

1 **Title**

2 The Intra-Host Evolutionary Landscape And Pathoadaptation Of Persistent

3 *Staphylococcus aureus* In Chronic Rhinosinusitis

4 **Authors**

5 Ghais Houtak^{1,2†}, George Bouras^{1,2†}, Roshan Nepal^{1,2}, Gohar Shaghayegh^{1,2}, Clare

6 Cooksley^{1,2}, Alkis James Psaltis^{1,2}, Peter-John Wormald^{1,2}, Sarah Vreugde^{1,2*}

7 **Author's institutional affiliations**

8 ¹ Adelaide Medical School, Faculty of Health and Medical Sciences, The University of

9 Adelaide, Adelaide, Australia.

10 ² The Department of Surgery - Otolaryngology Head and Neck Surgery, University of

11 Adelaide and the Basil Hetzel Institute for Translational Health Research, Central

12 Adelaide Local Health Network, South Australia, Australia

13 [†] These authors contributed equally.

14 ^{*} Correspondence: sarah.vreugde@adelaide.edu.au; Tel: +618-8222-7158

15 **Conflicts of interest**

16 The authors state that the study was conducted without any commercial and financial

17 relationship that could be interpreted as a potential conflict of interest.

18 Abstract

19 Chronic rhinosinusitis (CRS) is a common chronic sinonal mucosal inflammation
20 associated with *Staphylococcus aureus* biofilm and relapsing infections. This study aimed
21 to determine rates of *S. aureus* persistence and pathoadaptation in CRS patients by
22 investigating the genomic relatedness and antibiotic resistance/tolerance in
23 longitudinally collected *S. aureus* clinical isolates.

24 A total of 68 *S. aureus* isolates were sourced from 34 CRS patients at least six months
25 apart. Isolates were grown into 48-hour biofilms and tested for tolerance to antibiotics.
26 A hybrid sequencing strategy was used to obtain high-quality reference-grade
27 assemblies of all isolates. Single nucleotide variants (SNV) divergence in the core
28 genome and sequence type clustering were used to analyse the relatedness of the isolate
29 pairs. Single nucleotide and structural genome variations, plasmid similarity, and
30 plasmid copy numbers between pairs were examined.

31 Our analysis revealed that 41% (14/34 pairs) of *S. aureus* isolates were persisters, while
32 59% (20/34 pairs) were non-persisters. Persister isolates showed episode-specific
33 mutational changes over time with a bias towards events in genes involved in adhesion
34 to the host and mobile genetic elements such as plasmids, prophages, and insertion
35 sequences. A significant increase in the copy number of conserved plasmids of persister
36 strains ($p<0.05$) was seen, indicating a role of the "mobilome" in promoting persistence.
37 This was accompanied by a significant increase in biofilm tolerance against all tested
38 antibiotics ($p<0.001$), which was linked to a significant increase in biofilm biomass
39 ($p<0.05$) over time, indicating a biofilm central pathoadaptive process in persisters.
40 In conclusion, our study provides important insights into the mutational changes
41 underlying *S. aureus* persistence in CRS patients highlighting pathoadaptive mechanisms

42 in *S. aureus* persisters culminating in increased biofilm biomass linked to an increase in
43 plasmid copy number over time.

44 Abbreviations

45 AERD, aspirin-exacerbated respiratory disease
46 AMR, Antimicrobial Resistance
47 CARD, Comprehensive Antibiotic Resistance Database
48 CDS, coding sequences
49 CFU, Colony Forming Unit
50 CI, Clinical Isolate
51 CLSI, Clinical and Laboratory Standards Institute
52 CRS, Chronic Rhinosinusitis
53 CRSsNP, CRS without Nasal Polyposis
54 CRSwNP, CRS with Nasal Polyposis
55 CV, Crystal Violet
56 MFU, McFarland Units
57 MIC, Minimum Inhibitory Concentration
58 MIC50, MIC required to inhibit the growth of 50% of organisms
59 MIC90, MIC required to inhibit the growth of 90% of organisms
60 MLST, Multi-Locus Sequence Typing
61 NCTC, National Collection of Type Culture
62 NGS, Next Generation Sequencing
63 ONT, Oxford nanopore technology
64 PCR, Polymerase Chain Reaction
65 SNV, Single-Nucleotide Variant
66 SV, structural variants
67 VFDB, Virulence Factor Database

68 VLKCs, Variable-length k-mer clusters

69 WGS, Whole Genome Sequencing

70 **Introduction**

71 Chronic rhinosinusitis (CRS) is characterised by ongoing inflammation of the paranasal
72 sinuses and nasal mucosal lining, which causes symptoms such as nasal congestion,
73 diminished sense of smell, facial pain, and breathing difficulties (Fokkens et al., 2020).

74 Around 10% of people worldwide suffer from CRS, making it a common condition
75 (Hastan et al., 2011).

76 CRS is clinically subdivided based on its phenotype into two subcategories, CRS with
77 nasal polyps (CRSwNP) and CRS without nasal polyps (CRSsNP) (Hopkins, 2019).

78 Although the pathogenesis of CRS remains unknown, it is known to be a heterogeneous
79 multi-factorial chronic inflammatory disease that frequently co-occurs with conditions
80 such as ciliary dysfunction, aspirin-exacerbated respiratory disease (AERD), and asthma
81 (Fokkens et al., 2020).

82 It is thought that microbes impact the pathophysiology of CRS. One of the bacteria most
83 abundantly found in the sinuses of CRS patients is *Staphylococcus aureus*, which is
84 frequently associated with exacerbations of the condition (Okifo, Ray, & Gudis, 2022;
85 Vickery, Ramakrishnan, & Suh, 2019).

86 Several mechanisms of involvement of *S. aureus* in the pathophysiology of CRS have
87 been proposed, including *S. aureus* biofilms as a modulator of chronic mucosal
88 inflammation and relapsing infections (Hoggard et al., 2017; Vickery et al., 2019).

89 Moreover, *S. aureus* mucosal biofilms are associated with poor post-surgical outcomes
90 (Psaltis, Weitzel, Ha, & Wormald, 2008; Singhal, Foreman, Jervis-Bardy, & Wormald,
91 2011).

92 Despite the lack of high-level evidence for the effectiveness of antibiotics in treating CRS
93 and its exacerbations, they are commonly prescribed to CRS patients (Barshak &

94 Durand, 2017; Fokkens et al., 2020). Moreover, antibiotics are often ineffective at
95 eliminating the biofilm nidus resulting in a relapsing course of infectious exacerbations
96 (C. W. Hall & Mah, 2017).
97 Previously we have shown with pulsed-field gel electrophoresis that subjects suffering
98 from CRS are colonised with identical pulsotype *S. aureus* strains months apart in 79%
99 of cases despite multiple courses of systemic antibiotics (Drilling et al., 2014). This
100 suggests that the bacteria can persist in the sinuses despite antibiotic treatment.
101 However, what is less clear is the pathogenic adaptation and phenotypic changes that
102 occur during chronic infection of difficult-to-treat CRS patients.
103 This study aimed to evaluate the intra-host relatedness of longitudinal *S. aureus* clinical
104 isolates (CI) collected from the nasal cavities of subjects suffering from CRS and
105 characterise the adaption that enables persistence in the host using hybrid long and
106 short read assembled reference-level genomes. Furthermore, intra- and inter-host
107 variability in *S. aureus* phenotype regarding antimicrobial resistance and biofilm
108 tolerance to antibiotics was evaluated to identify phenotypic pathoadaptation of
109 persistent strains.

110 Materials and Methods

111 Ethics

112 This project was approved by the Central Adelaide Local Health Network Human
113 Research Ethics Committee under the following reference number:
114 HREC/15/TQEH/132.

115 Clinical isolate retrieval

116 *S. aureus* CIs were retrieved from a bacterial biobank comprised of samples stored in
117 25% glycerol stock at -80 °C, obtained from swabs taken from the sinonasal cavity of
118 subjects. The swabs were collected from ear-nose-throat inpatient clinic follow-ups and
119 during sinonasal surgery. To be included in this study, longitudinal CI pairs had to be
120 isolated from swabs obtained from patients who fulfilled the EPOS 2020 criteria for
121 difficult-to-treat CRS (Fokkens et al., 2020). The diagnostic criteria and retrieval of
122 asthma, aspirin sensitivity and CRS subtype are elaborated in supplementary text ST1.
123 Only clinical isolate pairs with a time difference of over five months between collections
124 were included in the study. When a subject had more than two clinical isolates available
125 at different timepoints, the isolated pair with the largest time difference was selected.
126 We termed the first recovered isolate group T0, whereas the isolates recovered at later
127 timepoints were termed T1. For all experiments, the clinical isolates were grown
128 overnight on nutrient agar plates (Thermo Fisher Scientific, CM0003, Waltham, USA)
129 from glycerol stock at 37°C unless otherwise specified.

130 **Antibiotic exposure**

131 The antibiotic exposure of subjects was assessed based on the antibiotic scripts in their
132 medical records. All antibiotic treatments prescribed to the subjects between their first
133 and second sample collection were extracted. The total antibiotic exposure was
134 calculated as the cumulative number of days prescribed for the treatments (Schechner,
135 Temkin, Harbarth, Carmeli, & Schwaber, 2013).

136 **Genomic DNA extraction and sequencing**

137 For all clinical isolates, hybrid long and short sequencing was performed. The genomic
138 DNA of the *S. aureus* clinical isolates was extracted using the DNeasy Blood & Tissue Kit
139 (Qiagen, 69504, Hilden, Germany) following the manufacturer's guidelines. The
140 extracted DNA was sequenced using the Oxford nanopore technology (ONT) on the
141 MinION Mk1C (Oxford Nanopore Technologies, Oxford, UK) for long-read sequencing.
142 The Rapid Barcoding Kit (Oxford Nanopore Technology, SQK-RBK 110.96) was used to
143 sequence the long-read *S. aureus* whole genome on R9.4.1 MinION flowcells (Oxford
144 Nanopore Technology), using 50 ng of the isolated DNA. Base-calling was conducted
145 with Guppy v 6.2.11 in super accuracy mode, using the 'dna_r9.4.1_450bps_sup.cfg'
146 configuration (Oxford Nanopore Technology). The short-read sequencing was done at a
147 commercial sequencing facility (SA Pathology, Adelaide, SA, Australia) as previously
148 described by Shaghayegh et al. (Shaghayegh et al., 2023). Short-read sequencing was
149 carried out on the Illumina platform, using the Illumina NextSeq 550 (Illumina Inc, San
150 Diego, USA) and NextSeq 500/550 Mid-Output kit v2.5 (Illumina Inc., FC-131-1024). To
151 prepare for short-read sequencing, the genomic DNA was isolated using the NucleoSpin
152 Microbial DNA kit (Machery-Nagel GmbH and Co.KG, 740235.50, Duren, Germany). The

153 sequencing libraries were prepared using a modified protocol for the Nextera XT DNA
154 library preparation kit (Illumina Inc. FC-131-1024). The genomic DNA was fragmented,
155 after which a low-cycle PCR reaction was used to amplify the Nextera XT indices to the
156 DNA fragments. One hundred fifty bp reads were obtained by sequencing after manual
157 purification and normalisation of the amplicon library.

158 **Bioinformatics**

159 Chromosome assembly: We created complete chromosomal assemblies of *S. aureus*
160 using the custom Snakemake pipeline (Molder et al., 2021) that can be accessed via
161 <https://github.com/gbouras13/hybracter> and a Snaketool (Roach et al., 2022) powered
162 command line tool called hybracter (Bouras, hybracter). Briefly, the long reads were
163 reduced to 250 Mbp for each sample using Rasusa (M. Hall, 2022). Adapters and
164 barcodes were removed using Porechop (Ryan R. Wick, Porechop), short reads were
165 filtered and trimmed with low-quality regions, and adapters were removed using fastp
166 (Chen, Zhou, Chen, & Gu, 2018). Long-read-only assemblies were created using Flye
167 v2.9.1 with the option "--nano-hq." (Kolmogorov, Yuan, Lin, & Pevzner, 2019).
168 Assemblies, including contigs with a length greater than 2.5 Mb, were kept and denoted
169 as the putative chromosomal. The resulting chromosomes were first polished with long
170 reads using Medaka v1.7.0 (ONT, 2022), then with short reads using Polypolish v0.5.0.
171 (R. R. Wick & Holt, 2022) . After the first round of polishing, the chromosomes were
172 reoriented to start at the *dnaA* gene using the python program called dnaapler (Bouras,
173 dnaapler). Finally, chromosomes were polished for a second time using Polypolish and
174 then with POLCA (Zimin & Salzberg, 2020).

175 Plasmid assembly: Plassembler v 0.1.4 (Bouras, Plassembler) was used to assemble
176 bacterial plasmids from a combination of long and short sequencing reads. Firstly, the

177 short reads are filtered using fastp. The long reads were filtered using nanoFilt (De
178 Coster, D'Hert, Schultz, Cruts, & Van Broeckhoven, 2018) and then assembled using Flye.
179 The largest contig was evaluated to see if the assembly contained more than one contig.
180 If this contig was over 90% of the length of the chromosome size (~2.5 MB), it was
181 identified as the chromosome. All other contigs were deemed putative plasmid contigs.
182 Both long and short reads were then mapped twice, first to the chromosome and then to
183 the plasmid contigs. For the mapping, minimap2 (H. Li, 2018) was used for the long
184 reads, while BWA-MEM (Heng Li, 2013) was used for the short reads. Reads aligned to
185 the plasmid contigs or not aligned to the chromosome were extracted, combined, and
186 de-duplicated. To produce the final plasmid contigs, these reads were assembled using
187 Unicycler v0.5.0 (R. R. Wick, Judd, Gorrie, & Holt, 2017).
188 Annotation: Chromosome and plasmid assemblies were annotated with Bakta v1.5.0
189 (Schwengers et al., 2021). The assemblies were typed according to multi-locus sequence
190 typing (MLST) using the program MLST (Seemann, mlst) and assigned to clonal
191 complexes of PubMLST (Jolley, Bray, & Maiden, 2018). Variable-length-k-mer clusters
192 (VLKCs) were used to query the assemblies with k-mer lengths ranging from 13 to 28
193 and a sketch size of 9984 using the pp-sketchlib tool (Lees et al., 2019). The VLKCs were
194 assigned to the pre-built PopPUNK Staphopia database of 103 clusters for phylogenetic
195 analysis (Petit & Read, 2018). The phylogenetic tree was visualised using the ggtree R
196 package (Xu et al., 2022).
197 Chromosome analysis: The presence or absence of resistance and virulence genes in the
198 genome of the CIs was determined by screening contigs using ABRicate v1.0.1
199 (Seemann, Abricate) against the Comprehensive Antibiotic Resistance Database (CRAD)
200 (Jia et al., 2017) and the Virulence Factor Database (VFDB) (Liu, Zheng, Jin, Chen, &
201 Yang, 2019).

202 Genome-wide association analysis was done by first creating a pangenome of the 34 T0
203 isolates with panaroo v1.3.2 (Tonkin-Hill et al., 2020) and then testing the significance of
204 each gene with Scoary v1.6.16 using default parameters (Brynildsrud, Bohlin, Scheffer, &
205 Eldholm, 2016). All following paired *S. aureus* genomic analysis was conducted using a
206 Snakemake pipeline. Firstly, small variants, such as single nucleotide variants (SNVs)
207 and small insertions and deletions, were called using Snippy v 4.6.0. (Seemann, 2015),
208 with the raw FASTQ short reads from the Timepoint T1 isolates were compared against
209 the corresponding GenBank file of the assembled Timepoint T0 isolate for each CIs pair.
210 All larger structural differences were called using two methods: Nucdiff v2.0.3 (Khelik,
211 Lagesen, Sandve, Rognes, & Nederbragt, 2017) and Sniffles v2.0.7 (Sedlazeck et al.,
212 2018). For Nucdiff, chromosome assembly of the T0 isolate was compared against the
213 corresponding T1 isolate. For, Sniffles, all T1 isolate long reads were first aligned to the
214 T0 isolate genome using minimap2 v 2.24 (H. Li, 2018) specifying '-ax map-ont'
215 parameters. The resulting BAM was used as input for Sniffles.
216 The large structural variant CIs pairs of subject 420 and 4875 were manually annotated
217 by mapping all timepoint T1 long reads to the T0 assembly using minimap2 v 2.24
218 specifying '-ax map-ont', followed by sorting the resulting BAM file using samtools
219 (Danecek et al., 2021). Structural deletions were visualised in R using the gggenomes,
220 and the long-read pile-up was visualised using the Gviz packages (Ankenbrand, 2022;
221 Hahne & Ivanek, 2016).
222 Plasmid analysis: For each putative plasmid contig derived from the output of
223 Plassembler, Mobtyper v1.4.9 (Robertson & Nash, 2018) was run to determine each
224 plasmid's predicted mobility and replicon marker. The minhash ('Mash') distance was
225 calculated between each pair of plasmids using mash v2.3 (Ondov et al., 2016). A
226 plasmid pangenome was created using panaroo v1.3.2. To determine shared plasmid

227 genes using the 'gene_presence_absence.Rtab' output, the Jaccard index based on gene
228 presence and absence, was calculated between each plasmid pair. Following the analysis
229 by Hawkey et al., plasmids were empirically determined to be the same plasmid using
230 thresholds of Mash similarity > 0.98 and Jaccard index > 0.7 (Hawkey et al., 2022).
231 Additionally, plasmids were determined to be beta-lactamase-carrying if they carried
232 the *blaZ*, *blaI* and *blaR1* gene operon. All plasmid-copy numbers were obtained using
233 Plassembler v0.1.4.

234 **Relatedness of isolate pairs**

235 A two-step approach was used to classify isolate pairs as either closely related 'same
236 strain' or not closely related 'different strain'. Firstly, the Sequence Types obtained from
237 MLST and clusters generated by PopPUNK were compared between each isolate pair. If
238 either of these metrics differed in the CI pair, they were considered to belong to different
239 strains. The second step involved analysing the number of small variants outputted by
240 Snippy. Isolate pairs with 100 or fewer single nucleotide variants (SNVs) between the
241 first and second timepoint were classified as the same strain.

242 **Planktonic Antibiotic Susceptibility**

243 Susceptibility testing followed Clinical and Laboratory Standards Institute (CLSI)
244 guidelines (CLSI, 2020). Seven antibiotics were chosen for susceptibility testing
245 according to their common use in medical practice. These were: amoxicillin in
246 combination with clavulanic acid (augmentin), clarithromycin, clindamycin, doxycycline,
247 erythromycin, gentamicin, and mupirocin (Sigma-Aldrich, St. Louis, USA). Minimum
248 Inhibitory Concentrations (MICs) were obtained for the planktonic form of all isolates,
249 utilising the microbroth dilution assay (Wiegand, Hilpert, & Hancock, 2008). The

250 antibiotics were tested at 0.06–32 mg/L dilution range. The assay was repeated at least
251 twice per CI. The MIC50, MIC90 and antibiotic non-susceptibility proportions were
252 calculated adopting the susceptibility breakpoints published by the CLSI.

253 **Biofilm Antibiotic Tolerance**

254 The biofilm tolerance assay was based on a 96-well plate adapting the procedures used
255 by Mah et al. (Mah, 2014). Each isolate was exposed to the same antibiotics used for the
256 planktonic antibiotic susceptibility testing. The concentrations ranged from 1.25–640
257 mg/L. In brief, the CIs were cultured on Mueller-Hinton agar (Sigma-Aldrich). Then,
258 single colonies of *S. aureus* were suspended in 0.9 % saline to a turbidity reading of 0.5
259 McFarland Units (MFU). The 0.5 MFU bacterial suspension was diluted 100-fold in
260 Mueller-Hinton broth to achieve a 5×10^5 CFU/ml before inoculation in a 96-well plate
261 (200 μ L). Plates underwent a 48-hour incubation at 37°C with sheer force on a rotating
262 plate set at 70 rpm (3D Gyratory Mixer, Ratek Instruments, Australia). Following the
263 incubation, the supernatants were gently aspirated with a minimum agitation of the
264 biofilms. These biofilms were then exposed to different antibiotics in serial diluted (200
265 μ L) Mueller-Hinton broth for 24 hours. After incubation with antibiotics, the
266 supernatants were aspirated gently, and non-adherent planktonic bacteria were
267 removed by gently washing with sterile phosphate-buffered saline (PBS). Subsequently,
268 the biofilm tolerance was assayed using a resazurin viability method, alamarBlue Cell
269 Viability Reagent (Thermo Fisher Scientific, DAL1025), as per the manufacturer's
270 instruction (Pettit et al., 2005). The assay was repeated twice per CI with two replicates.

271 **Biofilm Biomass Assay**

272 To quantify the total biofilm biomass, the Crystal Violet (CV) staining assay was used
273 (Stiefel et al., 2016). Inoculated 96-well plates underwent a 48-hour incubation at 37°C
274 on a rotating plate set at 70 rpm to induce biofilm formations. Following the incubation,
275 the planktonic cells were removed by gently aspirating the supernatants and washing
276 the wells twice with PBS. Subsequently, 200 µL of 0.1 % CV (Sigma-Aldrich, C6158)
277 solution was added for 15 minutes. After washing the wells three times with sterile
278 water and air-drying, the fixed CV was solubilised by adding 200 µL 30% acetic acid and
279 shaking for one hour at room temperature. The absorbance was obtained at 595 nm
280 with a FLUOstar Omega microplate reader (BMG Labtech, Ortenberg, Germany). The
281 assay was repeated twice per strain, with six technical replicates.

282 **Statistics**

283 We used a generalised linear mixed model (GLMM) to analyse the antibiotic tolerance
284 data. To assess the significance of each variable, a backwards stepwise regression
285 approach using the log-likelihood ratio test was used to remove insignificant variables.
286 The threshold of significance was set at a p-value<0.05. All analysis was performed with
287 R v4.2.0. (R Core Team, 2017).

288 **Data availability**

289 The assembled chromosomes and plasmids, raw short and raw long read FASTQs, are
290 accessible on the Sequence Read Archive (SRA) under the project code: PRJNA914892.
291 The complete list of biosample accession numbers for each sample can be found in
292 supplementary table 1.

293 **Code Availability**

294 All code used to generate all analyses & figures used in this manuscript can be found

295 at https://github.com/gbouras13/CRS_Saureus_Evolutionary_Landscape.

296

297

298 **Results**

299 **Clinical characteristics**

300 Thirty-four *S. aureus* sequential pairs (68 clinical isolates from which 34 first timepoint
301 (T0) and 34 second (T1) isolates) were included in this study, isolated from 34 subjects.
302 The mean time between paired *S. aureus* CI collection was 18 months (range 6-52). Most
303 subjects were classified as CRSwNP (85%) and having asthma (56%). The clinical
304 characteristics of the subjects are summarised in Table S2.

305 ***S. aureus* strains persist within the sinonasal cavities in 41% of cases**

306 The MLST analysis revealed a total of seven clonal complexes (CCs), including CC1 (n=5,
307 7.3%), CC5 (n=4, 5.8%), CC8 (n=2, 2.9%), CC15 (n=5, 7.3%), CC22 (n=5, 7.3%), CC30
308 (n=9, 13.2%), and CC45 (n=14, 20.5%). A total of 24/68 CIs (35.2%) were not assigned
309 to any CC (Fig. 1A). The analysis of the PopPUNK variable-length-k-mer clusters (VLKCs)
310 identified a total of 16 clusters. Of the 34 isolate pairs, 18 (52.9%) pairs belonged to
311 different CCs or VLKCs, indicating that they were not closely related isolates and were
312 classified as 'different strain' pairs.

313 The relatedness was investigated for the 16 remaining pairs by analysing the number of
314 SNVs in shared genes. The variants ranged from 2-2123, with 14/16 pairs having 69 or
315 fewer SNVs and 2/16 pairs having more than 100 SNVs. Figure 1B shows the
316 multimodal distribution of SNVs between all CI pairs and reflects the classification of
317 pairs into different and same strain groupings. The two pairs with the same CC and
318 VLKC groups and more than 100 SNVs divergence (host 4784, 846 SNVs; host 5911,

319 2123 SNVs) were classified as 'different strain' pairs due to the large number of SNVs
320 and structural variations between pairs. Namely, the CI pair from host 4784 had 100
321 structural variations between T0 and T1 according to Sniffles, with the addition of a
322 plasmid in the T1 isolate. Similarly, the CI pair from host 5911 had 143 structural
323 variations between them. Accordingly, 14/34 pairs (41%) were classified as
324 unambiguously in the 'same strain' group of persistent isolates, whilst 20/34 pairs
325 (59%) were classified as being part of the 'different strain' group, where the subject had
326 been colonised or infected by a different strain over time (Table S3). No genomic
327 clustering was observed based on the order of CI collection of the pairs and the host's
328 CRS phenotype or asthma status (Fig. 1A).

329 **Chromosomally encoded antimicrobial resistance genes and virulence factors are**
330 **widespread in *S. aureus* sinonasal isolates**
331 Chromosomally encoded antimicrobial resistance (AMR) genes in the *S. aureus* isolates
332 were assessed using the CARD database, revealing a range of 8-21 genes AMR per
333 isolate. Most isolates (67/68) contained 8-13 AMR genes, including *arlR*, *arLR*, *arlS*, *lmrS*,
334 *mepA*, *mepR*, *mgrA*, *norA* and *tet(38)*, which were identified in all CIs (Fig. S1). Only one
335 isolate (Host:2911, CI: C295) contained more than 13 AMR genes. Among the 40 CIs
336 classified as being different strain pairs, the *blaZ* beta-lactamase gene was present in 22
337 of them. Notably, the prevalence of chromosomal *blaZ*-positive isolates increased from
338 9/20 (45%) in the first timepoint different strain group to 13/20 (65%) in the second
339 timepoint different strain group, indicating a potential selective pressure for beta-
340 lactamase-resistant isolates in the population. Remarkably, none of the isolates in the
341 second timepoint of the different strain group contained the *ermC* gene, whereas, in the
342 first timepoint, three isolates were found to carry multiple copies.

343 In the same strain group isolates, 11/28 (39.2%) were positive for a chromosomally
344 encoded *BlaZ* beta-lactamase gene. Only one of the same strain pairs gained a
345 chromosomally encoded *BlaZ* gene at the second timepoint (Fig. S1).

346

347 The presence of chromosomally encoded virulence factor genes in the *S. aureus* isolates
348 was assessed using the VFDB database, revealing a range of 45-72 (median 57) genes
349 per isolate (Fig. S2). Notably, all CIs contained the serine protease operon *sspABC*, also
350 known as V8 protease, which has been previously associated with allergic sensitisation
351 to *S. aureus* (Krysko, Teufelberger, Van Nevel, Krysko, & Bachert, 2019). Additionally, all
352 isolates had immune evasion-associated factors such as the immunoglobulin-binding
353 protein *sbi*, *adsA*, *lip*, *hly/hla*, *hlgAB*, *hld*, and *geh*. The *isdABCDEFG* operon was present in
354 67 out of 68 isolates. The *icaABCD* operon, associated with biofilm production, was
355 present in all isolates, but interestingly, two isolates lacked the *icaR* (repressor) gene.
356 Moreover, 61 and 66 isolates contained the *sak* and *scn* virulence factors, respectively,
357 which are prophage encoded (Nepal et al., 2021). Notably, the prevalence of immune
358 evasion factors *chp* (9/20 vs. 18/20) and *sdrE* (9/20 vs. 15/20) increased in the second
359 timepoint different strain group. In contrast, the carriage of *sdrC* (13/20 vs. 7/20)
360 decreased in the second timepoint of different strain group (Fig. S2). No remarkable
361 alterations were observed in the acquisition or loss of virulence factors between the
362 initial and subsequent timepoints of the same strain group.

363 **Analysis of gene content in *S. aureus* isolates suggests a reduced virulence profile for
364 incoming isolates**

365 To investigate whether gene presence or absence was linked to persistence, a microbial
366 gene presence-absence analysis was performed on the 34 Timepoint T0 isolates using
367 Scoary. No statistically significant differences in gene content were found between the
368 same and different strain isolates at T0 (BH p.adj > 0.05). However, the *chp* gene,
369 involved in chemotaxis inhibition, was less prevalent in the persister same strain group
370 (8/14 same strain vs. 18/20 different strain).

371 A subsequent microbial gene presence-absence analysis was conducted on the 40
372 different strain isolates to examine whether the gene content of the second timepoint T1
373 isolates differed from that of the T0 isolates. Although no statistically significant
374 differences were observed, there was a clear trend for incoming T1 isolates to have
375 fewer virulence factors than the T0 isolates they replaced, such as staphylococcal
376 enterotoxins M, U, I, N, and G (present in 8/20 T1 isolates compared to 18/20 T0
377 isolates) and *chp* (9/20 T1 vs 18/20 T0 isolates).

378 **Same strain SNV prevalence reveals heterogeneous host adaption**

379 222 SNVs were observed across the 14 same-strain isolates, ranging from 2-69 per
380 isolate. 8/14 pairs had less than 10 SNVs. Of these 222 SNVs, 148 were in putative
381 coding sequences (CDS), 44 were synonymous SNPs, 3 were in-frame variants, 9 were
382 frameshift variants, 4 were stop-gained variants, and the remaining 88 were missense-
383 SNVs. Only three genes contained SNVs in more than one isolate, namely the ribosomal
384 protein *rpsJ*, the transcription termination factor *clpC*, and the protease ATP-binding
385 subunit *clpX*. Interestingly, MSCRAMM genes commonly harboured SNVs across the
386 same strain pairs, with 11 SNVs occurring in 9 distinct MSCRAMM genes in 6 distinct

387 isolates, of which 6/11 mutations were synonymous. These include variants in the *sdrC*
388 adhesin, fibronectin-binding proteins A and B (*fnbA* and *fnbB*), surface protein G (*sasG*)
389 and iron-regulated surface-determining proteins *isdD*, *isdE* and *isdF*. Other adhesion
390 genes, including Staphylocoagulase *coa*, extracellular adherence protein *eap/map*, and
391 the extracellular matrix binding protein *EbhA* also had SNVs across isolates.

392 **Structural variants in same strain CI pairs involve prophages, insertion sequences,**

393 **MSCRAMM and AMR Genes & are not correlated with the number of SNVs**

394 We detected a total of 37 structural variants (SV) among the 14 same strain isolates,
395 ranging in size from small collapsed duplications (<10bp) to the acquisition of a 43793
396 bp *hlb*-disrupting Sa3int prophage in a single isolate pair. Only 10 SV were larger than
397 100bp, and all were found in 4/14 CI pairs, with one strain having 5 SV> 100bp. Notably,
398 no relationship was observed between the number of SNVs and structural variations.
399 The CI pair from host 5562, which had the second-lowest number of SNVs (3), had 5 SV,
400 while 10 strains did not have any SV> 100bp, including 4 strains with > 10 SNVs. In
401 addition, 5 insertion sequence (IS) insertions were identified in 3 distinct strains, one of
402 which disrupted the *agr* locus (Table 2).

403 Interestingly, between the same strain CI pairs obtained from host subject 420, there
404 was a 4638 bp deletion between T0 and T1. This deletion encompassed the cell-wall
405 spanning region, the transmembrane region, and the cytoplasmic domain of the
406 MSCRAMM serine-repeat *sdrC* gene, along with the signal sequence, ligand binding
407 domain and repeat regions in the neighbouring serine-repeat *sdrD* gene as depicted in
408 the coverage and pile-up plot shown in Figure 2B. This was leading to the recombination
409 of the cell-wall spanning region, the transmembrane region and the cytoplasmic domain
410 from the *sdrD* gene with the signal sequence, ligand binding domain, and repeat regions

411 of the *sdrC* gene (Fig. 2A). Additionally, in this CI pair, the fibrinogen-binding adhesin
412 *SdrG* had a tandem duplication, and there was a tandem duplication in the extracellular
413 adherence protein *Eap/Map* over time.

414 Another noteworthy observation was the identification of a large SV event between the
415 same strain pair from host 4875. A transposon carrying the *blaZ* locus was lost in the
416 second timepoints isolate (Fig. 2C). Specifically, the second timepoint isolate showed a
417 loss of a transposon carrying the *blaZ* locus in the chromosome while simultaneously
418 acquiring a plasmid containing the same locus (Fig. 2C and E). The coverage and pile-up
419 plot shown in Figure 2D revealed that the coverage of the *blaZ* locus contained by the
420 plasmid was higher compared to that of the chromosome, likely due to the high plasmid
421 copy number (Fig. 2F). These findings highlight the dynamic nature of virulence and
422 AMR genes that occur in persistent *S. aureus* isolates.

423 **Plasmid carriage is common, and plasmids often encode beta-lactamase resistance genes**

424 Hybrid long and short-read sequencing allowed us to analyse the plasmid content of
425 these isolates and probe their change over time. Fifty-three plasmid contigs were
426 assembled from 41/68 isolates, while the remaining 27 isolates did not carry any
427 plasmids. 43/53 plasmid contigs were determined to be complete and circularised,
428 while the other 10 were putative incomplete contigs. The analysis of the plasmids
429 detected in the 68 CIs revealed a bimodal distribution of mash distances between each
430 plasmid contig (1st quantile: 0.0, Median: 0.85, 3rd quantile: 0.94), indicating that
431 approximately 50 plasmids had a high level of similarity (Fig. 3). Twenty plasmid contigs
432 were identified in the 28 'same strain' isolate pairs, of which 16 (8 at each timepoint)
433 were present in both timepoints. Plasmid gain was observed between 2 isolate pairs
434 (subjects 3997 and 4875), where the second timepoint isolates C353 and C294 gained 1

435 and 2 plasmids, respectively. In contrast, plasmid loss was observed in one same strain
436 isolate pair (5047), where the second timepoint isolate C351 lost one plasmid over time.

437 27/53 plasmid contigs from 26 distinct isolates carried the beta-lactamase gene *blaZ*.

438 Of these 27 plasmids, 17/27 were deemed closely related enough to be analysed as the
439 same plasmid based on the empirical thresholds outlined in the methods (Fig. S3).

440 Two additional antimicrobial resistance genes were identified in plasmids:

441 erythromycin resistance gene *ErmC* (encoded on a 2473bp plasmids common to 3

442 strains) and the quaternary ammonium compound resistance gene *qacA*, found on 1

443 20560bp plasmid.

444 The number of beta-lactamase encoding plasmids increased from 11 at T0 to 16 at T1,

445 with two same strain isolates acquiring beta-lactamase resistance plasmids. In contrast,

446 three different strain isolates present at T1 replaced isolates at T0 that did not carry a

447 beta-lactamase plasmid, indicating a selection pressure to gain beta-lactamase

448 resistance.

449 **Plasmid copy numbers increase with time in the same strain group**

450 We found a moderate positive correlation (Spearman's correlation coefficient $R=0.63$)

451 between plasmid copy numbers estimated using long and short-read methods (Fig.

452 S4A). The median plasmid copy number estimation was 1.63 times higher in the long-

453 read dataset than in the short-read dataset. Beta-lactamase-carrying plasmids exhibited

454 an even more noticeable difference in copy number estimation between techniques,

455 with a median 2.29 times higher copy number estimate in the long-read dataset. The

456 long-read dataset did not capture four plasmid contigs; however, these were all

457 incomplete (Fig. S4B).

458 We further investigated the stability of plasmid copy numbers in the 'same strain' group,
459 focusing on the eight conserved plasmids. We observed a significant increase in the copy
460 number of the conserved plasmids over time ($p<0.05$) (Fig. 4), with 4 of the eight
461 conserved isolates being *blaZ* positive. However, we observed no significant difference
462 between the plasmid copy number and timepoint when we examined the short-read
463 data.

464 **Planktonic antibiotic susceptibility remains stable over time**

465 The antibiotic susceptibility of all CIs was tested ($n=68$). Mupirocin appeared to be the
466 most potent, with 85.2% and 67.65% of MIC values below the lowest concentration
467 tested (0.06 mg/L) for the first and second timepoints CIs, respectively. In contrast,
468 erythromycin and clarithromycin had lower susceptibility rates, with over 22% of CIs
469 being resistant to each antibiotic (Table S4). Overall, doxycycline was highly effective at
470 both timepoints, with 97% of CIs being susceptible. When comparing the first and
471 second timepoints CIs, there was no significant difference in the proportion of resistance
472 between the CI pairs classified in the different or same strain group (Fig. S5).

473 **Biofilm antibiotic tolerance increases over time in persistent *S. aureus* strains**

474 Next, we investigated the antibiotic tolerance of biofilms for all isolates. The viability
475 results after antibiotic treatment were analysed using a GLMM. The model included the
476 following variables: timepoint, antibiotic, antibiotic concentration, and same strain-
477 relatedness classification. The summary statistics of the GLMM results for all effects are
478 provided in table 1. The biofilm viability data showed high variability in antibiotic
479 tolerance between CIs and antibiotics. Although all antibiotics significantly reduced the
480 biofilm viability ($p < 0.001$), their dose-response relationships varied. Except for
481 doxycycline, all antibiotics reached a plateau in their antibiofilm effects at 5 mg/L,
482 reducing biofilm viability by approximately 35%, and did not eradicate biofilms at the
483 highest concentration (640 mg/L). Notably, mupirocin at the lowest concentration of
484 1.25 mg/L showed a reduction of over 50% in biofilm viability, despite not eradicating
485 the biofilms at 640 mg/L (Fig. 5A).

486 Interestingly, we observed a significant increase ($p < 0.001$) in antibiotic tolerance of
487 biofilms over time between the first and second isolates classified as 'same strain'
488 isolates compared to the first timepoint (Fig. 5B), suggesting that the same strain
489 isolates gained tolerance over time. We then assessed the biofilm biomass using crystal
490 violet staining to investigate the potential relationship between increased antibiotic
491 tolerance and biofilm quantity. We observed a significant increase in the mean biomass
492 of biofilms between the first and second timepoint CIs of the same strain group (paired
493 Wilcoxon signed-rank test, $p < 0.05$) (Fig. 6), indicating that the increased biofilm
494 tolerance could be due to increased biofilm production by the same strain isolates over
495 time. A similar trend was seen for the biofilm viability results after 48 hours of growth
496 without antibiotic treatment. Specifically, the biofilm fluorescence of the same strain
497 isolates at the first timepoint was significantly lower than that of different strain isolates

498 (p < 0.05). However, the second timepoint of the same strain group showed a significant
499 increase in biofilm production (p < 0.01) over time, resulting in no significant difference
500 in biofilm fluorescence between the second timepoint isolates of the same strain and
501 different strain groups (Fig. S7).

502

503 Next, we investigated the potential correlation between the number of days of antibiotic
504 usage by CRS patients and the increased biofilm antibiotic tolerance. The most
505 commonly prescribed antibiotic was augmentin, but in terms of total exposure time,
506 doxycycline, followed by sinus/nasal saline irrigation mixed with mupirocin and
507 augmentin, had the most extensive antibiotic exposure in all subjects (Fig. S6). CIs
508 classified as the same and different strains had a mean exposure of 16.4 days (± 7.97)
509 and 15.7 days (± 8.39), respectively. However, we did not find a significant relationship
510 between the total number of days of antibiotic exposure and increased biomass between
511 CIs pairs (Spearman correlation coefficient = -0.11, p = 0.58).

512 Discussion

513 The current study aimed to investigate the persistence of *S. aureus* in the nasal cavity of
514 chronically colonised CRS patients and the related genomic and phenotypic changes
515 over time in a set of longitudinal collections of *S. aureus* CIs. Our hybrid long and short-
516 read sequencing approach allowed us to assemble near-perfect complete genomes and
517 conduct detailed longitudinal genomic analysis. While our study did not identify a
518 specific gene or gene cluster that explains *S. aureus* persistence, persister isolates often
519 show changes in mobile genetic elements such as plasmids, prophages and insertion
520 sequences, indicating a role of the 'mobilome' in promoting persistence. The genomic
521 adaptation of persister isolates was episode-specific, suggesting that each colonisation
522 event may select different adaptations that enable the survival of *S. aureus* in each host.
523 Additionally, the increase in biofilm tolerance to antibiotics over time observed in the
524 same strain isolates shows that antibiotic tolerance of biofilm is a key pathoadaptation
525 by persister isolates to the sinonasal environment of CRS patients.

526

527 Our study found that out of the 34 CI pairs, 14 (41%) were highly related strains based
528 on a two-step approach considering their MLST/PopPUNK clustering and low core
529 genome between isolate pair SNV. Past studies have posited that longitudinal follow-up
530 of *S. aureus* nasal carriage in the healthy population colonisation by a single strain
531 occurs between the 73% and 77% over time (Muthukrishnan et al., 2013). Additionally,
532 Drilling et al. identified that 79% of recalcitrant CRS patients have a persistent *S. aureus*
533 strain in their paranasal sinuses (Drilling et al., 2014). However, these results are based
534 on MLST and pulsed-field gel electrophoresis typing, which may overestimate persister
535 isolates due to less accuracy in discerning strains' genetic relatedness compared to WGS.

536 Thunberg et al. reported a lower proportion (20%) for single-strain long-term
537 colonisation in CRS patients using WGS. This proportion is lower than the 41%
538 identified in this study. A possible explanation for this might be a longer time between CI
539 pairs collection (10 years) and a lower sample size (n=15) in that study (Thunberg et al.,
540 2021). Furthermore, a considerable proportion of the isolates (35.2%) did not belong to
541 any known CC based on MLST analysis, while 2 CIs pairs belonged to the same CC or
542 VLKC while having relatively high SNV and SV counts between them, highlighting the
543 limitations of this approach in characterising the genetic similarity of *S. aureus*
544 populations.

545

546 The definition of closely related clonal isolates in the literature often employs a
547 threshold-based approach using SNVs divergence. This is typically done by mapping
548 short-read sequences to a reference sequence or calculating core genome SNPs. (Coll et
549 al., 2020; Lagos et al., 2022). However, using long-read sequencing technologies enabled
550 us to assemble near-perfect genome assemblies and plasmids instead, which facilitated
551 using the first timepoint isolate as a reference for each longitudinal pair. This revealed
552 that even in low SNV divergent isolate pairs, isolates undergo significant structural
553 changes, such as prophage acquisition, mobile genetic element insertion or loss, and
554 plasmid acquisition, that are difficult or impossible to capture using SNVs only.
555 Additionally, we found no relationship between the number of SNVs and the presence or
556 number of structural variants. Combined with other sequential genomics studies that
557 have revealed similar structural changes in the context of bacteraemia, we suggest that
558 SNP-based cutoffs cannot fully capture CIs' genomic adaptations and, instead, methods
559 that take into account structural variation should complement the analysis (Giulieri et
560 al., 2018; Giulieri et al., 2022).

561

562 MSCRAMM genes are known to be involved in epithelial adhesion and biofilm formation
563 (Foster, 2019; Raafat, Otto, Reppschlager, Iqbal, & Holtfreter, 2019). While a single gene
564 or gene cluster was not found to be indicative of colonisation, our comprehensive
565 genomic analysis demonstrated that MSCRAMM genes frequently exhibited variability in
566 persister strains over time, implying that selection pressure might act on the MSCRAMM
567 genes in chronic colonisation. Interestingly, we found that persisters commonly had
568 both small and structural MSCRAMM gene variants over time, suggesting that once
569 colonisation has occurred, persister strains may attenuate their virulence profiles by
570 adaptive evolution over time (Howden et al., 2023). Detailed analysis of the *sdr* locus
571 deletion in 4875 revealed recombination of the folding domains from the *sdrC* gene and
572 the wall-spanning and sort domain of the *sdrD* gene, suggesting that intra-host surface
573 adhesin modulation can occur. To our knowledge, such recombination has not been
574 previously reported in *S. aureus*. While it is known that serine-aspartate repeat
575 MSCRAMM proteins are variable and contribute to biofilm formation (Ajayi et al., 2018;
576 Barbu, Mackenzie, Foster, & Hook, 2014), more work needs to be done to characterise
577 the relationship between divergent serine-aspartate repeat MSCRAMM proteins and
578 their relationship to within-host adaptation.

579

580 We employed the Nanopore long-read Rapid Barcoding Kit library preparations, which
581 have been demonstrated to retrieve small plasmids effectively (R. R. Wick, Judd, Wyres,
582 & Holt, 2021). Our study revealed that *S. aureus* isolated from the sinonasal cavity of CRS
583 patients frequently carried plasmids, regardless of their persistence. While our sample
584 size was insufficient to establish a definitive association between plasmid carriage and
585 lineage, we confirmed that these plasmids commonly contained the beta-lactamase gene

586 *blaZ*, which has been frequently found in *S. aureus* strains since the advent of penicillin
587 (Turner et al., 2019). Furthermore, our results suggest that *blaZ* encoding plasmids
588 become more prevalent over time, but given the limited sample size, cautious
589 interpretation is warranted.
590 Overall, our study revealed a trend of higher plasmid copy numbers in the long-read
591 dataset compared to the short-read data, consistent with the findings of Wick et al. (R. R.
592 Wick et al., 2021). We speculate that the discrepancy in copy numbers estimation in the
593 long-read dataset compared to the short may be attributed to the PCR-free nature of the
594 Rapid Barcoding Kit, which could potentially reduce bias compared to PCR-based short-
595 read methods. However, this hypothesis requires further investigation, particularly as
596 long-read sequencing becomes more commonly used, as there is scant literature on the
597 impact of different library preparations on plasmid copy number estimation. Although
598 limited knowledge exists regarding the fitness cost of carriage and copy number of
599 plasmids for *S. aureus*, our study observed an increase in the copy number of conserved
600 plasmids over time in the long-read dataset for the persistent isolates not in the short-
601 read dataset.

602
603 Consistent with previous studies, we observed a high prevalence of macrolide resistance
604 in our set of CIs isolated from CRS patients (Bhattacharyya & Kepnes, 2008).
605 Additionally, our findings are consistent with previous studies that have shown a
606 significant decrease in the effectiveness of antibiotics against *S. aureus* biofilms
607 compared to their planktonic counterparts (C. W. Hall & Mah, 2017). Only doxycycline
608 was found to have a strong ability to reduce biofilms to near eradication. However, this
609 was only at concentrations exceeding the therapeutic window in humans. These results
610 suggest that antibiotics alone may not be sufficient for eradicating *S. aureus* biofilms in

611 the sinuses of long-term colonized CRS patients, as biofilms are a common feature in the
612 sinuses of CRS patients (Foreman, Psaltis, Tan, & Wormald, 2010; Singhal, Psaltis,
613 Foreman, & Wormald, 2010). Our finding of a frequent persistence of a single *S. aureus*
614 strain in CRS patients is further evidence that the use of topical and systemic antibiotics
615 alone may not be sufficient to eradicate the bacteria. However, we observed a
616 substantial reduction of *S. aureus* biofilms for mupirocin in concentrations achievable
617 when applied topically in saline-based irrigations (Kim & Kwon, 2016). Therefore, saline
618 nasal irrigation mixed with mupirocin could play a role in the peri-operative phase of
619 functional endoscopic sinus surgery of CRS patients by reducing the *S. aureus* biofilm,
620 which has been correlated with delayed wound healing and poor post-surgical outcomes
621 (Percival, 2017; Psaltis et al., 2008).

622

623 Pathoadaptation of persistent colonisers in (chronic) inflammatory conditions has been
624 described for pathogens such as *S. aureus* and *Pseudomonas aeruginosa* (Howden et al.,
625 2023; Rossi et al., 2021). A surprising finding in this study was the significantly
626 increased biofilm antibiotic tolerance over time of the *S. aureus* strains that are
627 persistent. This increased tolerance was correlated with an increase in the biomass of
628 biofilms of the persister isolates. The biofilm production and viability in persister CIs
629 were lower compared to the non-persister strains at the first timepoint. This suggests
630 that CIs with attenuated biofilm production capacities are more likely to persist in the
631 niche. It can be postulated that the observed increased antibiotic tolerance in those
632 persistent strains over time assists them in their host adaptation, making them well-
633 equipped to occupy and dominate the sinonasal microenvironment of CRS patients,
634 which are frequently exposed to antibiotics. However, it is essential to note that the
635 sinonasal cavity of humans is a relatively low-nutrient environment for bacteria, and

636 high biofilm production might bring a fitness cost (Krismer et al., 2014). The increased
637 biofilm production adaptation may arise during disease exacerbation with high bacterial
638 load in the sinuses and antibiotic exposure. It may present a fitness cost during periods
639 between exacerbations, allowing strains with less biofilm production to take over the
640 niche. The data on non-persistent strains did not show a reduction in biofilm production
641 between the first and second strains. However, the exact timepoint of strain change was
642 not known.

643 Various mechanisms have been postulated to contribute to biofilm-based antibiotic
644 tolerance of bacteria and the production of extracellular polymeric substances (C. W.
645 Hall & Mah, 2017; Karygianni, Ren, Koo, & Thurnheer, 2020). Although we observed
646 episode-specific mutations in the persistent isolates, we noted that genes involved in
647 adhesion and biofilm formation were frequently affected, suggesting that the
648 accumulation of mutations in different genes can lead to similar phenotypic adaptations.

649 **Limitations**

650 The findings of this study have to be seen in the light of some limitations. Since the study
651 was limited to *S. aureus* CIs isolated from patients suffering from CRS, it was not possible
652 to compare the results to longitudinal CIs from carriers. Longitudinal CIs from carriers
653 with extended follow-up are practically hard to obtain. Notwithstanding this limitation,
654 this study offers some insight into the genomic and phenotypical adaption of *S. aureus* in
655 the sinuses of CRS patients. Furthermore, the scope of the genomic analysis in this study
656 was limited due to the low sample size. The genomic complexity of *S. aureus* does not
657 lend itself to genome-wide association studies in low sample size populations. A natural
658 progression of this work is to analyse the genome of specific CIs pairs and all the in-

659 between CIs to identify a genomic target that might be involved in the phenotypical
660 adaptation.

661 **Conclusion**

662 Our findings provide insights into *S. aureus* persistence in difficult-to-treat CRS and
663 highlight the resilience of bacterial biofilms. Our results shed light on the genomic and
664 phenotypic changes associated with the persistence of *S. aureus* in chronically colonised
665 CRS patients. Further studies are needed to understand the mechanisms underlying
666 these adaptations and their potential survival benefit to identify potential targets for
667 developing new eradication strategies.

668 **References**

669 Ajayi, C., Åberg, E., Askarian, F., Sollid, J. U. E., Johannessen, M., & Hanssen, A.-M.
670 (2018). Genetic variability in the sdrD gene in *Staphylococcus aureus* from healthy
671 nasal carriers. *BMC Microbiology*, 18(1), 34. doi:10.1186/s12866-018-1179-7

672 Ankenbrand, T. H. a. M. J. (2022). gggenomes: A Grammar of Graphics for Comparative
673 Genomics. Retrieved from <https://github.com/thackl/gggenomes>

674 Barbu, E. M., Mackenzie, C., Foster, T. J., & Hook, M. (2014). SdrC induces staphylococcal
675 biofilm formation through a homophilic interaction. *Mol Microbiol*, 94(1), 172-185.
676 doi:10.1111/mmi.12750

677 Barshak, M. B., & Durand, M. L. (2017). The role of infection and antibiotics in chronic
678 rhinosinusitis. *Laryngoscope Investig Otolaryngol*, 2(1), 36-42. doi:10.1002/lio2.61

679 Bhattacharyya, N., & Kepnes, L. J. (2008). Assessment of trends in antimicrobial resistance in
680 chronic rhinosinusitis. *Ann Otol Rhinol Laryngol*, 117(6), 448-452.
681 doi:10.1177/000348940811700608

682 Bouras, G. (dnapler). dnaapler. Retrieved from <https://github.com/gbouras13/dnaapler>

683 Bouras, G. (hybracter). hybracter Retrieved from <https://github.com/gbouras13/hybracter>

684 Bouras, G. (Plassembler). Plassembler. Retrieved from
685 <https://github.com/gbouras13/plassembler>

686 Brynildsrud, O., Bohlin, J., Scheffer, L., & Eldholm, V. (2016). Rapid scoring of genes in
687 microbial pan-genome-wide association studies with Scoary. *Genome Biol*, 17(1), 238.
688 doi:10.1186/s13059-016-1108-8

689 Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ
690 preprocessor. *Bioinformatics*, 34(17), i884-i890. doi:10.1093/bioinformatics/bty560

691 Coll, F., Raven, K. E., Knight, G. M., Blane, B., Harrison, E. M., Leek, D., . . . Peacock, S. J.
692 (2020). Definition of a genetic relatedness cutoff to exclude recent transmission of

693 meticillin-resistant *Staphylococcus aureus*: a genomic epidemiology analysis. *Lancet*
694 *Microbe*, 1(8), e328-e335. doi:10.1016/S2666-5247(20)30149-X

695 Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., . . . Li, H.
696 (2021). Twelve years of SAMtools and BCFtools. *GigaScience*, 10(2).
697 doi:10.1093/gigascience/giab008

698 De Coster, W., D'Hert, S., Schultz, D. T., Cruts, M., & Van Broeckhoven, C. (2018).
699 NanoPack: visualizing and processing long-read sequencing data. *Bioinformatics*,
700 34(15), 2666-2669. doi:10.1093/bioinformatics/bty149

701 Drilling, A., Coombs, G. W., Tan, H.-L., Pearson, J. C., Boase, S., Psaltis, A., . . . Wormald,
702 P.-J. (2014). Cousins, siblings, or copies: the genomics of recurrent *Staphylococcus*
703 *aureus* infections in chronic rhinosinusitis. *International Forum of Allergy &*
704 *Rhinology*, 4(12), 953-960. doi:10.1002/alr.21423

705 Fokkens, W. J., Lund, V. J., Hopkins, C., Hellings, P. W., Kern, R., Reitsma, S., . . .
706 Zwetsloot, C. P. (2020). European Position Paper on Rhinosinusitis and Nasal Polyps
707 2020. *Rhinology*, 58(Suppl S29), 1-464. doi:10.4193/Rhin20.600

708 Foreman, A., Psaltis, A. J., Tan, L. W., & Wormald, P. J. (2010). Characterization of bacterial
709 and fungal biofilms in chronic rhinosinusitis. *Allergy Rhinol (Providence)*, 1(1), 10.
710 doi:10.2500/ajra.2009.23.3413

711 Giulieri, S. G., Baines, S. L., Guerillot, R., Seemann, T., Goncalves da Silva, A., Schultz, M.,
712 . . . Howden, B. P. (2018). Genomic exploration of sequential clinical isolates reveals
713 a distinctive molecular signature of persistent *Staphylococcus aureus* bacteraemia.
714 *Genome Med*, 10(1), 65. doi:10.1186/s13073-018-0574-x

715 Giulieri, S. G., Guerillot, R., Duchene, S., Hachani, A., Daniel, D., Seemann, T., . . . Howden,
716 B. P. (2022). Niche-specific genome degradation and convergent evolution shaping

717 Staphylococcus aureus adaptation during severe infections. *eLife*, 11, e77195.

718 doi:10.7554/eLife.77195

719 Hahne, F., & Ivanek, R. (2016). Visualizing Genomic Data Using Gviz and Bioconductor. In

720 E. Mathé & S. Davis (Eds.), *Statistical Genomics: Methods and Protocols* (pp. 335-351). New York, NY: Springer New York.

722 Hall, C. W., & Mah, T. F. (2017). Molecular mechanisms of biofilm-based antibiotic

723 resistance and tolerance in pathogenic bacteria. *FEMS Microbiol Rev*, 41(3), 276-301.

724 doi:10.1093/femsre/fux010

725 Hall, M. (2022). Rasusa: Randomly subsample sequencing reads to a specified coverage.

726 *Journal of open source software*, 7(69), 3941. doi:10.21105/joss.03941

727 Hastan, D., Fokkens, W. J., Bachert, C., Newson, R. B., Bislimovska, J., Bockelbrink, A., . . .

728 Burney, P. (2011). Chronic rhinosinusitis in Europe--an underestimated disease. A

729 GA(2)LEN study. *Allergy*, 66(9), 1216-1223. doi:10.1111/j.1398-9995.2011.02646.x

730 Hawkey, J., Wyres, K. L., Judd, L. M., Harshey, T., Blakeway, L., Wick, R. R., . . . Holt, K.

731 E. (2022). ESBL plasmids in Klebsiella pneumoniae: diversity, transmission and

732 contribution to infection burden in the hospital setting. *Genome Med*, 14(1), 97.

733 doi:10.1186/s13073-022-01103-0

734 Hoggard, M., Wagner Mackenzie, B., Jain, R., Taylor, M. W., Biswas, K., & Douglas, R. G.

735 (2017). Chronic Rhinosinusitis and the Evolving Understanding of Microbial Ecology

736 in Chronic Inflammatory Mucosal Disease. *Clinical Microbiology Reviews*, 30(1),

737 321. doi:10.1128/CMR.00060-16

738 Hopkins, C. (2019). Chronic Rhinosinusitis with Nasal Polyps. *N Engl J Med*, 381(1), 55-63.

739 doi:10.1056/NEJMcp1800215

740 Howden, B. P., Giulieri, S. G., Wong Fok Lung, T., Baines, S. L., Sharkey, L. K., Lee, J. Y.
741 H., . . . Stinear, T. P. (2023). *Staphylococcus aureus* host interactions and adaptation.
742 *Nature Reviews Microbiology*. doi:10.1038/s41579-023-00852-y
743 Jia, B., Raphenya, A. R., Alcock, B., Waglechner, N., Guo, P., Tsang, K. K., . . . McArthur,
744 A. G. (2017). CARD 2017: expansion and model-centric curation of the
745 comprehensive antibiotic resistance database. *Nucleic Acids Res*, 45(D1), D566-D573.
746 doi:10.1093/nar/gkw1004
747 Jolley, K. A., Bray, J. E., & Maiden, M. C. J. (2018). Open-access bacterial population
748 genomics: BIGSdb software, the PubMLST.org website and their applications.
749 *Wellcome Open Res*, 3, 124. doi:10.12688/wellcomeopenres.14826.1
750 Karygianni, L., Ren, Z., Koo, H., & Thurnheer, T. (2020). Biofilm Matrixome: Extracellular
751 Components in Structured Microbial Communities. *Trends Microbiol*, 28(8), 668-681.
752 doi:10.1016/j.tim.2020.03.016
753 Khelik, K., Lagesen, K., Sandve, G. K., Rognes, T., & Nederbragt, A. J. (2017). NucDiff: in-
754 depth characterization and annotation of differences between two sets of DNA
755 sequences. *BMC Bioinformatics*, 18(1), 338. doi:10.1186/s12859-017-1748-z
756 Kim, J. S., & Kwon, S. H. (2016). Mupirocin in the Treatment of Staphylococcal Infections in
757 Chronic Rhinosinusitis: A Meta-Analysis. *PLOS ONE*, 11(12), e0167369.
758 doi:10.1371/journal.pone.0167369
759 Kolmogorov, M., Yuan, J., Lin, Y., & Pevzner, P. A. (2019). Assembly of long, error-prone
760 reads using repeat graphs. *Nat Biotechnol*, 37(5), 540-546. doi:10.1038/s41587-019-
761 0072-8
762 Krismer, B., Liebeke, M., Janek, D., Nega, M., Rautenberg, M., Hornig, G., . . . Peschel, A.
763 (2014). Nutrient limitation governs *Staphylococcus aureus* metabolism and niche

764 adaptation in the human nose. *PLoS Pathog*, 10(1), e1003862.

765 doi:10.1371/journal.ppat.1003862

766 Krysko, O., Teufelberger, A., Van Nevel, S., Krysko, D. V., & Bachert, C. (2019).

767 Protease/antiprotease network in allergy: The role of *Staphylococcus aureus* protease-

768 like proteins. *Allergy*, 74(11), 2077-2086. doi:10.1111/all.13783

769 Lagos, A. C., Sundqvist, M., Dyrkell, F., Stegger, M., Soderquist, B., & Molling, P. (2022).

770 Evaluation of within-host evolution of methicillin-resistant *Staphylococcus aureus*

771 (MRSA) by comparing cgMLST and SNP analysis approaches. *Sci Rep*, 12(1), 10541.

772 doi:10.1038/s41598-022-14640-w

773 Lees, J. A., Harris, S. R., Tonkin-Hill, G., Gladstone, R. A., Lo, S. W., Weiser, J. N., . . .

774 Croucher, N. J. (2019). Fast and flexible bacterial genomic epidemiology with

775 PopPUNK. *Genome Res*, 29(2), 304-316. doi:10.1101/gr.241455.118

776 Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-

777 MEM. *arXiv preprint arXiv:1303.3997*.

778 Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*,

779 34(18), 3094-3100. doi:10.1093/bioinformatics/bty191

780 Liu, B., Zheng, D., Jin, Q., Chen, L., & Yang, J. (2019). VFDB 2019: a comparative

781 pathogenomic platform with an interactive web interface. *Nucleic Acids Res*, 47(D1),

782 D687-D692. doi:10.1093/nar/gky1080

783 Mah, T. F. (2014). Establishing the minimal bactericidal concentration of an antimicrobial

784 agent for planktonic cells (MBC-P) and biofilm cells (MBC-B). *J Vis Exp*(83),

785 e50854. doi:10.3791/50854

786 Molder, F., Jablonski, K. P., Letcher, B., Hall, M. B., Tomkins-Tinch, C. H., Sochat, V., . . .

787 Koster, J. (2021). Sustainable data analysis with Snakemake. *F1000Res*, 10, 33.

788 doi:10.12688/f1000research.29032.2

789 Muthukrishnan, G., Lamers, R. P., Ellis, A., Paramanandam, V., Persaud, A. B., Tafur, S., . . .

790 Cole, A. M. (2013). Longitudinal genetic analyses of *Staphylococcus aureus* nasal

791 carriage dynamics in a diverse population. *BMC Infect Dis*, 13(1), 221.

792 doi:10.1186/1471-2334-13-221

793 Nepal, R., Houtak, G., Shaghayegh, G., Bouras, G., Shearwin, K., Psaltis, A. J., . . . Vreugde,

794 S. (2021). Prophages encoding human immune evasion cluster genes are enriched in

795 *Staphylococcus aureus* isolated from chronic rhinosinusitis patients with nasal polyps.

796 *Microb Genom*, 7(12). doi:10.1099/mgen.0.000726

797 Okifo, O., Ray, A., & Gudis, D. A. (2022). The Microbiology of Acute Exacerbations in

798 Chronic Rhinosinusitis - A Systematic Review. *Front Cell Infect Microbiol*, 12,

799 858196. doi:10.3389/fcimb.2022.858196

800 Ondov, B. D., Treangen, T. J., Melsted, P., Mallonee, A. B., Bergman, N. H., Koren, S., &

801 Phillippy, A. M. (2016). Mash: fast genome and metagenome distance estimation

802 using MinHash. *Genome Biol*, 17(1), 132. doi:10.1186/s13059-016-0997-x

803 ONT. (2022). Medaka. Retrieved from <https://github.com/nanoporetech/medaka>

804 Percival, S. L. (2017). Importance of biofilm formation in surgical infection. *Br J Surg*,

805 104(2), e85-e94. doi:10.1002/bjs.10433

806 Petit, R. A., 3rd, & Read, T. D. (2018). *Staphylococcus aureus* viewed from the perspective of

807 40,000+ genomes. *PeerJ*, 6, e5261. doi:10.7717/peerj.5261

808 Pettit, R. K., Weber, C. A., Kean, M. J., Hoffmann, H., Pettit, G. R., Tan, R., . . . Horton, M.

809 L. (2005). Microplate Alamar blue assay for *Staphylococcus epidermidis* biofilm

810 susceptibility testing. *Antimicrob Agents Chemother*, 49(7), 2612-2617.

811 doi:10.1128/AAC.49.7.2612-2617.2005

812 Psaltis, A. J., Weitzel, E. K., Ha, K. R., & Wormald, P. J. (2008). The effect of bacterial
813 biofilms on post-sinus surgical outcomes. *American journal of rhinology*, 22(1), 1-6.
814 doi:10.2500/ajr.2008.22.3119

815 R Core Team. (2017). R: A language and environment for statistical computing. R Foundation
816 for Statistical Computing, Vienna, Austria.

817 Roach, M. J., Pierce-Ward, N. T., Schecki, R., Mallawaarachchi, V., Papudeshi, B.,
818 Handley, S. A., . . . Edwards, R. A. (2022). Ten simple rules and a template for
819 creating workflows-as-applications. *PLOS Computational Biology*, 18(12), e1010705.
820 doi:10.1371/journal.pcbi.1010705

821 Robertson, J., & Nash, J. H. E. (2018). MOB-suite: software tools for clustering,
822 reconstruction and typing of plasmids from draft assemblies. *Microb Genom*, 4(8).
823 doi:10.1099/mgen.0.000206

824 Rossi, E., La Rosa, R., Bartell, J. A., Marvig, R. L., Haagensen, J. A. J., Sommer, L. M., . . .
825 Johansen, H. K. (2021). *Pseudomonas aeruginosa* adaptation and evolution in patients
826 with cystic fibrosis. *Nat Rev Microbiol*, 19(5), 331-342. doi:10.1038/s41579-020-
827 00477-5

828 Schechner, V., Temkin, E., Harbarth, S., Carmeli, Y., & Schwaber, M. J. (2013).
829 Epidemiological interpretation of studies examining the effect of antibiotic usage on
830 resistance. *Clin Microbiol Rev*, 26(2), 289-307. doi:10.1128/CMR.00001-13

831 Schwengers, O., Jelonek, L., Dieckmann, M. A., Beyvers, S., Blom, J., & Goesmann, A.
832 (2021). Bakta: rapid and standardized annotation of bacterial genomes via alignment-
833 free sequence identification. *Microb Genom*, 7(11). doi:10.1099/mgen.0.000685

834 Sedlazeck, F. J., Rescheneder, P., Smolka, M., Fang, H., Nattestad, M., von Haeseler, A., &
835 Schatz, M. C. (2018). Accurate detection of complex structural variations using

836 single-molecule sequencing. *Nat Methods*, 15(6), 461-468. doi:10.1038/s41592-018-
837 0001-7

838 Seemann, T. (2015). Snippy: fast bacterial variant calling from NGS reads Retrieved from
839 <https://github.com/tseemann/snippy>

840 Seemann, T. (Abricate). Abricate. Retrieved from <https://github.com/tseemann/abricate>

841 Seemann, T. (mlst). mlst. Retrieved from <https://github.com/tseemann/mlst>

842 Shaghayegh, G., Cooksley, C., Bouras, G. S., Panchatcharam, B. S., Idrizi, R., Jana, M., . . .
843 Vreugde, S. (2023). Chronic rhinosinusitis patients display an aberrant immune cell
844 localization with enhanced *S aureus* biofilm metabolic activity and
845 biomass. *Journal of Allergy and Clinical Immunology*, 151(3), 723-736.e716.
846 doi:10.1016/j.jaci.2022.08.031

847 Singhal, D., Foreman, A., Jervis-Bardy, J., & Wormald, P. J. (2011). Staphylococcus aureus
848 biofilms: Nemesis of endoscopic sinus surgery. *Laryngoscope*, 121(7), 1578-1583.
849 doi:10.1002/lary.21805

850 Singhal, D., Psaltis, A. J., Foreman, A., & Wormald, P. J. (2010). The impact of biofilms on
851 outcomes after endoscopic sinus surgery. *Am J Rhinol Allergy*, 24(3), 169-174.
852 doi:10.2500/ajra.2010.24.3462

853 Stiefel, P., Rosenberg, U., Schneider, J., Mauerhofer, S., Maniura-Weber, K., & Ren, Q.
854 (2016). Is biofilm removal properly assessed? Comparison of different quantification
855 methods in a 96-well plate system. *Appl Microbiol Biotechnol*, 100(9), 4135-4145.
856 doi:10.1007/s00253-016-7396-9

857 Thunberg, U., Hugosson, S., Ehricht, R., Monecke, S., Müller, E., Cao, Y., . . . Söderquist, B.
858 (2021). Long-Term Sinonasal Carriage of Staphylococcus aureus and Anti-
859 Staphylococcal Humoral Immune Response in Patients with Chronic Rhinosinusitis.
860 *Microorganisms*, 9(2), 256. doi:10.3390/microorganisms9020256

861 Tonkin-Hill, G., MacAlasdair, N., Ruis, C., Weimann, A., Horesh, G., Lees, J. A., . . .

862 Parkhill, J. (2020). Producing polished prokaryotic pangenomes with the Panaroo

863 pipeline. *Genome Biol*, 21(1), 180. doi:10.1186/s13059-020-02090-4

864 Turner, N. A., Sharma-Kuinkel, B. K., Maskarinec, S. A., Eichenberger, E. M., Shah, P. P.,

865 Carugati, M., . . . Fowler, V. G., Jr. (2019). Methicillin-resistant *Staphylococcus*

866 *aureus*: an overview of basic and clinical research. *Nat Rev Microbiol*, 17(4), 203-218.

867 doi:10.1038/s41579-018-0147-4

868 Vickery, T. W., Ramakrishnan, V. R., & Suh, J. D. (2019). The Role of *Staphylococcus*

869 *aureus* in Patients with Chronic Sinusitis and Nasal Polyposis. *Curr Allergy Asthma*

870 *Rep*, 19(4), 21. doi:10.1007/s11882-019-0853-7

871 Wick, R. R. (Porechop). Porechop. Retrieved from <https://github.com/rrwick/Porechop>

872 Wick, R. R., & Holt, K. E. (2022). Polypolish: Short-read polishing of long-read bacterial

873 genome assemblies. *PLoS Comput Biol*, 18(1), e1009802.

874 doi:10.1371/journal.pcbi.1009802

875 Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Unicycler: Resolving bacterial

876 genome assemblies from short and long sequencing reads. *PLoS Comput Biol*, 13(6),

877 e1005595. doi:10.1371/journal.pcbi.1005595

878 Wick, R. R., Judd, L. M., Wyres, K. L., & Holt, K. E. (2021). Recovery of small plasmid

879 sequences via Oxford Nanopore sequencing. *Microb Genom*, 7(8).

880 doi:10.1099/mgen.0.000631

881 Xu, S., Li, L., Luo, X., Chen, M., Tang, W., Zhan, L., . . . Yu, G. (2022). Ggtree

882 : A serialized data object for visualization of a phylogenetic tree and annotation data. *iMeta*,

883 1(4), e56. doi:10.1002/imt2.56

884 Zimin, A. V., & Salzberg, S. L. (2020). The genome polishing tool POLCA makes fast and
885 accurate corrections in genome assemblies. *PLoS Comput Biol*, 16(6), e1007981.
886 doi:10.1371/journal.pcbi.1007981

887

888 **Tables**

889 **Table 1.** General linear mixed-effect model of biofilm viability

<i>Predictors</i>	fluorescence				
	<i>Estimates</i>	<i>std. Error</i>	<i>std. Beta</i>	<i>standardised std. Error</i>	<i>p</i>
(Intercept)	9521.99	468.05	1.47	0.16	***
group [T1]	80.34	69.10	0.03	0.02	NS
same strain [Yes]	-732.07	642.38	-0.26	0.23	NS
concentration [1.25]	-2151.71	247.48	-0.76	0.09	***
concentration [2.5]	-2993.73	247.48	-1.05	0.09	***
concentration [5]	-3375.66	247.48	-1.19	0.09	***
concentration [10]	-3468.68	247.48	-1.22	0.09	***
concentration [20]	-3504.01	247.48	-1.23	0.09	***
concentration [40]	-3664.02	247.48	-1.29	0.09	***
concentration [80]	-3865.20	247.48	-1.36	0.09	***
concentration [160]	-3876.89	247.48	-1.37	0.09	***
concentration [320]	-4123.81	247.48	-1.45	0.09	***
concentration [640]	-3970.43	247.48	-1.40	0.09	***
antibiotic[clarithromycin]	-913.07	99.85	-0.32	0.04	***
antibiotic [clindamycin]	-940.96	99.85	-0.33	0.04	***
antibiotic [doxycycline]	-2226.13	99.85	-0.78	0.04	***
antibiotic [erythromycin]	465.69	99.85	0.16	0.04	***
antibiotic [gentamicin]	-234.94	99.85	-0.08	0.04	*
antibiotic [mupirocin]	-1526.72	99.85	-0.54	0.04	***
group [T1] – same strain [Yes]	1475.91	107.68	0.52	0.04	***
Random Effects					
σ^2	3389981.04				
$\tau_{\text{toe id}}$	3350609.42				
N id	34				
Observations	4828				
Marginal R² / Conditional R²	0.184 / 0.590				
<i>* p<0.05 ** p<0.01 *** p<0.001</i>					

891 **Table 2. SNV and SV count between same strain isolate pairs**

892

Host ID CI pair	SNV count (Snippy)	SV count (Nucdiff)	SV count (Sniffles)
1415	2	1	2
1676	3	1	1
1992	6	4	3
3344	13	0	1
3997	22	0	2
420	69	5	5
4681	6	2	1
4875	20	7	5
5047	18	1	2
5060	5	0	0
5142	3	0	0
5519	10	2	1
5562	3	11	8
5728	42	3	4

893 SNV, Single nucleotide variant; SV, Structural Variant

894 **Table S1. Biosample accession number for each sample**

895

Biosample accession	Sample id	Host id and timepoint
SAMN32360832	C22	420_T0
SAMN32360833	C265	1415_T0
SAMN32360834	C13	1676_T0
SAMN32360835	C80	1992_T0
SAMN32360836	C295	2911_T1
SAMN32360837	C52	3344_T0
SAMN32360838	C9	3997_T0
SAMN32360839	C3	4681_T0
SAMN32360840	C67	4875_T0
SAMN32360841	C72	5047_T0
SAMN32360842	C45	5142_T0
SAMN32360843	C224	5519_T0
SAMN32360844	C222	5562_T0
SAMN32360845	C241	5728_T0
SAMN32360846	C100	276_T0
SAMN32360847	C364	276_T1
SAMN32360848	C320	420_T1
SAMN32360849	C235	539_T0
SAMN32360850	C318	539_T1
SAMN32360851	C148	1170_T1
SAMN32360852	C79	1170_T0
SAMN32360853	C324	1415_T1
SAMN32360854	C76	1676_T1
SAMN32360855	C208	1992_T1
SAMN32360856	C240	2911_T0
SAMN32360857	C113	3344_T1
SAMN32360858	C195	3357_T1
SAMN32360859	C24	3357_T0
SAMN32360860	C353	3997_T1
SAMN32360861	C121	4009_T0
SAMN32360862	C255	4009_T1
SAMN32360863	C56	4681_T1
SAMN32360864	C188	4747_T1
SAMN32360865	C32	4747_T0
SAMN32360866	C16	4784_T0
SAMN32360867	C70	4784_T1
SAMN32360868	C294	4875_T1
SAMN32360869	C21	4986_T0

SAMN32360870	C273	4986_T1
SAMN32360871	C351	5047_T1
SAMN32360872	C133	5060_T0
SAMN32360873	C179	5060_T1
SAMN32360874	C149	5142_T1
SAMN32360875	C209	5308_T1
SAMN32360876	C91	5308_T0
SAMN32360877	C206	5328_T0
SAMN32360878	C276	5328_T1
SAMN32360879	C136	5390_T0
SAMN32360880	C197	5390_T1
SAMN32360881	C155	5448_T0
SAMN32360882	C339	5448_T1
SAMN32360883	C196	5469_T0
SAMN32360884	C342	5469_T1
SAMN32360885	C183	5485_T0
SAMN32360886	C312	5485_T1
SAMN32360887	C182	5503_T0
SAMN32360888	C233	5503_T1
SAMN32360889	C349	5519_T1
SAMN32360890	C333	5562_T1
SAMN32360891	C245	5631_T0
SAMN32360892	C314	5631_T1
SAMN32360893	C285	5647_T0
SAMN32360894	C355	5647_T1
SAMN32360895	C309	5728_T1
SAMN32360896	C325	5767_T0
SAMN32360897	C363	5767_T1
SAMN32360898	C311	5911_T0
SAMN32360899	C357	5911_T1

897 **Table S2. Metadata characteristics of chronic rhinosinusitis subjects and**
898 **corresponding clinical isolate collection**

Characteristic	CRSwNP	CRSsNP	Total
Host subjects-N	29	5	34
Gender male-N	12	2	14
Age -year (\pm SD)	51 (\pm 11)	54 (\pm 21)	52 (\pm 15)
Aspirin sensitivity-N	6	0	6
Asthmatic-N	17	2	19
Mean time between CI pair collection- days (\pm SD)	565 (\pm 398)	558 (\pm 362)	563 (\pm 387)

899 CRSwNP, chronic rhinosinusitis with nasal polyps, CRSsNP, chronic rhinosinusitis

900 without nasal polyps.

901 **Table S3. Compilation of metadata characteristics of clinical isolate by relatedness**

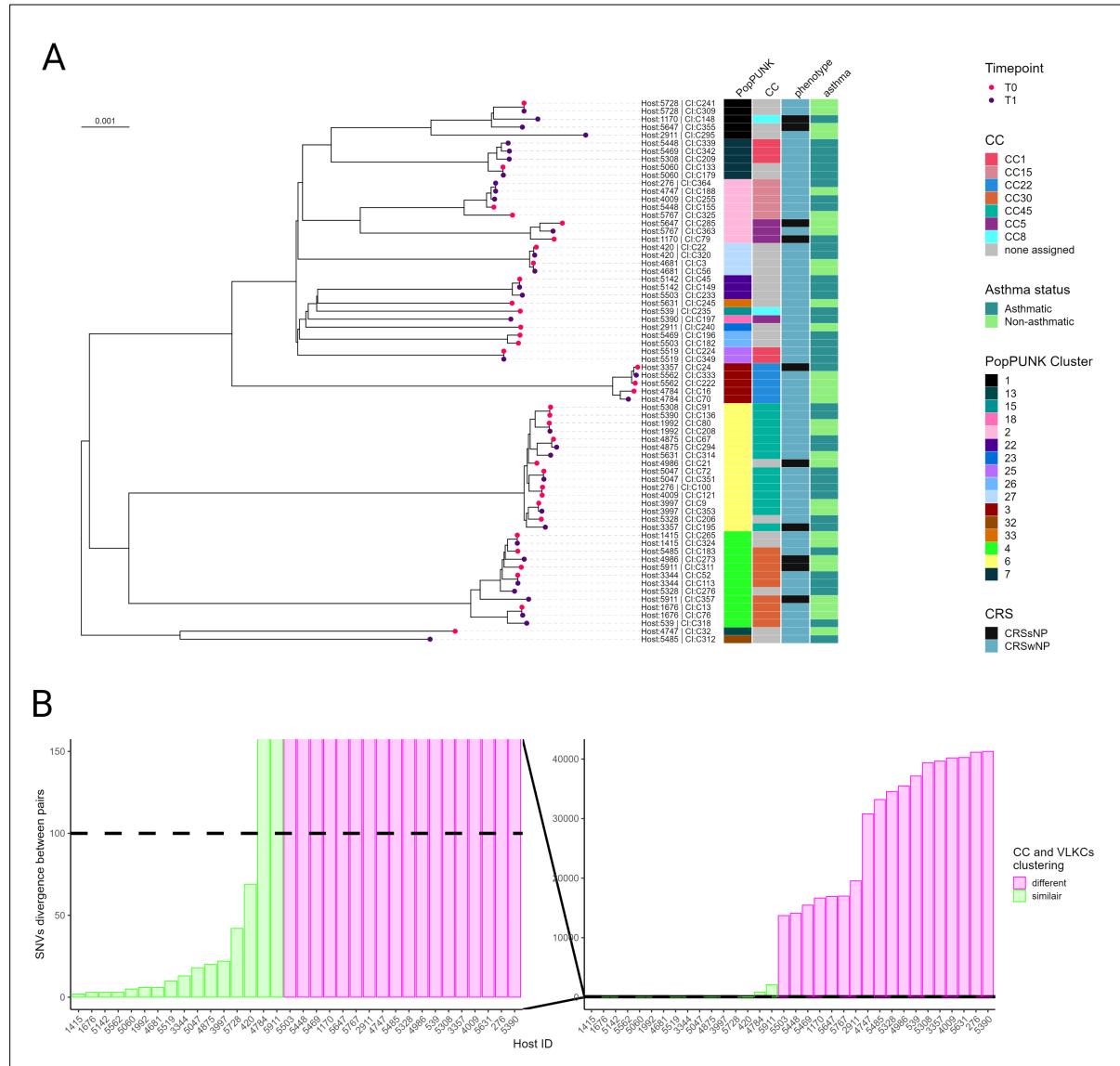
902 **classification and host characteristics**

Characteristic	Same strain pairs	Different strain pairs	Total
Count-N (% of total)	14 (41%)	20 (59%)	34 (100%)
Gender of host-Male-N	5	9	14
Age of host-year (\pm SD)	57 (\pm 15)	50 (\pm 16)	52 (\pm 15)
Phenotype of host-CRSwNP- N	14	15	29
Aspirin sensitivity of host-N	3	3	6
Asthma status of host-N	7	12	19
Mean time between CI pair collection- days (\pm SD)	629 (\pm 474)	518 (\pm 320)	563(\pm 387)

903 CRSwNP, chronic rhinosinusitis with nasal polyps.

904 **Table S4. Frequency distribution of *Staphylococcus aureus* isolates' Minimum Inhibitory Concentration (MIC)**

Antibiotic	Timepoint *	MIC (%)												MIC_{50}	MIC_{90}	Resistant (%)	
		Concentration (mg/L)															
		<0.06	0.06	0.125	0.25	0.5	1	2	4	8	16	32	>32				
Erythromycin	T0	0.00	0.00	0.00	0.00	0.00	14.71	47.06	17.65	5.88	5.88	2.94	5.88	2	>32	21	
	T1	0.00	0.00	0.00	0.00	0.00	2.94	38.24	26.47	14.71	2.94	5.88	8.82	4	>32	32	
Doxycycline	T0	0.00	2.94	26.47	52.94	8.82	5.88	0.00	2.94	0.00	0.00	0.00	0.00	0.25	0.50	0	
	T1	0.00	0.00	5.88	29.41	47.06	5.88	2.94	5.88	0.00	2.94	0.00	0.00	0.50	2	3	
Clindamycin	T0	0.00	0.00	2.94	52.94	35.29	5.88	0.00	0.00	0.00	0.00	0.00	2.94	0.25	0.50	3	
	T1	0.00	0.00	0.00	23.53	58.82	5.88	0.00	0.00	0.00	0.00	0.00	11.76	0.50	2	12	
Augmentin	T0	0.00	0.00	0.00	5.88	14.71	38.24	32.35	2.94	0.00	5.88	0.00	0.00	4	8	N. A	
	T1	0.00	0.00	0.00	2.94	8.82	23.53	29.41	11.76	5.88	5.88	8.82	2.94	4	16	N. A	
Gentamycin	T0	0.00	0.00	0.00	2.94	17.65	29.41	35.29	2.94	5.88	2.94	0.00	2.94	4	16	6	
	T1	0.00	0.00	0.00	0.00	2.94	11.76	41.18	14.71	11.76	5.88	2.94	8.82	4	16	18	
Mupirocin	T0	85.29	2.94	8.82	0.00	0.00	0.00	0.00	0.00	0.00	2.94	0.00	0.00	<0.06	0.125	N. A	
	T1	67.65	0.00	29.41	2.94	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	<0.06	0.125	N. A	
Clarithromycin	T0	0.00	0.00	0.00	0.00	0.00	8.82	58.82	14.71	0.00	5.88	2.94	8.82	2	32	18	
	T1	2.94	0.00	0.00	0.00	0.00	14.71	32.35	23.53	5.88	2.94	2.94	14.71	2	>32	26	

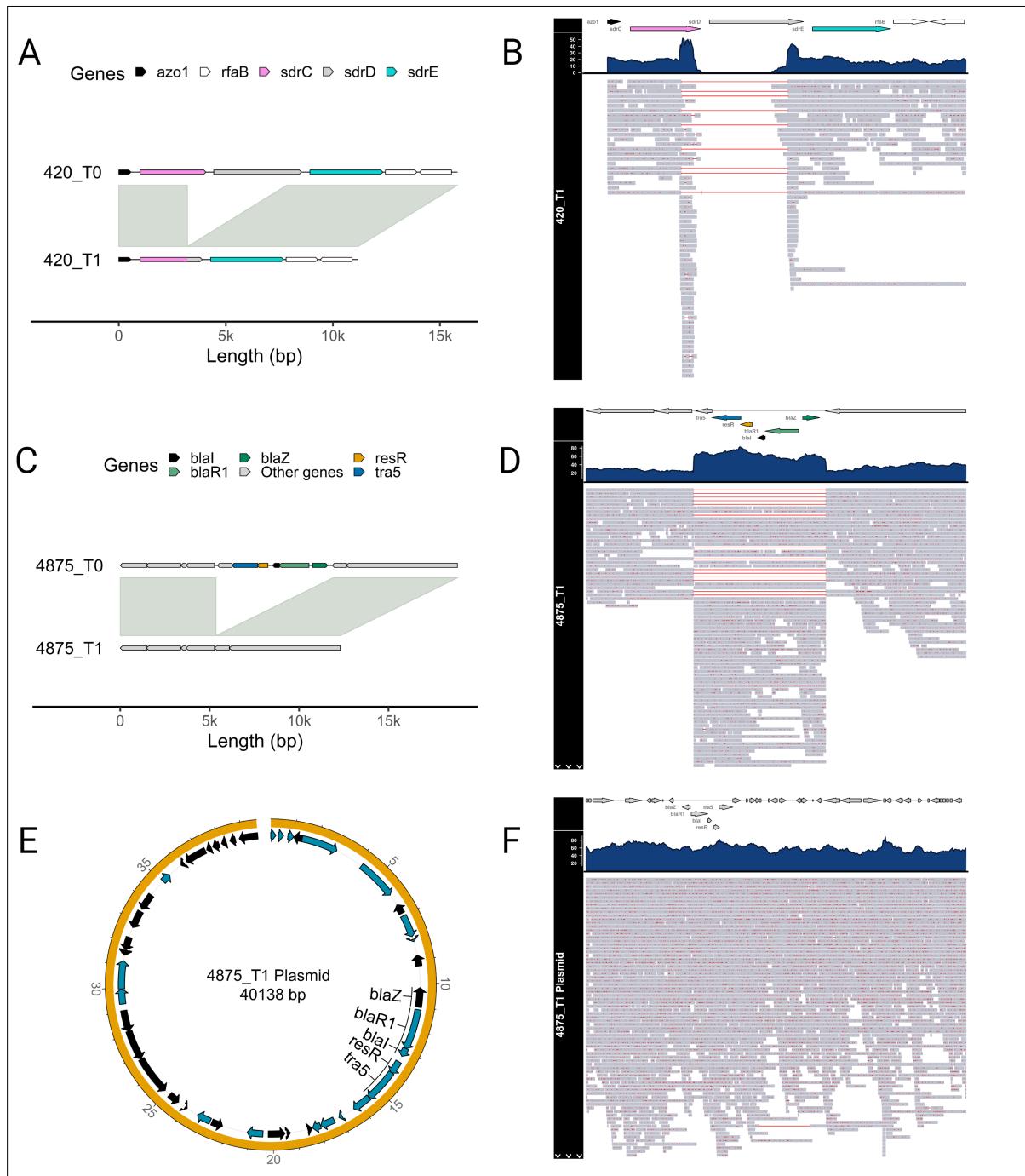

905 *T0 and T1 represent the first and second CIs of the longitudinal *S. aureus* pairs. The light-grey fill represents the intermediate

906 susceptible range, and the dark-grey fill represents the resistant range. MIC₅₀ and MIC₉₀ is the minimum inhibitory concentration

907 (mg/L) that inhibited 50 and 90% of the isolates, respectively. Antibiotics without shading have no interpretive MIC breakpoint
908 accessible.

909 **Figure**

910 **Figure 1**

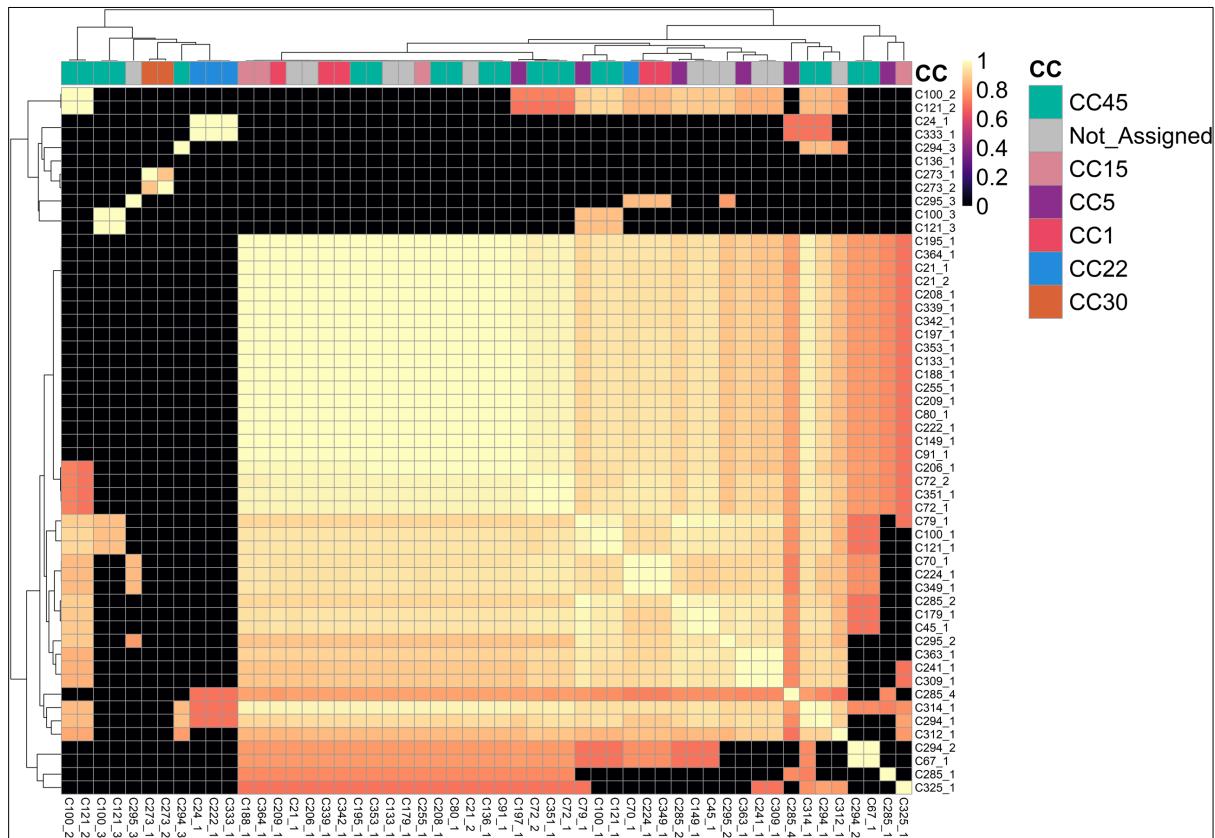


911

912 Figure 1. Genome-based classification of *Staphylococcus aureus* clinical isolates. (A) A
913 variable-length-k-mer cluster (VLKC) midpoint rooted tree of 68 *S. aureus* genomes
914 collected from 34 subjects with chronic rhinosinusitis (2 samples per subject) based on
915 PopPUNK analysis. The branch tip colours represent the collection timepoint (T0= first,
916 T1=later timepoint). The PopPUNK cluster, clonal complex (CC), CRS phenotype, and

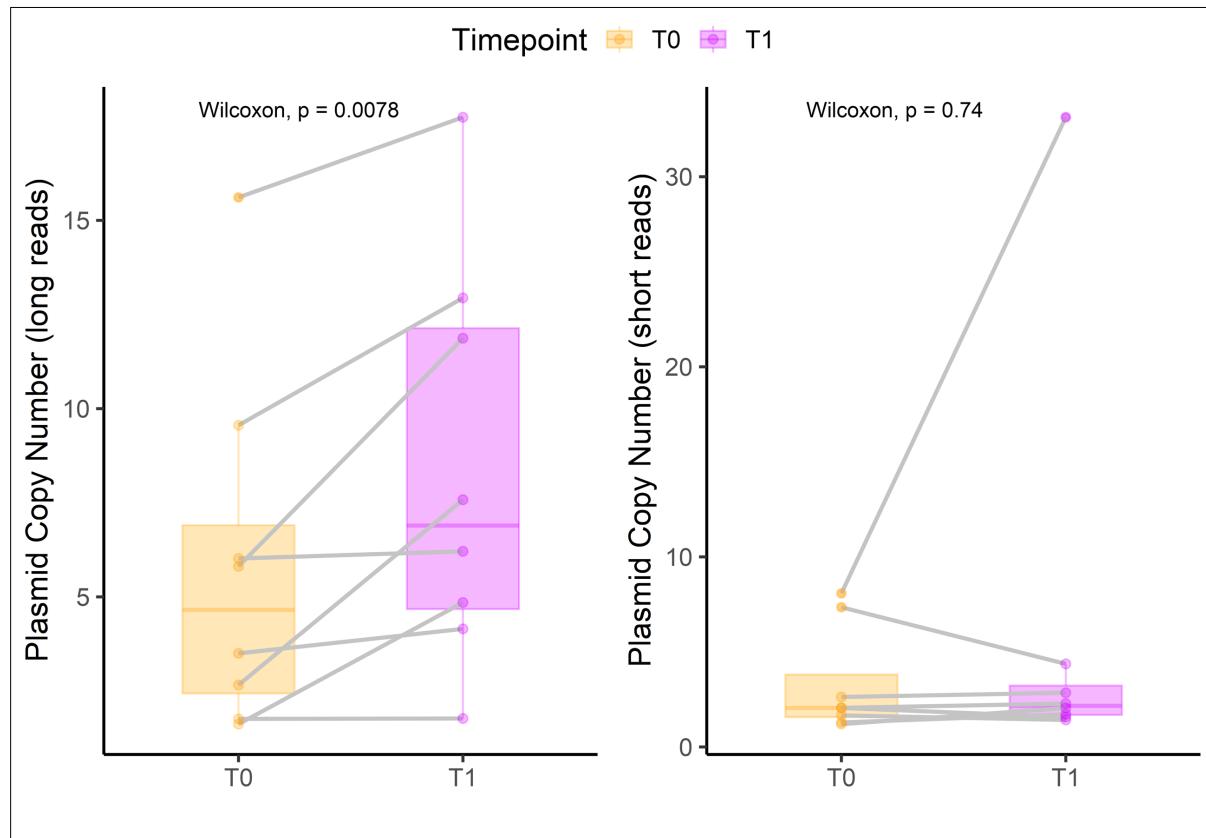
917 asthma status are indicated by colour on the right side. The branch labels show the
918 corresponding host ID and the CI number. (B) A histogram depicting the distribution of
919 pairwise single-nucleotide variant (SNV) divergence in the core genome for all clinical
920 isolate pairs (n=34), with colours indicating CC and VLKC similarity. The horizontal line
921 indicates the SNV threshold used to classify pairs as either "same strain" or "different
922 strain".

923 **Figure 2**



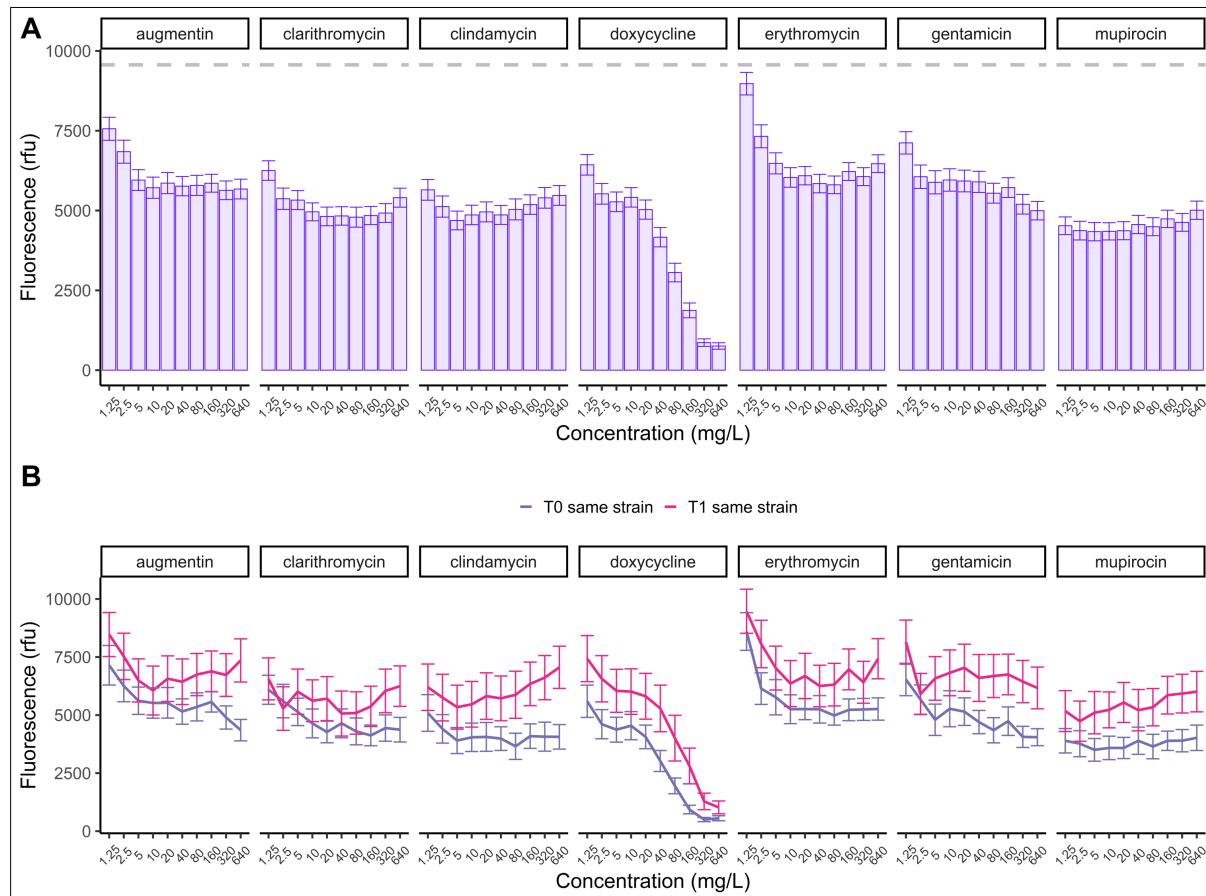
924
925 Figure 2. Structural variants identified between same strain longitudinal pairs. (A)

926 Alignment of the *sdrCDE* locus between two isolates from the same host (420) at
927 different timepoints. Genes are highlighted in different colours, and synteny and
928 sequence similarity are indicated by grey fills connecting the chromosomes. The
929 genomes of the first and second timepoint isolates are shown on top and bottom,


930 respectively. (B) Coverage and pile-up plot of aligned long-reads of the second timepoint
931 isolate of host 420 against the *sdrCDE* locus of the first timepoint isolate, red indicates
932 deleted regions in the reads. (C) Alignment of the β -lactamase locus between two
933 isolates from the same host (4875) at different timepoints. (D) Coverage and pile-up plot
934 of aligned long-reads of the second timepoint isolate of host 4875 against the β -
935 lactamase locus of the first timepoint isolate, red indicates deleted regions in the reads.
936 (E) Circular plot of the acquired plasmid of the second timepoint isolate of host 4875.
937 (F) Coverage and pile-up plot of aligned long-reads of the acquired plasmid of the
938 second timepoint isolate of host 4875, red indicates deleted regions in the reads.

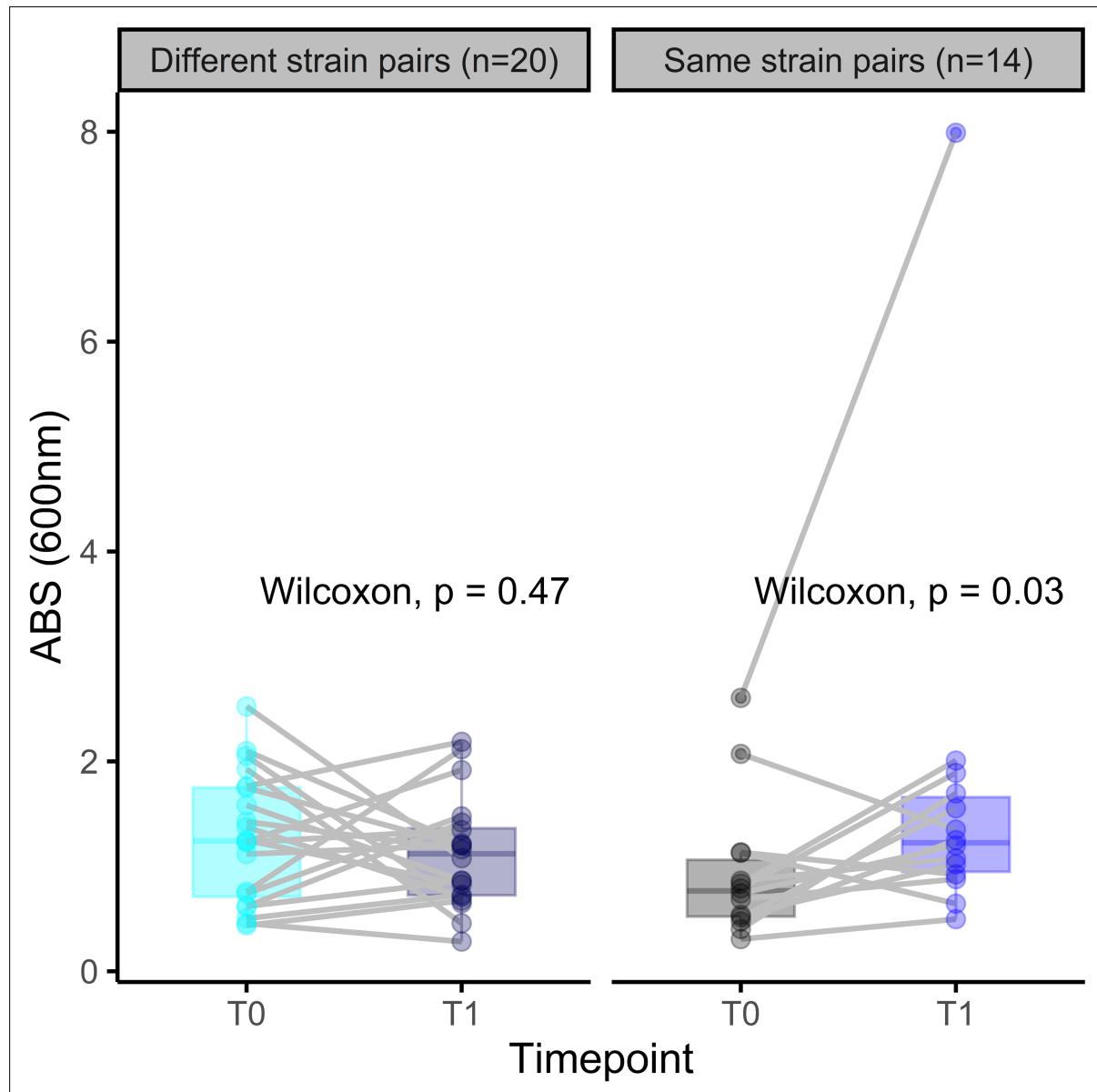
939 **Figure 3**

941 Figure 3. Heatmap displaying the minhash (Mash) distances between the 53 plasmids
942 identified in the 68 CIs. The distances were calculated using mash v2.3 and are
943 represented by a colour gradient. The clonal complex of the CI from which the plasmid
944 was recovered is indicated at the top of the heatmap.


945 **Figure 4**

946

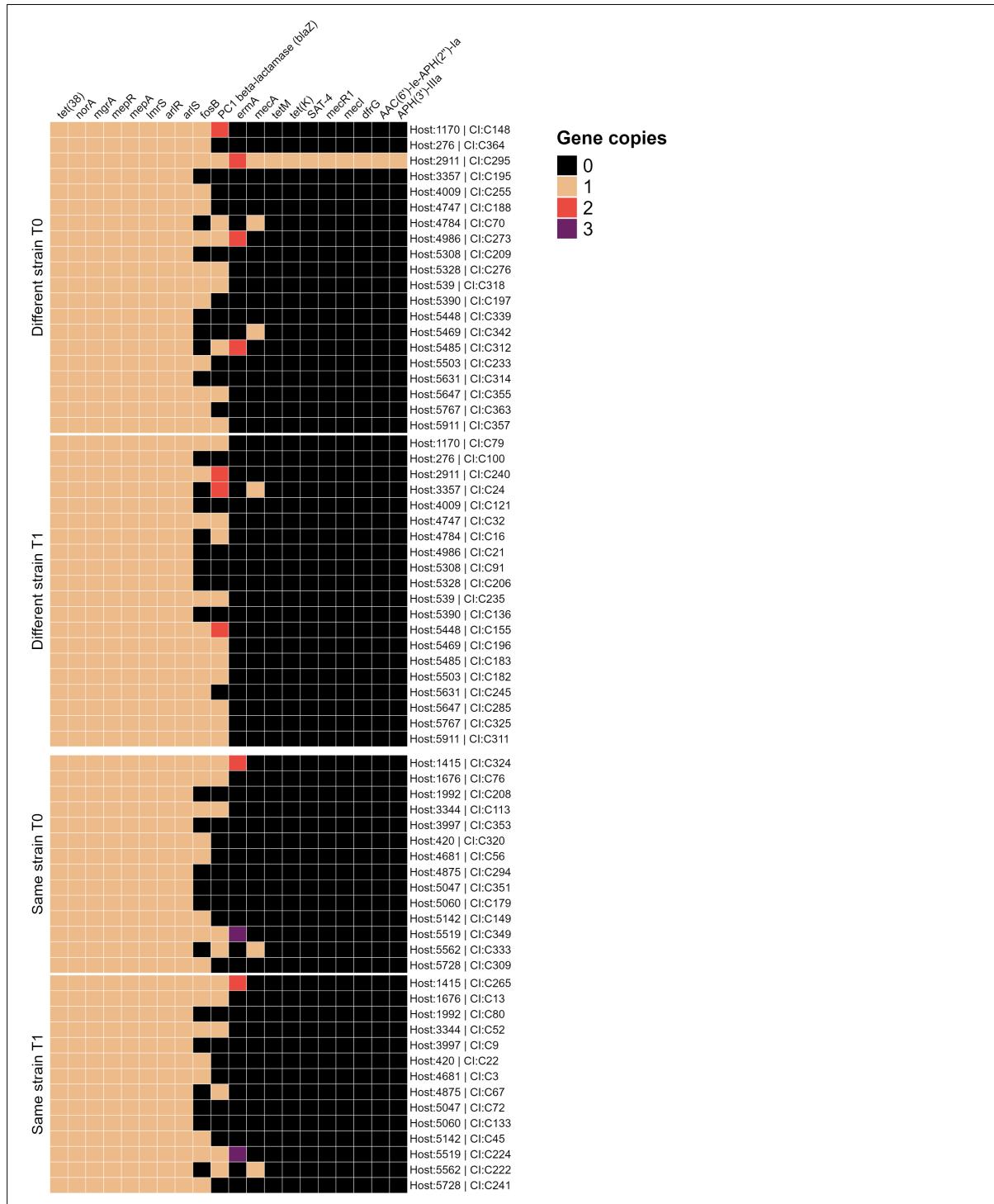
947 Figure 4. Copy numbers of the conserved plasmids in the 'same strain' group (n=8) for
948 short-read and long-read data. The colour indicates timepoints, and the grey line
949 indicates paired conserved plasmids. The Wilcoxon signed-rank test compared the copy
950 numbers between the two timepoints, with $p < 0.05$ considered significant.


951 **Figure 5**

952

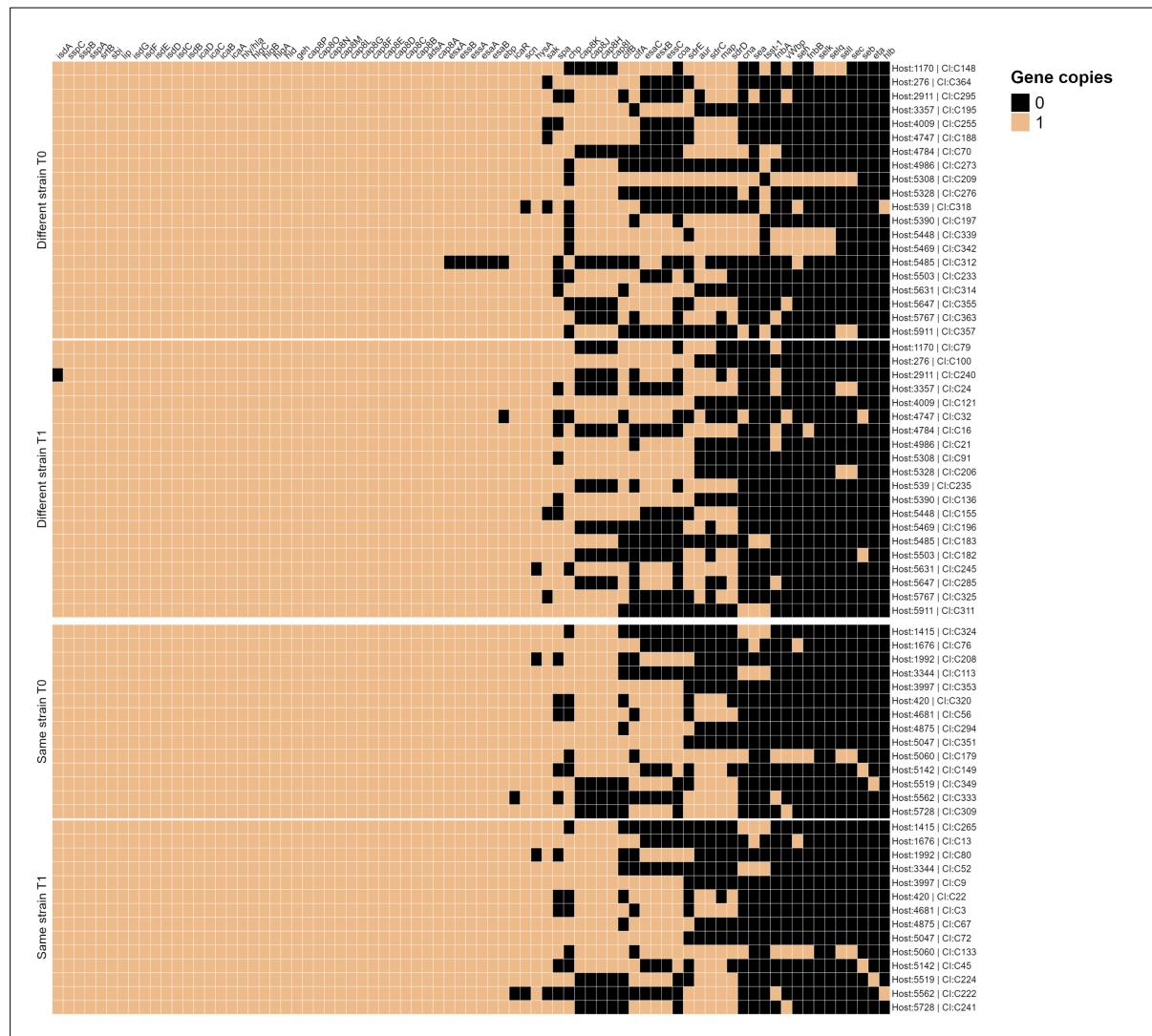
953 Figure 5. Tolerance of *S. aureus* biofilms to antibiotics. (A) Mean biofilm viability after
954 treatment per antibiotic and concentration in relative fluorescence units (rfu) for all 68
955 CIs. The grey dashed line represents the mean viability of isolates untreated. (B) Mean
956 biofilm viability of the first and second CIs pairs classified as the same strain after
957 treatment with increasing concentrations of antibiotics. Error bars represent the
958 standard error of the mean (SEM).

959 **Figure 6**



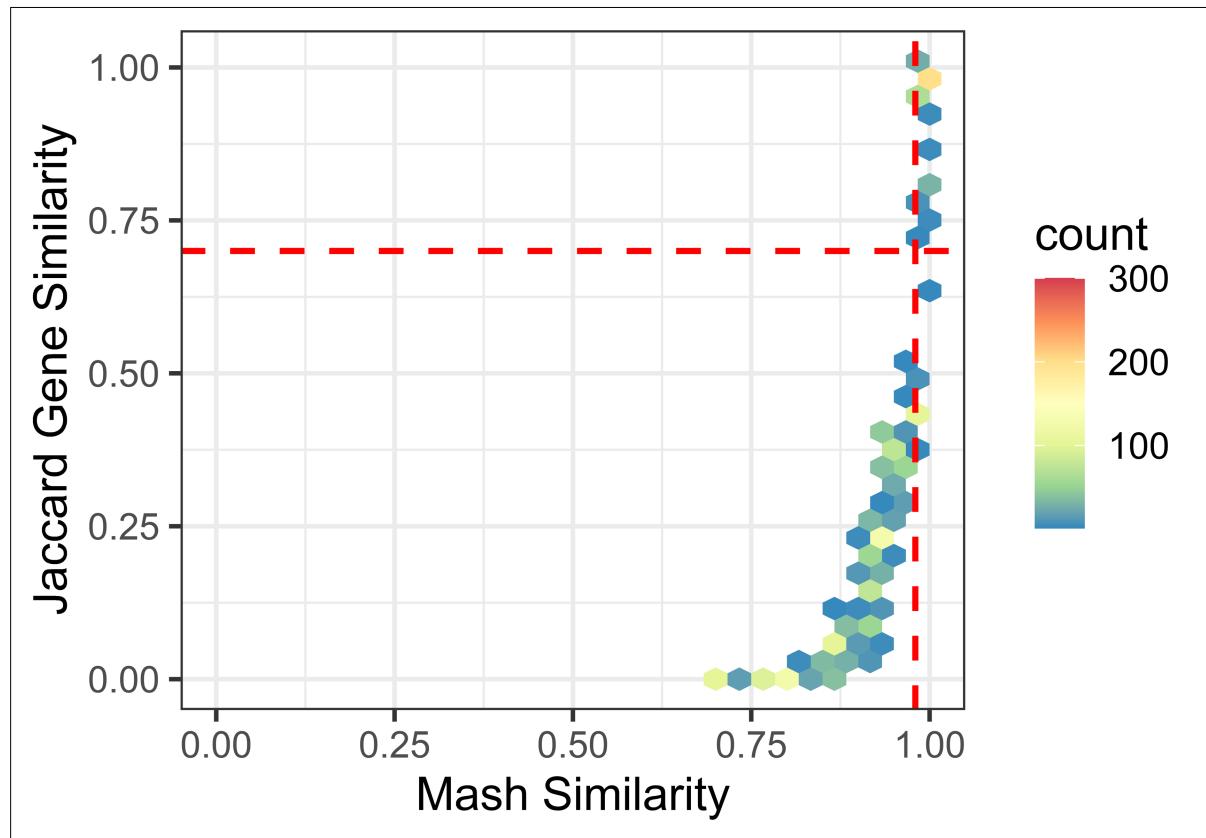
960

961 Figure 6. Biomass of *S. aureus* biofilms classified as same strain and different strain
962 using the crystal violet assay. The CIs pairs are connected with a grey line. Paired
963 Wilcoxon test was used to determine the significance between the first and second
964 timepoint.

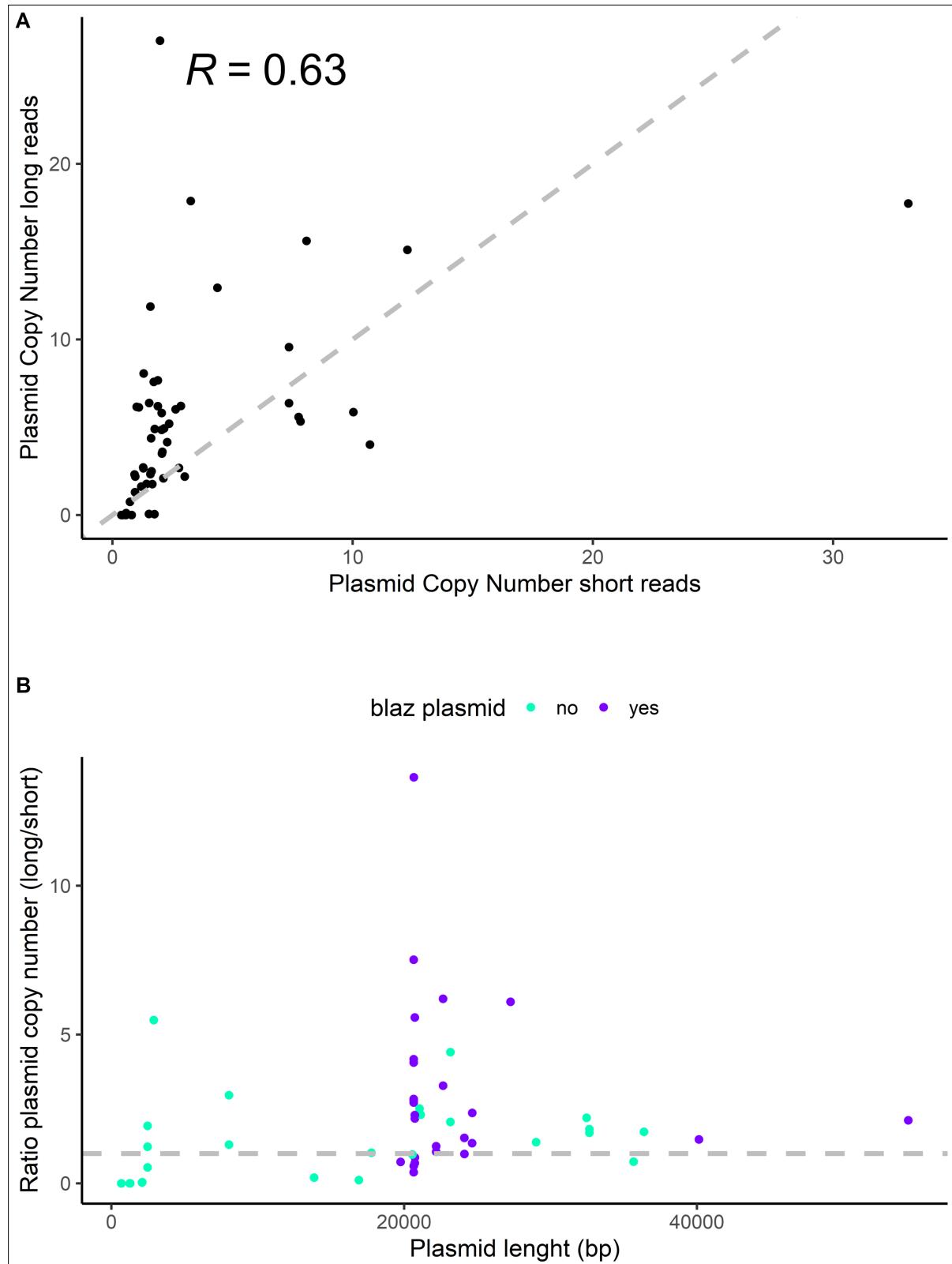

965

966 **Figure S1**

970 strain-relatedness classification and the order of CI collection. The gene copies of
971 antimicrobial resistance genes are indicated by colour.


972 **Figure S2**

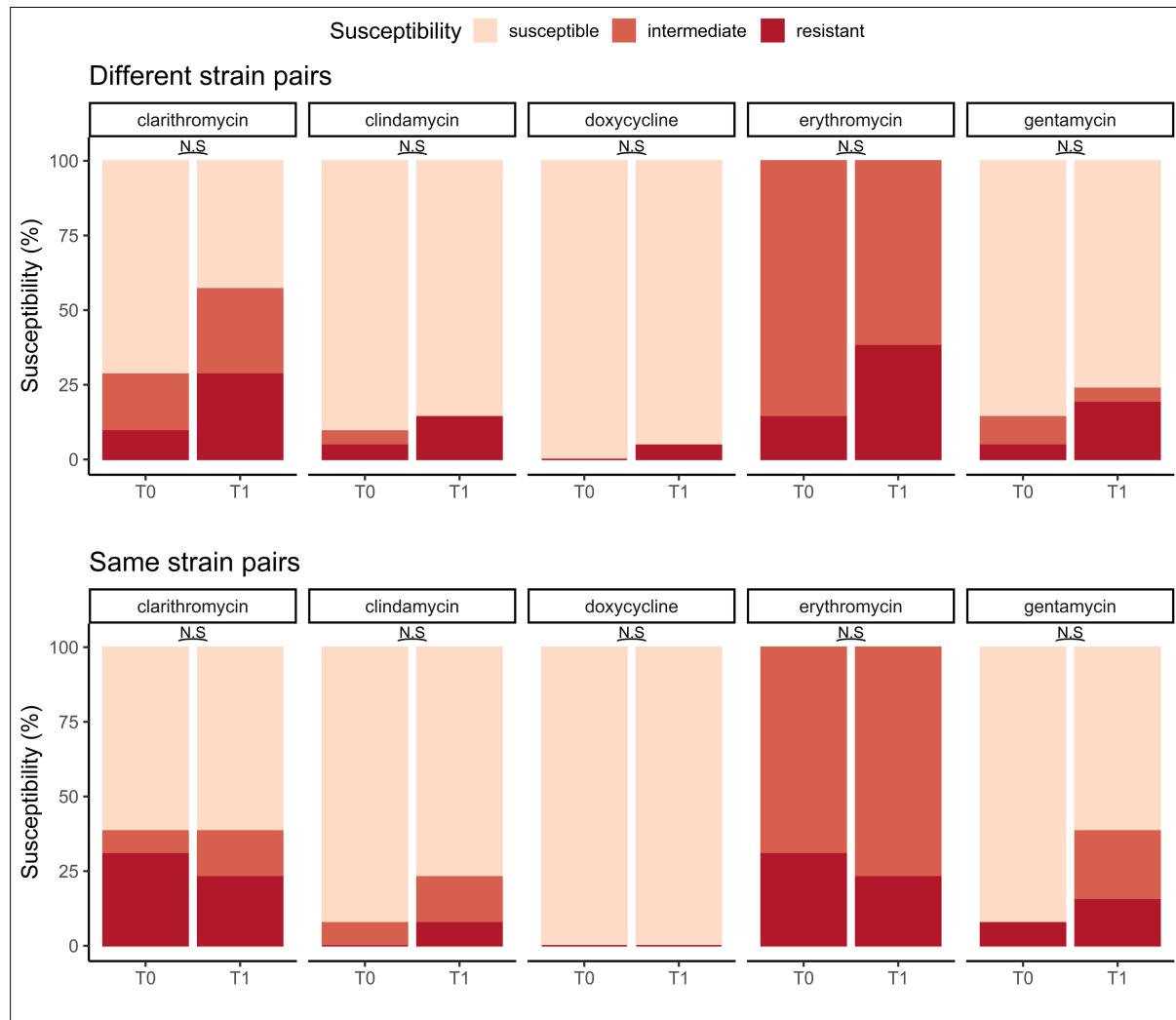
973


974 Figure S2. Matrix displaying the virulence genes in the genome of all CIs (n=68). CIs are
975 grouped by strain relatedness and the collection sequence. The matrix is split into
976 strains classified as 'same strain' pairs (N=14) and 'different strain' pairs (N=20). T0 and
977 T1 indicate the first and second CIs groups of the sequential *S. aureus* pairs, respectively.

978 **Figure S3**

980 Figure S3. Hexagonal binned plot displaying the relationship between all the plasmids
981 detected based on gene presence and absence and M similarity ($n=2,756$). The
982 hexagonal cell colour represents the number of data points observed in that cell.
983 Plasmids were considered the same using a threshold of Mash similarity distance
984 greater than 0.98 and Jaccard index of gene presence and absence greater than 0.7.

985 Figure S4



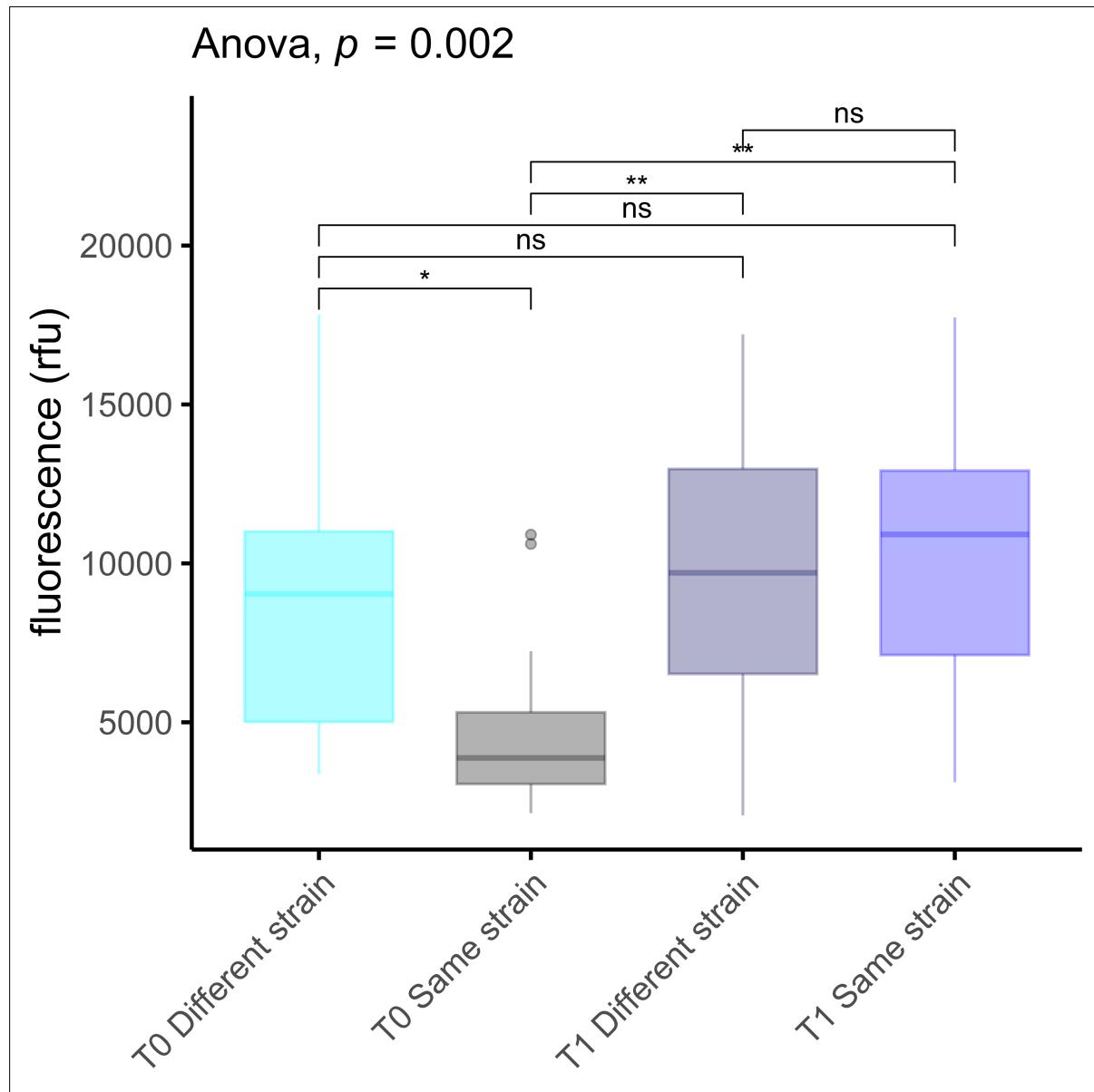
986

987 Figure S4. Comparison of plasmid copy numbers estimated from long-read sequencing
988 versus short-read sequencing. (A) Each point represents a single plasmid (n=53), with

989 the x-axis indicating the copy number from short-read sequencing and the y-axis
990 indicating the copy number from long-read sequencing. The Spearman correlation
991 coefficient is shown in the top left. (B) The ratio of the plasmid copy number
992 (short/long) for all plasmids detected (N=53). *Blaz*-positive plasmids are indicated by
993 colour. The grey line is the intercept of the ratio=1.

994 **Figure S5**

995


996 Figure S5. Planktonic antibiotic susceptibility of *S. aureus* isolates (n=68). Antibiotic
997 susceptibility of *S. aureus* isolates is presented based on minimum inhibitory
998 concentration (MIC) breakpoints adapted from the CLSI for isolates classified as the
999 same and different strains (N=14, N=20). Fisher's exact test was used to determine the
1000 significant difference in the proportion of resistant and non-resistant isolates between
1001 the T0 and T1 groups, with a threshold of p<0.05. MIC breakpoints are not available for
1002 augmentin and mupirocin.

1003 **Figure S6**

1008 The left column represents all 'same strain' isolates, and the right column represents
1009 'different strain' isolates. Host ID numbers are indicated on the right side of the columns.

1010 **Figure S7**

1011

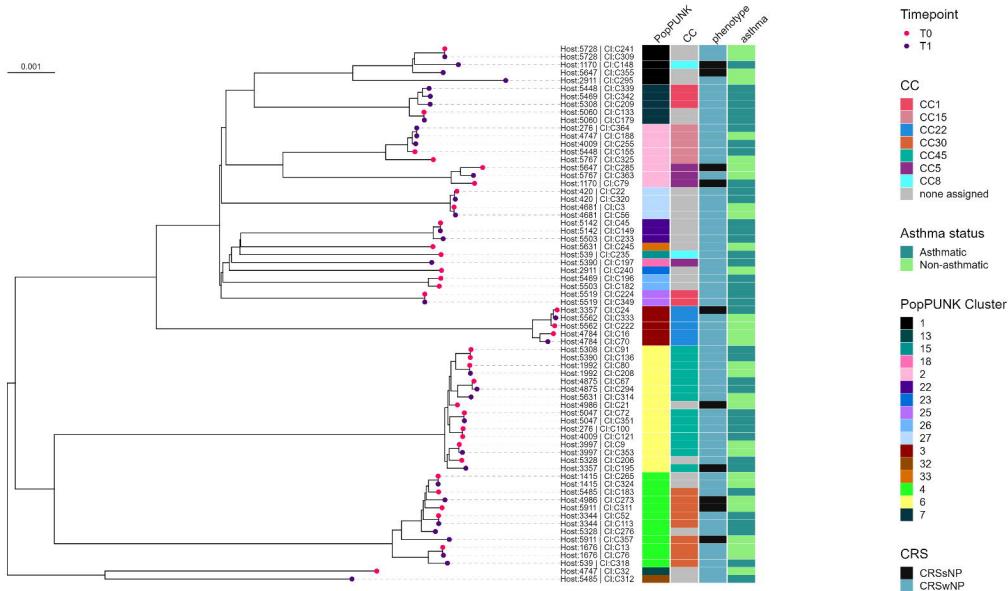
1012 Figure S7. *S. aureus* biofilms viability after 48 hours of growth for all 68 clinical isolates

1013 (CIs). The x-axis indicates the first and second CIs classified as the 'same strain' and

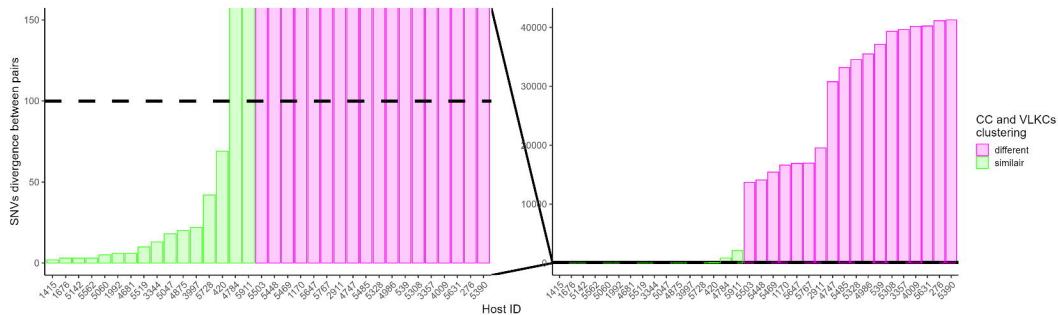
1014 'different strain'. Significance was tested using ANOVA, and post-hoc pairwise t-test with

1015 Bonferroni correction applied for multiple comparisons.

1016 **Supplementary text**

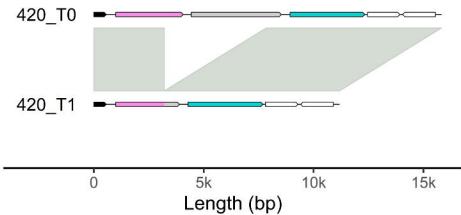

1017 **ST1**

1018 Chronic rhinosinusitis (CRS) diagnosis criteria as described by the EPOS:
1019 The presence of two or more symptoms, one of which should be either nasal blockage or
1020 nasal discharge with facial pain/pressure or loss of smell. The symptoms should last for
1021 more than 12 weeks. Patients were considered difficult-to-treat if no acceptable level of
1022 control was achieved despite adequate surgery, intranasal corticosteroid treatment and
1023 short courses of antibiotics or systemic corticosteroids in the preceding year of
1024 collection.

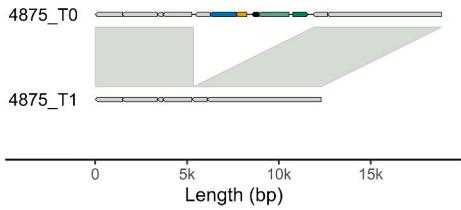
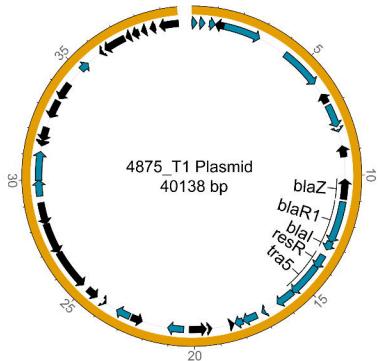
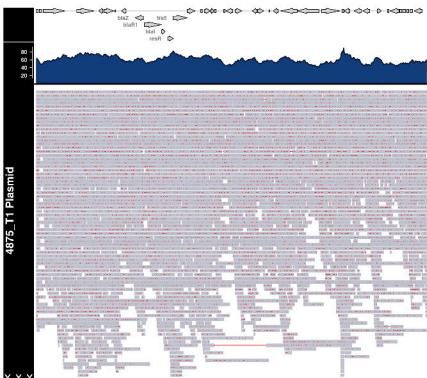

1025

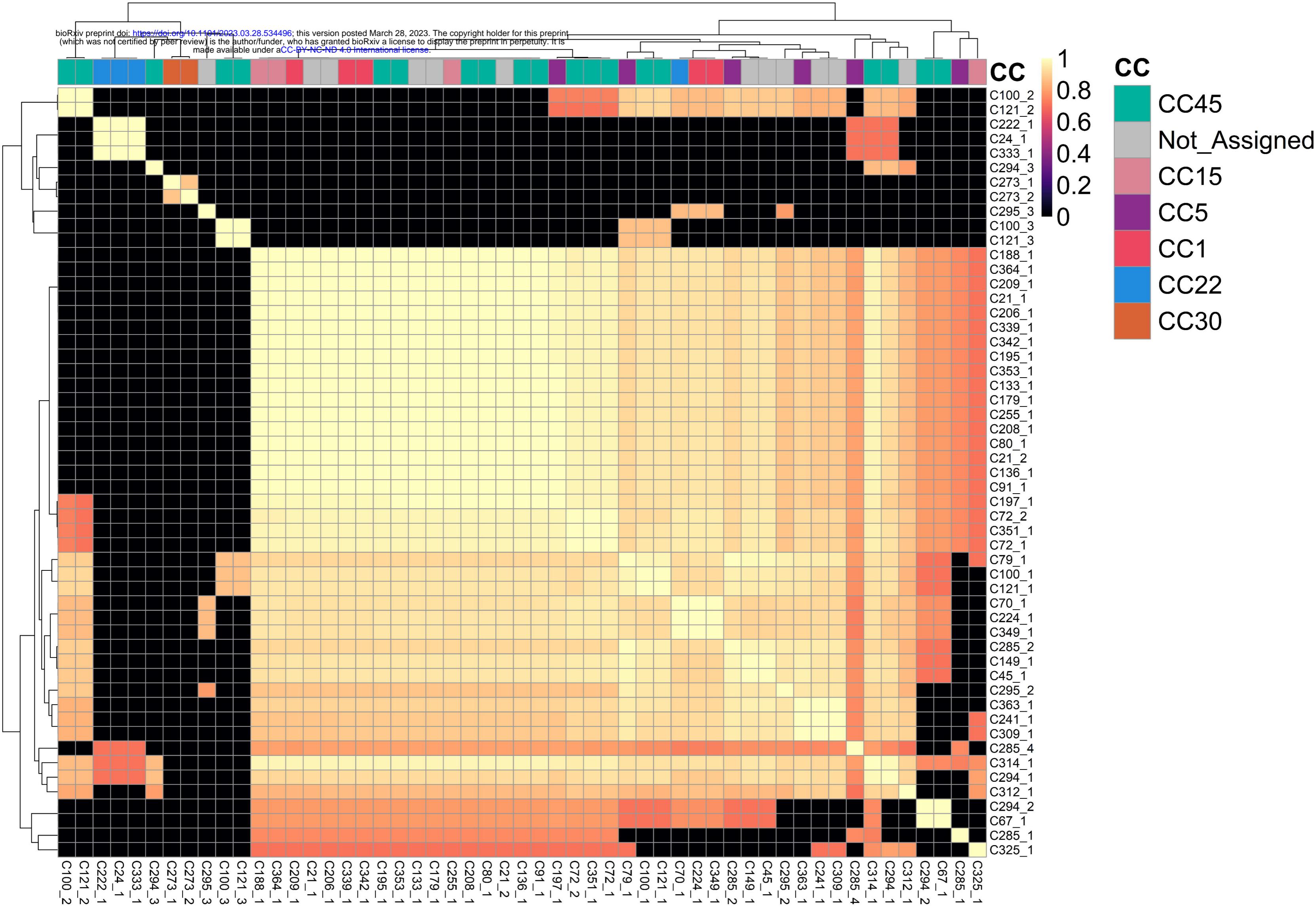
1026 Asthma status and aspirin sensitivity were collected via self-reported questionnaires at
1027 the time of consent for the biobank. Furthermore, an ENT surgeon added the CRS
1028 subtype to the biobank after endoscopic assessment.

A

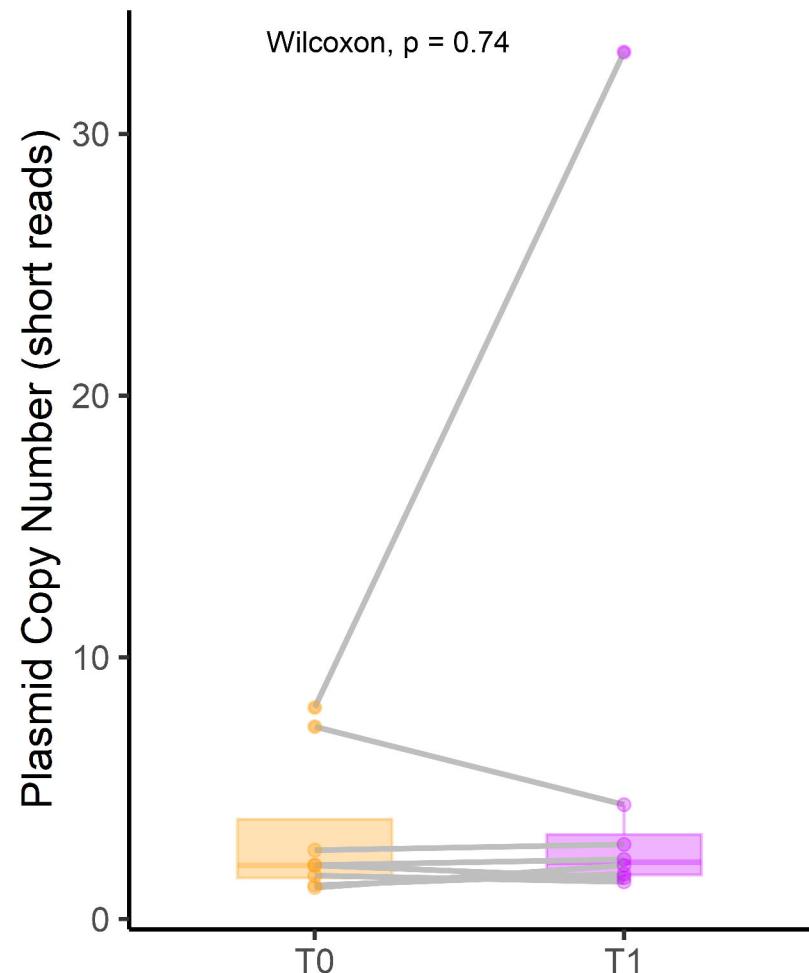


B

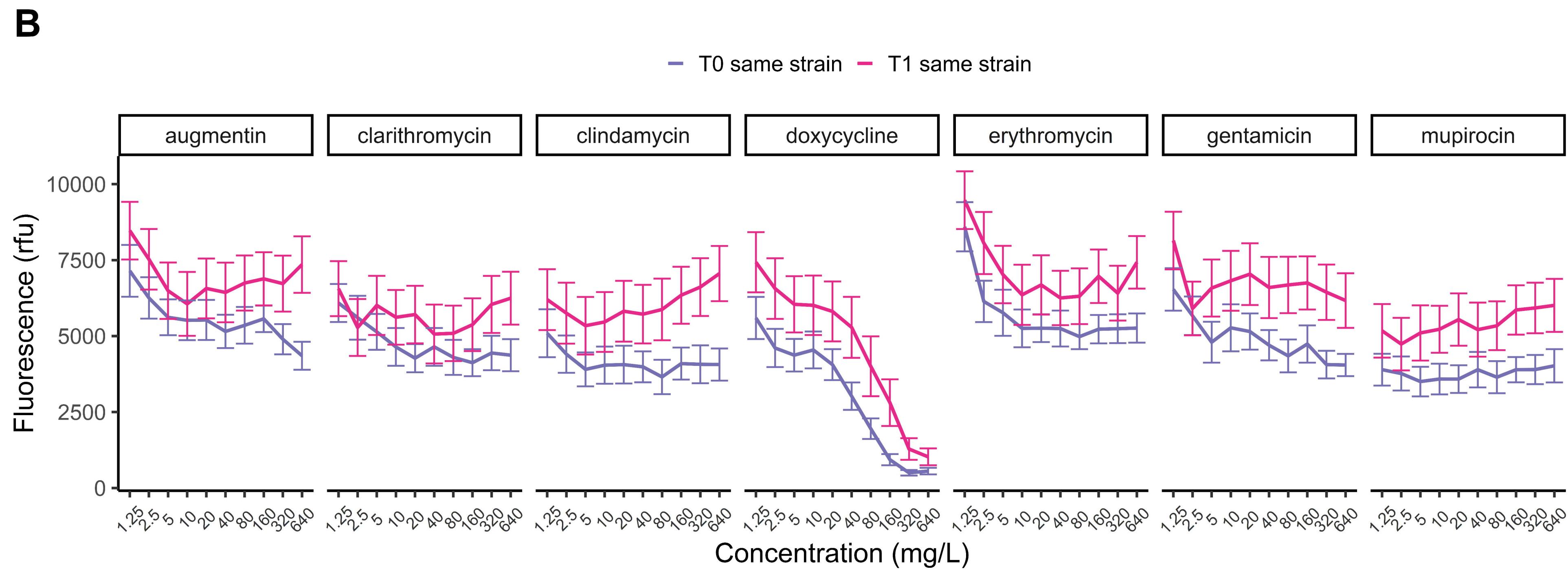
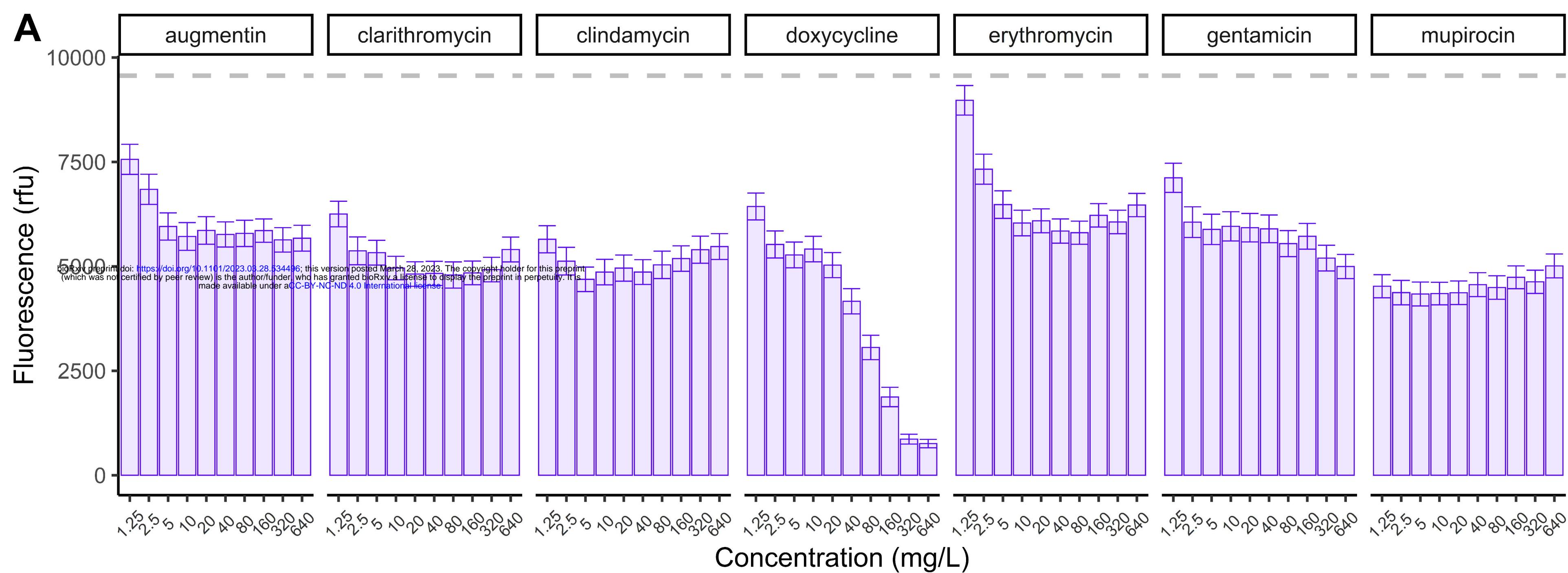




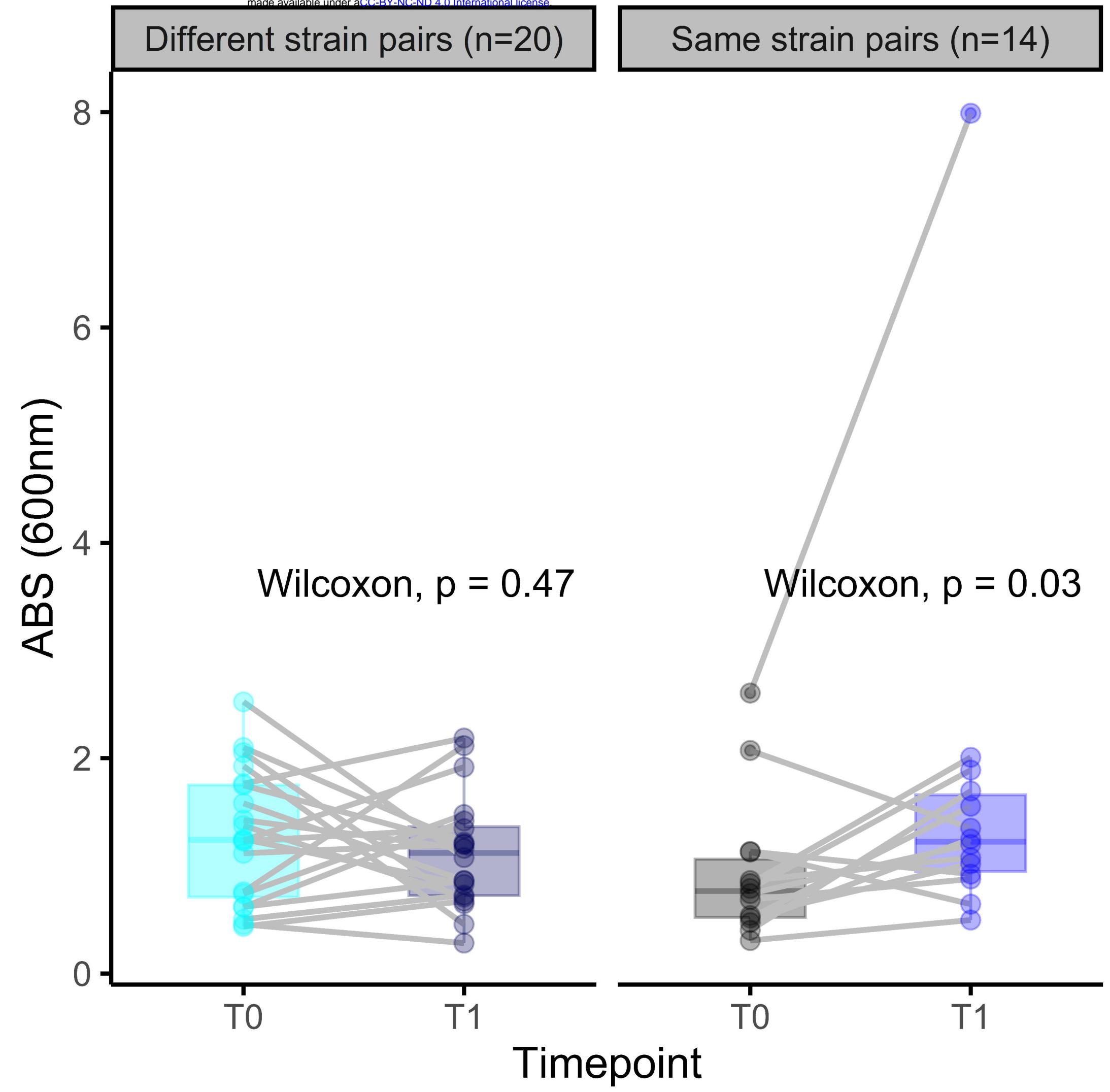

A

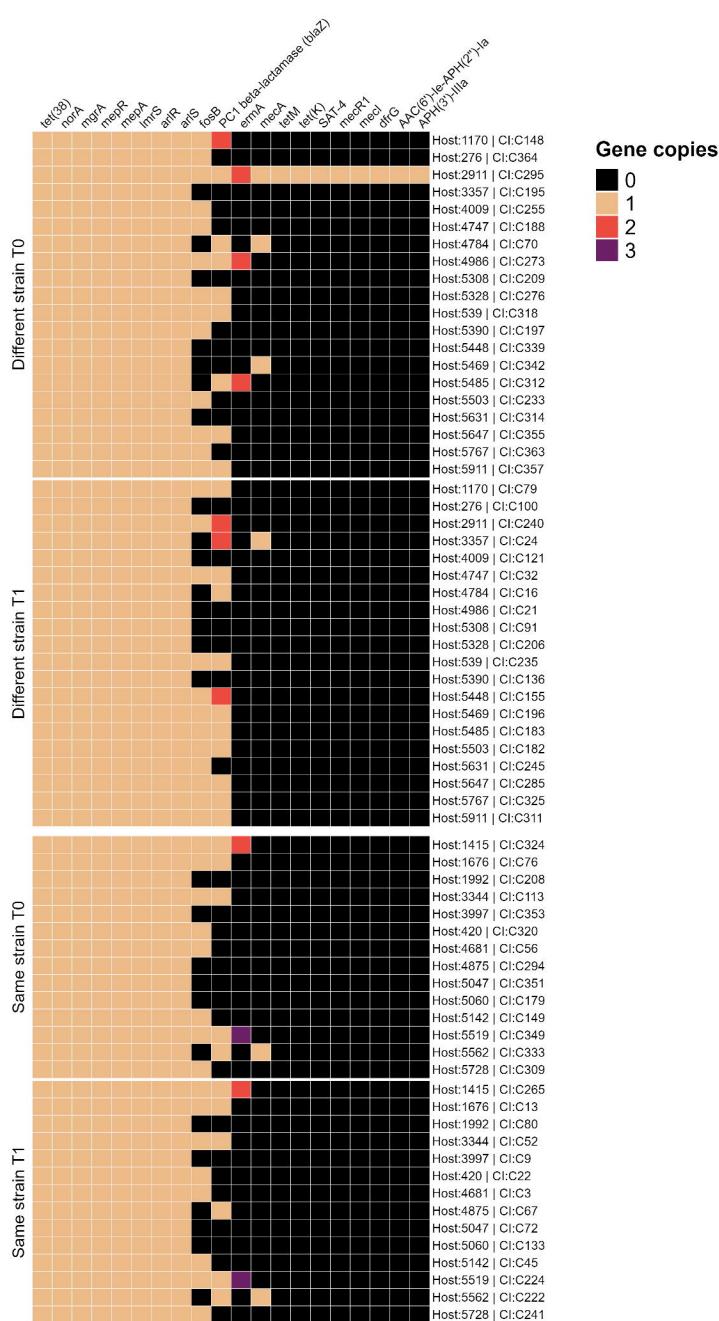
Genes □ *azo1* □ *rfaB* □ *sdrC* □ *sdrD* □ *sdrE*



B**C**



Genes □ *blaI* □ *blaR1* □ *blaZ* □ Other genes □ *resR* □ *tra5*


D**E****F**

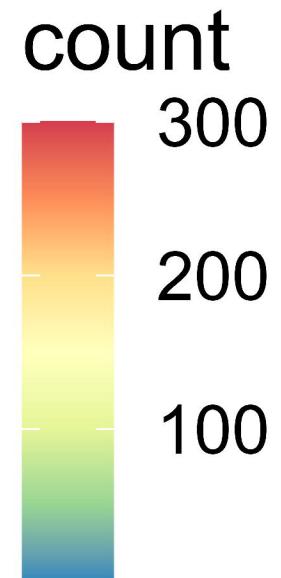
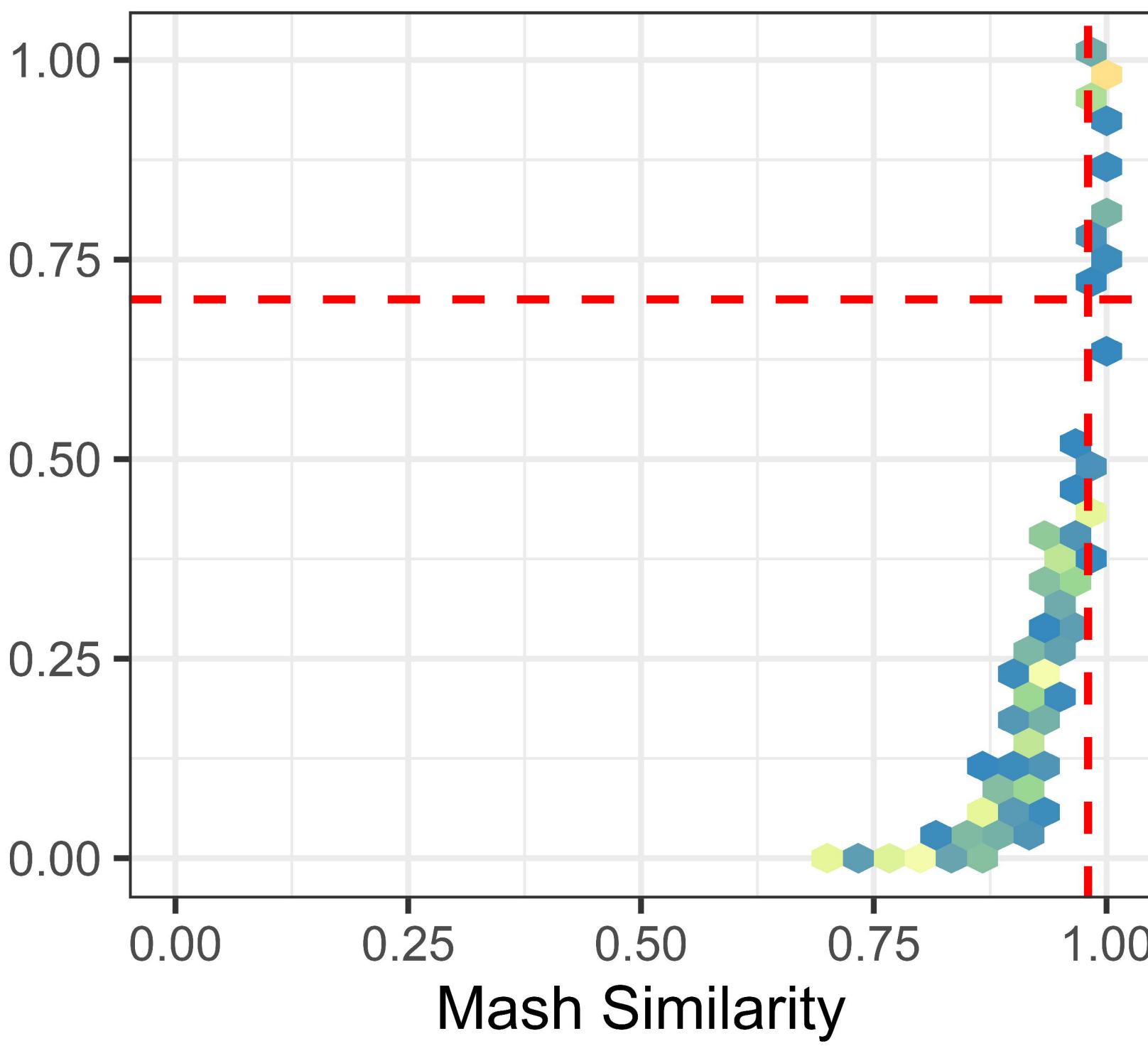


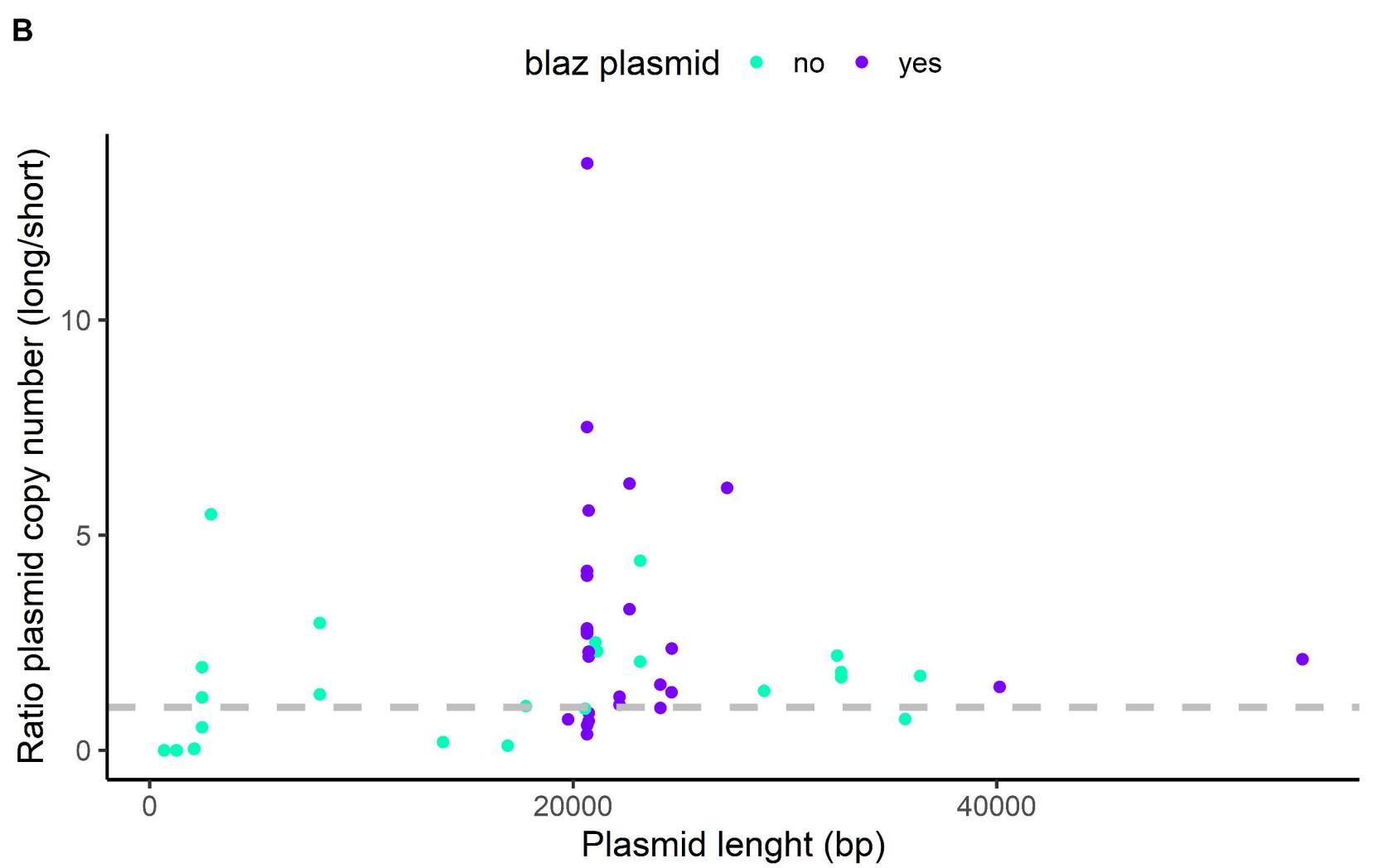
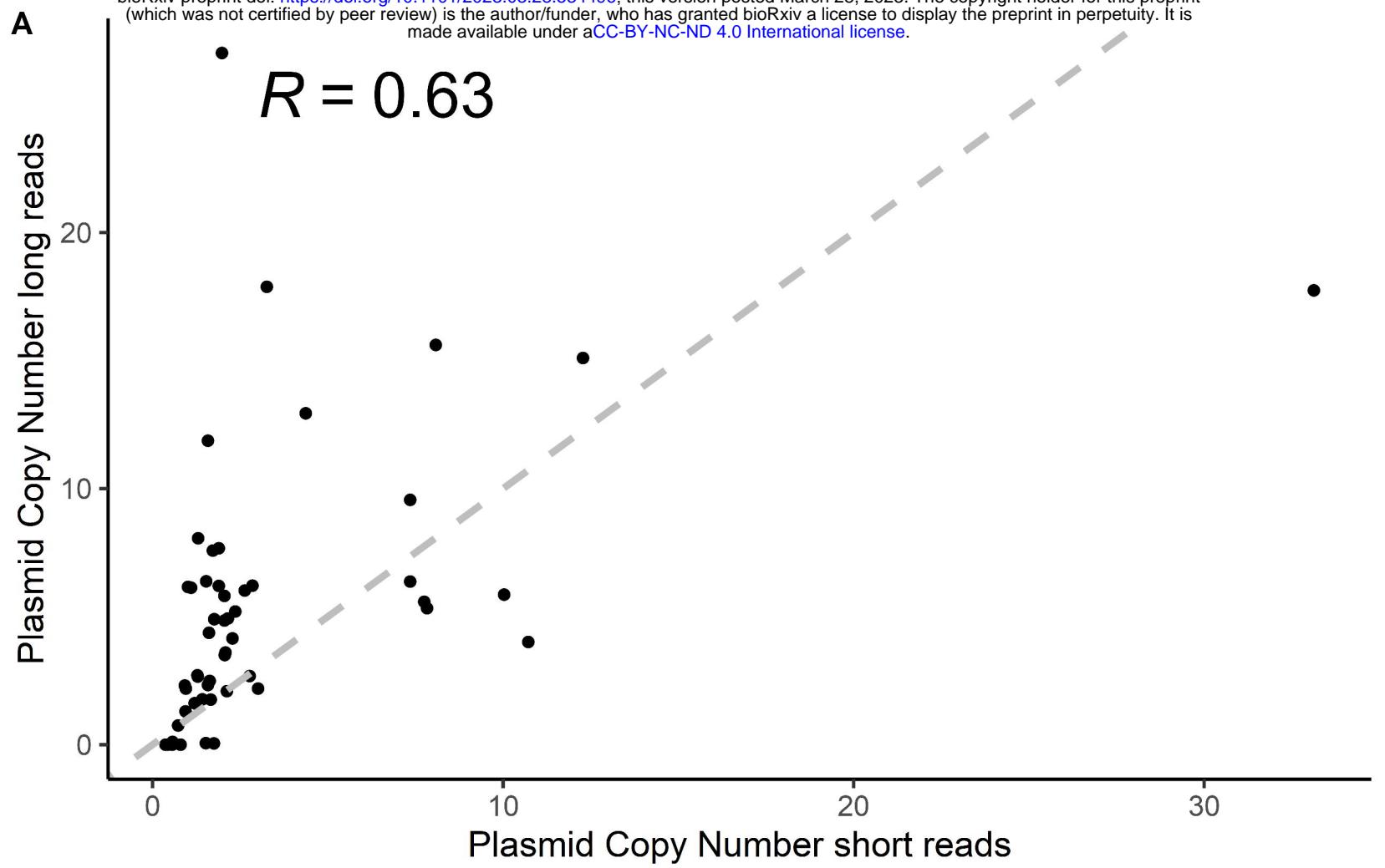
Timepoint ■ T0 ■ T1

Different strain T0

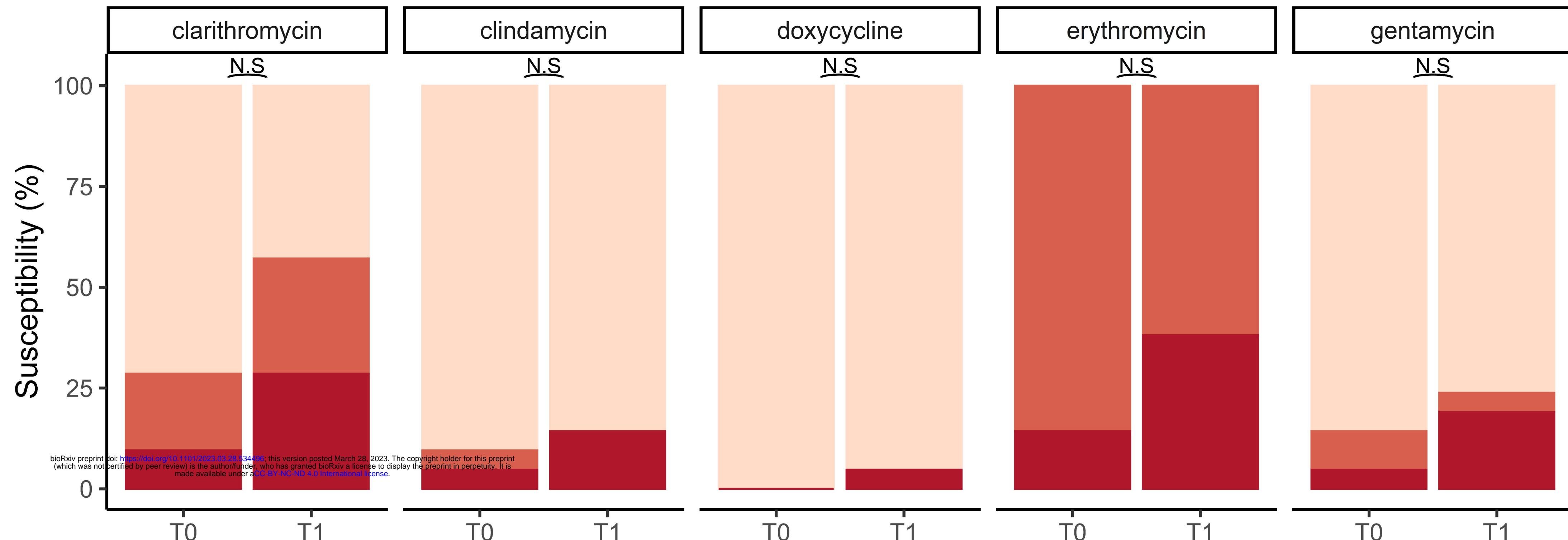
Different strain T1

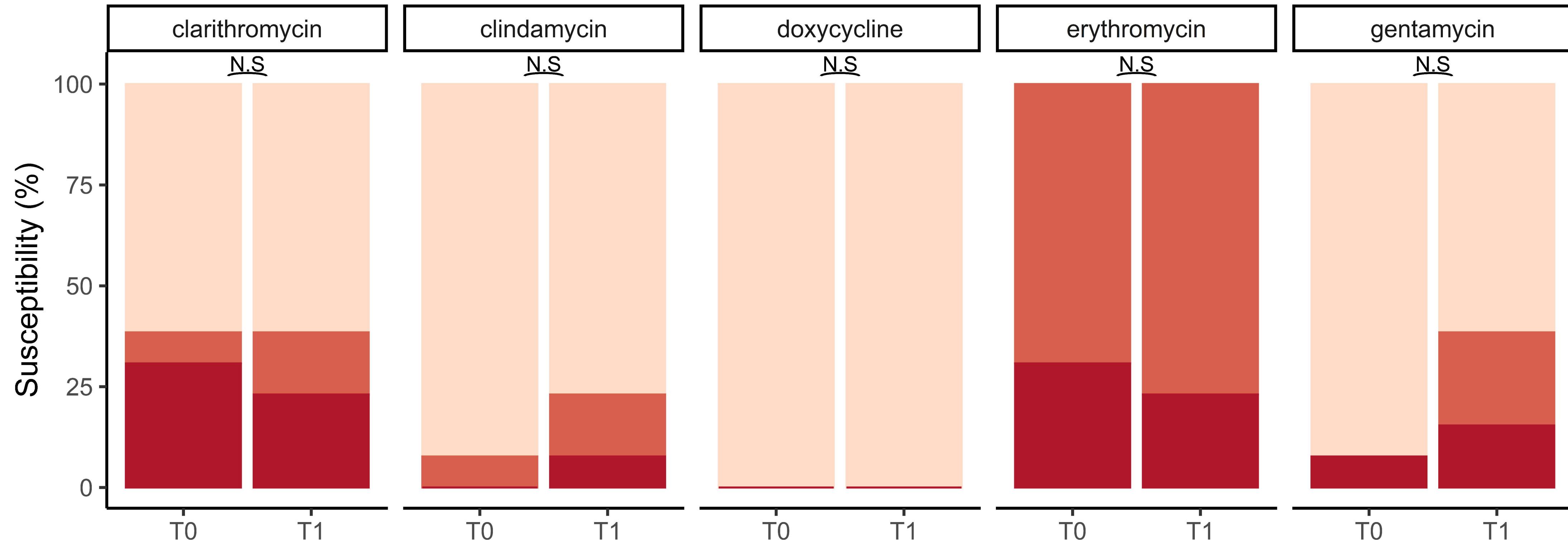
Same strain T0

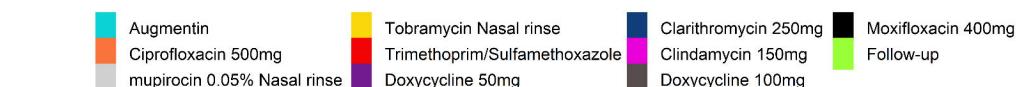


Same strain T1

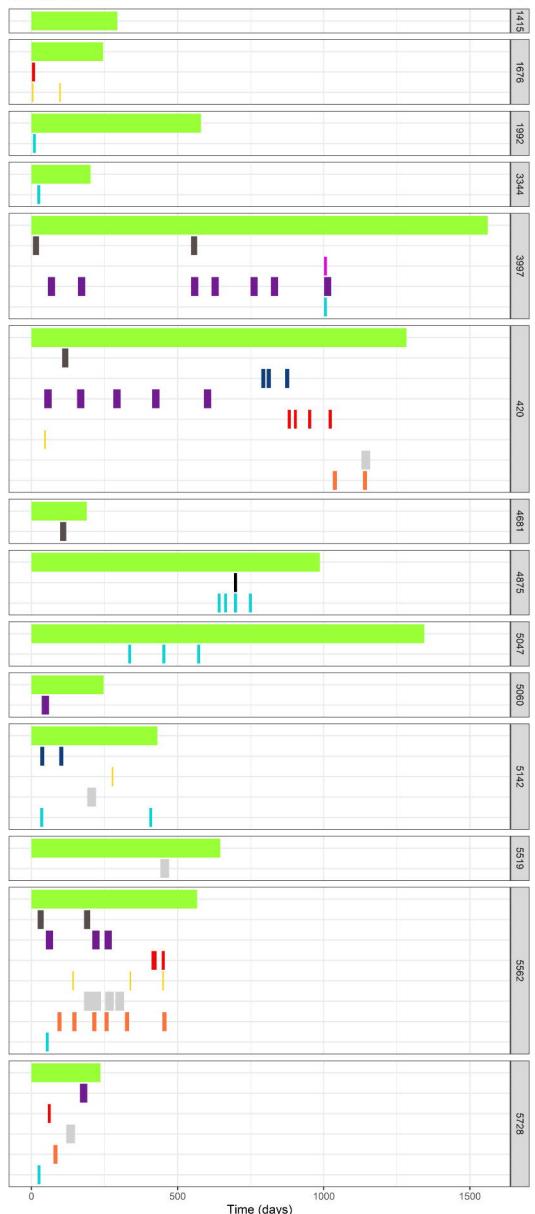
Gene copies


Jaccard Gene Similarity

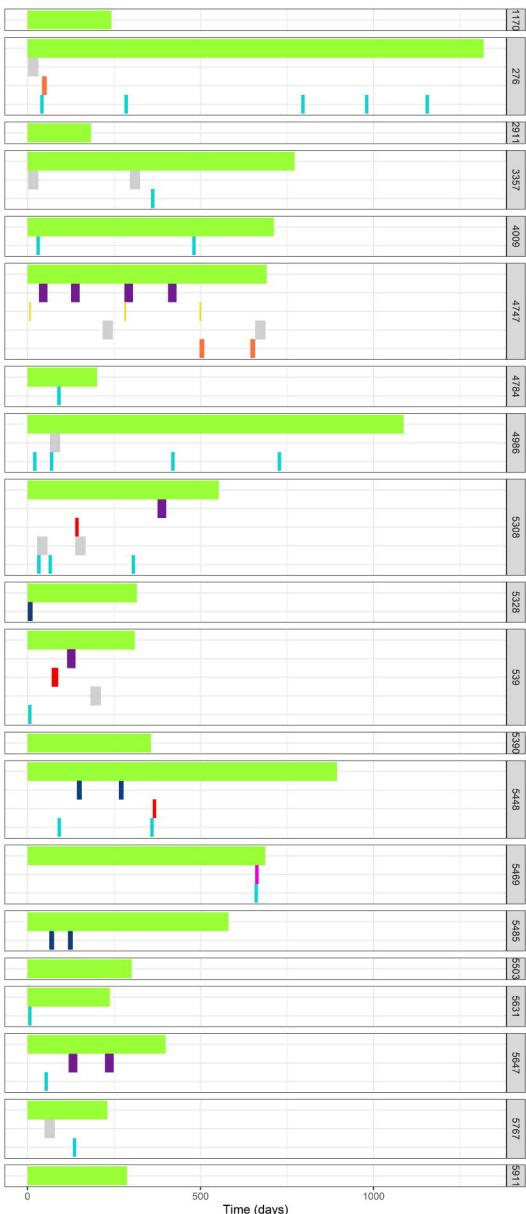


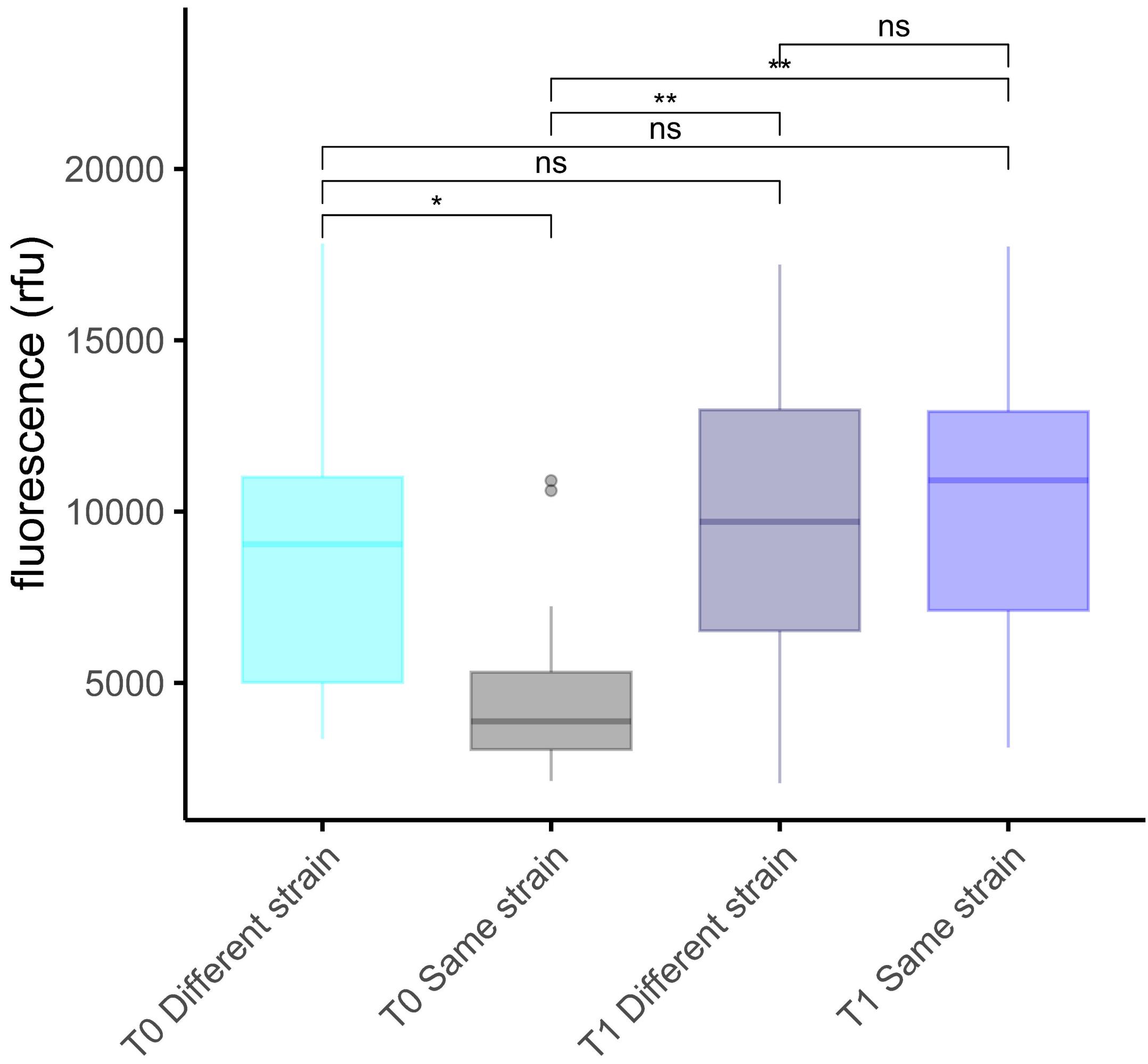

Susceptibility susceptible intermediate resistant

Different strain pairs



Same strain pairs




Same strain Cls

Different strain Cls

Anova, $p = 0.002$

