

1 **Self-eating while being eaten: Elucidating the relationship between aphid
2 feeding and the plant autophagy machinery in *Arabidopsis* leaves**

3

4 **Let Kho Hao¹, Anuma Dangol¹, Reut Shavit¹, William Jacob Pitt², Vamsi Nalam², Yariv
5 Brotman³, Simon Michaeli⁴, Hadas Peled-Zehavi⁵, and Vered Tzin^{1*}**

6 ¹French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein
7 Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion,
8 Israel

9 ²Department of Agricultural Biology, Colorado State University, CO, USA

10 ³Departments of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel

11 ⁴Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO),
12 Rishon LeZion, Israel

13 ⁵Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot,
14 Israel

15 *Correspondence: vtzin@bgu.ac.il; postal: 8499000; Tel.: +972-86596749

16

17 **Abstract**

18 Autophagy, an intracellular process that facilitates the degradation of cytoplasmic materials,
19 plays a dominant role in plant fitness and immunity. While autophagy was shown to be involved
20 in plant response to fungi, bacteria, and viruses, its role in response to insect herbivory is as yet
21 unknown. In this study, we demonstrate a role of autophagy in plant defense against herbivory
22 using *Arabidopsis thaliana* and the green peach aphid, *Myzus persicae*. Following six hours of
23 aphid infestation of wildtype plants, we observed high expression of the autophagy-related
24 genes *ATG8a* and *ATG8f*, as well as *NBR1* (*Next to BRCA1 gene 1*), a selective autophagy
25 receptor. Moreover, the number of autophagosomes detected by the overexpression of GFP-
26 fused ATG8f in *Arabidopsis* increased upon aphid infestation. Following this, *atg5.1* and *atg7.2*
27 mutants were used to study the effect of autophagy on aphid reproduction and feeding behavior.
28 While aphid reproduction on both mutants was lower than on wildtype, feeding behavior was
29 only affected by *atg7.2* mutants. Moreover, upon aphid feeding, the *Phytoalexin-deficient 4*
30 (*PAD4*) defense gene was upregulated in wildtype plants but not affected in the mutants. By
31 contrast, the hydrogen peroxide content was much higher in the mutants relative to wildtype,
32 which might have disturbed aphid reproduction and interfered with their feeding. Additionally,
33 an analysis of the phloem sap metabolite profile revealed that *atg7.2* mutant plants have lower
34 levels of amino acids and sugars. These findings, together with the high hydrogen peroxide
35 levels, suggest that aphids might exploit the plant autophagy mechanism for their survival.

36

37 **Keywords:** aphid; autophagy; *Arabidopsis thaliana*; *Myzus persicae*; defense mechanism.

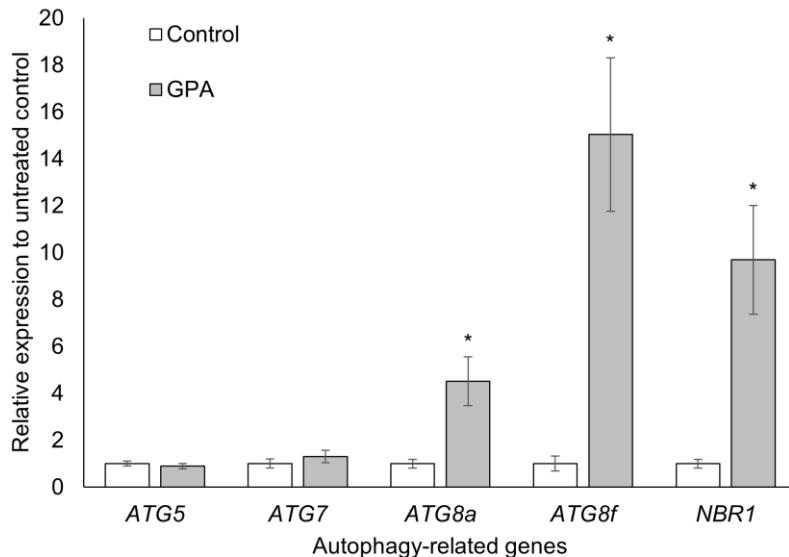
38

39 **1. Introduction**

40 Autophagy is a well-conserved eukaryotic catabolic mechanism that is used to remove and
41 recycle cytoplasmic components [1,2]. In plants, three distinct types of autophagy have been
42 identified: microautophagy, macroautophagy, and megaautophagy [3,4]. Macroautophagy
43 (hereafter referred to as autophagy) is well-characterized in plants and other organisms [5]. Its
44 pathway is characterized by the formation of double-membrane vesicles, named
45 autophagosomes, that sequester cytosolic components such as specific proteins, protein
46 aggregates, damaged organelles, or organelle components, and carry them to the vacuole for
47 degradation [6]. The genes functioning in the autophagy machinery, autophagy-related (*ATG*)
48 genes, were first discovered through forward-genetic screens for autophagy-defective mutants
49 in yeast (*Saccharomyces cerevisiae*) and are highly conserved [7–9]. Over the past few decades,
50 more than 40 conserved *ATGs* have been identified in yeast, animals, and plants [3]. Nearly
51 half of the identified *ATG* genes are part of the core autophagy machinery that is conserved
52 across kingdoms, including in *Arabidopsis* [10].

53 Expression studies, as well as the combined use of *ATG* knock-out mutants such as *ATG* and
54 *ATG7*, and autophagy markers such as *ATG8* brought to light the important roles of autophagy
55 in plant homeostasis and adaptation to environmental stresses [11–13]. Autophagy has been
56 shown to function in plants in response to various abiotic stresses such as starvation [14], high
57 salinity [15], drought [16], heat [17], chilling stress [18], and hypoxia [19], most of which lead
58 to osmotic or oxidative stresses [20]. Autophagy induction in response to these stresses can
59 assist in nutrient recycling and mobilization, as well as removal of oxidatively damaged
60 proteins and organelles. The role of autophagy in plant biotic stress responses has been studied
61 mainly in relation to infection with pathogens such as fungi, bacteria, and viruses [21–23].
62 Autophagy activation can lead to different outcomes depending on the lifestyle of the pathogen
63 or the pathosystem, and autophagy was shown to have both pro-survival and pro-death
64 activities. For instance, autophagy was shown to play an antiviral role in plant-virus
65 interactions, but increasing evidence suggests that viruses can also exploit the autophagy
66 pathway to promote pathogenesis [21].

67 Insect herbivory represents a major challenge to plants' growth. Hence, plants have developed
68 an array of mechanisms to protect themselves from herbivorous insect attacks, such as
69 activating different metabolic pathways, which considerably alter their chemical and physical
70 properties [24]. For instance, central and specialized metabolism are modified, the

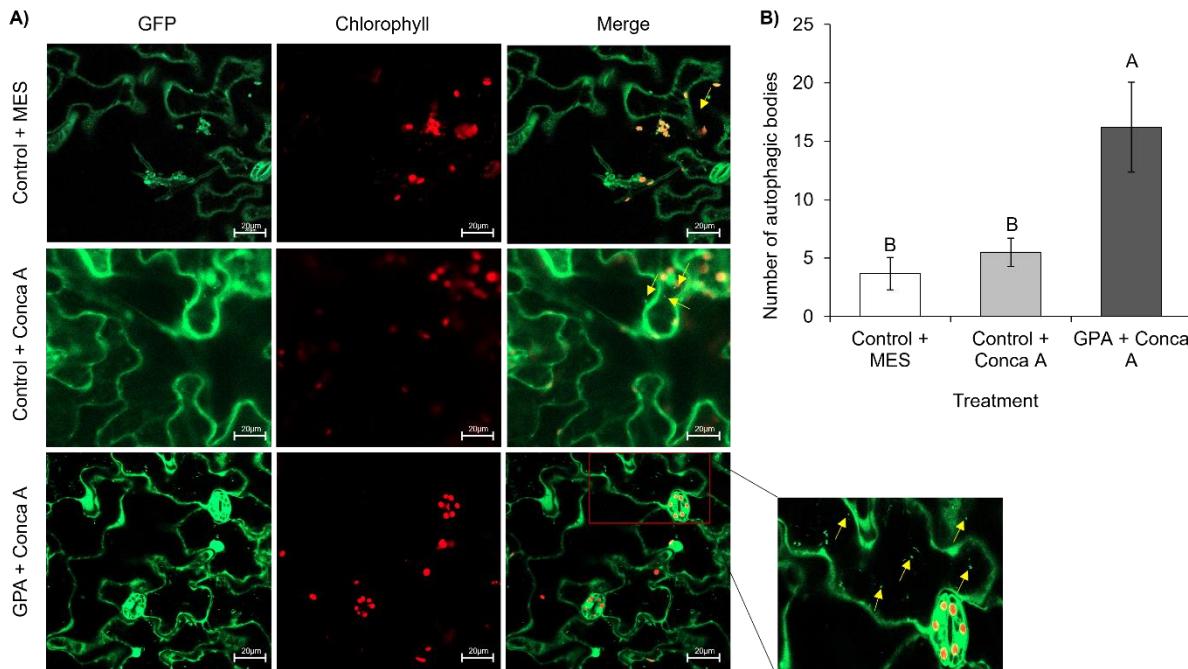

71 photosynthetic efficiency is either elevated or suppressed, and nutrients such as carbon and
72 nitrogen are remobilized [25,26]. The metabolic adjustment can affect phloem quality and
73 metabolite composition [27], directly affecting phloem sap-feeding insects [27,28]. Moreover,
74 the production of defensive compounds requires a high amount of energy, which causes a
75 significant demand for resources [26,29]. Plants cope with this challenge by degrading or
76 remobilizing resources such as carbohydrates and proteins, to keep up with the required energy
77 demand [25,29,30]. Though these processes bring to mind the autophagy machinery, the only
78 evidence for autophagy involvement in plant defense mechanisms against insect herbivores is
79 the induction of several *ATG* genes by *Myzus persicae* (green peach aphid; GPA) infestation
80 [31–33]. Thus, the role of the plants' autophagy machinery in responses to insect herbivores
81 has yet to be fully revealed.

82 Here, we investigated the relationship between insect infestation and the autophagy machinery
83 in plants by focusing on two well-studied model organisms, *Arabidopsis thaliana* and GPA.
84 This compatible pathosystem has been successfully utilized to characterize plant responses
85 against phloem-feeding insects and to identify plant genes and mechanisms contributing to
86 defense against phloem sap-feeding insects [34–36]. Using a variety of experimental
87 approaches, including gene expression analysis, autophagosome formation, insect bioassays,
88 metabolic profiling, and detection of hydrogen peroxide, this study aims to elucidate the
89 possible interaction between the autophagy machinery and insect herbivore infestation in
90 plants.

91 **2. Results**

92 **2.1. Aphids infestation induces expression of ATG genes and increases the number of 93 autophagosomes**

94 To determine whether *ATGs* are induced in response to aphid feeding, wildtype plants were
95 infested with GPA for 6 h. The expression levels of four autophagy genes, *ATG5*, *ATG7*,
96 *ATG8a*, and *ATG8f*, were measured, as well as the selective autophagy receptor gene *NBR1*
97 (*Next to BRCA1 gene 1*). Gene expression levels were normalized to the reference gene *PP2A*
98 and presented as fold change relative to the untreated control. As shown in Figure 1, the *ATG8a*,
99 *ATG8f*, and *NBR1* genes were significantly upregulated upon aphid feeding, while *ATG5* and
100 *ATG7* were not affected.

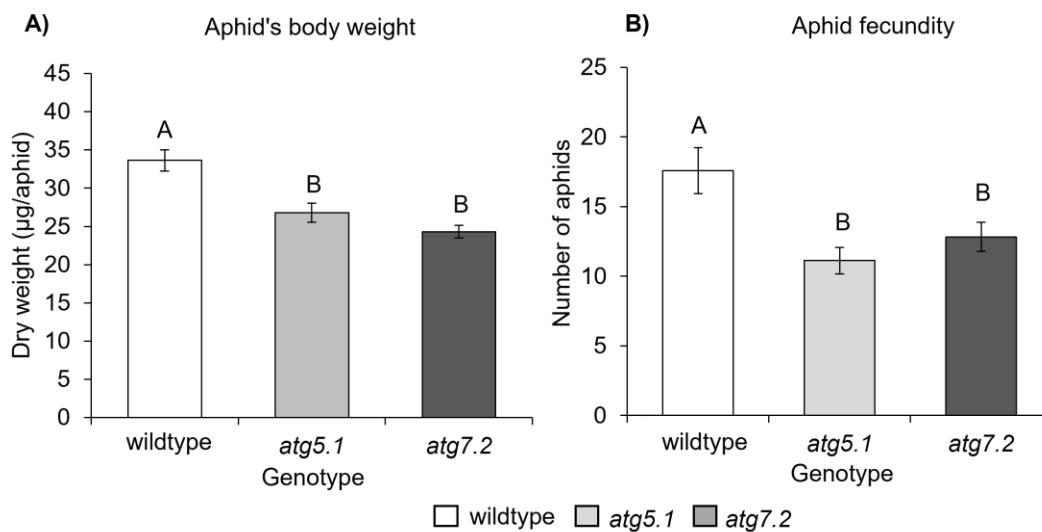


101

102 **Figure 1.** The effect of aphid feeding on the expression levels of autophagy-related genes.
103 Leaves of Col-0 wildtype plants were infested with GPA or left untreated (Control). The
104 expression levels of five autophagy-related genes were quantified using qRT-PCR and
105 normalized to a reference gene, *PP2A*. The values are presented in fold change relative to the
106 control of each gene. Asterisks indicate statistical significance * $P < 0.05$, Student's *t*-test. Error
107 bars indicate standard errors of the mean (n = 3-4).

108 ATG8, which in plants exists as a gene family, is a core component of the autophagy machinery.
109 It is synthesized as a proprotein and goes through several processing events that result in its
110 covalent attachment to phosphatidylethanolamine (PE) at the autophagosomal membrane. As
111 it is found on the autophagosome from its formation to its lytic destruction in the vacuole, a
112 fluorescently tagged ATG8 is commonly used as an autophagosome marker [37]. To look at
113 autophagy induction in response to aphid infestation, leaves of an *Arabidopsis* line that
114 expresses GFP-ATG8f were infested with GPAs and GFP-labeled autophagosomes were
115 detected by confocal fluorescence microscopy. Concanamycin-A, an inhibitor of vacuolar H⁺-
116 ATPase, was used to increase vacuolar pH and inhibit vacuolar enzymes activity. Under these
117 conditions, autophagic bodies accumulate in the vacuole and there is an increase in the amount
118 of autophagosomes in the cytoplasm, facilitating the visualization of autophagy processes
119 [38,39]. As shown in Figure 2, the number of fluorescently labeled puncta in GPA-treated
120 leaves was approximately three times higher than in the control leaves. No effect of
121 concanamycin-A was observed relative to the control (Figure 2B). Altogether, the gene

122 expression and autophagosome formation results suggest that aphid infestation induced the
123 autophagy machinery in *Arabidopsis* leaves.



125 **Figure 2.** Autophagy activation in response to aphid infestation. Leaves of GFP-ATG8f
126 transgenic plants were infested with 20 adult GPAs for 72 h and visualized under a confocal
127 microscope to determine whether aphid feeding induced autophagy. (A) Representative
128 confocal images of GFP-ATG8f transgenic leaf grown under normal growth conditions or
129 aphid infestation with or without the addition of concanamycin-A (Conca A). Yellow arrows
130 indicate GFP-ATG8f labeled puncta. (B) Quantification of autophagic bodies in GFP-ATG8f
131 transgenic leaves. The average number of autophagic bodies was calculated for each condition,
132 and statistical significance was determined using one-way analysis of variance. Different letter
133 codes indicate significant differences in concentrations at $P < 0.05$, as indicated by one-way
134 ANOVA with post hoc Tukey's analysis. Error bars indicate standard errors of the mean ($n =$
135 6).

136 **2.2 Autophagy-deficient mutants affect aphid performance and feeding behavior**

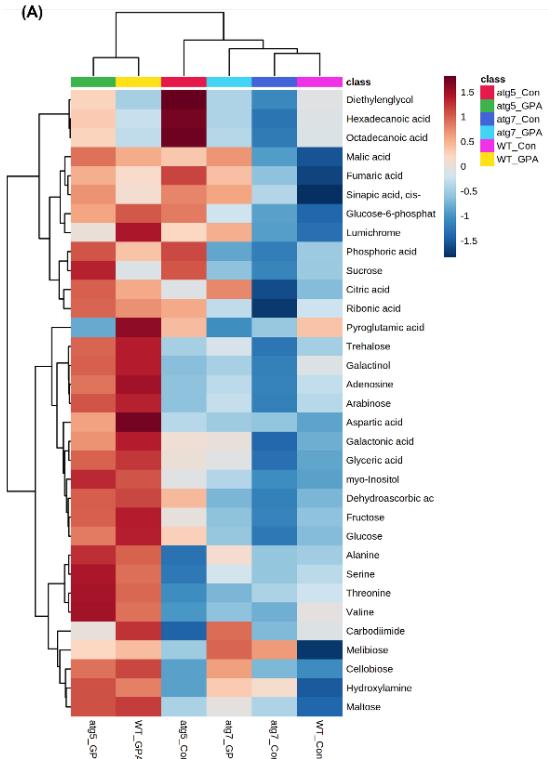
137 Two *autophagy-deficient* mutants, *atg5.1* [40], and *atg7.2* [41] were used to determine whether
138 the autophagy machinery affects GPA feeding and behavior. These T-DNA insertion knockouts
139 are extensively used for studying the autophagy machinery in plants [42,43]. Reduction in the
140 expression levels of *ATG5* and *ATG7* in the mutants was verified by qRT-PCR (Figure S1).
141 Then, a no-choice bioassay was conducted to measure changes in GPA body weight and

142 reproduction. As shown in Figure 3A, the weight of the GPAs that fed on *atg* mutant plants was
143 significantly lower than on the wildtype. To test the effect on aphid fecundity, the number of
144 total aphids (nymphs and adults) was evaluated after seven days of infestation. The results
145 showed that GPAs reproduce less well on the two *atg*-deficient mutants compared to wildtype
146 (Figure 3B). The reduction in body weight and reproduction of the GPAs might be due to either
147 a poor diet and/or differential induction of plant defense mechanisms in the autophagy-deficient
148 plants.

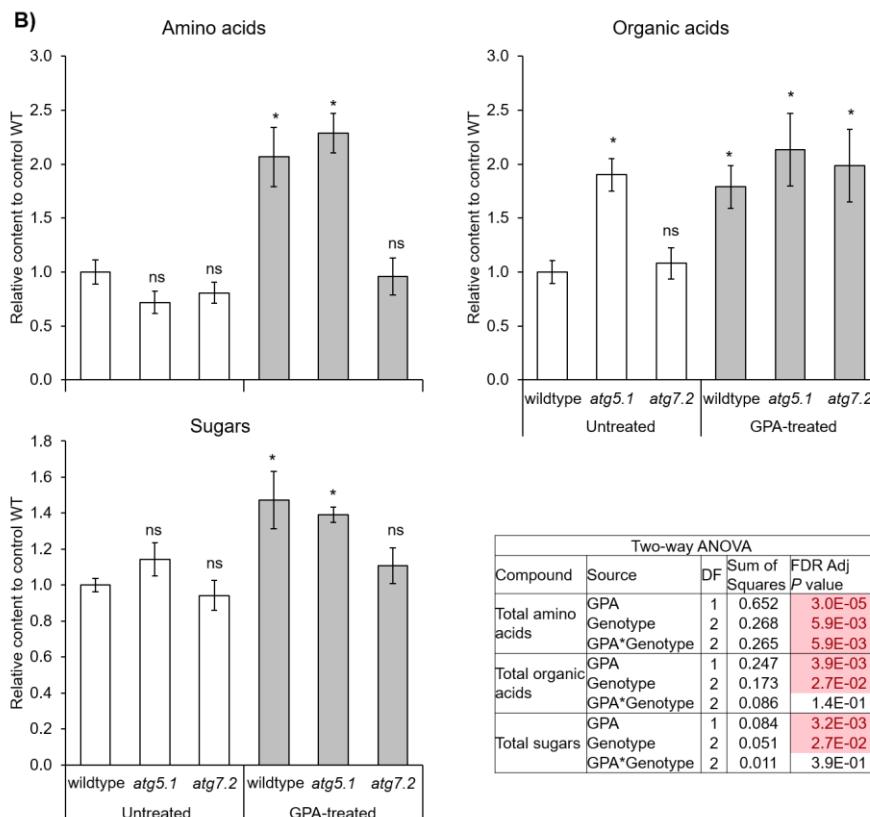
149
150 **Figure 3.** The effect of autophagy-deficient mutants on aphid growth and reproduction. (A)
151 Aphid body weight was measured following 6 h of feeding on *atg* mutants or wildtype plants
152 ($n = 4$). (B) Aphid fecundity was compared after 7 d of infestation by counting the total number
153 of nymphs and adults ($n = 12$). Different letter codes indicate significant differences at $P <$
154 0.05, as indicated by one-way ANOVA with post hoc Tukey's analysis. Error bars indicate
155 standard errors of the mean.

156 To further characterize the effect of autophagy on GPA physiology, their feeding behavior was
157 evaluated using an Electrical Penetration Graph (EPG) assay. This assay measures the
158 electromotive force signal and fluctuations in electrical resistance resulting from aphid stylet
159 penetrations, and is commonly used to monitor the feeding behavior of phloem feeders across
160 leaf tissues (i.e., phloem, xylem, epidermis, or mesophyll) and penetration through the leaf
161 surface [44]. The effect of autophagy on GPA feeding behavior was compared by analyzing the
162 parameters from the four main EPG phases. The results showed that GPA feeding behavior was
163 significantly different between the *atg7.2* mutant and wildtype plants, while no effect was
164 detected in the *atg5.1* mutant (Table 1). The occurrence of events of GPA feeding in the phloem

165 (n_E2) and the time spent in phloem ingestion (%probtimeinE2) were significantly lower, and
166 the duration of aphid probing of the epidermis and mesophyll tissues (%probtimeinC) was
167 longer when fed on *atg7.2* mutant compared to wildtype (Supplementary Table S2). Taken
168 together, our results suggest that autophagy deficiency in *Arabidopsis* plants affects aphid body
169 weight, fecundity, and feeding behavior.


170 **Table 1.** Feeding behavior of GPAs on *atg* mutants. Waveforms were analyzed using Stylet⁺a
171 software, and an Excel workbook for automatic parameter calculation [45]. In bold are
172 significant parameters relative to wildtype (Wilcoxon test, Adj. *P* < 0.05).

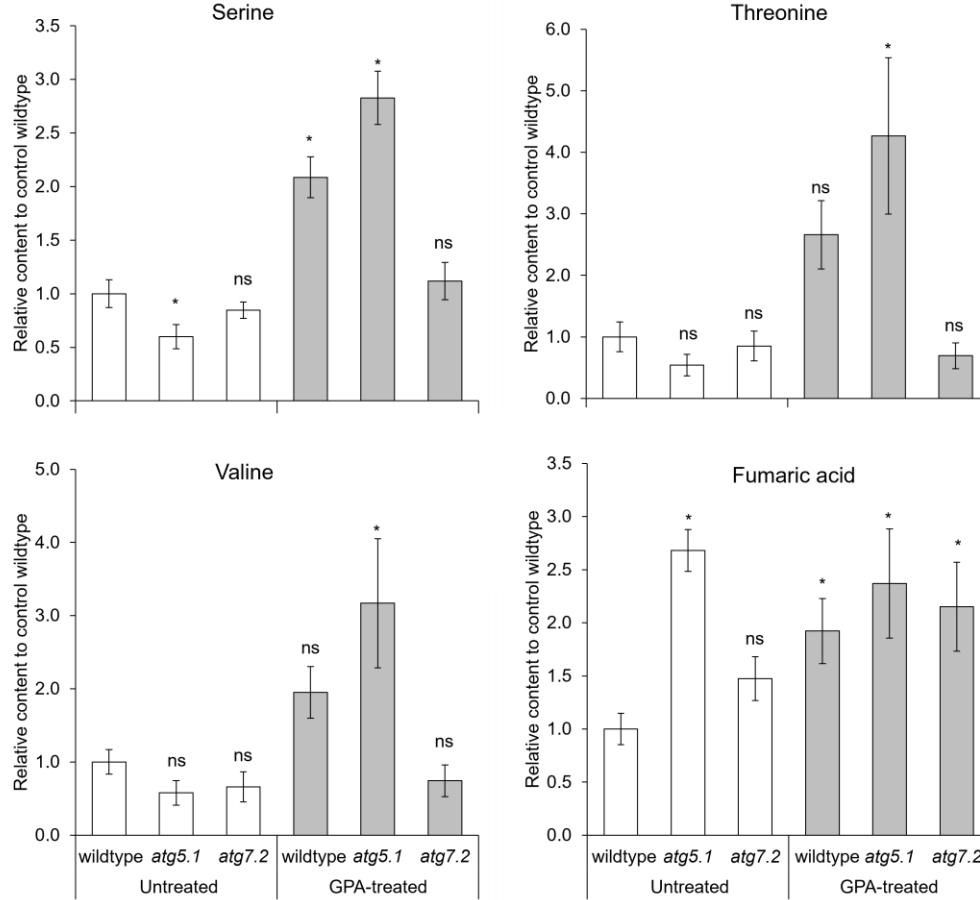
Phase	Parameters	Unit	wildtype		<i>atg5.1</i>		<i>atg7.2</i>	
			n = 13		n = 12		n = 14	
			Mean	SE	Mean	SE	Mean	SE
All tissue	% prob time in C	%	64.68	± 6.02	81.07	± 4.78	84.68	± 5.88
Phloem	Number of E2	count	5.08	± 0.71	4.50	± 1.35	1.86	± 0.48
	% prob time in E2	%	29.18	± 6.53	12.59	± 5.12	7.99	± 4.50


173

174 **2.3 Metabolic profile of autophagy-deficient mutants upon aphid infestation**

175 The aphid no-choice bioassays and EPG analysis suggested that aphids possess different
176 feeding behaviors on the *atg* mutants compared to wildtype. This might be due to a decreased
177 attractiveness to insects in terms of nutrient composition in the phloem sap and/or due to
178 difference in the defense responses. To explore the effect of metabolite composition, we
179 performed a GC-MS analysis measuring the central metabolites in the phloem sap of *atg*
180 mutants. Overall, 33 compounds were detected in the phloem sap of GPA-treated and untreated
181 leaves of wildtype and *atg* mutants (Supplementary Table S3). First, the metabolites were
182 clustered using hierarchical clustering with Euclidean distance measure and ward
183 agglomeration method and visualized in a heatmap to get an overview of metabolite patterns
184 by genotype and GPA treatments (Figure 4A). Without GPA treatment, *atg7.2* and wildtype
185 were clustered together, separated from *atg5.1*. Upon GPA infestation, a large metabolic
186 difference was observed in GPA-infested *atg5.1* mutant and wildtype plants, compared to
187 uninfested plants. By contrast, *atg7.2* was closer to uninfested *atg7.2* and wildtype. Similar
188 modification of metabolic profiles in the phloem of wildtype and *atg5.1* was observed under
189 GPA feeding, which is in accordance with the EPG results (Table 1).

190

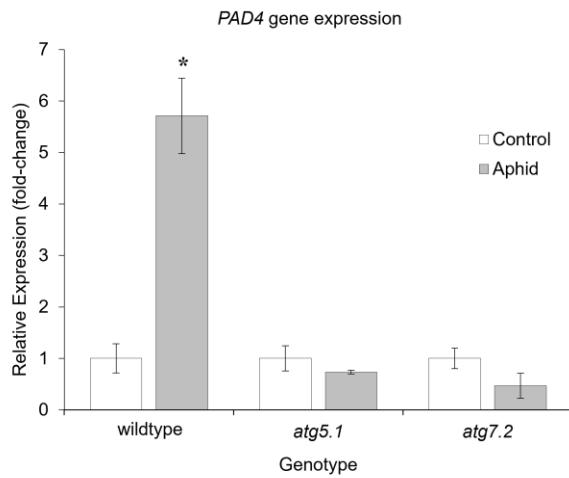


191

192 **Figure 4.** A targeted metabolic overview of *atg* mutants infested with aphids for 6 h. (A) A
 193 heatmap analysis, presenting central metabolites profile. The Euclidean distance with Ward's
 194 minimum variance method was calculated using the default parameters of the MetaboAnalyst

195 software. Colors correspond with concentration values (autoscale parameters), where red
196 indicates high levels and blue indicates low levels. (B) Relative levels of total organic acids,
197 amino acids, and sugars in the phloem of untreated or GPA treated wildtype and *atg* mutant
198 plants. Metabolite content is shown relative to untreated wildtype plants. Asterisks indicate
199 statistical significance * $P < 0.05$, Dunnett's test. ns, not significant. Error bars indicate
200 standard errors of the mean, $n = 5$.

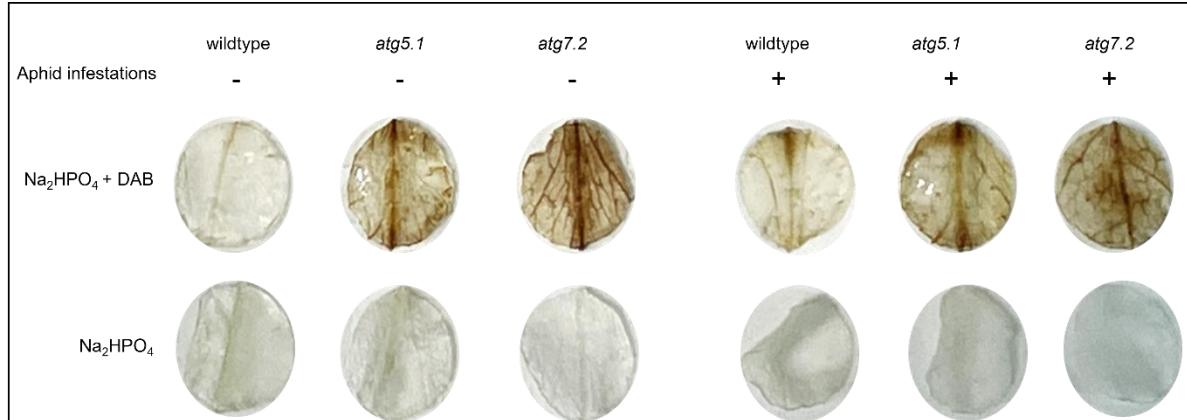
201 Next, we performed a two-way ANOVA analysis to identify significantly altered metabolites.
202 The levels of 23 metabolites were significantly affected by either genotype, GPA treatment or
203 their interaction (Supplementary Table S4). High levels of GPA-induced organic acids were
204 observed in the wildtype and *atg7.2* mutant, while *atg5.1* showed higher organic acids levels
205 at basal but no increased upon GPA infestation. Exposure to aphids caused an accumulation of
206 amino acids and sugars in the *atg5.1* mutant and wildtype, but not in the *atg7.2* mutant. Overall,
207 the total amino acid content was significantly affected by GPA treatment, genotype, and
208 genotype/GPA treatment interaction, while total organic acids and total sugars were
209 significantly affected by genotype and GPA treatment but not their interaction (Figure 4B).
210 Among these metabolites, three amino acids (serine, threonine, and valine) and one organic
211 acid (fumaric acid) were affected by genotype, GPA treatment, as well as their interaction
212 (Supplementary Table S4). Upon GPA treatment, these amino acids were highly induced in
213 *atg5.1* plants, while only fumaric acid was induced in *atg7.2* plants. In wildtype plants,
214 increased levels of serine and fumaric acid were observed under GPA infestation (Figure 5). In
215 addition, the basal levels of serine and fumaric acid in *atg5.1* were lower and higher,
216 respectively, compared to untreated control. Overall, the metabolic analysis suggests *atg5.1*
217 showed similar response as wildtype to GPA feeding, while *atg7.2* has a different pattern. This
218 correlates with the EPG results, suggesting that the difference in feeding behavior might be the
219 result of different nutrient content.


220

221 **Figure 5.** The effect of GPA feeding on the metabolic profile of the phloem sap of *atg* mutants
222 and wildtype plants. Relative levels of serine, threonine, valine and fumaric acid in the phloem
223 sap of *Arabidopsis atg* mutants and wildtype plants with or without aphid treatment, compared
224 to untreated wildtype plants. Asterisk indicates significant differences in concentrations at $P <$
225 0.05 level indicated by Dunnett's Student's *t*-test, and n.s. stands for not significant. Error bars
226 indicate standard errors of the mean, $n = 5$.

227 **2.4 The effect of aphid feeding on the defense mechanism of *atg* deficient mutants**

228 To test the hypothesis that differential activation of defense mechanisms in the *atg* mutant plays
229 a role in the reduced body weight and fecundity of GPAs feeding them, we measured the
230 expression level of *Phytoalexin deficient 4* (*PAD4*). *PAD4* is a defense-related gene that is
231 involved in stimulating the production of the defense phytohormone salicylic acid (SA), as well
232 as other processes that limit pathogen and aphid growth [46–49]. As presented in Figure 6, the
233 expression of *PAD4* in wildtype plants was significantly increased upon GPA feeding, while it
234 was not affected in both *atg* mutants. This suggests that the reduction of aphid performance on
235 the *atg* mutants (Figure 3, and Table 1) is not the result of the induction of the plants defense


236 response *via* SA signaling. However, it is possible that it is the result of activation of other
237 defense mechanisms.

238

239 **Figure 6.** *Phytoalexin deficient 4 (PAD4)* gene expression. *PAD4* gene expression was
240 measured in GPA infested and control leaves of wildtype and *atg* mutants along with a reference
241 gene, *PP2A*. The values are presented as fold change relative to the control of each genotype.
242 Asterisks indicate statistical significance * $P < 0.05$, Student's *t*-test. Error bars indicate
243 standard errors of the mean ($n = 4$).

244 Thus, we conducted DAB staining to detect the presence of hydrogen peroxide, the most stable
245 type of reactive oxygen species (ROS). ROS are involved in signaling cascades in response to
246 many environmental stresses, and are known to be involved in plant defense against aphids
247 [50]. Under the control condition (without aphids), the hydrogen peroxide levels were high in
248 both *atg5.1* and *atg7.2* relative to the wildtype, and did not change much upon aphid infestation.
249 Hydrogen peroxide levels increased in the wildtype plants following aphid infestation but did
250 not reach the levels observed in the *atg* mutants (Figure 7). The high levels of hydrogen
251 peroxide observed in the *atg*-deficient mutants might explain the poor GPA performance and
252 feeding behavior (Figure 3).

254 **Figure 7.** Physiological characterization of hydrogen peroxide levels in *atg* mutant leaves using
255 DAB staining. The measurements were conducted under GPA treated and untreated conditions
256 (7 d). Upper panel: Na_2HPO_4 + DAB solution; lower panel: Na_2HPO_4 solution, which was
257 applied as a control treatment.

258 **3. Discussion**

259 **3.1 Aphids affect the autophagy machinery**

260 Our research highlights as yet unfamiliar relationship between autophagy machinery and insect
261 herbivory. We investigated whether phloem-feeding insects induce autophagy in *Arabidopsis*
262 plants and their potential interactions. Previous studies showed significant upregulation of *ATG*
263 genes and proteins under various biotic or abiotic stresses [51–55], but only a few studies aim
264 to reveal this relationship between plants and insects. A study from 2006 by Seay *et al.* used
265 the microarray data available on GENEVESTIGATOR database and suggested that
266 *Arabidopsis* plants infested with GPA showed that autophagy-related genes *ATG4*, *ATG8*, and
267 *ATG18* were significantly induced upon aphid infestation [31]. In addition, Kuśnierszyk *et al.*,
268 2007 showed an induction of *ATG8a*, *ATG8e*, *ATG8f*, and *NBR1* in *Arabidopsis* Wassilewskija
269 ecotype after 72 h feeding of GPA [33], while De Vos *et al.*, 2007 showed that only *ATG8e* was
270 significantly induced in *Arabidopsis* upon 48 h and 72 h of aphid infestation [32]. In agreement
271 with literature, here, we showed an upregulation of autophagy-related *ATG8*-family genes,
272 *ATG8a*, *ATG8f*, and the cargo receptor *NBR1* upon 6 h of aphid infestation (Figure 1). Besides,
273 a study reported that *ATG2-like*, *ATG6-like*, and *NBR1-like* genes were downregulated upon 6
274 h of *Rhopalosiphum padi* aphid infestation in a monocot plant, *Setaria viridis* [56]. The
275 differences in the effect of aphid infestation on the *ATG* gene expression level might be related
276 to the duration of infestation, and plant species. Another indication that the autophagy
277 machinery is affected by aphid feeding is the increase in the number of autophagosomes. Many

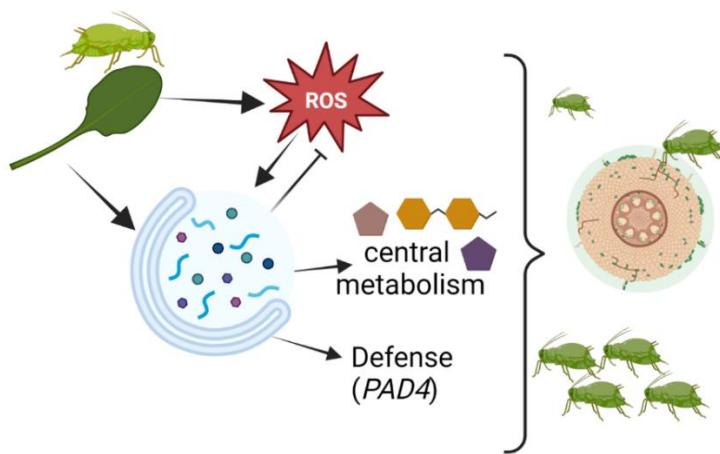
278 studies have shown that the number of autophagosomes in the cells is increased upon stresses
279 such as fungus or virus pathogens [57,58]. A higher number of autophagic bodies was observed
280 in the leaf tissues of GPA-infested *Arabidopsis* plants (Figure 2). Based on these results, we
281 suggest that autophagy is induced in plants by phloem-feeding insects such as aphids.

282 **3.2 Autophagy affects aphid performance and behavior**

283 The *atg* mutants of *Arabidopsis* are generally described as being hypersensitive to abiotic
284 stresses such as salt, osmotic stresses, and carbon starvation, as well as having leaf yellowing
285 phenotypes and necrotic spots [40,59]. Studies have shown that the *atg* mutants are more
286 susceptible to fungal necrotrophic pathogens [57]. Aphids that fed on *atg5.1* and *atg7.2*
287 possessed lower body weight and poor fecundity relative to wildtype plants, indicating that *atg*
288 mutants are more resistant to aphids (Figure 3). However, autophagy induction by pathogen
289 attack has been shown to lead to different outcomes, either beneficial or detrimental for the
290 host, depending on the pathogen's lifestyle in plants. Studies have also shown that viruses could
291 manipulate or hijack plant autophagy to modify nutrient availability to their benefit [21,60,61].

292 In addition, autophagy mutants were reported to have higher ROS levels, which might disturb
293 GPA feeding [55,62,63]. *Arabidopsis* leaves produce ROS as a redox response to GPA
294 infestation, and rapid ROS induction is often correlated with aphid resistance [64,65]. Thus,
295 basal hydrogen peroxide levels in the mutants (*atg5.1* and *atg7.2*) were determined in the study,
296 and a higher content was observed in *atg* mutants than in wildtype (Figure 7), which is
297 consistent with previous studies that showed high accumulation of ROS in *atg* mutants
298 [40,66,67]. Upon GPA feeding, hydrogen peroxide was induced in wildtype leaves, while levels
299 in the mutants were higher than in the wildtype, and remained similar compared to untreated
300 levels (Figure 7). We suggest that the high level of hydrogen peroxide might have caused a
301 reduction in aphid feeding and reproduction in the mutants (Figure 3). It was previously
302 reported that ROS are able to induce autophagy, while autophagy was also able to reduce ROS
303 production [68]. Thus, the ROS induced by GPA feeding might trigger autophagy and the
304 triggered autophagy might reduce ROS levels, which could be beneficial for GPA feeding [68–
305 70]. We, therefore, suggest that autophagy-related mutations in *Arabidopsis* might cause either
306 enhanced tolerance to insect attack or decreased attractiveness to insects in terms of phloem
307 sap composition. In parallel, aphids might exploit the autophagy machinery to enhance their
308 performance because the induced autophagy could reduce the plant's defense mechanism
309 against GPA stress *via* ROS production. In addition, the EPG analysis of aphids fed on *atg7.2*

310 mutant plants showed poor feeding behavior, expressed in less feeding time in the phloem and
311 more time in the epidermis and mesophyll tissues than wildtype, suggesting that GPAs were
312 unable to acquire sufficient nutrients from the phloem sap. Notably, aphids fed on *atg5.1* plants
313 showed a similar response as wildtype plants. Overall, the results suggested a difference in the
314 composition of the mutant plants' phloem sap. We, therefore, investigated the central
315 metabolism of the *atg* mutants under GPA feeding.


316 **3.3 Aphid feeding modified the phloem sap composition of *autophagy-deficient* mutants**

317 Plants produce constitutive and inducible defensive compounds to protect themselves against
318 insect attack while preserving their fitness [71]. The phloem sap of a host plant provides a
319 carbon and nitrogen source for the invading insects [72]. It is known that the invading GPAs
320 cause changes in the central metabolism of plants, such as carbohydrates and amino acids [73].
321 Carbohydrates are a major source of stored energy for host plants and insect herbivores, and
322 amino acids are both growth-limiting for insect herbivores and serve as precursors for many
323 defense-related plant metabolites [73]. In this study, GPA feeding affected the quantities of
324 amino acids, particularly serine, threonine, and valine. In agreement with Avin-Wittenberg *et*
325 *al.* (2015), which showed a significant reduction of amino acids in *atg* mutants under carbon
326 starvation, here we showed the levels of serine, threonine, and valine in *atg7.2* mutants were
327 not affected by GPA feeding [74]. By contrast, compared to wildtype, the *atg5.1* mutant
328 exhibited high levels of these compounds in response to GPA feeding, suggesting that ATG5-
329 and ATG7-dependent autophagy are differentially affected by aphids. These differences might
330 be because both enzymes belong to two conjugation systems for autophagosome formation
331 [75].

332 Furthermore, a unique set of central metabolites was presented that were altered in the *atg*
333 mutants upon GPA feeding. Of these, amino acids and sugars were highly accumulated in
334 wildtype and *atg5.1* mutants, while organic acids were increased in *atg7.2* mutants upon GPA
335 feeding (Supplementary Figure S2). Wu *et al.* (2020) showed that restriction of dietary amino
336 acids decreased the body weight of GPAs [76]. However, the effect of phloem sap composition
337 on aphid performance or feeding behavior is more complex than a simple correlation with the
338 nitrogen content of the diet. To conclude, the results of central metabolism in the phloem of the
339 mutants might explain the poor feeding behavior and performance of GPAs.

340 **3.4. Conclusions**

341 In this study, we show that autophagy is induced by phloem sap-feeding aphids in plants, as
342 illustrated in Figure 8. Although GPAs showed poor feeding behavior and performance on the
343 *atg* mutants, the defense mechanism of plants against GPAs via *PAD4* in the mutants was not
344 functioning as fully as in the wildtype plants. This might partially be explained by the different
345 phloem sap composition in the mutants. However, the high hydrogen peroxide phenotypes of
346 the *atg* mutants could explain this observation [40,55]. Moreover, a high level of sugars and a
347 lower level of ROS in wildtype might explain the fact that aphids showed better performance
348 and feeding behavior even though the defense mechanism via SA signaling was activated. In
349 agreement with autophagy's proposed dual role in plant-virus interactions [60], we could
350 assume that GPAs might be exploiting the autophagy machinery for their benefit to obtain
351 nutrients such as sugars or reduce the plant's defense mechanism via ROS accumulation.
352 Nevertheless, the role of autophagy in the plant's defense against insects requires further
353 investigation.

354

355 **Figure 8.** Proposed model of the autophagy mechanism under GPA infestation in *Arabidopsis*.
356 Under GPA attack, autophagy-related genes or proteins are upregulated – such that autophagy
357 is induced by aphid-induced stress in plants. The defense-related genes are also overexpressed
358 – activating the plant's defense against GPAs.

359

360 **4. Materials and Methods**

361 **4.1 Plant material and growth conditions**

362 *Arabidopsis thaliana* seeds were surface sterilized in 50% commercial bleach for 10 min to
363 prevent the growth of microbial contaminants present on the seed surface and then rinsed three

364 times with distilled water for 10 min [77]. The seeds were cold stratified at 4 °C in the dark for
365 4 d, then transplanted to 7 × 7 × 8 cm plastic pots filled with autoclaved Garden mix soil (70%
366 peat, 30% perlite, fertilizer) and grown in a growth chamber with a photoperiod of 16 h light/
367 8 h dark (120 $\mu\text{mol photons s}^{-1} \text{ m}^{-2}$) at 22 ± 3 °C. The *Arabidopsis thaliana* ecotype Columbia
368 (Col-0) was used in this study. The Arabidopsis T-DNA insertion lines *atg5.1* (SAIL_129B079)
369 and *atg7.2* (GK-655B06) and the transgenic line expressing GFP-ATG8f were previously
370 described [62, 63, 64].

371 **4.2 Aphid colony and bioassays**

372 A green peach aphid (GPA; *Myzus persicae*) colony was provided by Prof. Shai Morin from
373 Hebrew University of Jerusalem (HUJI), Israel, and reared on Arabidopsis Col-0 wildtype
374 plants in a BugDorm (MegaView Science Co., Ltd., Taiwan) insect rearing tent (60 × 60 × 60
375 cm) with 96 × 26 μm mesh size. During the experiments, the GPAs were provided with the
376 same environmental conditions as the plants (see above). For gene expression and metabolic
377 profiling, 20 GPAs were confined to one rosette leaf of 4-week-old plants in a clip-cage (4.5
378 cm in diameter) for 6 h. For hydrogen peroxide detection, leaves were treated with GPAs for 7
379 d. As a control, the same setup was used, but aphids were not added into the clip-cages. Plant
380 samples were then harvested, flash-frozen in liquid nitrogen and stored at -80 °C until further
381 analysis. GPA body weight and fecundity measurements were conducted following Nalam *et*
382 *al.* 2020 [78]. In brief, 20 adult GPAs were confined to a single leaf of each Arabidopsis
383 genotype (wildtype, *atg5.1*, or *atg7.2*) within a clip-cage for 6 h. Subsequently, the GPAs were
384 collected and weighed immediately using an analytical balance with a resolution of 0.01 mg
385 (Satorius, Germany) to estimate body water content and body weight changes. Dry weights of
386 the GPAs were obtained after drying the aphids at 55 °C for 8 h. Six biological replicates were
387 used and independently repeated three times for each plant genotype in this experiment. For
388 the fecundity experiments, aphids were synchronized by growing 50 adults on a Col-0 wildtype
389 plant for 24 h. The new one-day nymphs (1st instar) were allowed to reach adulthood (7 days).
390 One of these adults was then confined to a single leaf of the different Arabidopsis lines, and
391 the number of progeny was counted after seven days. Twelve biological replicates were used
392 for each plant genotype in this experiment and independently repeated twice.

393 **4.3 RNA extraction and qRT-PCR measurements**

394 Total RNA was extracted using Sigma TRI-reagent (T9424) following the manufacturer's
395 protocol, then treated with DNase I to remove possible contamination of genomic DNA. The

396 RNA concentration was quantified, and first-strand cDNA was synthesized with qScript™
397 cDNA synthesis kit (QuantaBio) from 1.5 µg of total RNA according to the manufacturer's
398 protocol. The integrity of newly synthesized cDNA was evaluated on a 2% agarose gel. The
399 quantitative PCR reaction was performed using Power SYBR® Green PCR Master Mix
400 (Applied Biosystems, Foster City, CA, USA), according to the manufacturer's protocol.
401 Primers were designed using Primer-BLAST [79,80]. The accumulation of the target genes was
402 normalized to the reference gene *Type 2A serine/threonine protein phosphatase (PP2A)* [81],
403 for correction of technical variation in template amounts. Each sample was run in triplicates of
404 the four biological replicates. The primers used for the qRT-PCR analysis are described in
405 **Supplementary Table S1**.

406 **4.4 Confocal imaging**

407 A single leaf of the GFP-ATG8f transgenic plants was infested with 20 GPAs for 72 h. GPA-
408 treated leaves of GFP-ATG8f plants were then incubated in 10 mM MES-NaOH (pH 5.5) buffer
409 in the presence of 1 µM concanamycin A for 6-12 h in darkness at 23 °C. As controls, the same
410 number of non-infested leaves were incubated in the incubation buffer with either dimethyl
411 sulfoxide (DMSO) or with concanamycin A. An LSM 900 confocal laser scanning microscopy
412 system (LSM 900, Zeiss, Germany) was used in this study. Generally, thin-section leaf samples
413 were put between two microscope glass coverslips (No.1 thickness) in an aqueous
414 environment. For image acquisition a Plan-Apochromat 40x/1.3 Oil DIC (UV) VIS-IR M27
415 objective was used on the Axio Imager.Z2 microscope GFP fluorescence images were taken
416 using 488 nm laser excitation, and the emission was detected in the 490-550 nm range. The
417 chlorophyll autofluorescence was imaged using the 638 nm laser and detected in the 645-700
418 nm range. Z-stack images composed of 20 to 50 images were taken using Z-stack, and snap
419 images. The size of the recorded images was 159.73 × 159.73 µm (1744 × 1744 pixels). The
420 pinhole diameter was 40 µm on all recordings. All acquired images were converted to CZI and
421 TIFF formats using the Zen 3.1 (blue edition) image processing software. The experiment was
422 conducted with six biological replicates, and the GPA-treated leaves of GFP-ATG8f plants were
423 sectioned into four pieces as technical replicates.

424 **4.5 Electrical Penetration Graph (EPG) analysis**

425 GPA feeding behavior was monitored on wildtype and the two *atg* mutants, *atg5.1* and *atg7.2*,
426 using the EPG on a GIGA 8 complete system (EPG Systems, Wageningen, the Netherlands)
427 [82]. A dorsal surface of each adult GPA abdomen was attached with 18 µm diameter gold wire

428 using silver glue [83]. One-month-old *Arabidopsis* plants were placed into a Faraday cage,
429 electrodes were placed into the pots, then the aphids were allowed to contact the leaf surface,
430 and their probing was adjusted. The GPAs were allowed to feed for 8 h, while the feeding
431 behavior was recorded. For consistency with other experiments, only the first 6 h of the
432 electrogram were analyzed. The waveforms were digitized at 100 Hz with an A/D converter,
433 and patterns were recognized as described previously [82,84]. A computer was connected to
434 the Giga direct current amplifier, and the waveforms were collected every 30 s with Stylet⁺d
435 software (v01.30). The feeding behavior of GPAs on wildtype and *atg* mutants was compared
436 by analyzing the time spent in each of the four main phases: pathway phase (PP), non-probing
437 phase (NP), sieve element phase (SEP), and xylem phase (G). The subphases within SEP that
438 indicate phloem salivation (E1) and phloem ingestion (E2) were also analyzed. Parameters such
439 as the time to 1st probe, the total number of probes, and the number of potential drops (PD) that
440 indicate GPA health [85] were measured. The potential E2 index, number of E1 and E2
441 waveforms, total time spent in E1 and E2, and percent time spent in E2 greater than 10 min
442 indicate phloem acceptability and plant defense response n [44]. EPG waveforms were
443 analyzed using Stylet+a software and an Excel workbook for automatic parameter calculation
444 as previously described [66, 95,104]. The experiment was repeated until 15 replicates were
445 obtained for each treatment. However, a recording was not considered a replicate if GPAs spent
446 more than 70% of the recording time in the non-probing, xylem, and derailed stylet phase.
447 Thus, the final number of replicates for each treatment differed, i.e., wildtype = 13, *atg5.1* =
448 12, *atg7.2* = 14. The data were rank transformed, and differences between means were
449 determined using ANOVA [87]. The proportions were compared using the Wilcoxon test with
450 Steel's method for nonparametric multiple comparisons with control.

451 **4.6 Metabolite analysis using gas chromatography-mass spectrometry (GC-MS)**

452 Approximately 100 mg of leaf homogenates were weighed in a 2 ml Eppendorf Safe-lock tube,
453 and 1 ml of pre-cooled extraction mixture, methanol/methyl-tert-butyl-ether/water (1:3:1
454 v:v:v), was added to each tube and vortexed. Then, the samples were shaken on an orbital
455 shaker at 1000 rpm at 4 °C for 10 minutes, followed by incubation in an ice-cooled
456 ultrasonication bath for another 10 minutes. Next, the metabolites were phase-separated by
457 adding 500 µl of UPLC-grade methanol/water (1:3 v:v). Samples were vigorously vortexed
458 and centrifuged at 17,000xg at 4 °C for 7 min. The polar phase (200 µl) was transferred into a
459 new tube, dried overnight in a SpeedVac (Thermo Scientific, USA) and stored at -80 °C [88].
460 Dried samples were derivatized before the GC-MS analysis. For derivatization, 40 µl of 20 mg

461 methoxyamine hydrochloride (Sigma-Aldrich, UK) dissolved in 1 ml of pyridine was added to
462 the dried sample and shaken on an orbital shaker at 1000 rpm at 37 °C for 2 h. Next, 70 µl of
463 N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) and 7 µl of alkane mix were added
464 and shaken at 37 °C for 30 min. The derivatized sample (110 µl) was transferred to a vial and
465 analyzed on a GC-MS machine. The mass spectrometry files were processed using the Agilent
466 Mass Hunter software, and feature (mass peak) retention times and *m/z* were calculated.
467 Annotation and quantification of detected metabolites were carried out with the Mass Hunter
468 software, the NIST mass spectral library, and retention index (RI) libraries (gmd.mpimp-
469 golm.mpg.de) [89]. Compounds were identified by comparing their retention index (RI) and
470 mass spectrums, generated from authentic standards and libraries (Max-Planck Institute for
471 Plant Physiology in Golm (<http://gmd.mpimp-golm.mpg.de/>) [88,90]. The metabolite response
472 values were normalized to the internal standard, ribitol (Sigma-Aldrich, USA), and their
473 respective tissue weights.

474 **4.7 Detection of hydrogen peroxide**

475 A 3,3'-diaminobenzidine (DAB) staining was used for *in situ* detection of hydrogen peroxide
476 levels in wildtype and *atg* mutant plants [91]. GPA-treated or control leaves were gently
477 vacuum-infiltrated with either DAB solution. As control, replicate leaves were infiltrated with
478 buffer (10 mM Na₂HPO₄). Samples were incubated in the DAB solution on a shaker for 4 h,
479 then replaced with a bleaching solution (ethanol: acetic acid: glycerol (3:1:1)) to remove the
480 chlorophyll and to visualize the precipitate formed by hydrogen peroxide (which renders
481 precipitates in dark brown). Staining was done on three biological replicates for each treatment.

482 **4.8 Statistical analysis**

483 Student's paired *t*-test and analysis of variance (ANOVA), were performed using Excel and
484 JMP (SAS; www.jmp.com, USA) [92], respectively. Advanced Metaboanalyst 5.0 online
485 software was used for metabolite analysis [93]. For Metaboanalyst analysis, the metabolite data
486 were transformed into log₁₀ values for normal distribution. For multiple testing analyses, *P*-
487 values were adjusted according to Benjamini and Hochberg procedure (false discovery rate;
488 FDR). Statistical significance was denoted when *P* values were less than 0.05, as indicated by
489 an asterisk, respectively.

490 **Supplementary Materials:** Figure S1: Validation of the expression level of *ATG* genes on the
491 two *autophagy-defective* mutants used in the study; Table S1: Primers used for quantitative RT-
492 PCR analysis; Table S2: Feeding behavior of GPAs on *atg* mutants; Table S3: Central

493 metabolites detected in the phloem of *Arabidopsis atg* mutants and wildtype under GPA
494 feeding; Table S4: Fold change values of significant metabolites affected either by one of the
495 treatments or both.

496 **Author Contributions:** Conceptualization, L.K.H., H.Z., and V.T.; methodology, L.K.H., R.S.,
497 A.D., S.M., W.J.P; validation, L.K.H., R.S., A.D., and S.M.; formal analysis, L.K.H., W.J.P.,
498 V.N., S.M.; investigation, L.K.H., S.M., and, W.J.P; resources, A.D., and Y.B.; data curation,
499 L.K.H., writing—original draft preparation, L.K.H., H.Z., and V.T.; writing—review and
500 editing, L.K.H., V.M., Y.B., S.M. H.Z. and V.T. All authors have read and agreed to the
501 published version of the manuscript.

502 **Funding:** This research was supported by the Israel Science Foundation grant no. 329/20. LKH
503 was awarded the Ramat HaNegev international program scholarship. RS was awarded a
504 fellowship from the Israel Ministry of Science and Technology. VT is the Sonnenfeldt-
505 Goldman Career Development Chair for Desert Research.

506 **Data Availability Statement:** Data is contained within the article or Supplementary Material

507 **Acknowledgments:** We are grateful to Noga Sikron Peres (BGU) for her assistance with the
508 GC-MS and confocal microscopy, Valeria Mitsurova for the technical support and to Beery
509 Yaakov for helping with primer design and RNA analysis. From the Hebrew University of
510 Jerusalem, Israel, we thank Shai Morin for providing a *Myzus persicae* colony.

511 **Conflicts of Interest:** No potential conflicts of interest were disclosed.

512

513 **References**

514 [1] I. Dikic, Proteasomal and autophagic degradation systems, *Annu. Rev. Biochem.* 86
515 (2017) 193–224. <https://doi.org/10.1146/annurev-biochem-061516-044908>.

516 [2] C. Masclaux-Daubresse, Q. Chen, M. Havé, Regulation of nutrient recycling via
517 autophagy, *Curr. Opin. Plant Biol.* 39 (2017) 8–17.
518 <https://doi.org/10.1016/j.pbi.2017.05.001>.

519 [3] R.S. Marshall, R.D. Vierstra, Autophagy: The master of bulk and selective recycling,
520 *Annu. Rev. Plant Biol.* 69 (2018) 173–208. <https://doi.org/10.1146/annurev-arplant-042817-040606>.

522 [4] W.G. Van Doorn, A. Papini, Ultrastructure of autophagy in plant cells: A review,
523 *Autophagy* 9 (2013) 1922–1936. <https://doi.org/10.4161/auto.26275>.

524 [5] J. Tang, D.C. Bassham, Autophagy in crop plants: What's new beyond *Arabidopsis*?,
525 *Open Biol.* 8 (2018). <https://doi.org/10.1098/rsob.180162>.

526 [6] D.C. Bassham, Function and regulation of macroautophagy in plants, *Biochim. Biophys.*
527 *Acta - Mol. Cell Res.* 1793 (2009) 1397–1403.
528 <https://doi.org/10.1016/j.bbamcr.2009.01.001>.

529 [7] T.M. Harding, K.A. Morano, S. V. Scott, D.J. Klionsky, Isolation and characterization
530 of yeast mutants in the cytoplasm to vacuole protein targeting pathway, *J. Cell Biol.* 131
531 (1995) 591–602. <https://doi.org/10.1083/jcb.131.3.591>.

532 [8] M. Tsukada, Y. Ohsumi, Isolation and characterization of autophagy-defective mutants
533 of *Saccharomyces cerevisiae*, *FEBS Lett.* 333 (1993) 169–174.
534 [https://doi.org/10.1016/0014-5793\(93\)80398-E](https://doi.org/10.1016/0014-5793(93)80398-E).

535 [9] M. Thumm, R. Egner, B. Koch, M. Schlumpberger, M. Straub, M. Veenhuis, D.H. Wolf,
536 Isolation of autophagocytosis mutants of *Saccharomyces cerevisiae*, *FEBS Lett.* 349
537 (1994) 275–280. [https://doi.org/10.1016/0014-5793\(94\)00672-5](https://doi.org/10.1016/0014-5793(94)00672-5).

538 [10] P.G. Young, M.J. Passalacqua, K. Chappell, R.J. Llinas, B. Bartel, A facile forward-
539 genetic screen for *Arabidopsis* autophagy mutants reveals twenty-one loss-of-function
540 mutations disrupting six *ATG* genes, *Autophagy* 15 (2019) 941–959.
541 <https://doi.org/10.1080/15548627.2019.1569915>.

542 [11] P. Boya, F. Reggiori, P. Codogno, Emerging regulation and functions of autophagy, *Nat.*
543 *Cell Biol.* 15 (2013) 713–720. <https://doi.org/10.1038/ncb2788>.

544 [12] S. Michaeli, G. Galili, P. Genschik, A.R. Fernie, T. Avin-Wittenberg, Autophagy in
545 plants - What's new on the menu?, *Trends Plant Sci.* 21 (2016) 134–144.
546 <https://doi.org/10.1016/j.tplants.2015.10.008>.

547 [13] X. Yang, D.C. Bassham, New insight into the mechanism and function of autophagy in
548 plant cells, *Int. Rev. Cell Mol. Biol.* 320 (2015) 1–40.
549 <https://doi.org/10.1016/bs.ircmb.2015.07.005>.

550 [14] T.L. Rose, L. Bonneau, C. Der, D. Marty-Mazars, F. Marty, Starvation-induced
551 expression of autophagy-related genes in *Arabidopsis*, *Biol. Cell.* 98 (2006) 53–67.
552 <https://doi.org/10.1042/bc20040516>.

553 [15] L. Luo, P. Zhang, R. Zhu, J. Fu, J. Su, J. Zheng, Z. Wang, D. Wang, Q. Gong, Autophagy
554 is rapidly induced by salt stress and is required for salt tolerance in *arabidopsis*, *Front.*
555 *Plant Sci.* 8 (2017) 1459. <https://doi.org/10.3389/fpls.2017.01459>.

556 [16] Y. Liu, Y. Xiong, D.C. Bassham, Autophagy is required for tolerance of drought and salt
557 stress in plants, *Autophagy.* 5 (2009) 954–963. <https://doi.org/10.4161/auto.5.7.9290>.

558 [17] M. Sedaghatmehr, V.P. Thirumalaikumar, I. Kamranfar, A. Marmagne, C. Masclaux-
559 Daubresse, S. Balazadeh, A regulatory role of autophagy for resetting the memory of
560 heat stress in plants, *Plant Cell Environ.* 42 (2019) 1054–1064.
561 <https://doi.org/10.1111/pce.13426>.

562 [18] T. Neutelings, C.A. Lambert, B. V. Nusgens, A.C. Colige, Effects of mild cold shock
563 (25°C) followed by warming up at 37°C on the cellular stress response, *PLoS One.* 8
564 (2013) e69687. <https://doi.org/10.1371/journal.pone.0069687>.

565 [19] N.M. Mazure, J. Pouysségur, Hypoxia-induced autophagy: Cell death or cell survival?,
566 *Curr. Opin. Cell Biol.* 22 (2010) 177–180. <https://doi.org/10.1016/j.ceb.2009.11.015>.

567 [20] S. Han, B. Yu, Y. Wang, Y. Liu, Role of plant autophagy in stress response, *Protein Cell.*
568 2 (2011) 784–791. <https://doi.org/10.1007/s13238-011-1104-4>.

569 [21] D. Hofius, L. Li, A. Hafrén, N.S. Coll, Autophagy as an emerging arena for plant–
570 pathogen interactions, *Curr. Opin. Plant Biol.* 38 (2017) 117–123.
571 <https://doi.org/10.1016/j.pbi.2017.04.017>.

572 [22] Y. Haxim, A. Ismayil, Q. Jia, Y. Wang, X. Zheng, T. Chen, L. Qian, N. Liu, Y. Wang, S.
573 Han, J. Cheng, Y. Qi, Y. Hong, Y. Liu, Autophagy functions as an antiviral mechanism
574 against geminiviruses in plants, *Elife*. 6 (2017). <https://doi.org/10.7554/eLife.23897>.

575 [23] A. Hafrén, J.L. Macia, A.J. Love, J.J. Milner, M. Drucker, D. Hofius, Selective
576 autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of
577 viral capsid protein and particles, *Proc. Natl. Acad. Sci. U. S. A.* 114 (2017) E2026–
578 E2035. <https://doi.org/10.1073/pnas.1610687114>.

579 [24] A. Mithöfer, W. Boland, Plant defense against herbivores: Chemical aspects, *Annu. Rev.*
580 *Plant Biol.* 63 (2012) 431–450. <https://doi.org/10.1146/annurev-arplant-042110-103854>.

582 [25] M. Erb, S. Meldau, G.A. Howe, Role of phytohormones in insect-specific plant
583 reactions, *Trends Plant Sci.* 17 (2012) 250–259.
584 <https://doi.org/10.1016/j.tplants.2012.01.003>.

585 [26] J. Schwachtje, I.T. Baldwin, Why does herbivore attack reconfigure primary
586 metabolism?, *Plant Physiol.* 146 (2008) 845–851.
587 <https://doi.org/10.1104/pp.107.112490>.

588 [27] S. Dinant, J.L. Bonnemain, C. Girousse, J. Kehr, Phloem sap intricacy and interplay with
589 aphid feeding, *Comptes Rendus - Biol.* 333 (2010) 504–515.
590 <https://doi.org/10.1016/j.crvi.2010.03.008>.

591 [28] J. Louis, J. Shah, *Arabidopsis thaliana-Myzus persicae* interaction: Shaping the
592 understanding of plant defense against phloem-feeding aphids, *Front. Plant Sci.* 4
593 (2013). <https://doi.org/10.3389/fpls.2013.00213>.

594 [29] H.M. Appel, H. Fescemyer, J. Ehlting, D. Weston, E. Rehrig, T. Joshi, D. Xu, J.
595 Bohlmann, J. Schultz, Transcriptional responses of *Arabidopsis thaliana* to chewing and
596 sucking insect herbivores, *Front. Plant Sci.* 5 (2014) 1–20.
597 <https://doi.org/10.3389/fpls.2014.00565>.

598 [30] C. Caldana, T. Degenkolbe, A. Cuadros-Inostroza, S. Klie, R. Sulpice, A. Leisse, D.
599 Steinhäuser, A.R. Fernie, L. Willmitzer, M.A. Hannah, High-density kinetic analysis of
600 the metabolomic and transcriptomic response of *Arabidopsis* to eight environmental
601 conditions, *Plant J.* 67 (2011) 869–884. <https://doi.org/10.1111/j.1365->

602 313X.2011.04640.x.

603 [31] M. Seay, S. Patel, S.P. Dinesh-Kumar, Autophagy and plant innate immunity, *Cell. Microbiol.* 8 (2006) 899–906. <https://doi.org/10.1111/j.1462-5822.2006.00715.x>.

604

605 [32] M. De Vos, V.R. Van Oosten, R.M.P. Van Poecke, J.A. Van Pelt, M.J. Pozo, M.J. Mueller, A.J. Buchala, J.P. Métraux, L.C. Van Loon, M. Dicke, C.M.J. Pieterse, Signal signature and transcriptome changes of *Arabidopsis* during pathogen and insect attack, *Mol. Plant-Microbe Interact.* 18 (2007) 923–937. <https://doi.org/10.1094/MPMI-18-0923>.

606

607

608

609 [33] A. Kuśnierszyk, P. Winge, H. Midelfart, W.S. Armbruster, J.T. Rossiter, A.M. Bones, Transcriptional responses of *Arabidopsis thaliana* ecotypes with different glucosinolate profiles after attack by polyphagous *Myzus persicae* and oligophagous *Brevicoryne brassicae*, *J. Exp. Bot.* 58 (2007) 2537–2552. <https://doi.org/10.1093/jxb/erm043>.

610

611

612

613 [34] J. Louis, V. Singh, J. Shah, *Arabidopsis thaliana*—Aphid Interaction, *Arab. B.* 10 (2012) e0159. <https://doi.org/10.1199/tab.0159>.

614

615 [35] J.H. Kim, G. Jander, *Myzus persicae* (green peach aphid) feeding on *Arabidopsis* induces the formation of a deterrent indole glucosinolate, *Plant J.* 49 (2007) 1008–1019. <https://doi.org/10.1111/j.1365-313X.2006.03019.x>.

616

617

618 [36] J.H. Kim, B.W. Lee, F.C. Schroeder, G. Jander, Identification of indole glucosinolate breakdown products with antifeedant effects on *Myzus persicae* (green peach aphid), *Plant J.* 54 (2008) 1015–1026. <https://doi.org/10.1111/j.1365-313X.2008.03476.x>.

619

620

621 [37] Y. Pu, D.C. Bassham, Detection of autophagy in plants by fluorescence microscopy, in: L.M. Lois, R. Matthiesen (Eds.), *Methods Mol. Biol.*, Springer New York, New York, NY, 2016: pp. 161–172. https://doi.org/10.1007/978-1-4939-3759-2_13.

622

623

624 [38] A. Honig, T. Avin-Wittenberg, S. Ufaz, G. Galili, A new type of compartment, defined by plant-specific Atg8-interacting proteins, is induced upon exposure of *Arabidopsis* plants to carbon starvation, *Plant Cell.* 24 (2012) 288–303. <https://doi.org/10.1105/tpc.111.093112>.

625

626

627

628 [39] S. Slávíková, G. Shy, Y. Yao, R. Glozman, H. Levanony, S. Pietrokovski, Z. Elazar, G. Galili, The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in *Arabidopsis* plants, *J. Exp. Bot.* 56 (2005) 2839–2849. <https://doi.org/10.1093/jxb/eri276>.

629

630

631

632 [40] K. Yoshimoto, Y. Jikumaru, Y. Kamiya, M. Kusano, C. Consonni, R. Panstruga, Y.
633 Ohsumi, K. Shirasu, Autophagy negatively regulates cell death by controlling NPR1-
634 dependent salicylic acid signaling during senescence and the innate immune response in
635 arabidopsis, *Plant Cell.* 21 (2009) 2914–2927. <https://doi.org/10.1105/tpc.109.068635>.

636 [41] D. Hofius, T. Schultz-Larsen, J. Joensen, D.I. Tsitsigiannis, N.H.T. Petersen, O.
637 Mattsson, L.B. Jørgensen, J.D.G. Jones, J. Mundy, M. Petersen, Autophagic components
638 contribute to hypersensitive cell death in Arabidopsis, *Cell.* 137 (2009) 773–783.
639 <https://doi.org/10.1016/j.cell.2009.02.036>.

640 [42] H.D. Lenz, E. Haller, E. Melzer, K. Kober, K. Wurster, M. Stahl, D.C. Bassham, R.D.
641 Vierstra, J.E. Parker, J. Bautor, A. Molina, V. Escudero, T. Shindo, R.A.L. van der Hoorn,
642 A.A. Gust, T. Nürnberg, Autophagy differentially controls plant basal immunity to
643 biotrophic and necrotrophic pathogens, *Plant J.* 66 (2011) 818–830.
644 <https://doi.org/10.1111/j.1365-313X.2011.04546.x>.

645 [43] H.D. Lenz, R.D. Vierstra, T. Nürnberg, A.A. Gust, ATG7 contributes to plant basal
646 immunity towards fungal infection, *Plant Signal. Behav.* 6 (2011) 1040–1042.
647 <https://doi.org/10.4161/psb.6.7.15605>.

648 [44] M. Van Helden, W.F. Tjallingii, Experimental design and analysis in EPG experiments
649 with emphasis on plant resistance research, in: G.P. Walker, E.A. Backus (Eds.),
650 Homoptean Feed. Behav., Thomas Say Publications in Entomology, 35, , 2000: pp. 144–
651 171.

652 [45] E. Sarria, M. Cid, E. Garzo, A. Fereres, Excel Workbook for automatic parameter
653 calculation of EPG data, *Comput. Electron. Agric.* 67 (2009) 35–42.
654 <https://doi.org/10.1016/j.compag.2009.02.006>.

655 [46] V. Pegadaraju, C. Knepper, J. Reese, J. Shah, Premature leaf senescence modulated by
656 the *Arabidopsis PHYTOALEXIN DEFICIENT4* gene is associated with defense against
657 the phloem-feeding green peach aphid, *Plant Physiol.* 139 (2005) 1927–1934.
658 <https://doi.org/10.1104/pp.105.070433>.

659 [47] J. Louis, J. Shah, Plant defence against aphids: The *PAD4* signalling nexus, *J. Exp. Bot.*
660 66 (2015) 449–454. <https://doi.org/10.1093/jxb/eru454>.

661 [48] V. Pegadaraju, J. Louis, V. Singh, J.C. Reese, J. Bautor, B.J. Feys, G. Cook, J.E. Parker,

662 J. Shah, Phloem-based resistance to green peach aphid is controlled by *Arabidopsis*
663 *PHYTOALEXIN DEFICIENT4* without its signaling partner *ENHANCED DISEASE*
664 *SUSCEPTIBILITY1*, *Plant J.* 52 (2007) 332–341. <https://doi.org/10.1111/j.1365-313X.2007.03241.x>.

666 [49] J. Louis, E. Gobbato, H.A. Mondal, B.J. Feys, J.E. Parker, J. Shah, Discrimination of
667 *Arabidopsis PAD4* activities in defense against green peach aphid and pathogens, *Plant*
668 *Physiol.* 158 (2012) 1860–1872. <https://doi.org/10.1104/pp.112.193417>.

669 [50] I. Morkunas, V.C. Mai, B. Gabryś, Phytohormonal signaling in plant responses to aphid
670 feeding, *Acta Physiol. Plant.* 33 (2011) 2057–2073. <https://doi.org/10.1007/s11738-011-0751-7>.

672 [51] J.O. Quijia Pillajo, L.J. Chapin, M.L. Jones, Senescence and abiotic stress induce
673 expression of autophagy-related genes in *Petunia*, *J. Am. Soc. Hortic. Sci.* 143 (2018)
674 154–163. <https://doi.org/10.21273/JASHS04349-18>.

675 [52] L. Wang, Q. Xiao, X.L. Zhou, Y. Zhu, Z.Q. Dong, P. Chen, M.H. Pan, C. Lu, *Bombyx*
676 *mori* nuclear polyhedrosis virus (BmNPV) induces host cell autophagy to benefit
677 infection, *Viruses.* 10 (2018). <https://doi.org/10.3390/v10010014>.

678 [53] P. Kotari, A. Rekha, K. V. Ravishankar, Expressions of autophagy-associated *ATG* genes
679 in response to *Fusarium* wilt infection in banana, *Australas. Plant Dis. Notes.* 13 (2018)
680 1–5. <https://doi.org/10.1007/s13314-018-0329-y>.

681 [54] A. Aroca, I. Yruela, C. Gotor, D.C. Bassham, Persulfidation of *ATG18a* regulates
682 autophagy under ER stress in *Arabidopsis*, *Proc. Natl. Acad. Sci. U. S. A.* 118 (2021).
683 <https://doi.org/10.1073/pnas.2023604118>.

684 [55] Y. Wang, B. Yu, J. Zhao, J. Guo, Y. Li, S. Han, L. Huang, Y. Du, Y. Hong, D. Tang, Y.
685 Liu, Autophagy contributes to leaf starch degradation, *Plant Cell.* 25 (2013) 1383–1399.
686 <https://doi.org/10.1105/tpc.112.108993>.

687 [56] A. Dangol, R. Shavit, B. Yaakov, S.R. Strickler, G. Jander, V. Tzin, Characterizing
688 serotonin biosynthesis in *Setaria viridis* leaves and its effect on aphids, *Plant Mol. Biol.*
689 109 (2022) 533–549. <https://doi.org/10.1007/s11103-021-01239-4>.

690 [57] Z. Lai, F. Wang, Z. Zheng, B. Fan, Z. Chen, A critical role of autophagy in plant
691 resistance to necrotrophic fungal pathogens, *Plant J.* 66 (2011) 953–968.

692 https://doi.org/10.1111/j.1365-313X.2011.04553.x.

693 [58] Y. Chen, Q. Chen, M. Li, Q. Mao, H. Chen, W. Wu, D. Jia, T. Wei, Autophagy pathway
694 induced by a plant virus facilitates viral spread and transmission by its insect vector,
695 PLoS Pathog. 13 (2017) e1006727. <https://doi.org/10.1371/journal.ppat.1006727>.

696 [59] A.R. Thompson, J.H. Doelling, A. Suttangkakul, R.D. Vierstra, Autophagic nutrient
697 recycling in *Arabidopsis* directed by the ATG8 and ATG12 conjugation pathways, Plant
698 Physiol. 138 (2005) 2097–2110. <https://doi.org/10.1104/pp.105.060673>.

699 [60] X. Huang, S. Chen, X. Yang, X. Yang, T. Zhang, G. Zhou, Friend or enemy: a dual role
700 of autophagy in plant virus infection, Front. Microbiol. 11 (2020) 736.
701 <https://doi.org/10.3389/fmicb.2020.00736>.

702 [61] M. Yang, A. Ismayil, Y. Liu, Autophagy in plant-virus interactions, Annu. Rev. Virol. 7
703 (2020) 403–419. <https://doi.org/10.1146/annurev-virology-010220-054709>.

704 [62] I. Paliwal, C. Reintjes, P. Schimmer, M.A. Schoenhardt, J. Yang, Effect of applying
705 starch onto *Arabidopsis thaliana* on the feeding behaviour of *Myzus persicae*, Sci. -
706 McMaster Undergrad. Sci. J. (2018) 9–15. <https://doi.org/10.15173/sciential.v1i1.1922>.

707 [63] V. Singh, J. Shah, Tomato responds to green peach aphid infestation with the activation
708 of trehalose metabolism and starch accumulation, Plant Signal. Behav. 7 (2012) 605–
709 607. <https://doi.org/10.4161/psb.20066>.

710 [64] F.L. Goggin, H.D. Fischer, Reactive oxygen species in plant interactions with aphids,
711 Front. Plant Sci. 12 (2022) 3255. <https://doi.org/10.3389/fpls.2021.811105>.

712 [65] J. Xu, C.S. Padilla, J. Li, J. Wickramanayake, H.D. Fischer, F.L. Goggin, Redox
713 responses of *Arabidopsis thaliana* to the green peach aphid, *Myzus persicae*, Mol. Plant
714 Pathol. 22 (2021) 727–736. <https://doi.org/10.1111/mpp.13054>.

715 [66] K. Yoshimoto, M. Shibata, M. Kondo, K. Oikawa, M. Sato, K. Toyooka, K. Shirasu, M.
716 Nishimura, Y. Ohsumi, Organ-specific quality control of plant peroxisomes is mediated
717 by autophagy, J. Cell Sci. 127 (2014) 1161–1168. <https://doi.org/10.1242/jcs.139709>.

718 [67] S. Yamauchi, S. Mano, K. Oikawa, K. Hikino, K.M. Teshima, Y. Kimori, M. Nishimura,
719 K. ichiro Shimazaki, A. Takemiya, Autophagy controls reactive oxygen species
720 homeostasis in guard cells that is essential for stomatal opening, Proc. Natl. Acad. Sci.
721 U. S. A. 116 (2019) 19187–19192. <https://doi.org/10.1073/pnas.1910886116>.

722 [68] S. Signorelli, Ł.P. Tarkowski, W. Van den Ende, D.C. Bassham, Linking autophagy to
723 abiotic and biotic stress responses, *Trends Plant Sci.* 24 (2019) 413–430.
724 <https://doi.org/10.1016/j.tplants.2019.02.001>.

725 [69] R. Scherz-Shouval, E. Shvets, E. Fass, H. Shorer, L. Gil, Z. Elazar, Reactive oxygen
726 species are essential for autophagy and specifically regulate the activity of Atg4, *EMBO J.* 26 (2007) 1749–1760. <https://doi.org/10.1038/sj.emboj.7601623>.

728 [70] M.E. Pérez-Pérez, S.D. Lemaire, J.L. Crespo, Reactive oxygen species and autophagy
729 in plants and algae, *Plant Physiol.* 160 (2012) 156–164.
730 <https://doi.org/10.1104/pp.112.199992>.

731 [71] I. Mewis, H.M. Appel, A. Hom, R. Raina, J.C. Schultz, Major signaling pathways
732 modulate *Arabidopsis* glucosinolate accumulation and response to both phloem-feeding
733 and chewing insects, *Plant Physiol.* 138 (2005) 1149–1162.
734 <https://doi.org/10.1104/pp.104.053389>.

735 [72] A.E. Douglas, Phloem-sap feeding by animals: Problems and solutions, in: *J. Exp. Bot.*,
736 Oxford Academic, 2006: pp. 747–754. <https://doi.org/10.1093/jxb/erj067>.

737 [73] S. Zhou, Y.R. Lou, V. Tzin, G. Jander, Alteration of plant primary metabolism in
738 response to insect herbivory, *Plant Physiol.* 169 (2015) 1488–1498.
739 <https://doi.org/10.1104/pp.15.01405>.

740 [74] T. Avin-Wittenberg, K. Bajdzienko, G. Wittenberg, S. Alseekh, T. Tohge, R. Bock, P.
741 Giavalisco, A.R. Fernie, Global analysis of the role of autophagy in cellular metabolism
742 and energy homeostasis in *arabidopsis* seedlings under carbon starvation, *Plant Cell* 27
743 (2015) 306–322. <https://doi.org/10.1105/tpc.114.134205>.

744 [75] J. Geng, D.J. Klionsky, The Atg8 and Atg12 ubiquitin-like conjugation systems in
745 macroautophagy. “Protein Modifications: Beyond the Usual Suspects” Review Series,
746 *EMBO Rep.* 9 (2008) 859–864. <https://doi.org/10.1038/embor.2008.163>.

747 [76] J. Wu, H. Lan, Z.F. Zhang, H.H. Cao, T.X. Liu, Performance and transcriptional response
748 of the green peach aphid *Myzus persicae* to the restriction of dietary amino acids, *Front.*
749 *Physiol.* 11 (2020) 487. <https://doi.org/10.3389/fphys.2020.00487>.

750 [77] B.E. Lindsey, L. Rivero, C.S. Calhoun, E. Grotewold, J. Brkljacic, Standardized method
751 for high-throughput sterilization of *Arabidopsis* seeds, *J. Vis. Exp.* 2017 (2017) 56587.

752 https://doi.org/10.3791/56587.

753 [78] V. Nalam, T. Isaacs, S. Moh, J. Kansman, D. Finke, T. Albrecht, P. Nachappa, Diurnal
754 feeding as a potential mechanism of osmoregulation in aphids, *Insect Sci.* 28 (2021)
755 521–532. <https://doi.org/10.1111/1744-7917.12787>.

756 [79] J. Ye, G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen, T.L. Madden, Primer-
757 BLAST: A tool to design target-specific primers for polymerase chain reaction, *BMC
758 Bioinformatics.* 13 (2012) 134. <https://doi.org/10.1186/1471-2105-13-134>.

759 [80] K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time
760 quantitative PCR and the 2- $\Delta\Delta$ CT method, *Methods.* 25 (2001) 402–408.
761 <https://doi.org/10.1006/meth.2001.1262>.

762 [81] V. Janssens, J. Goris, Protein phosphatase 2A: A highly regulated family of
763 serine/threonine phosphatases implicated in cell growth and signalling, *Biochem. J.* 353
764 (2001) 417–439. <https://doi.org/10.1042/BJ3530417>.

765 [82] W.F. TJALLINGII, T.H. ESCH, Fine structure of aphid stylet routes in plant tissues in
766 correlation with EPG signals, *Physiol. Entomol.* 18 (1993) 317–328.
767 <https://doi.org/10.1111/j.1365-3032.1993.tb00604.x>.

768 [83] V. Salvador-Recatalà, W.F. Tjallingii, A new application of the electrical penetration
769 graph (EPG) for acquiring and measuring electrical signals in phloem sieve elements, *J.
770 Vis. Exp.* 2015 (2015) 1–8. <https://doi.org/10.3791/52826>.

771 [84] W.F. TJALLINGII, Electronic recording of penetration behaviour by aphids, *Entomol.
772 Exp. Appl.* 24 (1978) 721–730. <https://doi.org/10.1111/j.1570-7458.1978.tb02836.x>.

773 [85] B. Martin, J.L. Collar, W.F. Tjallingii, A. Fereres, Intracellular ingestion and salivation
774 by aphids may cause the acquisition and inoculation of non-persistently transmitted plant
775 viruses, *J. Gen. Virol.* 78 (1997) 2701–2705. <https://doi.org/10.1099/0022-1317-78-10-2701>.

777 [86] N.M. Gyan, B. Yaakov, N. Weinblum, A. Singh, A. Cna'ani, S. Ben-Zeev, Y. Saranga, V.
778 Tzin, Variation between three *Eragrostis* tef accessions in defense responses to
779 *Rhopalosiphum padi* aphid infestation, *Front. Plant Sci.* 11 (2020) 1892.
780 <https://doi.org/10.3389/fpls.2020.598483>.

781 [87] V. Nalam, J. Louis, M. Patel, J. Shah, *Arabidopsis*-green peach aphid interaction:

782 Rearing the insect, no-choice and fecundity assays, and electrical penetration graph
783 technique to study insect feeding behavior, BIO-PROTOCOL. 8 (2018).
784 <https://doi.org/10.21769/bioprotoc.2950>.

785 [88] J. Lisec, N. Schauer, J. Kopka, L. Willmitzer, A.R. Fernie, Gas chromatography mass
786 spectrometry-based metabolite profiling in plants, Nat. Protoc. 1 (2006) 387–396.
787 <https://doi.org/10.1038/nprot.2006.59>.

788 [89] Y. Qiu, D. Ree, Gas chromatography in metabolomics study, in: Adv. Gas Chromatogr.,
789 IntechOpen, 2014. <https://doi.org/10.5772/57397>.

790 [90] U. Hochberg, A. Degu, D. Toubiana, T. Gendler, Z. Nikoloski, S. Rachmilevitch, A. Fait,
791 Metabolite profiling and network analysis reveal coordinated changes in grapevine
792 water stress response, BMC Plant Biol. 13 (2013) 184. <https://doi.org/10.1186/1471-2229-13-184>.

794 [91] A. Daudi, J. O'Brien, Detection of hydrogen peroxide by DAB staining in Arabidopsis
795 leaves, BIO-PROTOCOL. 2 (2012). <https://doi.org/10.21769/bioprotoc.263>.

796 [92] J. Sall, JMP start statistics: A guide to statistics and data analysis using JMP, 2001.

797 [93] Z. Pang, J. Chong, G. Zhou, D.A. De Lima Moraes, L. Chang, M. Barrette, C. Gauthier,
798 P.É. Jacques, S. Li, J. Xia, MetaboAnalyst 5.0: Narrowing the gap between raw spectra
799 and functional insights, Nucleic Acids Res. 49 (2021) W388–W396.
800 <https://doi.org/10.1093/nar/gkab382>.

801