chl:Cppys, ratios in the Northern Polar and
541 sub-polar region (Figure S7e). In these regions, a Chl:Cppy¢, ratio is expected to be high
542 due to low light levels. Again, in this case the problem is driven by the differences in the
543 intercept, where they seem to be either too low (Martinez-Vicente et al., 2013; Qiu et

544 al., 2021) or too high (Graff et al., 2015).

545 Even if most algorithms disagree in regions where by, values are low, these regions

546 might represent large areas of the ocean (e.g. subtropical gyres). In the MITgcmBgc model,
547 20% to 40% of the global phytoplankton biomass (depending on the season) is in areas

548 where simulated by, is below the by ¢+ thresholds. Note that the MITgecmBge model

549 underestimates by, in these regions (Figure 4), therefore the total area below this thresh-
550 old, and therefore the proportion of phytoplankton biomass, might be lower in the real
551 world. Nonetheless, these regions seem to have a considerable role in global Cppyt, bud-

552 gets (and probably NPP budgets) and should not be disregarded.

553 5.2 Contribution of phytoplankton to by,

554 Phytoplankton contribution to the bulk by, may be larger than previous estimates
555 calculated with Mie theory (Stramski et al., 2001). Using Mie theory, it had been sug-

556 gested that the main contributors to the by, signal are detrital particles (mostly sub-micron
557 sized) and heterotrophic bacteria (Stramski et al., 2001). However, later studies that mea-
558 sured phytoplankton cross-sections from cultures showed that the cross section of phy-

559 toplankton were up to an order of magnitude larger than the ones estimated using Mie

560 theory (Vaillancourt et al., 2004; Whitmire et al., 2010). We parameterized our phyto-

561 plankton using backscattering cross sections from the latter studies and find that phy-

s62 toplankton can contribute up to 80% to the bulk by, (e.g. during spring blooms). This

563 is in agreement with other studies that suggested that phytoplankton or particles larger

564 than 1 pm could have a significant contribution to the by, signal (Dall’Olmo et al., 2009;
565 Brewin et al., 2012; Organelli et al., 2018). Our sensitivity experiments suggest that these

566 assumptions are relatively important, and newer laboratory and theoretical studies to
567 more fully understand the role of plankton versus detrital particles in backscattering are
568 recommended.
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5.3 Effect of non-algal particles and Chl:C ratios on the Chl-by;, rela-
tionship

Chl-by, relationships are often used to understand the relation between Cppyio and
byp as there is far more Chl data than Cppyro. However, it is still somewhat unclear whether
non-algal particles or the difference in Chl:C ratios drive the shape of this relationship,
especially at low by, values (Behrenfeld et al., 2005; Barbieux et al., 2018). From the MIT-
gcmBgce model, it can be seen that the by, signal is insensitive to Cppyo or Chl at low
values within the upper 10 m of the surface ocean. This is due to the effect of non-algal
particles, which override the phytoplankton by, signal in oligotrophic regions (setting the
intercept of the regressions). These results are partly supported by a study that looked
at the drivers of the by,:Chl relationships using Argo floats (Barbieux et al., 2018). In
that study, they found that photoacclimation had practically no effect in the surface layer
of the north sub-polar gyre and the Southern Ocean, whereas photoacclimation seemed
to affect the byp:chl ratio for the highest levels of light (>0.75 of normalized PAR) in the
subtropical gyres and for all PAR levels in the Mediterranean and Black seas (figure 7c
in Barbieux et al. (2018)). On the other hand, they did find an important effect of pho-
toacclimation on the by,:Chl signal when considering deeper layers or the whole mixed
layer. In our study, we have not looked at layers below 10 m and both the Mediterranean
and Black Seas are not well represented in this version of the MITgcmBgc model due
to the coarse resolution. Thus, photoacclimation might play an important role in regions/layers
that are not covered in our study. Still, for the regions covered, our finding regarding the
effects of non-algal particles are largely in agreement with the ones suggested by Barbieux
et al. (2018).

In Behrenfeld et al. (2005), the authors discuss the “bi-linear” trend in the linear
scale that they find within the by,-Chl relationship (i.e. low and high Chl concentrations
show different slopes in the linear scale). One of the potential explanations given for this
trend are differences in Chl:C ratios. However, we do not find such a clear “bi-linear”
trend (in the linear scale) in the Darwin model or in satellite remote sensing output when
using the GIOP algorithm with the MODIS-Aqua sensor (Figure S8, noting we used cli-
matological monthly data). We believe that the bi-linear trend in their study might be
driven by the algorithm used to estimate by, (Garver-Siegel-Maritorena, GSM, semi-analytical
algorithm, Maritorena et al., 2002). This algorithm has been shown to overestimate by,
at low values relative to Argo float data (Bisson et al., 2019), and might not be due to
effects of photoacclimation. Nonetheless, whether there is a bi-linear trend or not does
not make any difference for the assumptions in their study, and does not change the val-
ues of the parameters of their phytoplankton carbon biomass equation.

5.4 Errors and uncertainties in by,-based algorithms

The error we find due to the assumption of by, being a good proxy for phytoplank-
ton carbon biomass ranges between 20% and 45% in most regions. This error is of sim-
ilar magnitude compared to the errors driven by sensor uncertainties and uncertainties
related to the approaches to obtain by, or Chl. For instance, the backscattering and chloro-
phyll fluorescence sensors in the BGC-Argo floats have a median error close to 0.11%,
and most data showed relative errors lower than 10% (Barbieux et al., 2018). However,
errors related to the conversion from fluorescence to Chl increase, reaching up to +£300%
(Roesler et al., 2017), and being reduced to +40% if Chl is sampled locally (Bittig et al.,
2019). As for by,, uncertainties for BGC-Argo are close to 20% (Bittig et al., 2019), and
for satellite remote sensing, a bias (calculated as the median ratio of by sat t0 bpp, Argo)
ranges from 0.77 to 1.6 depending on the algorithm used (Bisson et al., 2019).

The largest source of error for any algorithm likely originates from the way that
phytoplankton carbon is derived from field samples or from the assumptions used to de-
rive the scaling factor (here () used to obtain Cppyto from a Chl-by, relationship. Cur-
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rently a variety of methods are used between field studies (e.g. flow-cytometry and size-
spectrum assumptions, or using elemental analysis of carbon and asusmption f Chl:C ra-
tios). Therefore, a standardized method to measure phytoplankton carbon from the field
is desirable.

Ideally, measurements should also specify whether mixotrophic plankton are included
or not, as these organisms have been shown to be more common than previously thought
(Stoecker et al., 2017). We identify two main issues that can arise regarding mixotrophs.
The first one is a methodological issue, where most methods for field observations of Cppyio
or Chl cannot distinguish mixotrophic contribution. Thus, mixotrophs are included when
using field data of Chl and probably of Cppnyto. The second issue arises when using a Chl-
by relationship to derive Cppyto- In this case, an extra scaling coefficient is needed to
obtain Cppyse (the @ factor in this study, see section 6 in the SI). The meaning of this
Q factor is loosely defined, but considering the units of this factors (mgC mgChl~!) it
can also be considered as a community-averaged C:Chl ratio. Thus, when using a Chl-
by relationship to derive Cppyto, Wwhether Cppyto is the biomass of pure autotrophs or
of autotrophs and mixotrophs, will require different scaling factors @, since mixotrophs
might have different C:Chl ratios compared to pure autotrophs.

Finally, other IOPs, such as the beam attenuation coefficient, have been shown to
be better proxies for Cppyio or POC than by, (Behrenfeld & Boss, 2003; Boss et al., 2015),
and can help reduce uncertainties (though note they also encompass both pure autotrophs
and mixotrophs). Transmissometers could be mounted on Argo-floats to obtain values
of the beam attenuation coefficient (Bernard et al., 2011), complementing estimations
derived using by, or helping develop new algorithms from satellites.

6 Conclusion

The scarcity of phytoplankton field data and the use of different methods and as-
sumptions to determine Cppyio in situ prevents us from being able to estimate uncertain-
ties in algorithms that aim to quantify phytoplankton carbon biomass. Here, we assessed
the performance of by,-based phytoplankton carbon algorithms and quantified their po-
tential uncertainties in the surface ocean (upper 10 m). We showed that existing algo-
rithms can differ by up to an order of magnitude at low by,-values. By using a global ocean
circulation model, we showed that by,-based algorithms have a global best-case mean ab-
solute error between 15-30%. The algorithm performance declines when using Chl in-
stead of Cppyeo to calibrate the by, algorithm. Errors were largest when phytoplankton
had less impact on the backscattering than other particles (mainly detritus). These er-
ror estimates are made under the assumption that Cppyo is known, and therefore do not
include other sources of uncertainty. The largest source of uncertainty of any by,-based
algorithm derived from field data will likely be due to the sparsity of in-situ Cppyt, and
also to the discrepancies in the methods used to measure this quantity. If these other
uncertainties are targeted and reduced, by, could potentially be a relatively good proxy
for Cphyto, with errors close to 20% in most regions (according to our model).

Overall, we have shown that a global ecological model can help quantify uncertain-
ties that are currently impossible to estimate from the available real world data. The re-
sults of this study advance our understanding of observation- and model-based optical
variability in the ocean and its connection to phytoplankton biomass and chlorophyll con-
centrations. This approach can help reconsider assumptions of some algorithms, and iden-
tify ocean conditions to sample that may best improve future algorithms. Continued work
in developing accurate remote sensing algorithms for marine ecosystems will improve our
ability to monitor marine ecosystems and their response to global change.
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669 Codes to run the model and generate figures, together with model outputs, are avail-
670 able in Zenodo https://doi.org/10.5281/zenodo.7576886.

671 The BGC-Argo data were collected and made freely available by the International
672 Argo Program and the national programs that contribute to it (https://argo.ucsd.edu,
673 https://wuw.ocean-ops.org, https://doi.org/10.17882/42182). The Argo Program
674 is part of the Global Ocean Observing System. BGC-Argo float data was extracted us-

675 ing the BGC-Argo-Mat Matlab toolbox (Frenzel et al., 2021).

676 Satellite remote sensing data was extracted from NASA Goddard Space Flight Cen-
677 ter, Ocean Ecology Laboratory, Ocean Biology Processing Group; (2014): MODIS-Aqua

678 Ocean Color Data; NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean
679 Biology Processing Group. http://dx.doi.org/10.5067/AQUA/MODIS_0C.2014.0
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