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Abstract 

 

 

Controlled laboratory stress induction procedures are very effective in inducing physiological and 

subjective stress. However, whether such stress responses are representative for stress reactivity in real 

life is not clear. Using a combined within-subject functional MRI laboratory stress and ecological 

momentary assessment stress paradigm, we investigated dynamic shifts in large-scale neural network 

configurations under stress and how these relate to affective reactivity to stress in real life. Laboratory 

stress induction resulted in significantly increased cortisol levels, and shifts in task-driven neural activity 

including increased salience network (SN) activation in an oddball task and decreased default mode 

network activity in a memory retrieval task. Crucially, individuals showing increased SN reactivity 

specifically in the early phase of the acute stress response also expressed increased affective reactivity in 

real life. Our findings provide (correlational) evidence that real-life affective stress reactivity is driven 

primarily by vigilant attentional reorienting mechanisms associated with SN.  
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Introduction 

Acute stress triggers a cascade of time-dependent processes that result in dynamic shifts of large-scale 

brain network configurations 1,2. These processes are driven by distinct actions of stress-sensitive 

hormones and neuromodulators in the acute phase and in the recovery phase of the stress response 3,4. 

While these dynamics have been studied extensively in experimental models in both animals and 

humans, it is unknown how interindividual differences in stress-induced perturbations of large-scale 

networks are reflected in interindividual differences in reactivity to acute stressors in real life. This 

variability is critical for understanding the role of networks/stress responses in healthy adaptation to 

stress and psychopathology, especially given the involvement of alterations in large-scale networks in 

both stress and psychopathology 5–8. 

Research has implicated three core large-scale brain networks - the salience (SN), executive control 

(ECN), and default mode networks (DMN) - in both reactivity to, and recovery from a stressor through 

the effects of stress-related hormones and neurotransmitters 1,6. The early reactivity phase of the stress 

response is thought to be driven by actions of catecholamines and corticosteroids 4,9. In this phase, 

activation of the locus coeruleus results in tonically elevated release of norepinephrine 10. Increased LC 

activity and norepinephrine have also been associated with overall increased salience network activity 

3,11,12. This coincides with specific environmental demands during acute stress, with an increased need for 

threat vigilance 13. At the same time, studies have also shown ECN and DMN suppression, associated 

with impaired working memory and memory retrieval under acute stress, functions supported by these 

two networks, respectively 14–16.  

Interestingly, these processes may be reversed through slow, gene transcription-dependent 

corticosteroid effects in the later recovery stage of the stress response, starting 1-2 hours following 

stress 4. Following the administration of hydrocortisone, within a time window in which genomic actions 

can be expected, a decrease in SN-related regions is seen 17,18. Delayed effects of hydrocortisone in a 

time window that is consistent with genomic mechanisms have also been linked to upregulation of 

regions associated with the ECN, as well as with improved working memory performance 19. Additionally, 

delayed effects of stress hormones have been shown to result in improved DMN linked memory retrieval 

20. Thus, growing evidence points to a reversal of overall changes in network balance under stress, with a 

decrease in SN, and increase in DMN and ECN related regions driven by later, genomic effects of 

corticosteroids. Arguably, this reversal in the late stage of the stress response serves an adaptive 

function by promoting higher-order cognitive functions required for a return to homeostasis and an 
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optimal preparation for future stressors. While many studies have shown the shifts within these large-

scale networks over the course of either the early or late stress response, the temporal dynamics have 

thus far been only inferred. Within-subject, time dependent shifts in these large-scale networks over the 

full duration of the stress response – including both early nongenomic and late genomic effects – have 

not been thoroughly investigated.  

While laboratory findings are important in establishing a mechanistic understanding of the neural stress 

response, a critical question is how individual dynamics of neural stress reactivity relate to healthy and 

functional responses to stress in real life. Real-life stress is often studied using approaches such as 

Ecological Momentary Assessments [EMA, also known as experience sampling methods or ESM21]. These 

methods leverage repeated assessments in day-to-day lives of participants to derive measures of stress 

reactivity and sensitivity 22–24. While such studies have created the opportunity to quantify stress 

reactivity in daily life, linking these observations to the lab has been a more difficult endeavor. Current 

attempts to derive daily-life stress measures are limited by study designs that are unable to disentangle 

measures of exposure to stressors from measures of the consequences of said exposure. One measure of 

reactivity that can be adapted from resilience research to EMA studies is the residualization-based 

stressor reactivity measure 25. In resilience research, this measure is derived by regressing the change in 

mental health onto a measure of exposure to life stressors. The residuals of this regression then indicate 

changes in mental health that are not explained by the amount of stress exposure 26–28. Here, we 

adapted this measure for EMA research to quantify individual affective reactivity to acute stressors in 

real life at a time scale that is comparable to laboratory studies on acute stress 29. As an outcome 

measure, we used changes in positive affect, which have directly been linked to resilience 30.  

In this study, we used a within-subject cross-sectional design (n=83) to investigate the effects of an 

established psychosocial laboratory stressor on the dynamics of large-scale networks under stress and 

task demand (see Figure 1). We investigated both the initial reactivity (i.e., early phase) and recovery 

phases (i.e., late phase) of this response in a novel functional MRI paradigm combining three tasks (facial 

oddball, numeric 2-back, and associative memory retrieval) that have each been shown to preferentially 

recruit one of the three core large-scale networks of interest (SN, ECN, and DMN, respectively). We then 

compared temporal dynamics under stress to a control scan using a matched, non-stressful procedure to 

determine within-person changes in large-scale network balance across the phases of the stress 

response. Next, we investigated the relationship between this balance and real-life affective reactivity to 

stress. In addition to the two scan sessions, all participants underwent two weeks of EMA, one during a 
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high-stakes exam week, and one during a control week. We used the residualization-based approach 

explained above to compute stressor reactivity scores. We expected to see increased SN, and decreased 

ECN and DMN activity during the early phase of the stress response, with a reversal of this balance in the 

later recovery phase (i.e., decreased SN, and increased ECN and DMN). This hypothesis is based on a 

previously published working model1. We also expected greater SN activation and ECN and DMN 

suppression to be associated with increased real-life stress reactivity, with the opposite effects in the 

recovery phase of the neural response to stress (i.e., smaller decreases or recovery in SN and increases in 

ECN and DMN). 

 

Figure 1. Study Design. A) Stress and control weeks were 
counterbalanced for order, followed by stress and control 
MRI scans that were also counterbalanced between subjects. 
B) Typical scan day for a participant. C) Three tasks 
performed during MRI task blocks including a standard 2-

Back, facial oddball, and associative retrieval task. 
Results 

Deriving a residual-based measure of affective reactivity to stress exposure 

In order to establish the validity of our real-life stress paradigm, we first verified using EMA data whether 

exam weeks were more subjectively stressful than control weeks without exams. During these weeks, 

students received repeated assessments (i.e., beeps) probing perceived stress exposure and affect. We 

used a self-report measure of perceived stress exposure combining three types of stress exposure: 

Event-related (probing the most significant event since the last beep), activity-related (probing the most 

significant current event), and social stress. Positive affect was measured using a four-item questionnaire 
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adapted from previous EMA studies (see Tutunji et al. 2023  for details 31). Participants showed a 

significant increase in the number of beeps during the exam week in which perceived stress exposure 

was above their overall average (Odds Ratio=-1.67, SE=0.14, t-stat=6.033, p<0.001, Figure 2A) in addition 

to lower overall positive affect (β=-0.77, SE=0.11, t-stat=-6.80, p<0.001, Figure 2B) compared to the 

control week. 

To derive subject-level estimates of the effects of exam weeks on mood and perceived stress exposure, 

random effects were extracted from the mixed effects models. We found a significant negative 

association between increased stress exposure and reduced positive affect in the exam week as 

compared to the control week (β=-0.84, SE=0.17, t-stat=-5.09, p<0.001, Figure 2C). By extracting the 

residuals from this analysis, a measure can be derived of the deviation from the expected change in 

positive affect relative to the amount of reported stress exposure. That is, residuals above the line 

indicate a lower impact of stress exposure on affect, and vice versa for those below the line. The inverse 

of these residuals can thus be used as a residual-based affective reactivity score to estimate the within-

subject reactivity controlling for potential differences in individual levels of perceived exposure to stress 

(Figure 2C). As a final step, we investigated whether interindividual differences in stress reactivity were 

related to personality or trait characteristics that are linked to psychopathology. Therefore, we 

correlated this measure with neuroticism scores from the NEO-FFI. There was a trend-level association 

between neuroticism and the residual-based score (r(72)=0.21, p=0.054). 
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Figure 2. Residualization-based affective reactivity score calculation. The averaged effects of 
examination weeks on (A) subjective stress levels and (B) positive affect, with individual colored 
lines shown for the modeled random subject-level effects. (C) These random effects (RE) were 
extracted from each model and then regressed onto each other. Positive affect changes were 

then residualized with respect to the exposure measure and inverted, resulting in affective 
reactivity scores. Thus, blue dots above the line indicate lower affective reactivity to stress 

exposure, while red dots under the regression lines indicate higher affective reactivity scores. 
 

Cortisol responses and autonomic responses to the SECPT 

We next investigated whether our laboratory stressor was effective in inducing changes in cortisol and 

autonomic arousal. Results of the mixed model showed a significant stress (stress, control) by time (1-5 

samples at T1=-3, T2=14, T3=42, T4=87, and T5=160 min relative to stress onset) effect on salivary cortisol 

levels (log transformed estimate, β=1.00, SE=0.006, t-stat=2.44, p=0.015, Figure 3A). There was an 

additional significant effect of sex (β=-0.16, SE=0.08, t-stat=-2.06, p=0.040), with the difference being 

driven by attenuated cortisol responsiveness in hormonal contraceptive users specifically (β=0.26, 

SE=0.10, t-stat=2.69, p=0.007). Follow-up tests showed significantly lower cortisol in the stress session 

relative to the control session immediately following the stress induction procedure, after Tukey 

correction (T=9 minutes, β=0.173, SE=0.084, p=0.039), but expectedly higher cortisol at the third and 

fourth samples (T=39 minutes, β =-0.296, SE=0.84, p<0.001, and T=85 minutes, β=-0.165, SE=, p=0.0497). 

No significant differences in cortisol were observed in the last sample (T=160 minutes, SE=-0.101, t-

stat=0.084, p=0.229). We used the difference in the area under the curve with respect to increase (AUCi) 

in the early phase as a base measure of cortisol stress reactivity in later models. To this end, a mixed 

effects model showed that AUCi of salivary cortisol was significantly higher in the stress session 

compared to the control session, when controlling for scan order effects (Mdiff=103.86, t=3.975 p<0.001). 
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Figure 3. Physiological changes in response to SECPT. A) Salivary cortisol response showing increased 
cortisol in response to the SECPT compared to the control procedure. B) Average heart rate (beats per 
minute) and C) average heart rate variability (RMSSD, ms) per scanner run separated by whether 
participants had the control or stress scan first. Participants who had the stress session first exhibited 
increased heart rate and decreased heart rate variability (RMSSD) during the stress session. Error bars = 
SEM.  

 

We furthermore examined autonomic reactivity to stress by looking at average heart rate and heart rate 

variability during the scanner runs (starting at 18, 30, 41, 53, 60 minutes post stress in the early phase, 

and 98, 111, 117, 128, and 135 minutes post stress in the late phase). For average heart rate (BPM), 

there was a main effect of time (β=-0.11, SE=0.04, t-stat=-2.90, p=0.004), a stress by scan order 

interaction (β=-2.51, SE=0.81, t-stat=-3.08, p=0.002), and a time by scan order interaction (β=-0.12, 

SE=0.04, t-stat=-3.20, p=0.001). We also found a three-way interaction between stress, time, and scan 

order (β=0.20, SE=0.05, t-stat=3.83, p<0.001).  Overall, participants who had the stress session first 

showed increased heart rate during the stress session, while we found no between-session differences in 

those who had the control scan first. Additionally, over time heart rate in the stress session remained 

higher than in the control session only in those who had the stress scan first (full model results in SM text 

1). 

There was also a significant main effect of time on heart rate variability (RMSSD, β=-0.13E-3, SE=0.052E-

3, t-stat=-2.494, p=0.013), a stress by time interaction (β=0.223E-3, SE=0.076e-03, t-stat=2.933, 

p=0.003), and a stress by scan order interaction (β=1.894E-3, SE=0.798E-3, t-stat=-2.373, p=0.018). 
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Follow-up tests indicated that participants who had the stress scan first showed reduced heart rate 

variability in the stress session (β=-0.003, SE=0.001, t-stat=-3.022, p=0.003, Figure 3). No significant 

effects were seen in participants who had the control session first. Additionally, over time, there was a 

significant increase in heart rate variability in the control, but not the stress session (see SM Text 1 for 

full results). Together, these results indicate that our stress induction procedure was successful in 

inducing the expected autonomic changes. 

Task-induced network activations in SN, ECN, and DMN 

Before testing our main hypothesis with regards to temporal shifts in network activation under stress, 

we first verified whether the intermixed oddball, 2-back, and associative memory retrieval task blocks 

indeed induced the expected activation in SN, ECN, and DMN, respectively. In a GLM context, activity 

induced by each task was modeled in separate regressors and convolved with a canonical hemodynamic 

response function. For SN, we contrasted oddball trials with non-target faces, for ECN, we calculated the 

contrast between two-back target trials and non-target trials, while for DMN, we contrasted 

remembered and forgotten trials. See Figure 4 for whole-brain results. 
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Figure 4. Main Task Effects. Main task effects across all task runs for each of the contrasts for the SN-

oddball task (A, MNIxyz=41 91 35 mm), ECN-2back task (B, MNIxyz=27 33 29 mm), and DMN-associative 

retrieval task (C, MNIxyz=41 91 35 mm). Increased activity seen within expected regions of interest as 

well as some overlap in the SN and ECN contrasts, as well as an unexpected decrease in the DMN 

contrast. Results are whole-brain corrected with a cluster forming threshold of Z>3.1 and whole-brain 

corrected cluster significance level of P<0.05.   

 

Contrast parameter estimates for each task were then averaged within each of the three networks and 

entered into mixed-effects models. As our hypothesis pertains to specific changes within networks over 

time, separate models were fit for the SN, ECN, and DMN. There was expected significant SN-related 

activity in the Oddball>Standard contrast (β=1.11, SE=0.06, t-stat=18.21, p<0.001) and significant 

activation in the ECN to the 2Back>non-target trials (β=0.57, SE=0.07, t-stat=8.73, p<0.001). Contrary to 

expectations, we saw a significant overall decrease in the DMN for the Remembered>Forgotten contrast 

(β=-0.35, SE=0.05, t-stat=-7.45, p<0.001).  

 

Stress results in shifts in SN and DMN 

We next tested our main hypotheses regarding temporal shifts under stress in the networks across time 

in each network separately. Within the SN, there was a significant stress by phase interaction effect 

(β=0.22, SE=0.07, t-stat=02.99, p=0.003), with increased SN activity in the early phase of the stress 

response relative to the control condition (β=0.35, SE=0.13, t-stat=2.77, p=0.007), but not in the late 

phase (β=-0.10, SE=0.13, t-stat=0.77, p=0.444). Additionally, there was a significant reduction of activity 

in the late stress session compared to the early stress session (β=-0.44, SE=0.15, t-stat=-2.99, p=0.003). 

Within the DMN, there was an overall decrease in activity in the stress session compared to the control 

session across both phases (β=0.11, SE=0.04, t-stat=2.40, p=0.016). Furthermore, there was a significant 

main effect of scan order on DMN, with greater suppression seen in participants who had the stress scan 

first (β=-0.11, SE=0.05, t-stat=-2.24, p=0.025). No significant stress effects were seen in ECN activity 

(Main effect of stress: β=-0.02, SE=0.09, t-stat=-0.18, p=0.858, Figure 5A). We finally tested whether 

cortisol stress reactivity, as measured by the AUCi differences between stress and control sessions, 

moderated the effects of stress on any of the networks. No significant relationship between cortisol and 

any of the networks was found (analysis results can be found in the SM). 
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SN stress reactivity is related to affective reactivity to stress in real life 

We finally investigated the association between shifts in large-scale networks under stress and real-life 

affective reactivity to stress using mixed effects models with network as a factor. There was a significant 

three-way interaction between stress, phase, and real-life affective reactivity within the SN, but not the 

ECN and DMN, indicating that affective reactivity in real life is linked to timing-dependent changes in the 

central response to stress (β=-0.23, SE=0.10, t-stat=-2.17, p=0.030). Follow-up tests showed that effects 

were driven by changes in the early phase of the stress response (β=0.71, SE=0.35, t-stat=-2.05, p=0.045) 

as opposed to the late phase (β=0.18, SE=0.35, t-stat=0.50, p=0.622; Figure 5B). 

 

Figure 5. Effects of stress on large scale networks over time and real-life stress reactivity. A) 

Stress-Control differences in each of the networks in both the early and late phases of the stress 

response showing overall suppression of DMN under stress, and an increase in SN activity in early 

phase of stress reactivity. B) Decreased SN reactivity to stress is related to increased resilience in 

daily life.  Error bars = SEM. 

 

Stress related SN activity enhances vigilance  

We finally investigated associations between changes in networks under stress and performance 

measures from each of the corresponding tasks. This was done to investigate the impact of stress not 
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just on brain activity, but also on task performance associated with the networks. In the oddball task, 

participants reacted significantly faster to the presentation of an oddball stimulus in the stress compared 

to the control session (β=0.97, SE=0.01, t-stat=-3.09, p=0.002). There was an additional main effect of 

time, with average reaction times being slower in the late phase of the MRI scan (β=0.98, SE=0.01, t-

stat=-4.09, p<0.001). An exploratory mediation analysis was run to examine whether this was due to 

significant stress effects in SN under stress. Mediation models were run with simple slopes and subject 

as a random effect. Stress-induced SN activity significantly mediated the relationship between stress and 

reaction times during the presentation of oddball stimuli (β=0.0361, 95% CI=[ -0.819, 0.00], p=0.03). This 

indicates that increased SN activity under stress enhances reaction times in a vigilance-oriented task. 

Participants furthermore performed worse on the oddball facial recognition task outside of the scanner 

(immediately after the early phase scans, and then again the later phase) in the stress versus the control 

session, as measured by d-prime (β=-0.42, SE=0.06, t-stat=7.55, p<0.001, Figure 6A).  This was driven by 

both fewer hits (β=-3.29, SE=0.67, t-stat=4.87, p<0.001, Figure 6B), and more false alarms (β=1.68, 

SE=0.42, t-stat=4.04, p<0.001, Figure 6C). Interestingly, there was also a significant interaction effect of 

session (stress versus control) and SN activity during encoding on subsequent false alarms (β=1.05, 

SE=0.48, t-stat=2.18, p=0.030, Figure 6D). Post-hoc tests contrasting stress and control sessions showed 

a significant difference between slopes (β=-1.05, SE=0.5 t-stat=-2.098, p=0.0371), with a steeper positive 

slope of the regression of false alarm rates onto SN activity for the stress (slope=0.461) versus the 

control condition (slope=-0.588). 
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Figure 5. Oddball Task Measures. D-prime (A), Hits (B), and False 

alarms (C) differed significantly between the stress and control 

sessions, with lower d-prime under stress driven by both fewer hits, 

and more false alarms. SN (salience network) activity was also 

related to false alarms differently in the stress and control session 

(D).  

 

A one sample, two-sided t-test against the expected chance level (25%) in the DMN associative memory 

retrieval task (performed during scanning) showed that participants performed significantly above 

chance levels (Mean accuracy=61.5%, t-stat=255.65, p<0.001). There were significant stress effects or 

phase effects neither in reaction times, nor in the ability to recall images. There was, however, a 

significant effect of valence. Participants responded faster (β=-0.0018, SE=0.0009, t-stat=-2.063, 

p=0.0392) and with more accuracy (β=0.027, SE=0.004, t-stat=7.266, p<0.001) to images that were 
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negatively valenced compared to neutral ones. There were no significant differences between stress and 

control sessions in the 2Back/ECN task when looking at the reaction times, proportion of errors, or the 

LIASES score (Null results in online notebook). 
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Discussion 

In this study, we aimed to test how brain activity changes over the course of the stress response, and 

whether changes in large-scale neural networks under stress are associated with real-life stress 

reactivity. Laboratory stress induced a network-dependent and time-dependent shift in BOLD activity, 

with an early increase and a later decrease in responsiveness of the salience network (SN), alongside 

increased suppression of the default mode network (DMN) throughout. Importantly, increased early SN 

reactivity to stress was associated with increased affective reactivity to stress in real life as measured 

with ecological momentary assessment (EMA). Our results highlight how neural network configurations 

time-dependently change in response to (laboratory-based) stress induction. Crucially, interindividual 

differences in these network reconfigurations are related to affective reactivity to real-life stressors.  

Affective reactivity to daily-life stress was linked to SN reactivity to salient stimuli in the early, 

catecholaminergically dominated, phase of the stress response. Although we found a return to baseline, 

we found no association with SN activity during the late phase of the stress response, which is thought to 

be dominated by genomically driven effects of glucocorticoids. Interestingly, our affective reactivity 

measure corresponds to in-the-moment stress, which falls into a time scale similar to that of the early 

phase of the acute stress response. Our results are in line with two previous studies that connected real-

life affective dynamics to neural measures. One study was able to link negative affect inertia to increased 

responses to social feedback in the insula – a core node of the SN 32. Another study found a link between 

stress-induced dopaminergic activity using PET to psychotic reactivity to stress in real life 33. The usage of 

PET imaging however does not allow for investigations of temporal shifts as a result of hormonal changes 

relating to stress response. Utilizing fMRI, we were able to link real-life measures to the full scope of the 

stress response, including both the reactivity and recovery phases. 

In our data, stress-related SN activation mediated decreased reaction times to unexpected oddball 

stimuli in the stress session, indicating heightened vigilance supported by SN activity. Previous evidence 

has linked the SN to vigilance and attentional reorienting mechanisms34,35 which are enhanced by 

stress36. As suggested by our findings, in real-life, this may translate to increased vigilance in stressful 

situations, resulting in greater affective reactivity to stressors. This mechanism may possibly be related 

to increased attention to threats or negative events, and may be at the core of attentional bias to 

negative or stressful events typically observed in anxiety and depression37.  

The fMRI results additionally confirm the hypothesis based on the model proposed by Hermans and 

colleagues (2014) that the early stress response is characterized by a shift towards increased SN activity 
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in a task-based setting1. This is in line with findings of increased functional connectivity in the SN in 

response to stress7,38,39, a process that is thought to be driven by norepinephrine release from the locus 

coeruleus (LC)3,12. Norepinephrine release is accompanied by activation of the sympathetic autonomic 

nervous system, resulting in increased heart rate, which often coincides with reduced heart rate 

variability15, as also found in our study. Finally, we found a return to baseline in SN activity in the later 

recovery stage of the stress response where corticosteroids have been shown to be involved1,17. This 

indicates that the initial shift in stress systems is later reversed when recovering from a stressor. 

We found suppressed DMN activity during the early phase of the acute stress response, which is in line 

with previous studies16,40. More surprisingly, this suppression persisted in the recovery phase, two hours 

after the onset of the stressor. The DMN is implicated in memory retrieval functions, as well as in self-

referential processing and rumination41–44. Yet, no impairment of retrieval functions as a function of 

stress was seen on the associative memory retrieval task conducted during scanning. We did however 

observe a negative effect of stress on the oddball facial recognition performance just after scanning. 

However, this effect is difficult to interpret because encoding for this task also took place after stress 

induction. Worth noting is that the reduction in DMN may instead indicate decreased internally directed 

cognition, which is the cost of increased SN-driven exogenous attention in the early phase42,45. 

Additionally, no links between the DMN and real-life stress were established. While previous evidence 

has linked the DMN to depressive rumination and negative affect in daily life44, our findings do not 

support the role of DMN-driven rumination as a mechanism of affective reactivity to stress. 

It is worth noting that the associative retrieval task did not elicit increased DMN activity relative to a 

fixation baseline, in contrast with previous evidence41,45–47. Our specific paradigm may not allow for 

sufficient DMN engagement given the traditional view of the DMN as a task negative network48. Another 

possible explanation may come from a deviation from the original protocol which used only neutral 

images49. Our design utilized both negative and neutral images, which is a commonly used procedure to 

investigate affective processes50,51. Given the higher accuracy and faster reaction times to negatively 

valent images, it may be that valence-related mechanisms overshadowed previously reported task 

effects, resulting in suppression of the DMN in our contrast. Despite that, however, we were still able to 

see stress effects on DMN in our study.  

We expected to see decreased ECN activity in the early reactivity phase of the stress response, and an 

increase in the late phase 1,15. This latter process is putatively driven by genomic effects of cortisol 

released in the early phase 4. Previous work has shown coupling of ECN and SN under stress, with a 
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breakdown of this process only at higher levels of arousal 39,52. It is possible that arousal levels in our 

study were not high enough to induce this decoupling, thus resulting in co-activation of ECN along with 

SN. This weaker stress response may also explain the lack of ECN upregulation during the late phase, as it 

is thought to occur due to genomic influences of cortisol released in the early phase 4. Previous work has 

found administration of corticosteroids enhances ECN activity within the time frame of genomic 

corticosteroid effects following stress exposure19,53. Such studies used high doses of corticosteroids (peak 

measures of salivary cortisol at around 40-130 nmol/L) that may not be comparable to those resulting 

from the stress induction paradigm (around 5.6 nmol/L in our study). Higher doses in pharmacological 

studies, as well as individual variations in responses to stress induction may explain the lack of 

suppression. Finally, we found a significant sex difference in cortisol responses that was driven by 

blunted responses in males relative to hormonal contraceptive users. While important to investigate, 

such effects of contraceptive use and sex are beyond the scope and power of the current study, and thus 

we refrain from further interpretation. 

In addition to neural findings, we also demonstrate the successful utilization of a dynamic EMA-based 

residualization method to a daily affect measure. This measure is novel in capturing interindividual 

differences in positive affect changes in response to in-the-moment stress. We focus on positive affect as 

our previous work has shown that stress seems to have a bigger impact on positive rather than negative 

affect54. This may be due to respondents showing greater variability when answering positive affect 

items, which is reflected in the skewed distribution of negative affect. Additionally, previous work has 

linked self-reported momentary resilience directly to positive affect in daily life30. By correlating this 

measure to neuroticism, we also show that it partially relates to an established personality trait that is 

linked to psychopathology55. 

While our results on stress dynamics in the lab and real life are novel, their long-term relationship to 

resilience is still an open question. Some studies have shown affective responses in daily life to be linked 

not only to momentary mood and psychiatric symptom expression, but also future mental health 

outcomes56–58. Thus, our measure may capture these same mechanisms at work in a shorter time frame. 

Some prospective studies have also investigated how long-term resilience is related to brain activity of 

large-scale networks. These studies have shown increased SN activation to be predictive of later mental 

health outcomes as well38,59. Together, these findings suggest that the mechanism leading to poorer 

mental health outcomes could be related to stress-induced enhancement of vigilance related processing 

that has a long-term impact. 
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In conclusion, our study demonstrates that neural stress reactivity is associated with stress reactivity in 

real life. These findings demonstrate ecological validity of neuroscientific research in the context of 

stress. Furthermore, partly in line with our hypothesis, we demonstrate a change in large scale networks 

under stress, with increased SN reactivity immediately following threat that returns to baseline during 

stress recovery. Importantly, our results indicate that SN-related attentional mechanisms following stress 

are linked to affective reactivity in daily life. Individuals who show enhanced SN activity immediately 

following a laboratory stressor also show enhanced reactivity to stressful events in real-life contexts 

outside of the laboratory. Mechanisms such as increased vigilance under stress may have implications 

for our understanding of how stress related disorders develop. It may be that increased vigilance to 

threat can lead to impaired recovery from stress in the long-term, resulting in poorer mental health 

outcomes. Indeed, recent studies have indicated this hypervigilance may be risk markers for 

development of stress related disorders 60. Future extension of these findings in prospective studies and 

clinical populations may help in uncovering the real-life consequences of neural underpinnings of these 

disorders. 
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Methods 

Participants 

Eighty-three students in the first year of the bachelor’s program for biomedical science and medicine 

were recruited for this study. Participants were healthy, right-handed, Dutch speaking volunteers with 

no history of psychiatric or neurological illness at the time of recruitment. Participants first completed 

two counterbalanced weeks of stress assessments in daily life (i.e., Ecological Momentary Assessments, 

EMA), one with an ecological exam stressor and the other without. At the end of each of the weeks, 

participants completed a series of computer tasks and a questionnaire battery. This was followed by two 

counterbalanced fMRI sessions, one with a stress induction procedure using a modified version of the 

socially evaluated cold pressor test (SECPT, Schwabe & Schächinger, 2018), and the other with a matched 

control task. All procedures were approved by the local medical-ethical committee (METC Oost-

Nederland; Figure 1).  

Five participants withdrew prior to completion of all scanning sessions. Due to issues that occurred 

during scanning, an additional three participants were also excluded. Reasons included incorrect 

stimulus presentation during scanning (1), scanner-related malfunctions (1), and incidental findings (1). 

Finally, due to the COVID-19 outbreak an additional five participants were unable to complete either one 

or both scan sessions and were thus excluded from the MRI portion of the study, bringing the total 

number of participants to 70 (f=43 (61.4%)).  

Real-life affective reactivity 

Participants completed repeated EMA surveys (or beeps) delivered to their phones six times a day for 

two separate weeks: One week during a high-stakes examination period (i.e., a stress week), and the 

other outside this period (i.e., control week). Surveys assessed stress levels as predictors and affect as an 

outcome. Stress was assessed using questions regarding (1) the most stressful event experienced since 

the last beep (i.e., event-related stress), (2) stress related to the activity participants were engaged in 

when answering the surveys (i.e., activity-related stress), (3) stress relating to the social context 

participants were in at the time of the beep (i.e., social stress), and (4) physical stressors. Affect items 

were collected for positive and negative mood.  Additionally, ambulatory data was collected from wrist-

worn devices measuring aspects of physiological arousal. At the end of each of these weeks, participants 

filled in a questionnaire battery. Within the scope of the current paper, only subjective stress and 

positive affect measures are used from the EMA data. Full details and results of the EMA weeks are 
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reported in previous work, and the full questionnaire set can be found in the associated GitHub 

directory54. 

Laboratory stress and the neural response 

We investigated laboratory stress using a multi-day fMRI paradigm. Participants took part in three MRI 

scan days: one structural scan day and two functional scan days (stress and control days, order 

counterbalanced between participants). Structural scans were used to reduce scanner-related 

apprehension in scanner-naïve participants. Those with prior scanning experience were only scheduled 

for the two functional scan days, and structural scans were appended to the end of their first fMRI 

session. Participants were asked to be present two hours prior to the functional scans, between 10:00 

and 16:00, to allow cortisol levels to return to baseline prior to testing, and to account for diurnal cortisol 

fluctuations. During this time, participants practiced the tasks they would later perform in the scanner 

(reported in the fMRI Task Section, Figure 1C). Following the rest period, participants were escorted to 

the MRI scanner, where skin conductance electrodes and a PPG heart rate sensor were attached to their 

left hand, and respiration belt was attached below the chest. The stress sessions included a modified 

version of the Socially Evaluated Cold Pressor Test (SECPT), and the other a matched control protocol 61.  

The SECPT or control procedure began promptly following scanner set-up. The SECPT was performed by 

a novel male experimenter with whom participants had no prior interaction (i.e., the stressor). The 

stressor briefly introduced himself and proceeded with placing the participant’s foot in ice water (0-2 °C) 

for three minutes. Participants were able to ask to have their foot removed earlier, but only if they found 

the procedure unbearable. This was followed by a mental arithmetic task where participants were 

required to count backwards from 1872 (the number of contractual hours the authors work per year) in 

steps of 17 for three minutes. If they were too slow, or made a mistake, the stressor would ask that 

participants restart the task. The stressor maintained a neutral tone, and eye contact with the 

participant throughout. The control session was matched for time, with a familiar experimenter 

performing all procedures. For this procedure, water was at room temperature (21-25 °C), and the 

arithmetic task was to count upwards from 0 in steps of 5. Participants were not corrected in the event 

of errors. At the end of the stress session, participants were debriefed regarding the SECPT protocol. 

Saliva samples were acquired before and after the stress/control procedures. A full SOP is provided in 

the data repository. 

Saliva sampling began before stress induction (T1=-3min). This was followed with a saliva sample after 

stress induction (T2= 14 minutes). The remaining samples were acquired immediately following the first 
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resting state run (T3=42 minutes), at the end of the early phase of scanning (T4=87 minutes), and at the 

end of the last phase of scanning (T=160 minutes). Saliva samples were stored on site at -80° C until they 

were shipped for offsite analysis in Dresden, Germany. After thawing, salivettes were centrifuged at 

3,000 rpm for 5 min, which resulted in a clear supernatant of low viscosity. Salivary concentrations were 

measured using commercially available chemiluminescence immunoassay with high sensitivity (IBL 

International, Hamburg, Germany). 

fMRI Tasks 

Participants performed a series of fMRI tasks in two phases immediately following the SECPT/Control 

procedure. The first phase examining stress reactivity (i.e., the early phase) followed the SECPT/control 

procedure and consisted of three task runs of 11.5 minutes each, with two interleaved resting-state runs 

of five minutes in between (Figure 1B) for a total of approximately 50 minutes including saliva sampling 

following the first resting-state run. Participants were then taken out of the scanner for a short 20-

minute break before continuing with the second half of scanning (hereafter the late phase). A total of 21 

different task blocks were presented during each run, and a total of 21 blocks of each task were shown in 

each phase of the scanning session. Task blocks consisted of 27 seconds, followed by 6 seconds of rest 

before the next task. During this time, participants were shown a shape on the screen that indicated 

what the next task would be. Task order was pseudorandomized to maximize the number of times 

participants had to switch from one task to another. Tasks were selected based on previous evidence 

implicating the involvement of one of the three networks of interest (i.e., SN, ECN, DMN) as follows: 

Oddball. A facial oddball paradigm was selected for SN recruitment based on previous research showing 

robust SN activity during the presentation of an oddball stimulus35. Participants were shown a stream of 

faces with one standard neutral face being shown most of the time, and a novel oddball face with an 

emotional expression being shown 16% of the time. Participants also performed a facial recognition task 

outside the scanner following each phase (i.e., early and late), with 40 oddball targets shown in the 

scanner, and 20 lures. Faces were selected from four databases: Amsterdam Face Database, Radboud 

Face Database, Karolinska Directed Emotional Faces, and the Chicago face database 62–65.  

2-Back. Working memory tasks are often used to recruit the Executive Control Network 66. To this end, 

we selected a 2-back task. Participants were presented with a stream of numbers and were instructed to 

press a button when the most recent number they had seen was the same as the number two places 

back (e.g., 3, 1, 3).  A total of 15 trials per block were presented. Individual trials lasted for 1.8 seconds, 

with a stimulus being present for approximately 400 milliseconds 15.  
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Associative Retrieval. The default mode network has been shown to be active during internal thought 

processes, and memory retrieval tasks. To this end, we used an adapted version of an associative 

retrieval task 49. On the scan day, but prior to the scan, participants performed two encoding sessions 

spaced 45 minutes apart to simulate the time in between the two scan phases (i.e., early and late 

encoding) during that day. During the encoding sessions, participants viewed a series of images that 

were negatively or positively valent which moved to one of four corners of the screen. Participants were 

told that they would be tested on the object-location association in the scanner. During scanning, 

participants engaged in a retrieval task where they were presented with the images from the encoding 

session and asked to indicate the location of the image using a button box.  

EMA Data Analysis 

We adopted a residual-based stress score to derive a measure of real-life affective reactivity to stress 25. 

First, two general linear mixed effects models were used to estimate the effect of stress exposure (i.e., 

control or exam week) on stress reports (model 1) and positive affect (model 2). For model 1, an 

aggregate measure of stress was calculated from the total of the event, activity, and social stress scales. 

When participants reported stress levels above their individual means, surveys were labelled as “More 

Stress”. Responses below the individual mean were labeled as “Less Stress”.  This was done to reduce 

affect-congruency effects and was modeled using a binomial family. Model 2 used positive affect as a 

continuous variable. In both models, we added a random effect of subject, and a random slope and 

intercept for week type effects. Random effects of these models would therefore indicate the subject 

level impact of stress on subjective positive affect. Random effects were then modeled against each 

other using linear regression to derive the overall change in positive affect relative to experienced stress 

during the stress week. Residuals from these models were used as a residual-based affective stress 

reactivity measure. In order to make interpretation easier, inverse scores are presented where increased 

scores represent increased affective reactivity in real life. This score was used in the fMRI models 

described below. 

fMRI Arousal Measures 

We next established the validity of our laboratory stress induction procedure by examining the effects of 

stress induction via the SECPT on biophysiological measures of salivary cortisol and heart rate (IBI and 

RMSSD) using mixed effects models with subject as a random effect and session (i.e., stress or control), 

time, and scan order as fixed effects. Sex was controlled for as a fixed effect. Interactions were modeled 

for all three of these predictors. Session was modeled with a random slope and intercept. Distributions 
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of the data were examined, and model families were chosen according to the optimal fit as determined 

by residual normality and the Akaike Information Criterion (AIC). Follow-up models were carried out 

using the “emmeans” package. The difference in the area under the curve with respect to increase 

(AUCi) for the cortisol response was calculated per subject using the first four samples to derive 

individual measures of cortisol stress reactivity (AUCistress – AUCicontrol).  

fMRI Preprocessing 

Preprocessing was carried out for each run separately. DICOM images were first converted to NIFTII 

format. Echoes for each run were realigned to the first acquired volume and then recombined using PAID 

weighting method 67. 3D images were then temporally concatenated into a single 4D file. Additional 

processing was done using FSL’s FEAT (FMRI Expert Analysis Tool, version 6.0.0). Registration to high 

resolution structural and standard space images was carried out using FLIRT 68,69. Registration from high 

resolution structural to standard space was then further refined using FNIRT nonlinear registration. 

Motion parameters were estimated using MCFLIRT, and interleaved slice-timing correction applied using 

Fourier-space time-series phase-shifting. Non-brain removal was carried out using BET and spatial 

smoothing using a Gaussian kernel of FWHM 6.0mm; grand-mean intensity normalization was carried 

out by a single multiplicative factor. Motion artifact removal was then carried out using non-aggressive 

AROMA, followed by high pass filtering of the data 68,70,71.  

Task regressors were modelled for each event in our three tasks. In order to keep contrasts clearer, only 

contrasts within the same task were used to model task-related activity. For the 2-Back task, a regressor 

was modeled for the occurrence of 2-Back target events, and for the non-target events (i.e., No-Backs) 

with a 0.3 second duration. For the oddball task, oddball and non-oddball events were modeled as 

separate regressors with 0.3 seconds durations each. For the memory task, the later remembered and 

forgotten trials were each modelled as separate regressors, with durations set to 3.5 seconds. Specific 

contrasts based on these regressors were used to model activity within three networks of interest: The 

Executive Control (ECN), Default Mode (DMN), and Salience (SN) networks. To model ECN activity, the 2-

Back events were contrasted against the No-Back events (i.e., ECN=2-Back>No-Back). Salience network 

activity was modelled by modelling the oddball events against the non-oddball events (i.e., 

SN=Oddball>Non-oddball). Finally, to model the DMN network, the contrast for both remembered vs 

forgotten images used. Time-series statistical analysis was carried out on the contrasts of interest using 

FILM with local autocorrelation correction. Z (Gaussianised T/F) statistic images were thresholded non-

parametrically using clusters determined by Z>3.1 and a (corrected) cluster significance threshold of 
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P=0.05 72,73. Results of the tasks from each run were analyzed at the subject level using a fixed effect 

model in FEAT.  

fMRI Data Analysis 

First level fixed effects models were then constructed at the run level. For the 2-Back task, we modelled 

the occurrence of a 2-Back target and the non-targets as events and the contrast 2-Back>non-target used 

to model ECN activity. For the oddball task, oddball and standard trials were each modelled as events. 

The contrast used to measure SN activity was the Oddball>Standard trials contrast. Finally, for the 

associative retrieval task, remembered and forgotten trials were each modeled, and the contrast 

Remembered>Forgotten was used to model DMN activity.  

Second-level analysis was performed using a 2x2 fixed effect design, with session (control vs stress) and 

phase (early: runs 1-3 and late: runs 4-6) as fixed effects resulting in four main EVs: Control Early, Control 

Late, Stress Early, Stress Late. Contrasts were modelled for mean task-related activity across the four 

EVs. Z-statistic images were thresholded using non-parametric cluster-based thresholding at Z>3.1 and a 

corrected cluster significance threshold of p=0.05. Previously established templates were used for ROI 

analyses, with a single mask created from all subdivisions of the SN, ECN, and DMN 74. Threshold z-

statistics were extracted from specific target task-network combinations for each of the four levels 

(Control Early, Control Late, Stress Early, Stress Late).  

We first investigated the main effects with three-way interactions for session (stress/control), phase 

(early/late), and network (SN/ECN/DMN). We next investigate the specific hypothesis regarding 

temporal shifts as a function of stress in each network individually, with additional interaction terms 

modeled for cortisol stress reactivity and the real-life affective reactivity score. A maximal fitting 

approach was used in which subject was modeled as a random effect, and correlated random intercepts 

and slopes modeled for all other fixed effects of interest. Since AUCi and the real-life stress score only 

have one level per subject, no random slopes or intercepts were added for these terms. Scan order was 

also modeled as a fixed effect with no random slope and intercept to control for potential differences 

due to the order of sessions. 

Behavioral Task Analysis 

Task-related data was analyzed using mixed-effects models, with individual trials being modelled for 

each of the three tasks. Trials with reaction times lower than 200ms were removed prior to analysis. For 

the 2-back, reaction time, error count, and a combined score (LIASES score) were analyzed75. For the 
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oddball task, the average reaction time per trial and the oddball facial recognition (as measured by 

dprime, d’) and the number of hits and misses were analyzed. For the associative retrieval task, reaction 

times and recall percentages were analyzed. In all models, session (i.e., stress or control MRI) were 

modelled as fixed effects with an interaction term for phase (i.e., early or late). A random effect was 

modelled for subject, with a correlated random intercept and slope modelled for session and phase 

effects. The same models used for the reaction time were used for the out-of-scanner oddball 

recognition task. We additionally ran separate models with an interaction term modelled for neural 

activity in the targeted ROI’s to examine the relationship between task performance and neural 

responses, with random slopes and intercepts also modelled for ROI activity.  

Online Notebook and Data Availability 

Data is made available via our institutional repository upon request due to ongoing usage of the data. 

Due to the usage of multi-echo imaging and the associated large storage requirements, only recombined 

Niftii files are made available, and not raw DICOMS. Skull stripped T1 images are made available for 

anonymization reasons. All scripts are publicly available on GitHub (https://github.com/raytut/Large-

Scale-Networks-and-Real-Life-Stress) , along with an analysis notebook containing the results produced 

in R (Version 3.6.1).  
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