

1 **Mapping the blood vasculature in an intact human kidney**

2 **using hierarchical phase-contrast tomography**

3 **Running title: Analysis of the vasculature in an intact human kidney**

4 Shahrokh Rahmani ^{1,2}, Daniyal J Jafree ^{3, 4, 5}, Peter D Lee ¹, Paul Tafforeau ⁶, Joseph
5 Brunet^{1,6} Sonal Nandanwar¹, Joseph Jacob ^{7,8}, Alexandre Bellier ⁹, Maximilian
6 Ackermann ^{10,11, 12} Danny D Jonigk ^{12,13}, Rebecca J Shipley ¹, David A Long ^{3,5}, Claire L
7 Walsh ¹

8 1. Department of Mechanical Engineering, University College London, London, UK, WC1E 6BT.

9 2. National Heart & Lung Institute, Faculty of Medicine, Imperial College London, London, United
10 Kingdom

11 3. Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond
12 Street Institute of Child Health, University College London, London, UK, WC1N 1EH.

13 4. UCL MB/PhD Programme, Faculty of Medical Science, University College London, London,
14 UK, WC1E 6BT.

15 5. UCL Centre of Kidney and Bladder Health, UCL London UK

16 6. European Synchrotron Radiation Facility, Grenoble, France, 38043.

17 7. Satsuma Lab, Centre for Medical Image Computing, UCL, London, UK.

18 8. Lungs for Living Research Centre, UCL, London, UK.

19 9. Department of Anatomy (LADAF), Grenoble Alpes University, Grenoble, France, 38058.

20 10. Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz,
21 Mainz, Germany.

22 11. Institute of Pathology and Department of Molecular Pathology, Helios University Clinic

23 Wuppertal, University of Witten-Herdecke, Wuppertal, Germany.

24 12. Institute of Pathology, RWTH Aachen Medical University, Aachen, Germany.

25 13. German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive
26 Lung Disease Hannover (BREATH), Hannover, Germany.

27 **Correspondence:** Dr. Claire L. Walsh, Mechanical Engineering, University College London,
28 London, UK, WC1E 6BT

29 Email: c.walsh.11@ucl.ac.uk

30

31

32

33

34

35 **ABSTRACT**

36 The architecture of the kidney vasculature is essential for its function. Although
37 structural profiling of the intact rodent kidney vasculature has been performed, it is
38 challenging to map vascular architecture of larger human organs. We hypothesised
39 that hierarchical phase-contrast tomography (HiP-CT) would enable quantitative
40 analysis of the entire human kidney vasculature. Combining label-free HiP-CT
41 imaging of an intact kidney from a 63-year-old male with topology network analysis,
42 we quantitated vasculature architecture in the human kidney down to the scale of
43 arterioles. Although human and rat kidney vascular topologies are comparable,
44 vascular radius decreases at a significantly faster rate in humans as vessels branch
45 from artery towards the cortex. At branching points of large vessels, radii are
46 theoretically optimised to minimise flow resistance, an observation not found for
47 smaller arterioles. Structural differences in the vasculature were found in different
48 spatial zones of the kidney reflecting their unique functional roles. Overall, this
49 represents the first time the entire arterial vasculature of a human kidney has been
50 mapped providing essential inputs for computational models of kidney vascular flow
51 and synthetic vascular architectures, with implications for understanding how the
52 structure of individual blood vessels collectively scales to facilitate organ function.

53 **INTRODUCTION**

54 The vascular system of the kidney is highly specialised, serving multiple functions
55 including delivery of oxygen and nutrients to the organ's parenchyma whilst also
56 facilitating plasma ultrafiltration and solute reabsorption. Despite only comprising
57 approximately 1% of body weight, the kidney receives up to 20% of cardiac output
58 [1]. Blood enters the kidney through the kidney artery which branches from the
59 abdominal aorta and enters the kidney hilum. Once within the kidney, the kidney
60 arteries divide hierarchically, first into segmental arteries which pass through the
61 kidney pelvis, then branching into interlobar branches which pass through columns
62 between the pyramids of the kidney medulla. At the distal end of the kidney columns,
63 interlobular arteries branch into arcuate arteries that arch around the outer surface of
64 the kidney pyramids. From these, the interlobular vessels branch and penetrate into
65 the surrounding kidney cortex before finally terminating at efferent arterioles [1]. This
66 complex network perfuses specialised glomerular capillaries for plasma ultrafiltration,
67 before peritubular capillaries located in the cortex, and vasa recta located in the
68 medullary pyramids facilitate dynamic solute exchange. Thereafter, venous return
69 follows the arterial supply out of the organ [2].

70 Structural and molecular changes to the kidney vasculature are a common
71 feature of kidney pathologies including multiple aetiologies of chronic kidney disease
72 (CKD) and transplant rejection in both animal models and patients [3] Therefore,
73 studying kidney vascular patterning has implications for understanding the basis of
74 kidney function in health and disease, and also aids surgical planning for tumour
75 resection, nephrectomy and transplantation. Vascular geometries also have a central
76 role to play in computational models which underpin the creation of digital twins, such
77 as through the creation of synthetic data [4], and flow modelling [4], [5], [6], [7], [8],
78 which are playing an increasing role in biomedical research.

79 Vascular imaging of the kidney has advanced following technological
80 innovations in micro-computed tomography (μ CT) [9], [10], [11], magnetic resonance
81 imaging (MRI) [12], ultrasound [13], lightsheet microscopy [14], [15] and
82 photoacoustic imaging [16], [17]. These techniques have been used to generate
83 quantitative analyses of vascular network geometry in intact kidneys of model
84 organisms, particularly rodents where kidney diameter reaches up to 12 mm [18].
85 Comparatively human kidneys, with a diameter of approximately 5 cm [19] are far
86 more challenging to image at high resolution whilst still intact. Corrosion casting of
87 human kidneys has highlighted vascular heterogeneity and generated intricate 3D
88 casts (down to 100 μ m) but has provided limited quantitative or accessible digitized

89 geometries of the vascular network [20]. Optical clearing and lightsheet microscopy
90 have been used to quantify portions of the human kidney vascular network [21]
91 however, it has not yet been possible to capture the intact vascular network of the
92 human kidney without physical sectioning the tissue, beyond approximately six vessel
93 divisions [22]. MRI has been used to quantify larger vessels both *in vivo* and post
94 mortem [23], [24], but lacks the resolution capable of imaging small vessels and
95 arterioles [23].

96 Due to these limitations, human kidney vascular network analysis is often
97 predominantly focused on the very large, first three branches of the arterial tree [23],
98 or on only small portions of the network [25]. Where multiscale modelling has been
99 performed, parameters from rodent kidneys are assumed to be representative of
100 human kidney vascular networks [4], [5], [8]. The semi-quantitative studies of human
101 kidney vascular casts have shown large anatomical variation in even the segmental
102 artery (first or second branch after the kidney artery) patterns [22], while smaller
103 vessels such as arcuate arteries, interlobular arteries and afferent or efferent
104 arterioles have not been assessed quantitatively at the organ scale.

105 Here, we show how a recently developed X-ray based non-destructive
106 imaging technique - hierarchical phase-contrast tomography (HiP-CT), can be used to
107 map and quantify the arterial vascular network of an intact human kidney down to the
108 arteriolar level for the first time. HiP-CT is a technique which leverages the European
109 Synchrotron Radiation Facility's (ESRF) Extremely Brilliant Source (EBS); a high-
110 energy fourth generation synchrotron source, to image intact human organs at
111 unprecedented scale and resolution. Previously we have demonstrated the feasibility
112 of applying HiP-CT to profile the human glomerular morphology and number across
113 cubic centimetres of intact human kidney [26]. We now extend the use of this
114 technology to extract and quantify the arterial network of an intact human kidney
115 across multiple length scales without using antibodies, dyes or contrast agents.
116 Within the human kidney, we delineated the extent and morphology of the
117 vasculature, down to afferent and efferent arterioles, quantifying variation in vascular
118 morphology within the context of vascular ordering schemes. This enabled
119 quantitative comparison between human and previously published rodent kidney
120 vascular networks, the latter of which has been used as inputs for biophysical
121 modelling of human vascular flow [4], [5], [6], [7], [8]. We further demonstrate regional
122 heterogeneity in the context of the anatomical compartments of the kidney. Such
123 variations highlight the link between regional structure and function, re-enforcing the

124 importance of quantitative analyses for understanding and modelling regional micro-
125 environments within the human kidney.

126

127 **METHODS**

128 **Sample preparation**

129 An intact human kidney was obtained from a 63-year-old male (cause of death:
130 pancreatic cancer) who consented to body donation to the Laboratoire d'Anatomie
131 des Alpes Françaises before death. Post-mortem study was conducted according to
132 Quality Appraisal for Cadaveric Studies scale recommendations [27]. The body was
133 embalmed by injecting 4500 mL of 1.15% formalin in lanolin followed by 1.44%
134 formalin into the right carotid artery, before storage at 3.6°C. During evisceration of
135 the right kidney, vessels were exposed, and surrounding fat and connective tissue
136 removed. The kidney was post-fixed in 4% neutral-buffered formaldehyde at room
137 temperature for one week. The kidney was then dehydrated through an ethanol
138 gradient over 9 days to a final equilibrium of 70% [27]. Each solution was four-fold
139 greater than the volume of the organ and during dehydration, the solution was
140 degassed using a diaphragm vacuum pump (Vacuubrand, MV2, 1.9m³/h) to remove
141 excess dissolved gas. The dehydrated kidney was transferred to a polyethylene
142 terephthalate jar where it was physically stabilised using a crushed agar-agar ethanol
143 mixture, and then imaged [26], [27].

144

145 **Scanning, image acquisition and reconstruction**

146 Imaging was performed on the BM05 beamline at the ESRF following the HiP-CT
147 protocol [26], [27]. Initially the whole kidney was imaged at 25 µm per voxel (isotropic
148 edge length). Volumes of interest within the same kidney were also imaged at 6.5
149 and 2.6 µm per voxel. [26] Tomographic reconstruction was performed [26], [27],
150 using the PyHST2 software [28]. Briefly, a filtered back-projection algorithm with
151 single-distance phase retrieval coupled to an unsharp mask filter was applied to the
152 collected radiographs. Reconstruction parameters are provided in image metadata.
153 The reconstructed volumes were binned (averaged) to 50, 13, and 5.2 µm per voxel
154 respectively to reduce computational load for subsequent image segmentation and
155 quantification (see **Figure S1**). All reconstructed image volumes and metadata can
156 be accessed at human-organ-atlas.esrf.eu, table for direct DOI links for each dataset
157 is provide in **Table S1**

158

159 **Image filtering, enhancement, and segmentation**

160 Prior to semi-automated segmentation, images were filtered to enhance blood vessel
161 contrast using Amira v2021.1 software. A 3D median filter (iterations =2 and 26
162 neighbourhood analysis) was used to reduce image noise and image normalisation
163 was performed using background detection correction (Amira v2021.1; default
164 parameter settings). Semi-automated segmentation of the arterial networks was
165 performed in Amira v2021.1 using a manual region growing tool where the user
166 selects an initial voxel within the vasculature along with set intensity and contrast
167 thresholds. Any voxel within the connected neighbourhood of the initially selected
168 voxel that has an intensity and contrast within the thresholds are added to the region.
169 The annotator continues this process in an iterative fashion selecting seed points
170 altering the thresholds to expanding the region, (Method shown in **Supplementary**
171 **Video 3**). Once the primary annotator believes they have filled the interior of all
172 vessels the data is passed to a second annotator who repeats the process. A third
173 annotator (referred to as the proof-reader) will then quantitatively review the labels.
174 The data the proof-reader is presented with are randomised regions of 2D slices of
175 the data. They then count the number of vessels cross-sections present in the slice,
176 recoding the true positive and false negative number of vessel cross-sections that
177 have been segmented. The proof-reader returns the data to the initial two annotators
178 and the whole process repeats iteratively until the proof-reader does not find any
179 false negatives. This method was applied to segment the kidney arterial network from
180 the intact human kidney from the imaging data at 50 μm per voxel, and portions of the
181 same network in the 13 and 5.2 μm per voxel datasets.

182 A second approach to quantitative validation of the segmentation was
183 performed using smaller segmented regions of the 13 μm per voxel dataset. Here, the
184 higher resolution volume of interest at 13 μm per voxel was rigidly registered to the
185 whole organ volume with affine registration toolkit (Amira-Avizo) (See
186 **Supplementary Methods §1.1 and Tables S2 & S3**). Overlapping portions of the 13
187 μm voxel segmentations and 50 μm per voxel datasets were extracted and the 50 μm
188 per voxel datasets was up-sampled to the resolution of the 13 μm voxel dataset. An
189 overlap measure known as topological precision and recall score following Paetzold et
190 al. [29], was applied (see **Supplementary Information §2.1 & Figure S3**)

191
192 **Visualization and skeletonization**

193 To quantify branching metrics of the human kidney vasculature, the segmented 3D
194 vascular network at 50 μm per voxel was skeletonized using the centreline tree
195 algorithm in Amira-Avizo. The choice of skeletonization algorithm and the
196 parameterising of the algorithm were optimised by utilising the super-metric approach

197 outline by Walsh & Berg et al. [7] (tube parameters: slope = 4 and zeroval = 10, see
198 **Supplementary Methods § 2.2 and Figure S4** for parameter selection method). The
199 resulting spatial graph describes the vessel network in terms of ‘nodes’, ‘points’,
200 ‘segments’, and ‘sub-segments’. A segment is defined as being between a start and
201 end node; which correspond to either a branching point leading into another segment
202 branch or a terminal end where no further branches were detectable. Between the
203 start and terminal node of each segment lie sub-segments with ‘points’, marking the
204 start and end of each sub-segment. Each sub-segment has an associated radius and
205 length (**Figure S5A**). A multiscale smoothing approach was applied to the larger
206 vessels (those of Strahler generation greater than 5), through a weighted smoothing
207 algorithm, and corrections for the radius of collapsed vessels (see **Supplementary**
208 **Methods § 2.3** for details). The final spatial graph was manually proofread to mitigate
209 errors in node locations and remove spurious branches in large collapsed segments
210 of vessels.

211

212 **Morphological analysis**

213 Topological/morphological metrics of the network were calculated from the spatial
214 graph as follows codes are provided at

215 https://github.com/HiPCTProject/Skeleton_analysis:

216 (i) branching angle, calculated as either (a) the angle between the two child segments
217 from a common parent segment or (b) the angle between a child segment and its
218 parent segment. In both cases the vector for the segment of parent and child were
219 calculated between the start node and end node (i.e. ignoring vascular tortuosity);
220 (ii) tortuosity defined as the Euclidean distance between start and end node of a
221 segment divided by the sum of all subsegment lengths;
222 (iii) radius calculated per segment as either, the mean of all subsegment radii, or for
223 larger vessels that had fully collapsed (See **Supplementary Methods § 2.3** for
224 details), as the equivalent radius for the perimeter of vessel cross-section in the
225 binary image;
226 (iv) length defined as the sum of all subsegment lengths;
227 (v) inter-vessel distance calculated by two approaches to facilitate different analyses.
228 Firstly, using the segmentation binary image the distance of every non-vessel voxel
229 from its nearest vessel voxel was calculated *via* a 3D distance transform (ImageJ)
230 applied to the binary vessel segmentation. Secondly, using the skeleton form, the
231 Euclidean distance between the midpoint of every segment to its nearest-
232 neighbouring segment midpoint was calculated.

233 Additionally, we also assessed vessel generation or order using two methods. Firstly,
234 using the centripetal system known as Strahler ordering system [30], [31], [32], where
235 the most distal segments are assigned as the first order, if two segments with the
236 same order intersect, the resulting segment has order one greater. Alternatively, if
237 two segments with different orders intersect, the higher order of the two is given to
238 the resulting segment, (**Figure S5B**). Secondly, we took a centrifugal or ‘topological’
239 approach, starting with most proximal artery as generation one, at each branching
240 node the generation is increased, this approach has been utilised by e.g. Pries and
241 Secomb [33] (**Figure S5C**).

242 From the ordering analyses we assessed the branching ratio (γ) defined as the
243 antilog of the reciprocal for the linear fit to the plot of Stahler order (O) against the
244 logarithm of the number of segments (N) in each order:

245
$$N = N_0 e^{-\frac{O}{\gamma}} \quad (1)$$

246 We also examined whether our data followed Murray’s Law which states that the
247 cube of the parent segment radius should be equal to the sum of the cubed child
248 segment radii:

249
$$R_{parent}^3 = \sum_{i=2}^{i=n} R_i^3 \quad (2)$$

250 The radius of the arterial network in the human kidney obtained from this study were
251 compared to those of the rat kidney taken from[11] scanned with 20 and 4 μm voxels
252 using a micro-filling approach.

253

254 **Kidney Compartment Segmentation**

255 Segmentation of the compartments within the human kidney, including cortex,
256 medulla, inter-medullary pillars and hilum, was performed in Dragonfly (version:
257 2021.3) using a 2D convolutional neural network (CNN). The final hyperparameters of
258 the CNN are given in **Table S4**. Correction of the CNN output was manually
259 performed in Amira (v2021.1) to provide the final compartment delineation. These
260 compartments were used to group and then analyse vascular network parameters.

261

262 **Statistical analysis**

263 Statistical comparisons of vascular network morphology between human and rat
264 kidneys[11] was performed in GraphPad Prism (version: 10.1.2). For all statistical
265 tests, a p value of less than 0.05 was considered statistically significant. Radius
266 against Strahler Order were normalised to the 9th Strahler Order (the largest vessel
267 for which the human data contained complete vessel segments). Log of radius
268 against Strahler generation for each of the human and rat datasets was plotted

269 facilitating a linear least squares regression analysis. A sum of squares *F* test was
270 performed with the null hypothesis that a single set of global parameters for slope
271 and intercept would fit vessel radius or vessel length for both the rat and human
272 cases. For Murray's law the same sum of squares *F* test was performed with the null
273 hypothesis that Murray's law would fit the human data; in this analysis automated
274 outlier detection was performed with the Graphpad ROUT method where *Q* is the
275 desired maximum false discovery rate, *Q* = 0.05%.

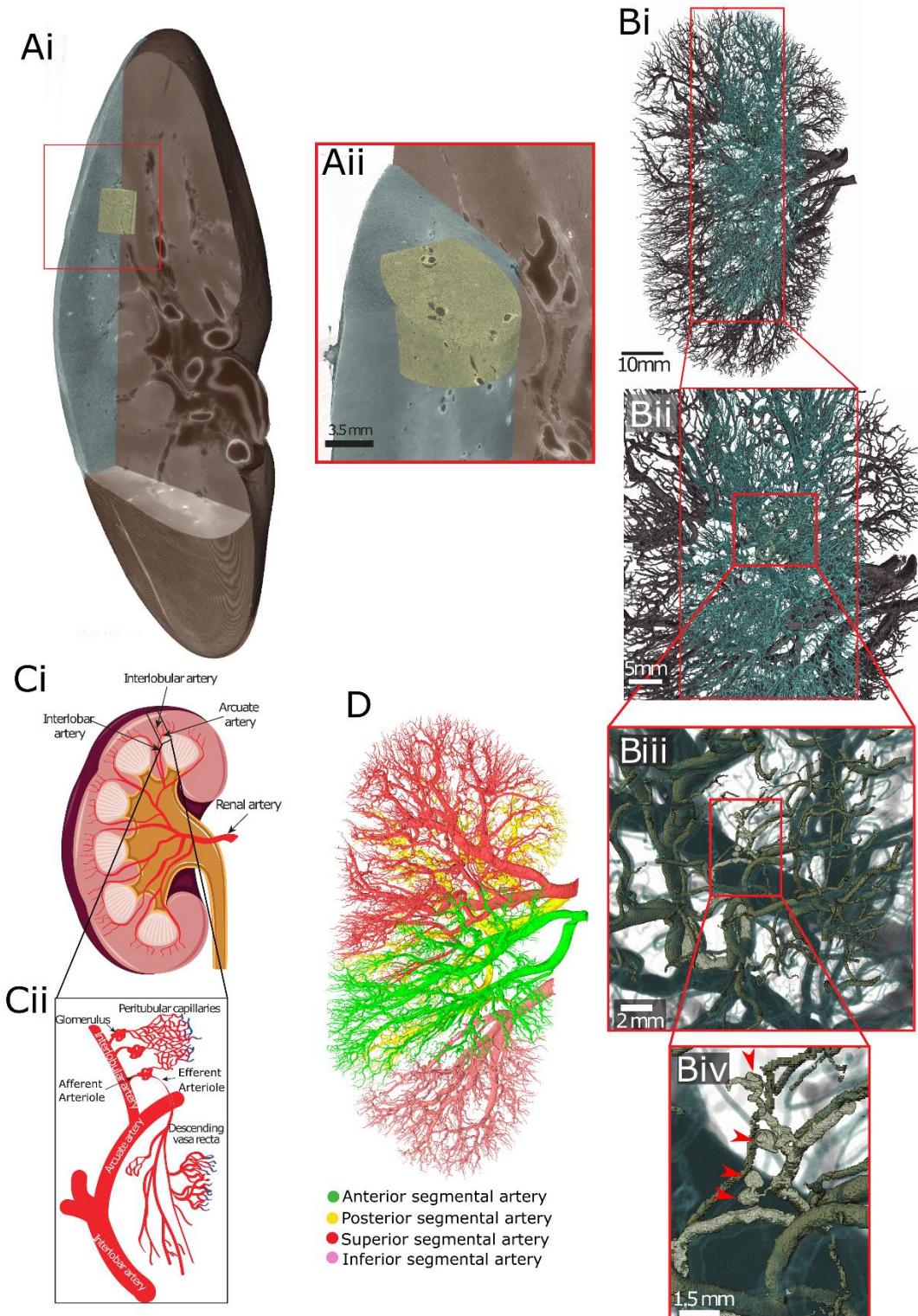
276

277 RESULTS

278 **HiP-CT can visualise the arterial vascular network in the intact human kidney** 279 **down to efferent and afferent arterioles.**

280 Using HiP-CT [26], [27] we imaged the whole intact kidney obtained from a 63-year-
281 old male organ donor in a hierarchical fashion. We initially performed an overview
282 scan of the entire kidney at 25 μm per voxel, followed by selecting and imaging
283 representative volumes of interest at 6.5 μm per voxel and 2.6 μm per voxel (**Figure**
284 **1A**). As these image volumes are inherently aligned, expert annotation was applied
285 to the image volumes taken at each resolution to produce a multi-scale
286 segmentation of the arterial network (**Figure 1B and Supplementary Video 1**). From
287 the segmented data we were able to identify all known anatomical subdivisions of the
288 kidney arterial system (**Figure 1C**), down to arterioles that terminate in the
289 specialised plasma ultrafiltration units of the kidney: the glomerulus. The segmental
290 pattern of anterior, posterior, superior and inferior territories supplying the kidney
291 parenchyma were clearly delineated. Each vascular territory (**Figure 1D and**
292 **Supplementary Video 2**) had a corresponding kidney arterial branch originating from
293 the hilum, which bifurcated before hierarchical branching towards the cortical
294 parenchyma.

295



296 **Figure 1. Multi-level segmentation of the human kidney arterial network. A)** Overview of the
297 hierarchical image volumes that can be acquired with Hierarchical Phase-Contrast Tomography
298 (HiP-CT). Brown, cyan and yellow volumes show the whole organ acquired at 25 μm , sub-volume
299 acquired at 6 μm and sub-volume acquired at 2.6 μm , respectively, in the intact human kidney. **B**
300 **i-iv)** showing the vascular segmentation performed across the three resolutions of HiP-CT data
301 enabling the whole organ (**Bi**) through to glomeruli (red arrows **Biv**) to be visualised and
segmented. **C)** Diagram of the anatomical organisation of the human kidney arterial network. **D)**
The vascular territories of the kidney imaged in this study.

302

303 **An error-bounded image processing pipeline to reproducibly quantify the**
304 **arterial network in human organs.**

305 We next sought to quantitate the arterial network in a reliable and reproducible manner.
306 As we have previously shown that quantitative features of vascular networks are
307 influenced heavily by the image processing pipeline [7], we developed an image
308 processing pipeline (**Figure 2**), involving reduction of the initial image to a skeleton or
309 spatial graph representation of the arterial network. The graph representation
310 comprises a set of nodes; 3D locations where vessels meet or end, and the
311 connections between these nodes, defined as 'segments' (see **Figure S5A and Figure**
312 **4A**). Our pipeline, which is overviewed in **Figure 2**, comprises 8 steps which are fully
313 detailed in **Supplementary Methods §2**, and enables the generation of a spatial graph
314 from segmented HiP-CT with quantification of error at the segmentation and
315 skeletonization stages.

316 In brief, the pipeline included utilising the aligned higher resolution HiP-CT
317 volumes to provide quantification of the segmentation accuracy (**Figure 2, Step 1**).
318 Secondly, we applied three different skeletonization algorithms and utilised a formal
319 metric (the recently developed skeleton super-metric [7]) to assess and optimise the
320 skeletonisation process (**Figure 2 Step 2**). The skeleton was then corrected (**Figure 2**
321 **Steps 3 – 8**) to overcome the two primary challenges of HiP-CT data. The multiscale
322 nature of the vasculature captured was corrected with a multi-scale smoothing
323 approach; **Figure 2 Steps 3 and 4**. Collapsed vessels were identified from outliers in
324 radial distributions (**Figure 2 Steps 5**), followed by automated extraction of vessel
325 cross-section and radius correction using the collapsed vessel perimeter **Figure 2**
326 **Steps 6-8**.

327 The result of our novel pipeline was the generation the first open-source spatial
328 graph of the human kidney arterial vasculature in its entirety. We were able to identify
329 97% of vessels $<50 \mu\text{m}$ radius across the whole intact human kidney, with an imaging
330 resolution of $50 \mu\text{m}$ per voxel. The network consisted of 10,193 nodes, 376,603 points
331 and 10190 segments, or vessels. The total network volume was $1.68 \times 10^{12} \mu\text{m}^3$ its was
332 length of $2.3 \times 10^7 \mu\text{m}$. This spatial graph, which is provided as spatial graphs in
333 **Supplementary data** captures all the morphological features and connectivity of the
334 human kidney arterial vasculature, which was then used for downstream analyses as
335 described below.

336

337

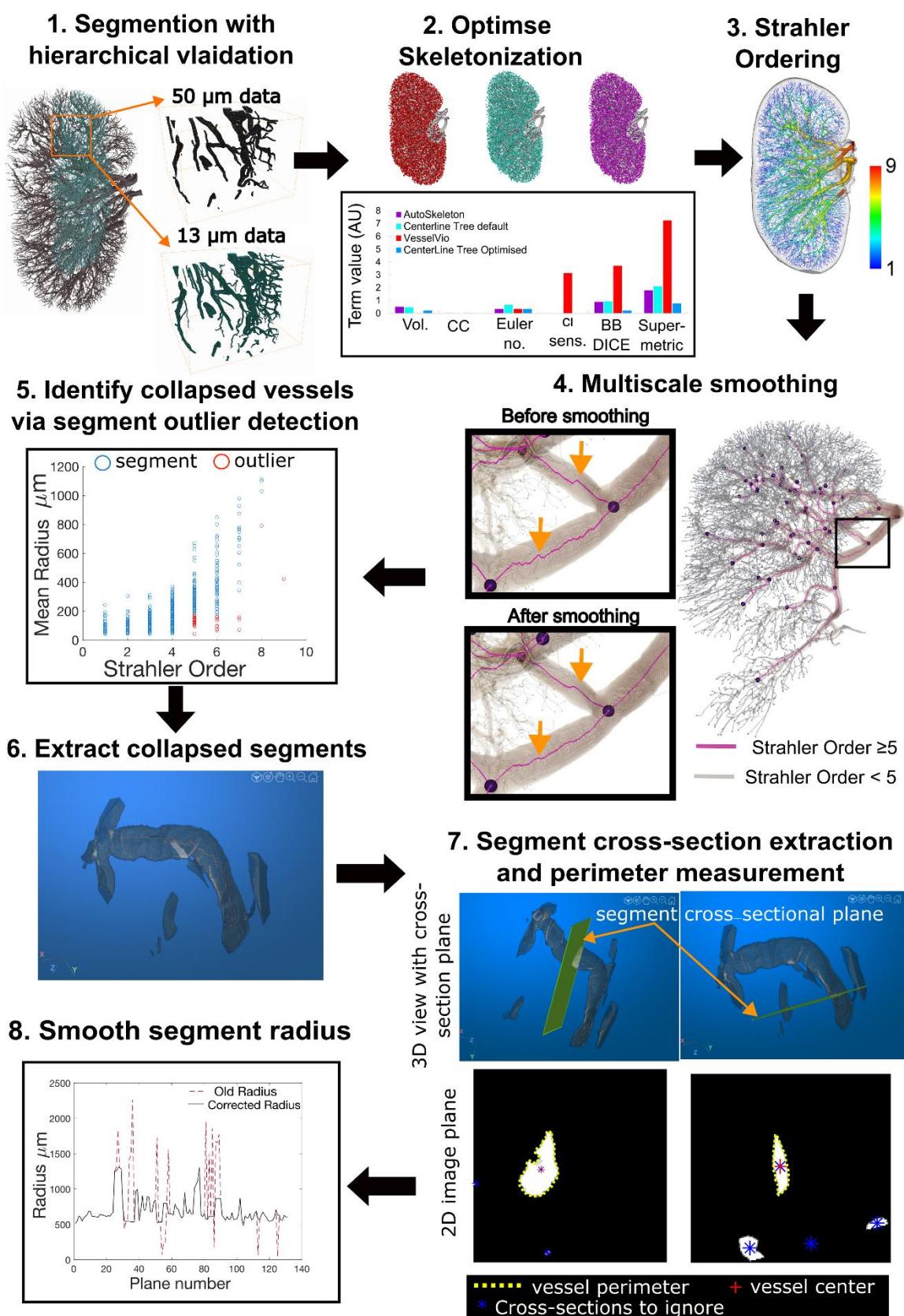


Figure 2. Pipeline for the extraction and correction of the vascular network skeletonization. **Step 1** Segmentation is performed with quantitative validation using a higher resolution volume of interest, **Step 2** Skeletonization is optimised by comparison of skeletonization algorithms and optimisation of skeleton super-metric, the super-metric is a projection of the distance vector between the reconstructed skeleton sand the segmented image, onto a weighted space, it contains 5 contributing terms: network volume (Vol.), connected components (CC), Euler Number, Centerline sensitivity (cl sens.), Bifurcation DICE (BB DICE). **Step 3** An initial Strahler Order (O) calculation is made on the skeletonized network. **Step 4** Using the ordering from Step 3 the network can be split into larger calibre ($O \geq 5$) and smaller calibre vessels ($O > 5$), the larger calibre vessel can then be smoothed as shown in insets, orange arrows show the points where smoothing has noticeably acted on regions of larger vessels. **Step 5** Strahler order vs Mean radius is plotted for every segment (blue circles); outliers (red circles) are identified as segments with a radius below the 90% percentile for their Order. **Step 6** The segments identified as outliers are visualised and collapse status is manually confirmed. **Step 7** For vessels which are confirmed as collapsed, planes which are normal to the centreline of the vessel (indicated by orange arrows) are created at every point along the centreline and the 2D image for each plane is extracted (lower panels). From these 2D planes the collapsed vessel is identified (red cross) and the perimeter (yellow dashed line) is extracted. **Step 8** The perimeter is used to calculate an equivalent radius and assigned as the new radius of the segment.

339

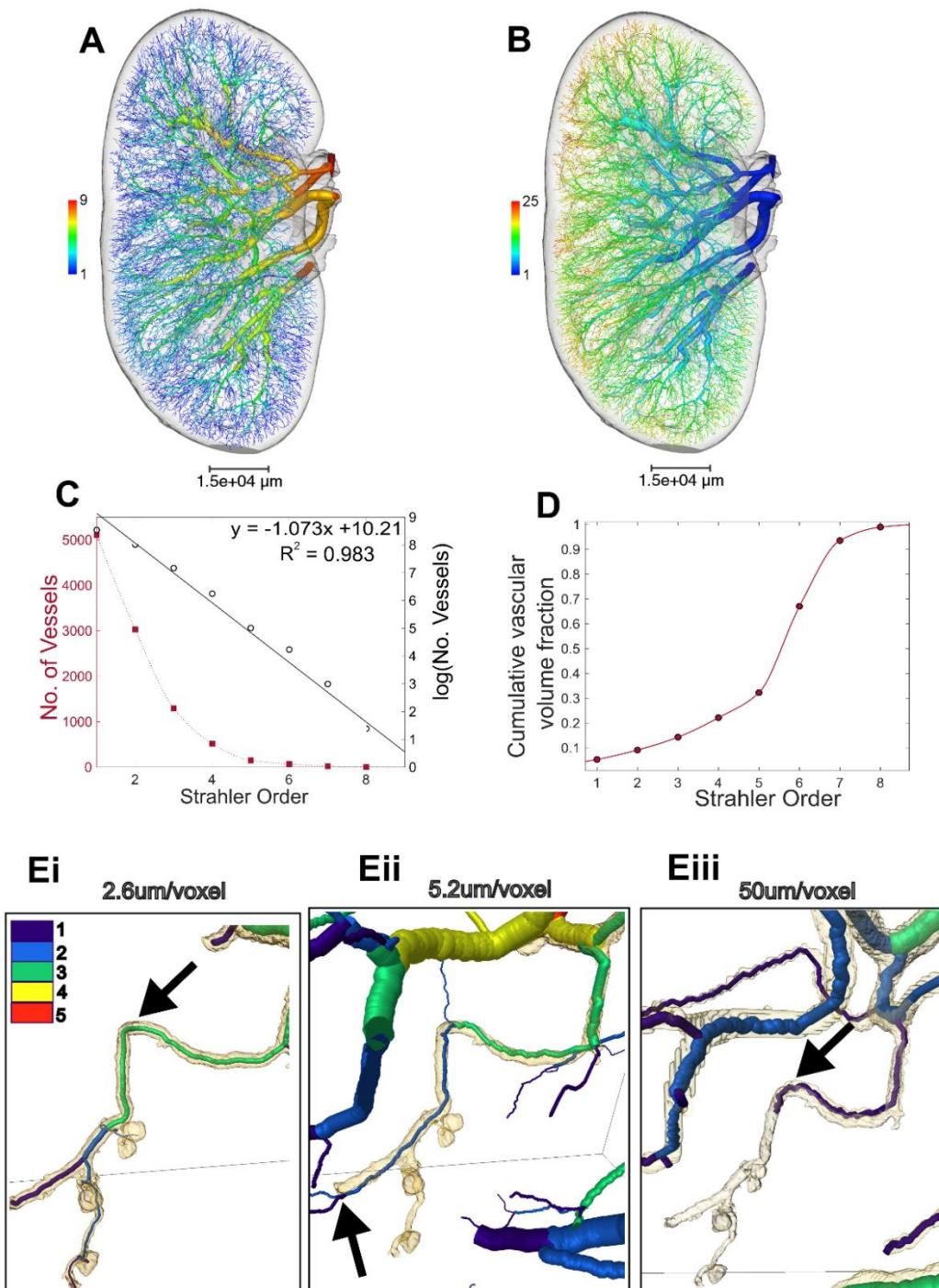
340

341 **Multi-scale generational and ordering analysis of the arteriolar vasculature in**
342 **the human kidney.**

343 Having produced a reproducible spatial graph of the human arterial vasculature of the
344 kidney, we then performed topological generation [33] and Strahler Ordering [30],
345 [31], [32] analyses. This resulted in nine Strahler Orders (**Figure 3A**) and twenty-five
346 topological generations (**Figure 3B**). As the main artery supplying the kidney was cut
347 during autopsy we can infer that 10 Strahler order, 27 topological generations, can be
348 imaged over the entire intact human kidney with HiP-CT.

349 Leveraging the hierarchical capability of HiP-CT we imaged regions of the
350 cortex at 2.6 μ m per voxel and from these data, we segmented down to the afferent
351 arteriolar level, evidence by the presence of glomeruli at the terminal ends of these
352 vessels (**Figure 3Ei-3Eiii**). Interestingly, we were also able to segment glomeruli from
353 non-terminal arteries, (the artery from which the arterioles branch have additional
354 bifurcations downstream, which are not arterioles) (**Figure 3Eii black arrow and**
355 **Figure S7**). This supports recent findings, [34] in the rat kidney, which demonstrated
356 the existence of non-terminal branch arterioles and their contribution to the
357 synchronicity of blood flow in the kidney [5], [35].

358



359 **Figure 3. Ordering and branching ratio analyses.** Rendering of the vascular network with
360 vessels coloured according to **A**) Strahler order and **B**) Topological generation. **C**) Plot showing
361 the number of vessels per Strahler order with fit for the log plot to calculate branching ratio. **D**)
362 Strahler order against cumulative vascular volume fraction. **Ei**) Strahler ordering down to efferent
363 and afferent arterioles, using the 2.6 $\mu\text{m}/\text{voxel}$ image dataset; **Eii**) showing the same region
364 segmented at 5.2 $\mu\text{m}/\text{voxel}$ (binned data); and **Eiii**) the same small region from the whole kidney
365 overview (50 $\mu\text{m}/\text{voxel}$). Black arrows in **Ei** and **Eiii** indicate the same vessel in both cases with
366 Strahler order of 1 or 3 respectively indicated by the colour cases. The black arrow in **Eii** indicates
a bifurcation downstream of the arterioles that can be segmented, which is not an arteriole itself,
i.e. this demonstrates the presence of non-terminal arterioles in the human kidney.

367 Glomeruli branching from non-terminal arterioles (see arrow in **Figure 3Ei** compared
368 to **3Eiii**) prevents the application approaches used by Nordlesten et al. [11] to
369 estimate the Strahler Order of every terminal node in the whole arterial tree (extracted
370 from the 50 $\mu\text{m}/\text{voxel}$ data) relative to glomeruli. However, our high resolution data
371 shows there are at least 12 Strahler orders (an additional two) between afferent
372 arterioles and the kidney artery. The estimate of 12 Strahler Orders between afferent
373 arterioles and the kidney artery can also be supported by considering the estimates
374 of total glomeruli number and number of terminal nodes in the 50 $\mu\text{m}/\text{voxel}$ data (**See**
375 **Supplementary Methods §3** and **Figure S7**). Given the scale of the arterial tree
376 captured at our 50 μm per voxel dataset, we used this to perform further quantitative
377 analysis.

378 By plotting the number of segments within each Strahler order (**Figure 3C**) we
379 determine the branching ratio arterial vessels in the human kidney to be 2.921. This
380 value is similar to that of the human pulmonary arterial tree (3.0 [32]) and to that of
381 the rat kidney (2.85 [11]). To give spatial context to our data, we mapped Strahler
382 orders to known anatomical subdivisions of the human arterial tree, including
383 interlobar, arcuate and interlobular arteries. Strahler orders 7-9 ($n = 25$ segments;
384 mean radius = $929 \pm 477 \mu\text{m}$) mapped to the branches of the kidney artery entering
385 the kidney hilum. Orders 5-6 comprised interlobar arteries ($n = 219$ segments; mean
386 radius = $417 \pm 247 \mu\text{m}$), and orders 2-4 arcuate arteries ($n = 4841$ segments; mean
387 radius = $78 \pm 45 \mu\text{m}$). Interlobular arteries fell within orders 1-3 ($n = 9430$ segments;
388 mean radius = $55 \pm 23 \mu\text{m}$). We further plotted the cumulative volume of the kidney
389 vascular network is plotted in **Figure 3D**, finding that over 1/5 of the volume of the
390 network lies within Strahler orders 1-4, corresponding to segments from interlobular
391 arteries to arcuate arteries.

392

393 **Analysis of vascular network metrics in the human kidney reveals limit of
394 Murray's law and concordance with a rodent model organism**

395 Vascular network geometric properties, such as, diameter, length and branching
396 angles, are an important means of quantitatively comparison of vascular networks in
397 health or disease [36], [37]. To address this, we have extracted and reported the
398 metrics for the human kidney vasculature. We grouped our data according to Strahler
399 order (**Figure 4, Table 1**) to enable quantitative comparison to rat and other human
400 organ data, and also provide raw data for each segment in **Supplementary data** as
401 inputs for modelling applications.

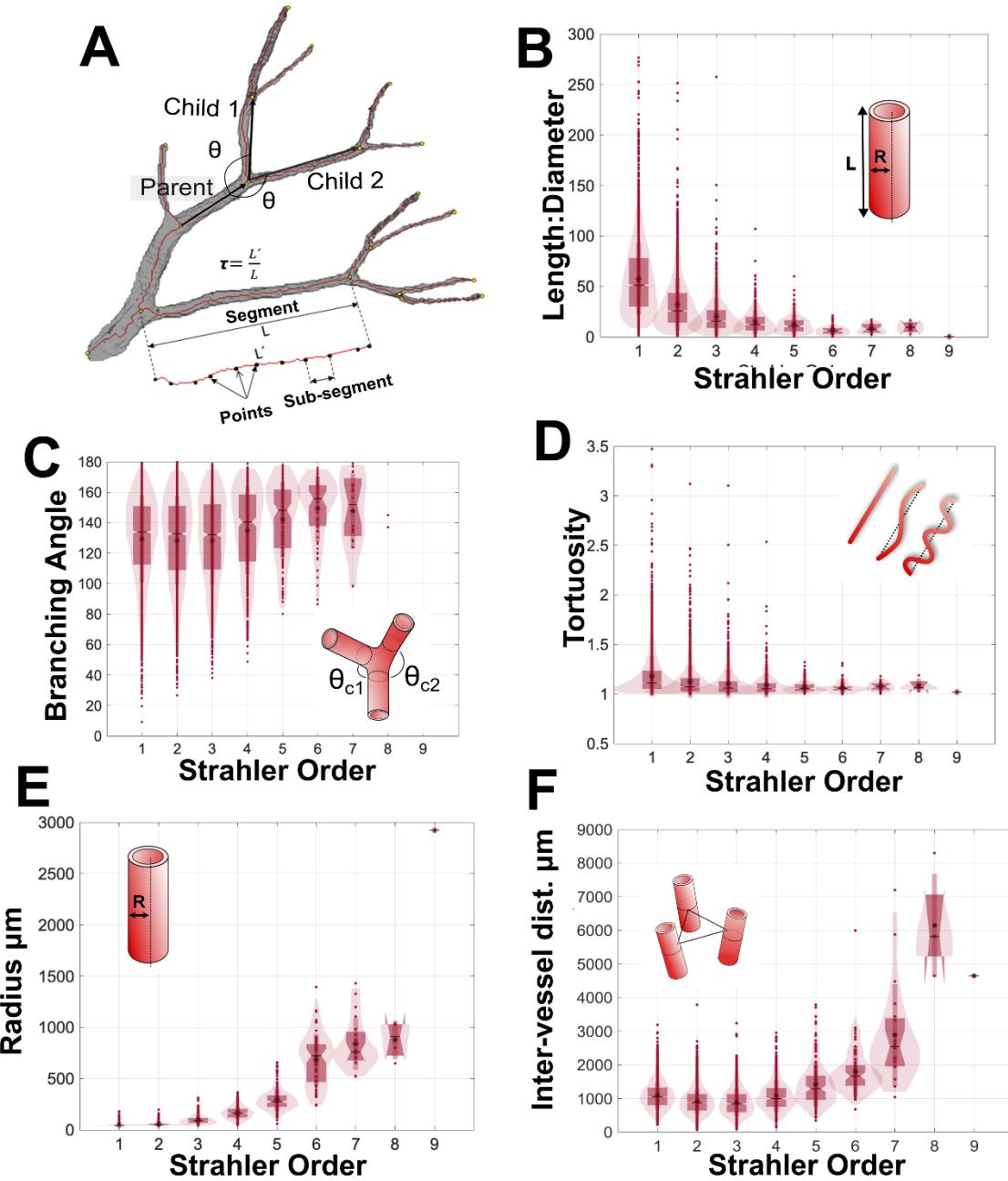
402 As Strahler order increases, in the human kidney vascular network there is a
403 reduction in the ratio of vessel length:diameter (**Figure 4B**), whilst the mean radius
404 (**Figure 4E**) and inter-vessel distance increase (**Figure 4F**). Tortuosity does not vary
405 significantly with Strahler order (**Figure 4D**); with most segments having tortuosity
406 close to 1 implying limited deviation from a straight path. The above findings are
407 largely consistent with anticipated trends for healthy tissue i.e. where a vasculature
408 network is assumed to be a fractal structure, with branching pattern driven by
409 optimised delivery of blood to the whole organ. Interestingly for Strahler orders 8-6
410 the mean branching angle is approximately 150°, which decreases slightly to 130° for
411 Strahler orders 3-1 (**Figure 4C**), the latter being the predicted optimal theoretical
412 branching angle for vascular growth that is volume constrained [38].
413

414 **Table 1. Human kidney vascular branching metrics by Strahler
415 generation (means with standard deviation are shown).**

Strahler order	Segments	Rad μm	Length $\mu\text{m} \times 10^3$	Tort.	LDR	Vol. $\times 10^8 \mu\text{m}^3$	Branching Angle °	IVD $\mu\text{m} \times 10^3$
1	5105	45±5	2.6±1.7	1.2±0.20	57.4±36	0.18±0.22	129±28	1.1±0.4
2	3030	56±15	1.8±1.4	1.1±0.16	32.3±26	0.21±0.46	128±29	0.9±0.4
3	1295	95±37	1.8±1.4	1.1±0.14	20.2±18	6.7±10.3	128±29	1.1±0.4
4	516	165±60	2.3±1.9	1.1±0.13	14.6±12	25.5±34.9	135±29	1.4±0.5
5	150	294±110	3.3±2.6	1.1±0.05	12.2±9.4	11.3±17.1	142±25	1.8±0.7
6	69	684±250	4.3±3.1	1.1±0.06	6.5±4.5	84.6±104	149±21	2.9±0.7
7	20	839±251	7.2±4.9	1.1±0.05	8.5±4.8	223±302	148±24	6.1±1.5
8	4	877±188	8.1±4.7	1.1±0.07	9.6±6.3	227±159	141±6	4.7±1.5
9	1	2923	669	1.0	0.2	180	-	-

416

417



418

Figure 4. Metrics of the adult human kidney arterial network. **A)** Schematic diagram of how the metrics in B-E are calculated. **B)** The length:diameter ratio. **C)** The branching angle between the child and parent segments. **D)** The tortuosity of segments, **E)** their radius, and **F)** the inter-vessel distance as measured between the mid-point of each segment.

419

420

421

422 As simulation of kidney haemodynamics has previously been performed using
423 micro-CT data from the rat kidney, we used our high-resolution segmentations to
424 align our network with those derived the previously published rat dataset [11]. In
425 doing so, we were able to relate normalised vessel metrics from each species at
426 corresponding Strahler orders. The increase in vessel radius with Strahler order
427 followed a similar trend between human and rat kidney (**Figure 5A**); The only
428 parameter that showed a considerable difference was radius, as human and rat vary
429 significantly different based on a fit of $\log(\text{radius})$ to Strahler order (**Figure 5B**),
430 ($p < 0.0001$ Sum-of-F test $F(DF_n, DF_d) = 700.6 (2, 12)$), with human vessel radii
431 increasing with Strahler Order more quickly than the rat. To provide physiological
432 relevance to this discrepancy, we compared our radius data to the Murray's Law; a
433 theoretical relationship between the radii of parent and child vessels derived from
434 considering an optimisation of energy between blood flow through a network and
435 diffusion into tissue with fixed metabolic demands [35], [38], [39]. The application of
436 Murray's Law has been previously supported by data from e.g. Nordestt et al.
437 which shows a deviation from Murry's law by $\sim 1\%$ for the rat kidney [11].

438

439

440

441

442

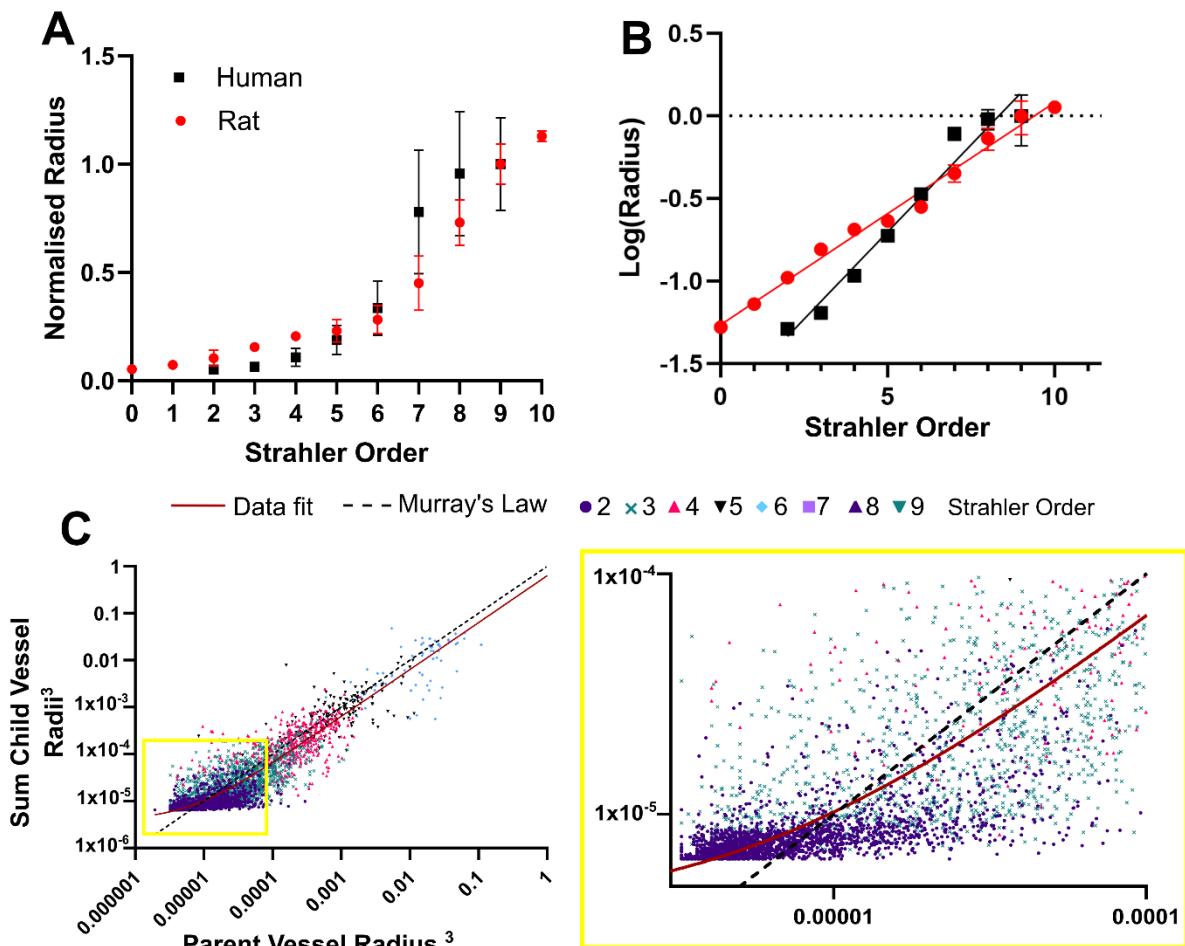
443

444

445

446

When a best fit linear regression is applied to our data (red line **Figure 5C**),
the slope 0.63 and intercept 4×10^{-6} values are with an $R^2 = 0.68$, applying a Extra-
sum-of-F test, $F(DF_n, DF_d) = 5474 (1, 3949)$ between our data and a theoretical
Murray's law we found a significant difference $P < 0.0001$ between Murray's law and
our data fit (**Figure 5C**). The deviation from Murray's law is more pronounced for
smaller vessels (**Figure 5C** inset). and is consistent with the previously calculated
branching ratios, thus inferring deviation from a symmetric network as arterial vessels
undergo hierachal branching towards the cortex of the organ.



447

Figure 5. Comparison to rodent data and Murray's theoretical law of energy balance. **A)** Normalised radius against Strahler Order for our data and for the rat data of Nordsletten et al. [11], **B)** for the same data but plotted for $\log(\text{Radius})$, a similar pattern is seen but significant statistical difference is found between the best fit for the two datasets. **C)** Our data plotted to compare to Murray's Law, plotted showing each Strahler order in a different colour. The best fit line for the data is shown in red with the theoretical Murray's law in dashed black. The inset shows how the human data differs from Murray's law predominantly for the smaller vessels.

448

449

450 **Regional heterogeneity within the kidney creates local microenvironments that**
451 **enable specialised kidney functions.**

452 Having demonstrated deviation in Murray's law at lower Strahler orders, corresponding,
453 we then sought to resolve regional heterogeneity in the human kidney vasculature. This
454 regional heterogeneity is postulated to reflect different functions corresponding to the
455 anatomical zone of the organ. For example, the kidney medulla possesses low oxygen
456 tension, generating hypoxia that is inherent to the medulla's urinary concentration
457 mechanisms. A longstanding hypothesis, supported by blood oxygenation level-
458 dependent MRI studies, [40] is that vascular rarefaction in CKD results in hypoxia

459 within the kidney cortex, stimulating neighbouring cells into a pro-fibrotic phenotype
460 and manifesting in loss of organ function [3]. Although the regional heterogeneity of
461 vascular patterning is likely to be fundamental for local microenvironments, such as the
462 generation of physiological hypoxia or susceptibility to pathological hypoxia, it has not
463 been quantitatively explored in the human kidney vasculature.

464

465 **Table 2. Human kidney vascular branching metrics by zone**

	Cortex	Medulla	Hilum	Inter-medullary pillars	Organ
Volume of tissue x 10 ¹³ µm ³ (% of total)	8.70 (63.7%)	3.21 (23.5%)	1.18 (8.66%)	0.57 (4.14%)	13.7 (100%)
Number of segments* (% of total)	6141 (60.27%)	554 (5.4%)	151 (1.5%)	727 (7.1%)	10190 (100%)
Mean segment length, µm ± STD	1999±1374	1493±1113	3993±3568	1720±1386	2260±1720
Mean segment radius, µm ± STD	48±12.6	95±49	496±335	136±80	71±87
Mean inter-vessel distances, x10 ³ µm ± STD	1.10±0.677	1.55±0.881	1.55±1.312	0.664±0.543	1.2±0.833
Mean segment volume, x10 ⁸ µm ³ ± STD	0.148±0.116	0.623±1.12	69.0±147	1.73±4.48	1.65± 20.6
Mean segment tortuosity ± STD	1.14±0.17	1.08±0.13	1.08±0.1	1.1±0.12	1.15±0.18

*segments that crossed over two regions were excluded.

466

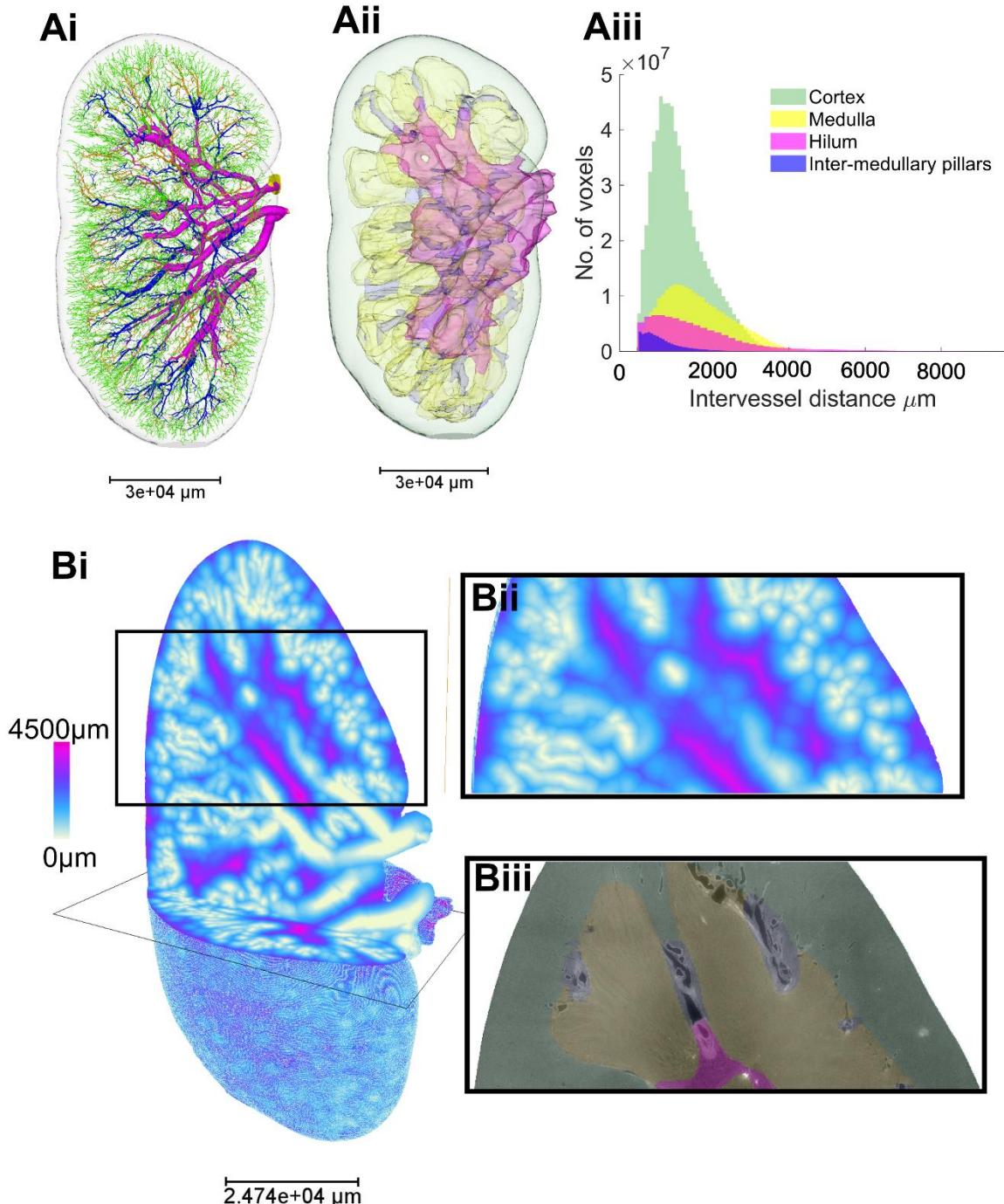


Figure 6. Analysis of zonal heterogeneity in vascular branching metrics within the human kidney. (A*i*) 3D reconstruction vasculature colour according to anatomical compartment within the human kidney cortex (green), medulla (yellow) and hilum (pink), inter-medullary pillars (dark blue). (A*ii*) Showing the 3D surface masks of the same regions. (A*iii*) Inter-vessel distances are plotted against the total number of vessel voxels for each kidney compartment. (B*i*) Visual heatmap of inter-vessel distance for the entire human kidney, where pink represents the largest inter-vessel distance (> 4.5 mm) and white (0 mm) the smallest. (B*ii*) A digital zoomed region within cortex and medulla. (B*iii*) The 2D slice of the associated HiP-CT raw image with the compartments overlaid.

467
468
469
470

471 Leveraging the contrast-free approach of HiP-CT imaging, we were able to
472 segment the kidney into known anatomical compartments including hilum, medulla,
473 intramedullary kidney columns and cortex (**Figure 6A**). The total tissue volume of
474 each zone in addition to the number of vessels, length, radius and volume of
475 segmented vessels within each zone were quantified (**Table. 2**). Most of the tissue
476 volume of the human kidney was measured to be occupied by the cortex (63.7%) as
477 compared with the medulla (23.5%) or hilum (8.7%) or intermedullary pillars (4.1%).
478 The number of segments for the vascular network within each compartment followed
479 this trend. As a proxy for kidney tissue oxygenation, we quantified (**Figure 6Ai-Aiii**)
480 and mapped (**Figure 6Bi-Biii**) the inter-vessel distance, reflecting the extravascular
481 distance across which oxygen and solutes diffuse, compartmentalised by hilum,
482 medulla, cortex, and inter-medullary pillars. Mean inter-vessel distances for these
483 compartments (**Table. 2**) demonstrates the medulla having the highest inter-vessel
484 distance which follows the anticipated distributions of hypoxia. Notably, there were
485 large portions within the medulla where inter-vessel distance was > 4.5 mm (**Figure**
486 **6Bi**); in line with the known hypoxic characteristic of the medulla. Whilst the cortex
487 has one of smallest inter-vessel distance, it has a large standard deviation and the
488 heatmap in **Figure 6Bi and 6Bii** shows small areas with inter-vessel distance >
489 4.5mm are also found, predominantly towards the kidney capsule.

490

491

492 DISCUSSION

493 Owing to the limited volume of tissue imageable using pre-clinical modalities such as
494 micro-CT and lightsheet microscopy, and insufficient resolution of technologies
495 routinely used in clinical practice such a CT and MRI, it had previously been impossible
496 to capture the entire vascular network of the intact adult human kidney. Using
497 synchrotron-based HiP-CT we were able to segment and quantify the human kidney
498 arterial network from kidney artery to interlobular arteries without the need for
499 exogenous contrast agents. With this method, we demonstrated that vessels mapping
500 from interlobar to interlobular arteries occupy approximately 1/5th of the vascular
501 volume of the human kidney. By imaging regions of interest in the intact kidney at
502 higher resolution and aligning with low resolution data, we further demonstrate that,
503 akin to rat [34] and varying from the traditional hierarchy of the kidney vasculature
504 observed in textbooks, that the glomeruli in humans can originate from non-terminal
505 arterioles. Although there existed similarity in topology between human and rat kidney,
506 there was a significant difference in the change in radius with Strahler order between
507 organisms. As vessels branch towards the cortex and radius decreases in the human

508 kidney vasculature, they also do not adhere to Murray's theoretical law of energy
509 balance. Finally, we demonstrate vascular volume fractions and inter vessel distances
510 vary between anatomical zones of the kidney, corresponding to regionally specialised
511 functions and known physiological gradients in local oxygen tension.

512

513 The human kidney vasculature is exquisitely specialised to meet the
514 physiological demands of the kidney. Underpinning this specialisation is the cellular
515 and molecular heterogeneity of endothelial beds with the renal vasculature [41] of
516 which we are gaining an increasing understanding due to the advent of improved
517 techniques such as cellular transcriptomics. The rapid advances in our understanding
518 of cellular and molecular heterogeneity of the kidney vasculature has not been matched
519 by structural insights, likely as a consequence of limitations in imaging technologies.
520 We have overcome these limitations using HiP-CT, and capture the 3D vascular
521 architecture of an entire human kidney at twenty-fold greater resolution than
522 conventional hospital CT scanners (400 μm per voxel), instead comparable to that of
523 light microscopy (1-8 μm per voxel) yet on a volume many orders of magnitude larger
524 than that of a kidney punch biopsy. The balance between imaging volume and
525 resolution afforded by HiP-CT thus bridges the scale between local cellular architecture
526 and global tissue structure, providing quantitative vascular branching metrics from an
527 intact human organ for the first time. Testament to this balance, we report up to 10
528 Strahler orders or 27 topological generations for the human kidney vasculature. These
529 exceed previous *in vivo MRI* studies, which report up to six topological orders [23]
530 Despite being taken from the lowest resolution HiP-CT scan, these metrics also
531 exceeds studies on cadaveric cast and dye injections which report up to arterial
532 branches corresponding to Strahler orders 7-9) [22], [42]. We demonstrate
533 concordance in topological layout between the human kidney vasculature and that of
534 the rat, the latter of which has been key for inputs to generate biophysical models of
535 kidney haemodynamics [5], [11] However, we demonstrate deviations in the
536 progressive decrease in magnitude of vessel radii between human and rat kidney
537 vasculature, and non-adherence to a symmetrical network that would be consistent
538 with Murray's law. This discrepancy could potentially influence the prior simulations of
539 haemodynamics, oxygenation or drug delivery [8], [43]; and generation of synthetic
540 vessel trees for *in silico* experiments [44], [45]. This divergence between theoretical
541 prediction and our human data may be accounted for by regional heterogeneity in
542 architecture, corroborated by our segmentation of hilar, medullary, intra-medullary and
543 cortical zones of HiP-CT images from the same kidney. The increased inter-vessel
544 distance observed within the medullary compared to other kidney anatomical zones

545 corresponds to the known decreased oxygen tension within this region of the kidney.
546 Thus, structural heterogeneity could impart varying metabolic demands and generate
547 local microenvironments within the kidney [46], [47], which may underpin the unique
548 cellular and molecular adaptations of specialised endothelia across the kidney vascular
549 network [41].

550 The quantitative analysis pipeline performed in this paper serves multiple
551 purposes. Firstly, it surmounts one of the limitations of HiP-CT, in the size of the
552 datasets generated. Whereas the whole kidney dataset amounts to ~500GB,
553 necessitating considerable computational power and data storage facilities,
554 segmentation followed by skeletonization allows the whole kidney vasculature dataset
555 to be represented in a spatial graph comprising only KB of data. The spatial graph,
556 which is provided as **Supplementary Data**, is readily quantifiable. Whereas prior
557 simulations of kidney haemodynamics and perfusion have relied on seminal micro-CT
558 studies performed in rat, we provide, for the first time, a complete map of the kidney
559 arterial network in its entirety. The segmentation is accurate, with 97% of vessels of
560 <50 μm radius captured across the intact human kidney, and thus provides vital inputs
561 for future biophysical modelling frameworks of kidney physiology. It also serves as a
562 reference dataset to study kidney diseases, in which vascular rarefaction is a
563 pathophysiological hallmark[48]. The pipeline could be used to generate vascular maps
564 from multiple kidneys or other human organs, potentially giving rise to spatial ‘atlases’
565 of human organ vasculature across healthy and pathological contexts. Beyond these,
566 our openly available dataset has immediate practical applications, such as providing
567 inputs for bioprinting for tissue engineering of artificial kidneys [49] or planning surgical
568 resection of kidney tumours whilst preserving kidney function. [50] These datasets can
569 also be used as a tool for medical education and training, as well as for the creation
570 and advancement of surgical methods.

571 There are several limitations of this work, including the low throughput of the
572 segmentation of this type of data. Here we present the complete analysis from a single
573 kidney, as a framework for future studies to study further kidneys in health and disease,
574 or other intact human organs. The accuracy of the segmentation, however, lays a
575 foundation for tools such as machine learning methods for automated segmentation of
576 blood vasculature from imaging data,[17], [51], [52]. Although the resolution of the
577 organ-wide HiP-CT scan far exceeds conventional *in vivo* and *ex vivo* imaging
578 measures, it still cannot achieve arteriole resolution across the whole organ.
579 Nevertheless, improvements of the ESRF beamline (BM18) have already been
580 developed, and will extend the resolution limit for whole organs down to 8 μm , whilst
581 increasing the speed of scanning. Although the physical access to HiP-CT via the

582 synchrotron is limited, we have released all our data thus far through the Human Organ
583 Atlas portal (<https://human-organ-atlas.esrf.eu/>), for open-access download and use of
584 the data for biomedical researchers.

585 In summary, we have achieved quantitative mapping of the entire arterial
586 network of an intact human kidney for the first time: a vital step towards understanding
587 how physical properties of the kidney vasculature relate to cellular and molecular
588 heterogeneity, whilst generating key inputs for future biophysical modelling of kidney
589 vascular physiology. Ultimately, we envisage that mapping of microstructural detail will
590 become routine at the scale of the whole kidney, providing a means to link cellular
591 events with organ physiology and pathology.

592 **FUNDING**

593 This [publication, dataset, software etc.] has been made possible in part by grants
594 DAF2020-225394 and 2022-316777 (DOI [10.37921/331542rbsqv](https://doi.org/10.37921/331542rbsqv)) from the Chan
595 Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation,
596 and grant CZIF2021-006424 from the Chan Zuckerberg Initiative Foundation, the
597 MRC (MR/R025673/1), the RAEEng (CiET1819-10), and ESRF beamtimes (md1252 &
598 md1290). DALs laboratory is supported by a Wellcome Trust Investigator Award
599 (220895/Z/20/Z) and the NIHR Biomedical Research Centre at Great Ormond Street
600 Hospital for Children NHS Foundation Trust and University College London.

601

602 **ACKNOWLEDGEMENTS**

603

604 **AUTHOR CONTRIBUTIONS**

605 P.D.L, R.J.S., and, P.T. conceptualized the project and designed experiments; P.T.
606 designed and built instrumentation for HiP-CT imaging; P.T. J.B and C.L.W. designed
607 and implemented tomographic reconstruction areas; S.R. , J.B, S.N and C.L.W.
608 designed, managed and performed image analysis; S.R. and C.L.W. modelled,
609 quantified and provided results; S.R., C.L.W., R.J.S., D.A.L., D.J.J., and P.D.L,
610 provided results interpretation and discussion; S.R., C.L.W., D.J.J., and D.A. L. wrote
611 the paper; D.J.J. and D.A.L. provided medical interpretation for kidney analysis. All
612 authors assisted in reviewing and revising the manuscript.

613

614 **DATA SHARING STATEMENT**

615 The image data that form the basis of the study findings are freely available at the
616 ESRF data repository (<https://human-organ-atlas.esrf.eu>). Additionally, the spatial
617 graph data of the kidney arterial network, along with the computed morphological

618 parameters, can be accessed in Supplementary data which will be released following
619 peer review.
620

621 **REFERENCES**

622 [1] G. Molema and W. C. Aird, 'Vascular heterogeneity in the kidney', in *Seminars in*
623 *nephrology*, Elsevier, 2012, pp. 145–155.

624 [2] S. J. Dumas *et al.*, 'Phenotypic diversity and metabolic specialization of renal
625 endothelial cells', *Nat Rev Nephrol*, vol. 17, no. 7, pp. 441–464, 2021.

626 [3] D. A. Long, J. T. Norman, and L. G. Fine, 'Restoring the renal microvasculature to
627 treat chronic kidney disease', *Nat Rev Nephrol*, vol. 8, no. 4, pp. 244–250, 2012.

628 [4] L. F. M. Cury, G. D. Maso Talou, M. Younes-Ibrahim, and P. J. Blanco, 'Parallel
629 generation of extensive vascular networks with application to an archetypal human
630 kidney model', *R Soc Open Sci*, vol. 8, no. 12, Dec. 2021, doi: 10.1098/rsos.210973.

631 [5] D. J. Marsh, D. D. Postnov, O. V Sosnovtseva, and N.-H. Holstein-Rathlou, 'The
632 nephron-arterial network and its interactions', *American Journal of Physiology-Renal
633 Physiology*, vol. 316, no. 5, pp. F769–F784, 2019.

634 [6] A. d'Esposito *et al.*, 'Computational fluid dynamics with imaging of cleared tissue and
635 of in vivo perfusion predicts drug uptake and treatment responses in tumours', *Nat
636 Biomed Eng*, vol. 2, no. 10, pp. 773–787, 2018, doi: 10.1038/s41551-018-0306-y.

637 [7] C. L. Walsh, M. Berg, H. West, N. A. Holroyd, S. Walker-Samuel, and R. J. Shipley,
638 'Reconstructing microvascular network skeletons from 3D images: what is the ground
639 truth?', *Comput Biol Med*, vol. 171, p. 108140, 2024.

640 [8] P. Xu *et al.*, 'A hybrid approach to full-scale reconstruction of renal arterial network',
641 *Sci Rep*, vol. 13, no. 1, p. 7569, 2023.

642 [9] D. J. Marsh, D. D. Postnov, D. J. Rowland, A. S. Wexler, O. V Sosnovtseva, and N.-
643 H. Holstein-Rathlou, 'Architecture of the rat nephron-arterial network: analysis with
644 micro-computed tomography', *American Journal of Physiology-Renal Physiology*, vol.
645 313, no. 2, pp. F351–F360, 2017.

646 [10] D. S. Perrien *et al.*, 'Novel methods for microCT-based analyses of vasculature in the
647 renal cortex reveal a loss of perfusable arterioles and glomeruli in eNOS-/-mice', *BMC
648 Nephrol*, vol. 17, no. 1, pp. 1–10, 2016.

649 [11] D. A. Nordsletten, S. Blackett, M. D. Bentley, E. L. Ritman, and N. P. Smith,
650 'Structural morphology of renal vasculature', *Am J Physiol Heart Circ Physiol*, vol.
651 291, no. 1, 2006, doi: 10.1152/ajpheart.00814.2005.

652 [12] N. Parvin, J. R. Charlton, E. J. Baldelomar, J. J. Derakhshan, and K. M. Bennett,
653 'Mapping vascular and glomerular pathology in a rabbit model of neonatal acute
654 kidney injury using MRI', *Anat Rec*, vol. 303, no. 10, pp. 2716–2728, 2020.

655 [13] J. Foiret, H. Zhang, T. Illovitsh, L. Mahakian, S. Tam, and K. W. Ferrara, 'Ultrasound
656 localization microscopy to image and assess microvasculature in a rat kidney', *Sci
657 Rep*, vol. 7, no. 1, p. 13662, 2017.

658 [14] J. Huang *et al.*, 'A cationic near infrared fluorescent agent and ethyl-cinnamate tissue
659 clearing protocol for vascular staining and imaging', *Sci Rep*, vol. 9, no. 1, p. 521,
660 2019.

661 [15] A. Klingberg *et al.*, 'Fully automated evaluation of total glomerular number and
662 capillary tuft size in nephritic kidneys using lightsheet microscopy', *Journal of the
663 American Society of Nephrology*, vol. 28, no. 2, pp. 452–459, 2017.

664 [16] O. Ogunlade *et al.*, 'In vivo three-dimensional photoacoustic imaging of the renal
665 vasculature in preclinical rodent models', *American Journal of Physiology-Renal
666 Physiology*, vol. 314, no. 6, pp. F1145–F1153, 2018.

667 [17] W. Zheng *et al.*, 'Deep Learning Enhanced Volumetric Photoacoustic Imaging of
668 Vasculature in Human', *Advanced Science*, vol. 10, no. 29, p. 2301277, Oct. 2023, doi:
669 <https://doi.org/10.1002/advs.202301277>.

670 [18] S. Balıkçı Dorotea, T. Banzato, L. Bellini, B. Contiero, and A. Zotti, 'Kidney
671 Measures in the Domestic Rat: A Radiographic Study and a Comparison to
672 Ultrasonographic Reference Values', *J Exot Pet Med*, vol. 25, no. 2, pp. 157–162,
673 2016, doi: <https://doi.org/10.1053/j.jepm.2016.03.011>.

674 [19] M. J. Musa and A. Abukonna, 'Sonographic measurement of renal size in normal high
675 altitude populations', *J Radiat Res Appl Sci*, vol. 10, no. 3, pp. 178–182, 2017, doi:
676 <https://doi.org/10.1016/j.jrras.2017.04.004>.

677 [20] O. K. Zenin, E. S. Kafarov, O. A. Beshulya, L. A. Udochkina, and H. M. Bataev,
678 'Quantitative Anatomy of the Intrainguinal Arterial Kidney', in *International
679 Conference on Health and Well-Being in Modern Society (ICHW 2019)*, Atlantis Press,
680 2019, pp. 129–132.

681 [21] S. Zhao *et al.*, 'Cellular and molecular probing of intact human organs', *Cell*, vol. 180,
682 no. 4, pp. 796–812, 2020.

683 [22] I. U. Vagabov, E. S. Kafarov, O. K. Zenin, T. S. Dokaeva, and K. M. Bataev,
684 'Segmental Arteries as Sources of Formation of Arterial Segments of Human Kidney',
685 in *The International Conference "Health and wellbeing in modern society" (ICHW
686 2020)*, Atlantis Press, 2020, pp. 341–346.

687 [23] L. Timms *et al.*, 'Ferumoxytol-enhanced ultrashort TE MRA and quantitative
688 morphometry of the human kidney vasculature', *Abdominal Radiology*, vol. 46, pp.
689 3288–3300, 2021.

690 [24] J. R. Charlton *et al.*, 'Image analysis techniques to map pyramids, pyramid structure,
691 glomerular distribution, and pathology in the intact human kidney from 3-D MRI',
692 *American Journal of Physiology-Renal Physiology*, vol. 321, no. 3, pp. F293–F304,
693 2021.

694 [25] D. J. Jafree *et al.*, 'Three-dimensional imaging and single-cell transcriptomics of the
695 human kidney implicate perturbation of lymphatics in alloimmunity', *bioRxiv*, p.
696 2022.10.28.514222, Jan. 2022, doi: 10.1101/2022.10.28.514222.

697 [26] C. L. Walsh *et al.*, 'Imaging intact human organs with local resolution of cellular
698 structures using hierarchical phase-contrast tomography', *Nat Methods*, vol. 18, no. 12,
699 pp. 1532–1541, 2021.

700 [27] J. Brunet *et al.*, 'Preparation of large biological samples for high-resolution,
701 hierarchical, multi-modal imaging', *bioRxiv*, 2022.

702 [28] A. Mirone, E. Brun, E. Gouillart, P. Tafforeau, and J. Kieffer, 'The PyHST2 hybrid
703 distributed code for high speed tomographic reconstruction with iterative
704 reconstruction and a priori knowledge capabilities', *Nucl Instrum Methods Phys Res B*,
705 vol. 324, pp. 41–48, 2014.

706 [29] J. C. Paetzold *et al.*, 'clDice—A novel connectivity-preserving loss function for vessel
707 segmentation', in *Medical Imaging Meets NeurIPS 2019 Workshop*, 2019.

708 [30] G. S. Kassab, K. Imoto, F. C. White, C. A. Rider, Y.-C. Fung, and C. M. Bloor,
709 'Coronary arterial tree remodeling in right ventricular hypertrophy', *American Journal
710 of Physiology-Heart and Circulatory Physiology*, vol. 265, no. 1, pp. H366–H375,
711 1993.

712 [31] A. N. Strahler, 'Quantitative analysis of watershed geomorphology', *Eos, Transactions
713 American Geophysical Union*, vol. 38, no. 6, pp. 913–920, Dec. 1957, doi:
714 <https://doi.org/10.1029/TR038i006p00913>.

715 [32] K. Horsfield, 'Morphometry of the small pulmonary arteries in man.', *Circ Res*, vol.
716 42, no. 5, pp. 593–597, 1978.

717 [33] A. R. Pries and T. W. Secomb, 'Blood Flow in Microvascular Networks',
718 *Microcirculation*, pp. 3–36, 2008, doi: 10.1016/B978-0-12-374530-9.00001-2.

719 [34] D. J. Marsh, D. D. Postnov, D. J. Rowland, A. S. Wexler, O. V Sosnovtseva, and N.-
720 H. Holstein-Rathlou, ‘Architecture of the rat nephron-arterial network: analysis with
721 micro-computed tomography’, *Am J Physiol Renal Physiol*, vol. 313, no. 2, pp. F351–
722 F360, Aug. 2017, doi: 10.1152/ajprenal.00092.2017.

723 [35] D. D. Postnov *et al.*, ‘Modeling of Kidney Hemodynamics: Probability-Based
724 Topology of an Arterial Network’, *PLoS Comput Biol*, vol. 12, no. 7, pp. e1004922–
725 e1004922, Jul. 2016, doi: 10.1371/journal.pcbi.1004922.

726 [36] C. O’Connor, E. Brady, Y. Zheng, E. Moore, and K. R. Stevens, ‘Engineering the
727 multiscale complexity of vascular networks’, *Nat Rev Mater*, vol. 7, no. 9, pp. 702–
728 716, 2022.

729 [37] J. Ehling *et al.*, ‘Quantitative micro-computed tomography imaging of vascular
730 dysfunction in progressive kidney diseases’, *Journal of the American Society of
731 Nephrology*, vol. 27, no. 2, pp. 520–532, 2016.

732 [38] E. Tekin, D. Hunt, M. G. Newberry, and V. M. Savage, ‘Do Vascular Networks
733 Branch Optimally or Randomly across Spatial Scales?’, *PLoS Comput Biol*, vol. 12,
734 no. 11, pp. e1005223–e1005223, Nov. 2016, doi: 10.1371/journal.pcbi.1005223.

735 [39] W. Deng and K. Tsubota, ‘Numerical simulation of the vascular structure dependence
736 of blood flow in the kidney’, *Med Eng Phys*, vol. 104, p. 103809, 2022.

737 [40] M. Pruijm *et al.*, ‘Renal blood oxygenation level-dependent magnetic resonance
738 imaging to measure renal tissue oxygenation: a statement paper and systematic
739 review’, *Nephrology Dialysis Transplantation*, vol. 33, no. suppl_2, pp. ii22–ii28,
740 2018.

741 [41] S. J. Dumas *et al.*, ‘Phenotypic diversity and metabolic specialization of renal
742 endothelial cells’, *Nat Rev Nephrol*, vol. 17, no. 7, pp. 441–464, 2021, doi:
743 10.1038/s41581-021-00411-9.

744 [42] M. M. Shoja *et al.*, ‘Peri-hilar branching patterns and morphologies of the renal artery:
745 a review and anatomical study’, *Surgical and Radiologic Anatomy*, vol. 30, pp. 375–
746 382, 2008.

747 [43] A. d’Esposito *et al.*, ‘Computational fluid dynamics with imaging of cleared tissue and
748 of in vivo perfusion predicts drug uptake and treatment responses in tumours’, *Nat
749 Biomed Eng*, vol. 2, no. 10, pp. 773–787, 2018.

750 [44] L. F. M. Cury, G. D. Maso Talou, M. Younes-Ibrahim, and P. J. Blanco, ‘Parallel
751 generation of extensive vascular networks with application to an archetypal human
752 kidney model’, *R Soc Open Sci*, vol. 8, no. 12, p. 210973, 2021.

753 [45] E. Brown *et al.*, ‘Physics-informed deep generative learning for quantitative
754 assessment of the retina’, *bioRxiv*, p. 2023.07.10.548427, Jan. 2023, doi:
755 10.1101/2023.07.10.548427.

756 [46] A. B. Brummer *et al.*, ‘Branching principles of animal and plant networks identified by
757 combining extensive data, machine learning and modelling’, *J R Soc Interface*, vol. 18,
758 no. 174, p. 20200624, 2021.

759 [47] E. Tekin, D. Hunt, M. G. Newberry, and V. M. Savage, ‘Do vascular networks branch
760 optimally or randomly across spatial scales?’, *PLoS Comput Biol*, vol. 12, no. 11, p.
761 e1005223, 2016.

762 [48] D. A. Long, J. T. Norman, and L. G. Fine, ‘Restoring the renal microvasculature to
763 treat chronic kidney disease’, *Nat Rev Nephrol*, vol. 8, no. 4, pp. 244–250, 2012, doi:
764 10.1038/nrneph.2011.219.

765 [49] C. G. Lebedenko and I. A. Banerjee, ‘Enhancing Kidney vasculature in tissue
766 engineering—Current trends and approaches: A Review’, *Biomimetics*, vol. 6, no. 2, p.
767 40, 2021.

768 [50] J. J. Hsieh *et al.*, ‘Renal cell carcinoma’, *Nat Rev Dis Primers*, vol. 3, no. 1, pp. 1–19,
769 2017.

770 [51] C. Kirst *et al.*, ‘Mapping the fine-scale organization and plasticity of the brain
771 vasculature’, *Cell*, vol. 180, no. 4, pp. 780–795, 2020.

772 [52] M. I. Todorov *et al.*, ‘Machine learning analysis of whole mouse brain vasculature’,
773 *Nat Methods*, vol. 17, no. 4, pp. 442–449, 2020.

774

775