

1        **Two haplotype-resolved genomes of highly heterozygous**  
2        **AAB allotriploid bananas provide insights into subgenome**  
3        **asymmetric evolution and banana wilt control**

4

Wen-Zhao Xie<sup>1, 2, #</sup>, Yu-Yu Zheng<sup>2, #</sup>, Weidi He<sup>1, #</sup>, Fangcheng Bi<sup>1</sup>, Yaoyao Li<sup>1</sup>,  
Tongxin Dou<sup>1</sup>, Run Zhou<sup>2</sup>, Yi-Xiong Guo<sup>2</sup>, Guiming Deng<sup>1</sup>, Wen-Hui Zhang<sup>2</sup>, Min-  
Hui Yuan<sup>3</sup>, Pablo Sanz-Jimenez<sup>2</sup>, Xi-Tong Zhu<sup>2</sup>, Xin-Dong Xu<sup>3</sup>, Zu-Wen Zhou<sup>3</sup>, Zhi-  
Wei Zhou<sup>2</sup>, Jia-Wu Feng<sup>2</sup>, Siwen Liu<sup>1</sup>, Chunyu Li<sup>1</sup>, Qiaosong Yang<sup>1</sup>, Chunhua Hu<sup>1</sup>,  
Huijun Gao<sup>1</sup>, Tao Dong<sup>1</sup>, Jiangbo Dang<sup>4</sup>, Qigao Guo<sup>4</sup>, Wenguo Cai<sup>3</sup>, Jianwei Zhang<sup>2</sup>,  
Ganjun Yi<sup>1, \*</sup>, Jia-Ming Song<sup>3, \*</sup>, Ou Sheng<sup>1, \*</sup>, Ling-Ling Chen<sup>3, \*</sup>

<sup>1</sup>Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China

<sup>2</sup> College of Informatics, Huazhong Agricultural University, Wuhan 430070, China

<sup>3</sup>State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China

<sup>4</sup>College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China

#These authors contributed equally to this work.

\*Authors for correspondence:

Ganjun Yi        Email: [yiganjun@vip.163.com](mailto:yiganjun@vip.163.com)

Jia-Ming Song    Email: [jmsong@gxu.edu.cn](mailto:jmsong@gxu.edu.cn)

Ou Sheng        Email: [shengou6@126.com](mailto:shengou6@126.com)

Ling-Ling Chen Email: [llchen@gxu.edu.cn](mailto:llchen@gxu.edu.cn)

5

6 **ABSTRACT**

7 Bananas (*Musa* spp.) are one of the most important tropical fruits and staple food,  
8 which are of great significance to human societies. Plantain and Silk are two  
9 important banana subgroups, which are both triploid hybrids (AAB) between the wild  
10 diploid *Musa acuminata* and *M. balbisiana*. In this study, we reported the first  
11 haplotype-resolved genome assembly of Plantain and Silk bananas with genome size  
12 of approximately 1.4 Gb. We discovered widespread asymmetric evolution in the  
13 subgenomes of Plantain and Silk, which could be linked to frequent homologous  
14 exchanges (HEs) events. This is the first study to uncover the genetic makeup of  
15 triploid banana and verify that subgenome B harbors a rich source of resistance genes.  
16 Of the 88,078 and 94,988 annotated genes in Plantain and Silk, only 58.5% and 59.4%  
17 were present in all three subgenomes, with >50% genes containing differently  
18 expressed alleles in different haplotypes. We also found that Plantain is more resistant  
19 to banana Fusarium wilt, exhibiting a much faster defense response after pathogenic  
20 fungi infection. Many differentially expressed genes in abscisic acid, ethylene,  
21 jasmonic acid and salicylic acid pathways were identified in Plantain. Our analysis  
22 revealed that MpMYB36 promotes the biosynthesis of secondary cell wall and  
23 deposition of lignin by directly binding to the promoter of MpPAL and MpHCT,  
24 which allows Plantain to inhibit the penetration of early infection. Moreover, the  
25 insertion of the key carotenoid synthesis gene (*CRTISO*) may be the potential genetic  
26 basis for the richness of carotenoids in Plantain. Our study provides an unprecedented  
27 genomic basis for basic research and the development of elite germplasm in cultivated  
28 bananas.

29

30 **Key words:** Allotriploid; subgenome asymmetric evolution; homologous exchange;  
31 Foc-TR4; carotenoids; starch

32

33

34

35

36

37

38

39

40

41 **INTRODUCTION**

42 Bananas (*Musa* spp.) are the largest herbaceous plants, mainly grown in tropical and  
43 subtropical regions and are of great significance to human societies (Kema and Drenth,  
44 2020). Among bananas, dessert varieties (such as Cavendish) are one of the most  
45 widely traded fruits globally (FAOSTAT 2021), while starchy cooking types (like  
46 Plantains) are essential staples that contribute significantly to the diets of many  
47 developing countries (Robinson and Sauco, 2010). Most cultivated bananas are  
48 seedless triploid varieties ( $2n = 3x = 33$ ) that were created through intra or inter-  
49 specific hybridization of the two *Musa* species, *M. acuminata* (A genome) and *M.*  
50 *balbisiana* (B genome) (Simmonds and Shepherd, 1955). Plantain, a crucial subgroup  
51 of cooking bananas, is a major dietary component for numerous populations in Africa,  
52 Latin America, and the Caribbean (Robinson and Sauco, 2010). In the major  
53 producing countries, per capita consumption of Plantain ranges from 40 kg/year in the  
54 Democratic Republic of Congo to 153 kg/year in Gabon (Akyeampong and Escalant,  
55 1998). Genomic in situ hybridization (GISH) studies have confirmed that Plantain  
56 with an AAB genome has 21 A and 12 B chromosomes (D'Hont et al. 2000). Silk, a  
57 banana subgroup widely distributed in South and Southeast Asia, South America, and  
58 Australia, is a moderately vigorous plant that produces exceptionally flavorful dessert  
59 fruits with white flesh and a sub-acid, apple-like flavor. However, this subgroup is  
60 highly susceptible to Fusarium wilt, a devastating disease caused by *Fusarium*  
61 *oxysporum* f. sp. *Cubense* (Foc) (Dita et al., 2021; Zhan et al., 2022).

62 The complexities of assembling polyploid genomes stem from a variety of  
63 duplication events, including whole genome duplication (WGD) and segmental  
64 duplications that were recurrently observed in plant evolution. These duplications  
65 often result in the merging of repetitive sequences into a single collapsed region  
66 during assembly, which can lead to erroneous linkages with multiple genomic regions.  
67 The first draft genome assembly of *M. acuminata* spp. *Malaccensis* (DH-Pahang) was

68 published in 2012 (D'Hont et al., 2012), which was subsequently refined in 2016  
69 (Martin et al., 2016), and ultimately culminated in a telomere-to-telomere assembly  
70 (Belser et al., 2021). The *M. balbisiana* (DH-PKW) genome was assembled in 2019  
71 (Wang et al., 2019). However, no cultivated banana genome has been sequenced for  
72 allotriploid up to now.

73 The complex and elusive nature of allotriploid genome sequences proves to be a  
74 challenge in investigating underlying molecular mechanisms for special traits, as  
75 allelic sequence variations are difficult to exclude. In this analysis, we presented our  
76 study of the haplotype-resolved genomes of two allotriploid cultivated bananas,  
77 Plantain and Silk. Our findings reveal the highly complex origin of the A subgenome  
78 in cultivated bananas, and a comparison of subgenomes A1, A2, and B helps us  
79 investigate genome evolution, genetic diversity, and functional divergence of  
80 subgenomes. In our transcriptome and functional analyses, we demonstrated that  
81 Plantain possesses a much faster defense response than Silk after Foc Tropical Race 4  
82 (Foc-TR4) infection. We also examined the molecular difference underlying  
83 carotenoid production and starch metabolism in the two genomes by analyzing  
84 genomic and transcriptomic data from different developmental and postharvest stages.  
85 We discovered that the insertion mutation of a *CRTISO* gene in Plantain and the  
86 variation of gene number in Silk may be closely related to banana quality. Our  
87 findings overcome the limitations of allotriploid genome assembly, and provide a  
88 solid basis for understanding the origin, domestication, and genetic features of  
89 cultivated bananas.

90

91 **RESULTS**

92 **Haplotype assembly and annotation of two AAB bananas genomes Plantain and**  
93 **Silk**

94 Karyotype analysis confirmed that Plantain and Silk banana are highly complex  
95 allotriploid ( $2n = 3x = 33$ ) genomes (Fig. 1a, Supplementary Fig. 1 and  
96 Supplementary Table 1) (Simmonds and Shepherd 1955). The genome size of  
97 Plantain and Silk was estimated to be  $\sim 1.69$  Gb and  $\sim 1.52$  Gb with a heterozygosity of  
98 2.58% and 2.90%, respectively (Extended Data Fig. 1a). Plantain and Silk were  
99 sequenced separately using 59 Gb (35 $\times$ ) and 38 Gb (25 $\times$ ) PacBio HiFi reads, 272 Gb  
100 (161 $\times$ ) and 189 Gb (124 $\times$ ) PacBio CLR long reads, 167 Gb (98 $\times$ ) and 233 Gb (153 $\times$ )  
101 Illumina reads and 205 Gb (121 $\times$ ) and 230 Gb (151 $\times$ ) Hi-C reads (Supplementary  
102 Table 2). Using the haplotype phasing and genome assembly pipeline presented in  
103 Figure 1b, we generated three haplotypes with contig N50 of 2.01~2.92 Mb for  
104 Plantain and Silk, respectively (Cheng et al., 2022) (Table 1, Extended Data Fig. 1b  
105 and Supplementary Table 2). Moreover, over 90% of the Plantain reads and 93% of  
106 the Silk reads were anchored to final chromosomes (Supplementary Fig. 2 and  
107 Supplementary Table 3). The centromeric regions were 0.3~3.7 Mb for Plantain and  
108 0.3 ~6.5 Mb for Silk, both of them contained 424 protein-coding genes  
109 (Supplementary Fig. 3 and 4, and Supplementary Table 4). Furthermore, more than  
110 half of the telomeres were identified in Plantain and Silk banana genomes (Table 1  
111 and Supplementary Table 5).

112 The Long terminal repeat Assembly Index (LAI) (Ou et al., 2018) for Plantain  
113 and Silk were 14.69 and 19.69 respectively, with an average of  $\sim 92\%$  BUSCOs  
114 (Simão et al., 2015) Plantae reference genes in each assembly (Extended Data Fig. 1c  
115 and Supplementary Table 6). Consensus quality values (QV) were estimated using  
116 Merqury (Rhie et al., 2020), and were found to be 45.75 (96.65%) for Plantain and  
117 42.16 (97.37%) for Silk (Table 1). Furthermore, the accuracy and completeness of the  
118 assemblies were supported by high mapping rates with PacBio HiFi reads, PacBio  
119 long reads, and Illumina reads (Supplementary Table 6). The subgenomes A and B of  
120 Plantain and Silk were highly consistent with the published *M. acuminata* (A genome)  
121 and *M. balbisiana* (B genome) genomes (Belser et al., 2021; Wang et al., 2019), and

122 the collinearity among subgenomes was highly consistent ([Extended Data Fig. 1de](#)  
123 [and Supplementary Fig. 5](#)). The phasing accuracy of haplotype A1 and A2 in Plantain  
124 and Silk was confirmed by PCR results of alleles ([Extended Data Fig. 1f](#) and  
125 [Supplementary Table 7](#)). All of these results suggest that the assemblies for Plantain  
126 and Silk are of high quality.

127 The two assembled genomes of Plantain and Silk contained 56.47% and 54.37%  
128 transposable elements (TEs), respectively, which is consistent with other banana  
129 varieties of the *Musa* genus ([Supplementary Table 8](#)). TEs were predominantly found  
130 in intergenic regions, accounting for 74.90% and 72.35%, respectively, while only  
131 3.69% and 3.57% were found in exonic regions in Plantain and Silk. Compared to  
132 diploid genomes, the insertion time of intact-LTRs in AAB genomes was later and the  
133 number was greater, suggesting that transposons in triploid bananas are more active  
134 ([Supplementary Fig. 6](#)). The Plantain and Silk genomes had 12,885 and 12,069 intact  
135 LTR-RTs, respectively, of which 66.74% and 66.49% had insertion times between 0  
136 and 1 million years. This time frame is later than the divergence of *Musa acuminata*  
137 and *M. balbisiana* genotypes, which may have driven recent gene duplication and  
138 banana domestication ([Supplementary Fig. 6](#) and [Supplementary Table 9](#)).

139 Plantain and Silk contained 88,078 and 94,988 protein-coding genes, respectively,  
140 with an average coding sequence length of approximately 1.2 kb and an average of  
141 five exons per gene ([Supplementary Fig. 7](#) and [8](#) and [Supplementary Table 10](#)).  
142 Functional information was available for 97.84% and 98.28% of the genes in Plantain  
143 and Silk, respectively. In addition, 30,346 and 31,267 non-coding RNAs were  
144 annotated in Plantain and Silk, respectively ([Supplementary Fig. 9](#) and [Supplementary](#)  
145 [Table 11](#)). The identified nucleotide-binging domain-like receptors (NLRs) in each  
146 accession consisted mostly of CNLs, followed by NLs, RNLs, and TNLs, with an  
147 uneven distribution across the chromosomes ([Supplementary Fig. 10abc](#) and  
148 [Supplementary Table 12](#)). Furthermore, a total of 435 and 481 putative WRKY genes  
149 were identified in Plantain and Silk ([Supplementary Table 12](#)), with high expression

150 levels observed in rhizome, root tips, and root, particularly in response to Foc-TR4  
151 infection (Supplementary Fig. 10d).

152 **Phylogenetic relationships of Musaceae and the ancestors of Plantain and Silk**  
153 **bananas**

154 We constructed a phylogenetic tree of the Musaceae to clarify the evolutionary  
155 position of Plantain and Silk in the family (Fig. 2a and Supplementary Table 13). Our  
156 findings indicated that Pa1/Pa2 is more closely related to *M. acuminata* spp. *Banksia*  
157 compared to Sa1/Sa2, possibly due to variety differences. The subgenomes B (Sb and  
158 Pb) and *M. balbisiana* were found to be in the same clade, which supported previous  
159 studies that Plantain and Silk originated from a cross between the AA and BB  
160 genomes (Cenci et al., 2021). Functional enrichment analysis revealed that expanded  
161 gene families in Plantain were enriched in ‘protein kinase activity’, ‘transferase  
162 activity’, and ‘response to stress’, while expanded gene families in Silk were enriched  
163 in ‘organic substance biosynthetic process’, ‘phosphorus metabolic process’ and  
164 ‘protein metabolic process’ (Supplementary Fig. 11a and Supplementary Table 14).  
165 Notably, expanded gene families in Plantain were closely related to stress resistance  
166 compared to Silk.

167 Whole-genome duplications (WGDs) have played a significant role in  
168 angiosperm genome evolution. Previous studies suggest that Musaceae underwent  
169 three species-specific WGD events, namely the  $\alpha/\beta$  and  $\gamma$  events (Lescot et al., 2008).  
170 After analyzing the Ks peak in pairwise genome comparison, we speculated that the  
171  $\alpha/\beta$  event occurred at about 58.67-59.67 Mya (Ks=0.528-0.537), which were different  
172 from the WGDs occurring in *W. villosa* from Zingiberaceae (Yang et al., 2021), and  
173 the  $\gamma$  event occurred at 98.56-100 Mya (Ks=0.887-0.900) shared in both Musaceae  
174 and Zingiberaceae (Fig. 2b, Supplementary Fig. 11b). As the occurrence time of the  
175  $\alpha/\beta$  WGD events was relatively close, the Ks of collinear block could not be entirely  
176 separated. However, we observed a collinear region on chromosomes 3, 6, 10, and 11  
177 in subgenome A1 of Silk when Ks was ~0.5, and most paralogous gene clusters

178 shared relationships with three other clusters in all subgenomes, indicating that more  
179 than two WGDs had occurred (Supplementary Fig. 12).

180 Understanding patterns of interspecific introgression can reveal the origins of  
181 cultivated bananas (Martin et al., 2023). We precisely characterized the ancestral  
182 contributions of Plantain and Silk by examining the ancestry mosaics along the  
183 genome (Extended Data Fig. 2, Extended Data Fig. 3 and Supplementary Fig. 13).  
184 Both Plantain and Silk had at least five possible contributors of subgenomes A. For  
185 Plantain, we observed a dominant contribution (85.54%) from *M. acuminata* ssp.  
186 *banksii*, along with introgressions from *M. acuminata* ssp. *malaccensis* (5.07%), *M.*  
187 *acuminata* ssp. *zebrina* (3.11%), *M. schizocarpa* (4.06%) and *M. balbisiana* (0.36%).  
188 Silk, on the other hand, originated dominantly (59.86%) from *M. acuminata* ssp.  
189 *malaccensis*, with regions of *M. acuminata* ssp. *banksii* (29.22%), *M. acuminata* ssp.  
190 *zebrina* (9.55%), and *M. schizocarpa* (1.06%) (Fig. 2c and Supplementary Table 15).  
191 These results indicate that subgenome A underwent an extremely complex process of  
192 hybridization. Notably, we did not observe any *M. acuminata* ssp. *burmannica*  
193 contributions in Plantain and Silk triploids, and the subgenomes B of them were found  
194 to be homogenous (Fig. 2d and Supplementary Fig. 14). Our findings highlight that  
195 the origin of cultivated bananas is more complex than expected, involving multiple  
196 hybridization steps.

197 We further investigated genomic variations of the two AAB genomes. Overall,  
198 the genome sequence alignment between Plantain and Silk revealed high collinearity  
199 (Supplementary Fig. 15a). We found a total of 12,127,733 SNPs and 1,699,094 indels  
200 between Plantain and Silk, with an average of approximately 8.42 SNPs and 1.18  
201 InDels per kilobase (Supplementary Table 16). The distributions of SNPs and InDels  
202 were positively correlated and both were more abundant in intergenic regions  
203 (Supplementary Fig. 15b). We identified 84.70 Mb as inversions between Plantain and  
204 Silk (Supplementary Table 17), and confirmed the authenticity of three inversions  
205 using PacBio HiFi reads to align to the assemblies (Supplementary Fig. 16). Between

206 the haplotypes of Plantain and Silk, we found 105-255 and 142-240 inversions, and  
207 55.81 Mb translocations were identified, with 7,435 inter-chromosomal translocations  
208 and 4,148 intra-chromosomal translocations (Supplementary Fig. 17 and  
209 Supplementary Table 17). We further characterized 3,886~17,234 regions with  
210 cumulative lengths of 11.04~67.14 Mb identified as PAVs, and these regions were  
211 associated with 743~4,262 genes (Supplementary Fig. 18 and Supplementary Table  
212 17, 18). KEGG enrichment analysis showed that ‘messenger RNA biogenesis’ and  
213 ‘starch and sucrose metabolism’ were mainly enriched (Supplementary Fig. 19).  
214 These findings may contribute to the quality of bananas.

215 **Asymmetric evolution between subgenomes in the allotriploid genomes**

216 Loss of redundant genes is a common phenomenon that occurs following polyploidy  
217 (Zhao et al., 2017). We observed that gene loss regions overlapped significantly with  
218 homologous exchange (HE) regions, suggesting that loss of chromosomal segments  
219 after HEs is a key factor for gene loss (Fig. 3a, Extended Data Fig. 4 and  
220 Supplementary Fig. 20). Compared to *M. acuminata* ssp. *malaccensis* and *M.*  
221 *balbisiana*, Plantain lost 6,508 genes (3,463 in Pa and 3,045 in Pb), while Silk lost  
222 5,237 genes (2,917 in Sa and 2,320 in Sb), more genes were lost in subgenome A than  
223 subgenome B (Supplementary Fig. 21a, and Supplementary Table 19). Specifically,  
224 the WRKY33 gene family, an important disease resistance gene family (Zhou et al.,  
225 2022), was lost more in subgenome A than B (Fig. 3b). Upon manual inspection of  
226 individual missing genes, we found that only 17.12% to 50.75% of the gene losses  
227 were complete absence, whereas 25.06% to 37.85% of the losses were altered genes  
228 caused by SNPs/InDels/TEs, and the remaining 24.19% to 45.02% gene losses were  
229 simply defined as ‘losses’ as they were not annotated as genes due to lack of  
230 expression (Supplementary Fig. 21b).

231 Based on the phased haplotypes, 58.46% and 59.37% of annotated genes were  
232 present in all three subgenomes, while 28.25% and 25.01% were present in two  
233 subgenomes, and 12.18% and 13.91% were present in one subgenome, with an

234 average of 2.44 and 2.42 copies per gene in Plantain and Silk, respectively (Fig. 3c  
235 and Supplementary Table 20). To assess the rate of evolution on alleles, we calculated  
236 Ka and Ks values between allelic pair, and the vast majority of alleles Ka/Ks were  
237 low (<0.05) (Supplementary Fig. 22). About 3.81% and 4.35% (3,352 and 4,132) of  
238 allelic pairs showed possible positive selection (Ka/Ks>1) (Supplementary Table 21).  
239 Consistent with previous analyses on the effects of copy number variations (CNVs)  
240 on gene expression (Pham et al., 2017), we observed a positive correlation between  
241 allelic copies and gene expression (Supplementary Fig. 23). To investigate the  
242 homologous gene expression patterns and their divergence in the three subgenomes,  
243 we compared the genome-wide transcriptional levels of subgenomes A and B based  
244 on 17,162 and 18,799 homologous gene pairs in different tissues of Plantain and Silk  
245 (Supplementary Fig. 24). A total of 9,014 and 10,015 homoeologous gene pairs  
246 (~62.73% and ~64.04%) had expression difference larger than 2-fold change in at  
247 least one tissue, including 4,669/5,774 and 5,430/5,578 homoeologs having higher  
248 expression in subgenomes A and B, respectively. Among these homoeologs,  
249 3,584/4,437 and 4,345/4,241 had higher expression values exclusively in all tissues of  
250 subgenomes A and B, respectively, while 1,085 and 1,337 homologs had swinging  
251 expression bias (Supplementary Table 22). The homologous expression bias showed  
252 asymmetric expression patterns between subgenomes A and B in Plantain and Silk.

253 After investigating allelic imbalance, which refers to the differential expression of  
254 alleles (DEAs), we observed a log-linear increase in DEAs with the number of RNA-  
255 seq samples, leveling off at over 35 and 23 samples of Plantain and Silk, respectively  
256 (Supplementary Fig. 25ab and Supplementary Table 23). A total of 52,338 and 49,388  
257 DEAs were identified in Plantain and Silk, respectively (Fig. 3d, Supplementary Fig.  
258 25c and Supplementary Table 24), with 25.76% and 23.97% showing significant  
259 expression differences among three alleles (Supplementary Fig. 26). Notably, DEAs  
260 exhibited significantly higher Ka (t-test, P value=2.2×10<sup>-16</sup>) and Ka/Ks (t-test, P  
261 value=2.0×10<sup>-7</sup>) than equivalently expressed alleles (EEAs), indicating a potentially

262 faster evolutionary rate of DEAs (Fig. 3d). Additionally, the promoter, exon, intron, 5'  
263 UTR, and 3' UTR regions of DEAs had higher SNP densities than EEAs, which may  
264 lead to the difference of their expression (Fig. 3e and Supplementary Fig. 25d).

265 We also investigated the expression of nucleotide-bounding leucine-rich repeat  
266 proteins (NLRs), WRKY22 and leucine-rich repeat receptor-like kinase (LRR-RLK)  
267 resistance gene families, and genes involved in carotenoid synthesis and the ethylene  
268 pathway in different subgenomes. Notably, the expression of NLRs, WRKY22, and  
269 LRR-RLK resistance genes was higher in subgenome B than in subgenome A, which  
270 may be attributed to variations between alleles (Extended Data Fig. 5a-f and  
271 Supplementary Fig. 27). Furthermore, the expression of carotenoid pathway genes  
272 was higher in subgenome A, particularly in Silk's subgenome A, where it was three  
273 times higher than in B during the decomposition period, potentially leading to the  
274 rapid reduction of Silk's carotenoid accumulation. In contrast, during the ripening  
275 period, the expression of ethylene pathway genes was higher in subgenome A than in  
276 B, and higher in Plantain than in Silk (Extended Data Fig. 5g-n). These findings  
277 suggest that asymmetric evolution has significantly impacted the genetic basis of  
278 banana resistance, with subgenome B contributing more and subgenome A being more  
279 involved in carotenoid degradation and ethylene ripening. This distinction is also  
280 reflected in the phenotypes of ancestral species (Wang et al., 2019), providing  
281 valuable resources and guidance for genome-based molecular marker-assisted  
282 breeding of bananas.

283 **Plantain has a faster response to Foc-TR4 than Silk by comparing transcriptome**

284 We conducted field and pot experiments to assess the difference in resistance to  
285 Foc-TR4 infection between Plantain and Silk. Our observations indicated that Silk  
286 exhibited typical infection symptoms, such as leaf yellowing and pseudostem splitting,  
287 while Plantain showed no discernible signs of infection (Fig. 4a and Supplementary  
288 Fig. 1). The average Rhizome Discoloration Index (RDI) for Plantain was 1, whereas  
289 Silk had an RDI of 3.7 (Fig. 4b, Supplementary Fig. 28 and Supplementary Table 25).

290 These findings confirm that Plantain displays high resistance to Banana *Fusarium* wilt,  
291 while Silk is highly susceptible to it.

292 To gain a better understanding of the mechanism behind the resistance difference  
293 between Plantain and Silk, we identified differentially expressed genes (DEGs) at 0, 1,  
294 2, 3, 4 and 5 weeks post-inoculation (wpi) following Foc-TR4 infection  
295 ([Supplementary Table 26](#)). At 1 wpi of Foc-TR4, the number of up-regulated genes  
296 identified in Plantain (1,663) was significantly higher than that in Silk (901). However,  
297 from 3 wpi onwards, the number of DEGs identified in Silk increased rapidly, and  
298 there were few shared DEGs between Plantain and Silk at 4 and 5 wpi ([Fig. 4d](#) and  
299 [Supplementary Fig. 29](#)). KEGG enrichment analysis showed that at 1 wpi, the DEGs  
300 of Plantain were highly enriched in well-known resistance pathways, such as "plant-  
301 pathogen interaction", "plant hormone signal transduction", and "phenylpropanoid  
302 biosynthesis" ([Supplementary Fig. 30](#)). In contrast, Silk's DEGs were enriched in  
303 some metabolic pathways unrelated to disease resistance at 1 wpi, but this trend was  
304 reversed by 3 wpi ([Supplementary Table 27](#)). Overall, Plantain exhibited a  
305 significantly faster response to Foc-TR4 infection than Silk.

306 To investigate the genes involved in plant-pathogen interactions, including  
307 pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and  
308 effector-triggered immunity (ETI), which constitute the first layer of plant defense  
309 response that restricts pathogen proliferation, we identified candidate DEGs in  
310 Plantain and Silk ([Supplementary Fig. 31](#)). These DEGs included peroxidase, RPS2,  
311 CDPK, CEBiP, PTI6, PR1, and CML, of which seven were verified by RT-qPCR,  
312 showing consistent trends with the RNA-seq analysis ([Supplementary Table 28](#)). We  
313 also examined genes involved in phytohormone signaling and response, identifying  
314 199 DEGs across six time points, representing various plant hormone signaling and  
315 response pathways, such as auxin, abscisic acid (ABA), ethylene, jasmonic acid (JA),  
316 and salicylic acid (SA) ([Supplementary Table 29](#)). Among them, 130 genes (65.33%)  
317 were expressed higher in Plantain than Silk ([Fig. 4e](#)). These findings suggest that

318 banana response to Foc-TR4 infection involves multiple phytohormone signaling  
319 pathways and responses (Fig. 4f).

320 Phenylpropionic acid biosynthesis and flavonoid biosynthesis are part of the  
321 secondary metabolism and play an important role in plant defense by strengthening  
322 cell walls and producing phytoalexins. We identified the expression of lignin pathway  
323 genes in Plantain and Silk, and found that the responses of PAL, 4CL, HCT,  
324 CCoAOMT, CCR, CAD, and POD/LAC genes in Plantain to Foc-TR4 infection were  
325 much faster than those in Silk (Supplementary Table 30). Furthermore, we observed  
326 that Plantain had a higher number of F5H and COMT genes compared to Silk  
327 (Extended Data Fig. 6). The chalcone synthase (CHS) gene (Ferrer et al., 1999),  
328 which is crucial for the biosynthesis of flavonoid antibacterial phytocyanins and  
329 anthocyanin pigments in plants, was expressed earlier in Plantain and had more copies  
330 than in Silk (Extended Data Fig. 6). These findings suggest that the expression of  
331 genes involved in the phenylpropane biosynthesis pathway was activated earlier in  
332 Plantain than in Silk in response to Foc-TR4 infection. Additionally, we found that the  
333 DEGs of several common resistance gene families in Plantain were mostly identified  
334 at 1 wpi after Foc-TR4, while in Silk, they did not appear until 3 wpi (Supplementary  
335 Fig. 32 and Supplementary Table 31).

336 MYB genes encodes a large family of transcription factors (TFs) that play an  
337 important role in the regulation of lignin synthesis (Dubos et al., 2010). Phylogenetic  
338 analysis revealed that MpMYB36 (Mp\_B\_07G08030) belonged to the same  
339 subfamily as AtMYB46, a second-layer master switch of secondary cell wall  
340 biosynthesis (Zhong et al., 2007). Most of the MYBs in this cluster (Fig. 4g) have  
341 been shown to be involved in lignin biosynthesis (Zhong et al., 2007; Chen et al.,  
342 2019; McCarthy et al., 2009; Yang et al., 2007). Co-expression network analysis  
343 indicated that 34 differentially expressed MYBs in Plantain were grouped with lignin  
344 biosynthesis genes into distinct co-expression clusters after Foc-TR4 infection  
345 (Supplementary Fig. 33a and Supplementary Table 32). Among these MYBs,

346 MpMYB36 was positively correlated with 33 lignin biosynthesis genes  
347 ([Supplementary Fig. 33b](#)). To clarify the role of MpMYB36 in promoting deposition  
348 of lignin in the secondary cell walls, we analyzed promoter regions of 11 lignin  
349 biosynthesis-related genes. At least one AC/secondary wall MYB-responsive element  
350 was identified in the promoter region of each gene ([Supplementary Fig. 34](#)). Next, we  
351 performed a transient expression assay using a dual-luciferase reporter system, which  
352 showed that the co-expression of MpMYB36 (non-empty vector control) with LUC  
353 driven by the Mp\_A2\_01G04240 (PAL) and Mp\_A2\_10G20840 (HCT) promoter  
354 significantly increased the LUC/REN ratio ([Fig. 4h](#)), demonstrating that MpMYB36  
355 directly up-regulated the expression of Mp\_A2\_01G04240 and Mp\_A2\_10G20840.  
356 Based on these results, we created a simple schematic illustration of the plant defense  
357 against Foc-TR4 infection in banana ([Fig. 4c](#)).

358 **Genomic insights into carotenoid synthesis and starch metabolic in cultivated**  
359 **banana**

360 Carotenoids are abundant in bananas, some of which can be converted into vitamin A  
361 in human body. To study the difference of carotenoids content between Plantain and  
362 Silk, we collected RNA samples from five fruit developmental stages ([Fig. 5a](#) and  
363 [Supplementary Fig. 35](#)), and found that the carotenoid content of Plantain was higher  
364 than that of Silk during the same growth period ([Extended Data Fig. 7a](#)). A total of 44  
365 and 48 key genes involved in the metabolic synthesis pathway of carotenoids were  
366 identified in Plantain and Silk, respectively ([Supplementary Table 33](#)). The expression  
367 of 'early' biosynthesis genes was greater than that of 'late' biosynthesis genes in the  
368 carotenoid synthesis pathway, and the synthesis genes of Plantain had higher  
369 expression levels than those of Silk in the 'early' biosynthesis stage ([Fig. 5a, Extended](#)  
370 [Data Fig. 7b and Supplementary Table 34](#)), suggesting that the early synthetic  
371 pathway had a greater impact on carotenoid synthesis. We also found that *CRTISO*  
372 genes were predominantly expressed in Plantain, and carotenoids were more  
373 accumulated in Plantain than Silk ([Fig. 5b, Supplementary Fig. 36 and 37](#)). For

374 *CRTISO*s of Plantain, the coding regions of two genes in subgenome A (*CRTISO1* and  
375 *CRTISO2*) were identical compared with *CRTISO3* in subgenome B, there was an 87  
376 bp insertion (between the 5th and 6th exon) in these two *CRTISO* genes of subgenome  
377 A, and this insertion was absent in *CRTISO* genes of Silk, *Musa acuminata* (Belser et  
378 al., 2021), and *Musa balbisiana* genomes (Fig. 5c, Extended Data Fig. 7c and  
379 Supplementary Fig. 38) (Wang et al., 2019). In addition, we found that the binding  
380 amino acids of lycopene of *CRTISO1* gene in Plantain and Silk have changed. At the  
381 same time, during the kinetic simulation of the binding of *CRTISO1* and lycopene, the  
382 stability of the binding system is also quite different (Supplementary Fig. 39).  
383 *CRTISO1* and *CRTISO2* with this insertion were also expressed at higher levels than  
384 the homologous genes in Silk, suggesting that this insertion may make the *CRTISO*  
385 gene in Plantain more active, thereby affecting the carotenoid synthesis pathway.

386 Bananas are a high-starch fruit with a high ratio of amylose to amylopectin, and  
387 they can synthesize resistant starch after heat moisture treatment, thereby improving  
388 the structure of the gut microbiota in the human body (Villa, 2020). To study the  
389 difference in starch content between Plantain and Silk, we collected bananas at five  
390 developmental stages (S1-S5) and eight postharvest stages for comparative analysis.  
391 We identified 90 starch metabolism-related genes in the Plantain genome, including  
392 28 in the starch synthesis pathway and 62 in the starch degradation pathway (Fig. 5d).  
393 Similarly, 98 such genes were identified in the Silk genome, including 30 in the starch  
394 synthesis pathway and 68 in the starch degradation pathway (Supplementary Table  
395 35). During the early stage of starch synthesis, the average expression levels of genes  
396 related to starch synthesis in Plantain were higher than those in Silk. We found that  
397 starch accumulation mainly occurred in the early stage (S1-S3), with the peak in S4-  
398 S5 stage (Supplementary Figure 40). Regarding the starch degradation pathway, the  
399 number of  $\beta$ -amylase genes in Plantain and Silk was significantly higher than that in  
400 *M. acuminata* and *M. balbisiana* (Fig. 5f; Supplementary Table 36). Furthermore, the  
401 mean expression levels and gene number of BMY in Silk were higher than in Plantain

402 (Fig. 5e). Notably, the degradation rate of both amylopectin and amylose was faster in  
403 Silk than in Plantain (Fig. 5e, Supplementary Table 37 and 38). Therefore, genomic  
404 and transcriptome analysis revealed that the number of genes related to starch  
405 degradation in Silk and their gene expression levels were higher than those in  
406 Plantain.

407 **DISCUSSION**

408 Previously, most genomes were mosaic assemblies, however, this approach results in  
409 significant loss of information for highly heterozygous polyploid species. Developing  
410 a haplotype-resolved genome for such species remains a challenge. Currently, there  
411 are four strategies for phasing: 1) The initial contig assembly followed by  
412 identification and duplication of collapsed contigs based on read depth, the augmented  
413 set of sequences was subjected to haplotype phasing along with initial phased contigs,  
414 resulting in a fully haplotype-solved assembly (Zhang et al., 2021); 2) Trio binning  
415 (Koren et al., 2018), that can recover both parental haplotypes from F1 individuals by  
416 partitioning parental unique reads before assembly, but this method is time-consuming  
417 and laborious, which is not conducive to popularization; 3) Inferring regional  
418 haplotypes by aligning sequenced reads to a reference genomes (Chin et al., 2016),  
419 however, these efforts are limited by the continuity of an available reference  
420 assembly; 4) High-throughput/resolution chromosome conformation capture (Hi-C)  
421 technology has helped to provide allele-resolved assemblies (Zhang et al., 2019). With  
422 the help of ultra-high accuracy PacBio HiFi reads, CLR reads, Hi-C reads, Illumina  
423 short reads, the telomere-to-telomere gapless chromosomes of its ancestral species,  
424 and used a combination of assembly strategies 3 and 4, we firstly reported two  
425 haplotype-resolved assemblies of allotriploid cultivated bananas Plantain and Silk.  
426 The contig N50, GC content, full-length transcripts and other indices showed a high  
427 level of integrity and accuracy of the reference genomes. The first two haplotype-  
428 resolved genomes of AAB allotriploid bananas provided a basis for further genetic  
429 studies of *Musa*.

430 Our genome mosaics results demonstrated complex specific hybridization origins  
431 for Plantain and Silk, involving at least six ancestors. We found that their subgenomes  
432 A were more complex than expected, with Plantain being a Banksii-rich cultivar and  
433 Silk being a DH-Pahang-rich cultivar. The regions with unknown contributions  
434 indicate the existence of other unknown ancestors. Our results obtained by direct  
435 comparison among genomes are more accurate than those obtained by Illumina reads,  
436 the most intuitive show is that each locus is its true chromosomal location of Plantain  
437 and Silk. Recombination between A and B genomes was visible, confirming that  
438 several interspecific hybridization steps occurred at their origin, as previously  
439 suggested (Cenci et al., 2021). We also showed that the contribution of *M.*  
440 *schizocarpa*, previously thought to be restricted to a few *M. schizocarpa* × *M.*  
441 *acuminata* cultivars and suspected to be present in east African highland bananas, was  
442 present in Plantain and Silk. It is worth noting that there is a significant difference  
443 between the Silk reported in (Martin et al., 2023) and ours, so we speculate that they  
444 may not be the same Silk cultivar.

445 Musaceae species shared three WGD events, and the variation and loss of  
446 genome fragments resulting from whole genome duplication led to drastic changes in  
447 gene families across different species. Our results indicated that functional divergence  
448 of subgenomes occurred in polyploidy bananas after WGD. It is worth noting that  
449 homoeologous exchanges may obscure the signal of expression dominance in  
450 subgenomes of allopolyploids, which can result in a series of rapid genetic and  
451 epigenetic modifications for agronomic traits (Bird et al., 2018). Asymmetric  
452 subgenomic fractionation occurred in the allopolyploid, primarily by accumulation of  
453 small deletions in gene clusters through illegitimate recombination. We observed that  
454 gene loss regions highly overlap with HE regions, indicating that loss of chromosomal  
455 segments after HEs is one of the key factors in gene loss (Fig. 3a). Differentially  
456 expressed alleles (DEAs), which have profound effects on growth and evolvability.  
457 This could be due to the different distribution of SNPs at the promoter regions of

458 adjacent genes that is associated with levels of gene expression. Asymmetric  
459 evolution significantly impacted the genetic basis of banana resistance, with  
460 subgenome B providing greater contributions and subgenome A being more involved  
461 in carotenoid degradation and ethylene ripening. These finding provide new resources  
462 and guidance for genome-based molecular marker assistant breeding for bananas.

463 *Fusarium* wilt, caused by Foc, is a destructive soil-borne fungal disease that  
464 severely threatens the sustainable development of global banana industry. While Foc-  
465 TR4 can cause severe yield losses in Silk, cooking bananas such as Plantain, appear to  
466 be resistant (Zuo et al. 2018). Our results confirmed that Plantain has a faster response  
467 than Silk (Fig. 4). KEGG enrichment analysis showed that DEGs in the first week  
468 after Foc-TR4 infection were highly enriched in well-known resistance pathways in  
469 Plantain including "plant-pathogen interaction", "plant hormone signal transduction"  
470 and "phenylpropanoid biosynthesis" (Supplementary Fig 36). After Foc-TR4 infection,  
471 the expression of PTI and ETI genes increased in Plantain (Supplementary Fig 37).  
472 Many plant hormone signaling and response pathways, including auxin, ABA,  
473 ethylene, JA and SA, were higher expressed in Plantain than in Silk (Fig. 4e). These  
474 findings suggest that banana response to Foc-TR4 infection involves multiple  
475 phytohormone signaling pathways and responses (Fig. 4f). MYB transcription factors  
476 play an important role in the regulation of lignin synthesis (Dubos et al., 2010). We  
477 identified a MYB transcription factor located on chr07B of Plantain, which was  
478 highly positively correlated with 33 lignin biosynthesis genes (Supplementary Fig.  
479 40). Double luciferase assay confirmed that the MpMYB36 (Mp\_B\_07G08030)  
480 directly regulated PAL (Mp\_A2\_01G04240) and HCT gene (Mp\_A2\_10G20840),  
481 thereby positively regulating the lignin pathway and participating in the response to  
482 TR4 infection (Fig. 4h).

483 Bananas are abundant in ascorbic acid (vitamins C),  $\beta$ -carotene (provitamin A),  
484 magnesium (Mg), and potassium (K) (Wall and Marisa, 2006). Carotenoids, present in  
485 chromoplasts, can endow flowers and fruits with their distinct coloration (Hirschberg,

486 2001). There are different greatly in carotenoid content of Plantain and Silk. The  
487 expression of carotenoid synthesis genes was much higher than decomposition genes  
488 in the developmental stage, indicating that carotenoid accumulation was crucial for  
489 fruit development. *CRTISO* is an important upstream synthetic gene in the carotenoid  
490 metabolic pathway, and there is large difference in gene structure between the two  
491 varieties, which may be related to the significantly higher expression level in Plantain  
492 than in Silk, thus affecting carotenoids of anabolic. Starch content varied in the range  
493 of 61.30–86.76% among different banana cultivars (Ravi and Mustaffa, 2013).  
494 Compared to Silk, Plantain contained more starch synthesis genes during the  
495 developmental period. After the fruit was picked and ripened, there were more  
496 amylolytic genes expressed in Silk than in Plantain, and the expression level was also  
497 higher than that in Plantain, which made the accumulation of starch in Silk  
498 significantly reduced, and greatly damaged its economic value. The content of  
499 carotenoids and starch in the fruits of Silk (Dessert) and Plantain (Cooking) varies  
500 widely, but the molecular regulation of the difference is unclear. So more detailed and  
501 in-depth research is needed to resolve this issue.

502 **METHODS**

503 **Plant materials**

504 Plantain and Silk were introduced from Centre Africain de Recherche sur Bananiers et  
505 Plantains (CARBAP) and International *Musa* germplasm Transit Center (ITC),  
506 respectively. Plantain is a French Horn type from the starchy plantain subgroup,  
507 which is one of the most popular cultivars in West Africa (De Langhe et al., 2005;  
508 Ibobondji et al., 2018). Silk (ITC0769, DOI: 10.18730/9KGW1), is a dessert cultivar  
509 bearing sweet acidic fruits with an apple-like flavor (Robinson and Sauco, 2010).  
510 Samples of the two cultivars were collected from National Center for Banana Genetic  
511 Improvement in Guangzhou, China.

512 **PacBio library construction and sequencing**

513 The SMRT bell library target size to construct depends on the goals of the project and  
514 the quality and quantity of the starting gDNA. The g-TUBE can be used to shear  
515 gDNA fragments for constructing 10 - 20 kb SMRT bell libraries. After shearing,  
516 AMPure PB Beads were used to concentrate sheared gDNA. ExoVII was used to treat  
517 DNA for shearing long overhangs before DNA damage repair. T4 DNA Polymerase  
518 was used to fill in 5' overhangs and remove 3' overhangs. And T4 PNK was used to  
519 phosphorylates 5' hydroxyl group. Then, SMRT bell hairpin adapters included in  
520 Template Prep Kit are ligated to repaired ends. Next, we do size selection using Blue  
521 Pippin System and set size cut-off threshold depending on the goals of the project.  
522 Then, AMPure PB Beads were used to concentrate and purify SMRT bell templates  
523 after size selection. Sequencing primer annealed to both ends of the SMRT bell  
524 templates and polymerase is bound to both ends of SMRT bell templates using  
525 Binding Kit. Finally, use DNA Sequencing Reagent Kit and follow the manual to load  
526 libraries in SMRT Cells.

527 **Illumina short-reads sequencing**

528 DNA degradation and contamination was monitored on 1% agarose gels. DNA purity  
529 was checked using the NanoPhotometer® spectrophotometer (IMPLEN, CA, USA).  
530 DNA concentration was measured using Qubit® DNA Assay Kit in Qubit® 2.0  
531 Flurometer (Life Technologies, CA, USA). A total amount of 1.5 $\mu$ g DNA per sample  
532 was used as input material for the DNA sample preparations. Sequencing libraries  
533 were generated using Truseq Nano DNA HT Sample preparation Kit (Illumina USA)  
534 following manufacturer's recommendations and index codes were added to attribute  
535 sequences to each sample. These libraries constructed above were sequenced by  
536 Illumina NovaSeq 6000 platform and 150 bp paired-end reads were generated with  
537 insert size around 350 bp.

538 **Hi-C library preparation and sequencing**

539 Hi-C library construction following the standard protocol with certain modifications  
540 (Belton et al., 2012). After ground with liquid nitrogen and cross-linked by 4%  
541 formaldehyde solution at room temperature in a vacuum for 30 mins. 2.5 M glycine  
542 was added to quench the crosslinking reaction for 5 min and then put it on ice for 15  
543 min. The sample was centrifuged at 2500 rpm at 4°C for 10 mins, and the pellet was  
544 washed with 500µl PBS and then centrifuged for 5 min at 2500 rpm. The pellet was  
545 re-suspended with 20µl of lysis buffer (1 M Tris-HCl, pH 8, 1 M NaCl, 10% CA-630,  
546 and 13 units protease inhibitor), the supernatant was then centrifuged at 5000 rpm at  
547 room temperature for 10 min. The pellet was washed twice in 100µl ice cold 1x NEB  
548 buffer and then centrifuged for 5 min at 5000 rpm. The nuclei were re-suspended by  
549 100µl NEB buffer and solubilized with dilute SDS followed by incubation at 65°C for  
550 10 min. After quenching the SDS by Triton X-100, an overnight digestion was applied  
551 to the samples with a 4-cutter restriction enzyme DPNII (GATC) (400 units) at 37°C  
552 on a rocking platform. The following steps involved marking the DNA ends with  
553 biotin-14-dCTP and blunt-end ligation of the cross-linked fragments. The proximal  
554 chromatin DNA was re-ligated by ligation enzyme. The nuclear complexes were  
555 revers cross-linked by incubation with proteinase K at 65°C. DNA was purified by the  
556 phenol-chloroform extraction. Biotin was removed from non-ligated fragment ends  
557 using T4 DNA polymerase. Ends of sheared fragments by sonication (200-600 bp)  
558 were repaired by the mixture of T4 DNA polymerase, T4 polynucleotide kinase and  
559 Klenow DNA polymerase. Biotin-labeled Hi-C samples were specifically enriched  
560 using streptavidin C1 magnetic beads. After adding A-tails to the fragment ends and  
561 following ligation by the Illumina paired-end (PE) sequencing adapters, Hi-C  
562 sequencing libraries were amplified by PCR (12-14 cycles) and sequenced on  
563 Illumina NovaSeq-6000 platform (PE 150 bp).

564 **RNA quantification and transcriptome sequencing**

565 RNA degradation and contamination were monitored on 1% agarose gels. RNA purity  
566 was checked using the NanoPhotometer® spectrophotometer (IMPLEN, CA, USA).

567 RNA integrity was assessed using the RNA Nano 6000 Assay Kit of the Bioanalyzer  
568 2100 system (Agilent Technologies, CA, USA). A total amount of 1 µg RNA per  
569 sample was used as input material for the RNA sample preparations. Sequencing  
570 libraries were generated using NEBNext® UltraTM RNA Library Prep Kit for  
571 Illumina® (NEB, USA) following manufacturer's recommendations and index codes  
572 were added to attribute sequences to each sample. The clustering of the index-coded  
573 samples was performed on a cBot Cluster Generation System using TruSeq PE  
574 Cluster Kit v3-cBot-HS (Illumina) according to the manufacturer's instructions. After  
575 cluster generation, the library preparations were sequenced on an Illumina Novaseq  
576 platform and 150 bp paired-end reads were generated.

577 **Estimation of the genome size and heterozygosity**

578 The genome size was estimated through k-mer frequency analysis, which involves  
579 analyzing the distribution of k-mers in the genome using Poisson's distribution. Prior  
580 to assembly, we used Jellyfish (v2.2.7) ([Marçais et al., 2011](#)) to generate the 17-mer  
581 distribution of 167 Gb (Plantain) and 233 Gb (Silk) Illumina short reads, which we  
582 then uploaded to the GenomeScope website (<http://qb.cshl.edu/genomescope/>). This  
583 analysis revealed an estimated genome size of 1694.56 Mb with a 2.58%  
584 heterozygous rate for Plantain and 1520.59 Mb with a 2.90% heterozygous rate for  
585 Silk genome.

586 **Genome assembly**

587 ***PacBio HiFi reads and Hi-C reads phasing***

588 Based on published telomere-to-telomere AA and BB reference genomes, we phased  
589 PacBio HiFi reads and Hi-C reads of Plantain and Silk by aligning them to AA and  
590 BB reference genomes, which can be briefly summarized as follows: First, PacBio  
591 HiFi reads and Hi-C reads were mapped to the published AA and BB reference  
592 genomes through Minimap2 (2.18-r1015) ([Li, 2018](#)) with -cx asm20 --secondary=no.  
593 Secondly, preliminary phasing was used handcrafted python scripts. For each read,

594 when all the alignment positions were on the AA genome, the read was derived from  
595 the AA genome (AA group), on the contrary, it was classified as from the BB genome  
596 (BB group). When the alignment position exists in both AA and BB genome, it would  
597 be judged as Unknown reads (Unknown group); this type of reads would be phased in  
598 the next step. Finally, for Unknown reads, we used PP2PG ([Feng et al., 2021](#)) with -ax  
599 splice-uf --secondary=no -C5 -O6,24 -B4 -MD of Minimap2 and --maxgap=500 --  
600 mincluster=100 of MUMmer (4.0.0beta2) ([Marçais et al., 2018](#)) to evaluate the SNPs  
601 site. Finally, reads with SNPs variation sites consistent with the AA genome were  
602 classified as AA group, while those with sites consistent with the BB genome were  
603 classified as BB group.

604 ***Genome assembly and phasing***

605 A flow chart of genome assembly approach is shown in [Fig. 1b](#). Briefly, combined the  
606 PacBio HiFi reads belonging to AA group and the PacBio HiFi reads that were still  
607 defined as unknown after two rounds of phasing, and combined with the Hi-C reads  
608 phased to the AA group. Then, using hifiasm (0.15.5-r352) with default settings  
609 ([Cheng et al., 2022](#)) assemble the AA haplotype genome. Combined the PacBio HiFi  
610 reads belonging to BB group and the unknown HiFi reads after two rounds of phasing,  
611 B subgenome was assembled with the same process. Finally, three haplotypes (A1, A2  
612 and B) of Plantain and Silk were fully resolved at the chromosomal level. For the  
613 initial assemblies, we used Khaper ([Zhang et al., 2021](#)) to select primary contigs and  
614 filter redundant sequences.

615 ***Construction of pseudochromosomes***

616 The Hi-C reads were aligned to the contigs using Juicer pipeline. Pseudo-chromosome  
617 was constructed with Hi-C data using 3D-DNA pipeline ([Dudchenko et al., 2017](#))  
618 with default parameters. The results were polished using the Juicebox Assembly Tools  
619 ([Durand et al., 2016](#)).

620 ***Genome annotation***

621 ***Repeat annotation***

622 A combined strategy based on homology alignment and *de novo* search was used to  
623 identify repeat sequences. Tandem Repeat was extracted using TRF (Benson et al.,  
624 1999) by *ab initio* prediction. The homolog prediction commonly used Repbase (Bao  
625 et al., 2015) database employing RepeatMasker (Zhi et al., 2006) software and its in-  
626 house scripts (RepeatProteinMask) with default parameters to extracted repeat  
627 regions. And *ab initio* prediction built *de novo* repetitive elements database by  
628 LTR\_FINDER (Xu et al., 2007), RepeatScout, RepeatModeler (Flynn et al., 2020)  
629 with default parameters, then all repeat sequences with lengths >100 bp and gap 'N'  
630 less than 5% constituted the raw transposable element (TE) library. A custom library  
631 (a combination of Repbase and our *de novo* TE library which was processed by uclust  
632 to yield a non-redundant library) was supplied to RepeatMasker for DNA-level repeat  
633 identification. On the other hand, EDTA (Ou et al., 2019) was used for prediction, and  
634 the results of RepeatMasker and EDTA were merged as the final set of TEs.

635 ***Protein-coding gene prediction and functional annotation***

636 (1) Homolog prediction. Sequences of homologous proteins were downloaded from  
637 Ensembl/NCBI/others. Protein sequences were aligned to the genome using TblastN  
638 (v2.2.26; E-value  $\leq 1e-5$ ) (Altschul et al., 1990), and then the matching proteins were  
639 aligned to the homologous genome sequences for accurate spliced alignments with  
640 GeneWise (v2.4.1) software (Madeira et al., 2019) which was used to predict gene  
641 structure contained in each protein region.

642 (2) *Ab initio* prediction. For gene predication based on *ab initio*, Augustus (v3.2.3),  
643 Geneid (v1.4), Genescan (v1.0), GlimmerHMM (v3.04) and SNAP were used in our  
644 automated gene prediction pipeline.

645 (3) RNA-seq data. Transcriptome reads assemblies were generated with Trinity  
646 (v2.1.1) (Grabherr et al., 2011) for the genome annotation. To optimize the genome  
647 annotation, the RNA-Seq reads from different tissues which were aligned to genome

648 fasta using Hisat (v2.0.4) (Kim et al., 2019) / TopHat (v2.0.11) (Trapnell et al., 2009)  
649 with default parameters to identify exons region and splice positions. The alignment  
650 results were then used as input for Stringtie (v1.3.3) (Pertea et al., 2015) with default  
651 parameters for genome-based transcript assembly. The non-redundant reference gene  
652 set was generated by merging genes predicted by three methods with  
653 EvidenceModeler (EVM, v1.1.1) using PASA (Program to Assemble Spliced  
654 Alignment) terminal exon support and including masked transposable elements as  
655 input into gene prediction. Finally, Individual families of interest were selected for  
656 further manual curation by relevant experts.

657 (4) Functional annotation. Gene functions were assigned according to the best match  
658 by aligning the protein sequences to the SwissProt (Bairoch et al., 2000) using Blastp  
659 (with a threshold of E-value  $\leq 1e-5$ ) (Altschul et al., 1990). The motifs and domains  
660 were annotated using InterProScan (v5.31) (Zdobnov et al., 2001) by searching  
661 against publicly available databases, including ProDom, PRINTS, Pfam, SMRT,  
662 PANTHER and PROSITE. The Gene Ontology (GO) IDs for each gene were assigned  
663 according to the corresponding InterPro entry. We predicted proteins function by  
664 transferring annotation from the closest BLAST hit (E-value  $<10^{-5}$ ) in the SwissProt  
665 database and DIAMOND (v0.8.22) / BLAST hit (E-value  $<10^{-5}$ ) hit (E-value  $<10^{-5}$ ) in  
666 the NR database. We also mapped gene set to a KEGG pathway and identified the best  
667 match for each gene.

668 ***Non-coding RNA annotation***

669 The tRNAs were predicted using the program tRNAscan-SE (Chan et al., 2009)  
670 (<http://lowelab.ucsc.edu/tRNAscan-SE/>). For rRNAs are highly conserved, we choose  
671 relative species` rRNA sequence as references, predict rRNA sequences using Blast  
672 (Altschul et al., 1990). Other ncRNAs, including miRNAs, snRNAs were identified  
673 by searching against the Rfam database with default parameters using the infernal  
674 software (Nawrocki et al., 2013).

675 **Identification of centromeres**

676 Tandem repeats or satellite DNA sequences are commonly found around the  
677 centromeres of many plant (and animal) species ([Song et al., 2021](#)) and may be  
678 classified as ‘centromeric’ or ‘pericentromeric’. However, earlier studies have  
679 indicated that *Musa* lacks a typical centromeric satellite and that its centromeres are  
680 instead composed of various types of retrotransposons, especially Ty3/Gypsy-like  
681 elements and a LINE-like element named *Nani'a* ([D'Hont et al., 2012](#); [Belser et al.,](#)  
682 [2021](#); [Hribová et al., 2010](#)). Furthermore, several elements of chromovirus CRM  
683 clade, a lineage of Ty3/Gypsy retrotransposons, were found to be restricted to these  
684 centromeric regions ([D'Hont et al., 2012](#); [Wang et al., 2022](#)). To determine the  
685 distribution position of these transposons, we first integrated the annotation results of  
686 RepeatMasker, RepeatScout, RepeatModeler, and EDTA to obtain the distribution  
687 position of LINE/L1 transposons (RIL code). We then integrated the annotation  
688 results of LTRharvest ([Ellinghaus et al., 2008](#)), LTR\_Finder, and LTR\_retriever ([Ou et](#)  
689 [al., 2018](#)) to obtain the distribution positions of Gypsy-like transposons. Finally, we  
690 used TEsorter ([Zhang et al., 2022](#)) to further classify the LTR transposons obtained  
691 above and obtain the distribution location of CRM. The final pericentromeric position  
692 was obtained by combining the regions of LINE/L1, CRM, and Gypsy and manually  
693 adjusting them. The transposable elements (TEs) were classified following the Wicker  
694 et al. classification ([Wicker et al., 2007](#)).

695 **Identification of NLR Genes**

696 To identify NLR genes, we considered those containing at least one NB, a TIR, or a  
697 CCR (RPW8) domain. I.e., LRR or CC motifs alone were not sufficiently considered  
698 for NLR identification. As a subdivision, we defined TNLs (at least a TIR domain),  
699 CNLs (CC+NB domain), RNLs (at least an RPW8 domain), and NLs (at least an NB  
700 domain). Canonical architectures contain only NB (Pfam accession PF00931), TIR  
701 (PF01582), RPW8 (PF05659), LRR (PF00560, PF07725, PF13306, PF13855)  
702 domains, or CC motifs ([Van et al., 2019](#)).

703 **Identification of WRKY Genes**

704 To comprehensively identify WRKY genes, Hidden Markov Model (HMM) seed file  
705 of the WRKY domain (PF03106) was obtained from Pfam database  
706 (<http://pfam.sanger.ac.uk/>). HMMER 3.3 (Mistry et al., 2013) was used to search  
707 WRKY genes from Plantain and Silk genome database with an E-value threshold of  
708 1e-5. Subsequently, all non-redundant WRKY protein sequences were validated for  
709 the presence of WRKY domain by submitting them as search queries to the Pfam and  
710 SMART (<http://smart.embl.de/>) databases. Each potential gene was then manually  
711 examined to ensure the conserved heptapeptide sequence at the N-terminal region of  
712 the predicted WRKY domain.

713 **Identification of SNPs, InDels and Structural variation**

714 Plantain and Silk genomes and their haplotypes with each other were aligned using  
715 MUMmer with parameters settings ‘-g 1000 -c 90 -l 40’. The alignment block was  
716 then filtered out of the mapping noise and the one-to-one alignment was identified by  
717 delta-filter with parameters settings ‘-r -q’. Show-snps was used to identify SNPs and  
718 InDels (<100 bp) with parameter setting ‘-ClrTH’. The SNPs and InDels were  
719 annotated using SnpEff (Cingolani et al., 2012).

720 To identify inversions and translocations, we aligned the Plantain and Silk genomes  
721 and their haplotypes with each other using MUMmer. For the original alignment  
722 block to be filtered, we picked a unique alignment block that was longer than 1,000  
723 bp. SyRI (Goel et al., 2019) was used to identify inversions and translocations on both  
724 sides. We used the method of (Sun et al., 2018) to identify genes with large structure  
725 variations, which mapped gene sequence (including -2 kb upstream and +2 kb  
726 downstream of each gene) to query genomes using BWA-MEM (Vasimuddin et al.,  
727 2019).

728 **Identification of PAVs**

729 The potential PAVs in Plantain and Silk genomes and their haplotypes were identified  
730 using show-diff in MUMmer (Kurtz et al., 2004). First, sequences that intersected  
731 with gap region in the respective genome were excluded. On the other hand, sequence  
732 with feature type ‘BRK’ was filtered out, which was considered as non-reference  
733 sequence which aligned to the gap-start or gap-end bounder. The gene having >80%  
734 overlap with PAV region was considered as a PAV-related gene.

### 735 **Identification of HEs**

736 To identify HEs between the haplotypes of Plantain and Silk, we aligned Illumina  
737 reads to the DH-Pahang and DH-PKW reference genomes using BWA-MEM and  
738 preserved unique alignments. The HE loci were identified based on the depth of read  
739 coverage.

### 740 **Gene families of eleven bananas in the Musaceae**

741 As references, protein sequences from nine species (*M. textilis* (Abaca), *M.*  
742 *troglodytarum* (Utafun), *M. schizocarpa* (Schizocarpa), *M. acuminata* ssp.  
743 *malaccensis* (DH-Pahang), *M. acuminata* ssp. *banksii* (Banksii), *M. acuminata* ssp.  
744 *burmannica* (Calcutta 4), *M. acuminata* ssp. *zebrina* (Maia oa), *M. balbisiana* (DH-  
745 PKW) and *Ensete glaucum*) were downloaded from phytozome (Goodstein et al.,  
746 2012) database. In cases where genes had alternative splicing variants, the longest  
747 transcript was selected to represent the gene, and the similarities between sequence  
748 pairs were calculated using BlastP (with an E-value cutoff of 1e-10). Furthermore, to  
749 identify gene family membership based on overall gene similarity, we employed  
750 OrthoMCL (v2.0.9) (Li et al., 2003) with default parameters in conjunction with  
751 Markov Chain Clustering.

### 752 **Phylogenomic analysis**

753 2043 single-copy orthologous genes were extracted from OrthoFinder (Emms et al.,  
754 2019) results and protein sequences were aligned by MAFFT (Katoh et al., 2009).  
755 Conserved sites from multiple sequence alignment results were then extracted by

756 Gblocks ([Castresana, 2000](#)) and a phylogenetic tree was constructed by RAxML  
757 ([Stamatakis, 2015](#)) with the *E. glaucum* datasets as the out-group, and 1,000 bootstrap  
758 analysis were performed to test the robustness of each branch. Divergence time  
759 estimates were calculated by MCMCTree ([Puttick, 2019](#)) with two secondary  
760 calibration points obtained from previous results, ~5.4 and ~9.8 million years ago  
761 (mya) for the split time of *M. balbisiana*, *M. acuminata* and *E. glaucum*, *M.*  
762 *acuminata*, respectively. Last, the iTOL ([Letunic and Bork, 2021](#)) tools were used to  
763 visualize the phylogenetic tree. Gene families undergoing expansion or contraction  
764 were identified in the eleven sequenced species using CAFE (p-value  
765 threshold = 0.05, and automatically searched for the  $\lambda$  value) ([Han et al., 2013](#)).  
766 Genes belonging to significant expanded gene families were subjected to functional  
767 analysis by GO and KEGG enrichment.

768 **Ancestor traceability**

769 While no subspecies has been defined so far in *M. balbisiana*, *M. acuminata* is further  
770 divided into multiple subspecies, among which at least four have been identified as  
771 contributors (*M. acuminata* ssp. *banksii*, *M. acuminata* ssp. *zebrina*, *M. acuminata* ssp.  
772 *burmannica*, and *M. acuminata* ssp. *malaccensis*) to the cultivated banana varieties  
773 ([Perrier et al., 2011](#)). First, MUMmer (4.0.0beta2) ([Kurtz et al., 2004](#)) was used to  
774 mapped Plantain and Silk to *M. acuminata* ssp. *banksii*, *M. acuminata* ssp.  
775 *Malaccensis*, *M. acuminata* ssp. *zebrina*, *M. acuminata* ssp. *burmannica*, *M.*  
776 *schizocarpa* and *M. balbisiana* (DH-PKW+PKW). Mapping results were filtered with  
777 parameters ‘-i 90 -l 1000’ by delta-filter and the program show-snps was used to  
778 identify SNPs between every pair of genomes with parameters ‘-C -T -r -l -x 1’. Set  
779 each window with 100, 200, 500 and 1000 kb to divide the genome, use BEDtools  
780 ([Quinlan, 2014](#)) coverage to count the proportion of SNPs in each window, according  
781 to the number of SNPs (for unmatched windows, the number of SNPs is manually set  
782 to NA). Using the self-written python script, each window was derived from which  
783 ancestors scoring judgment. Secondly, in order to reduce false positives, the SNPs

784 results were adjusted with the collinear block (1 kb, 10 kb and 20 kb) of the genomes.  
785 Thirdly, the results were compared with those of previous studies (accession numbers:  
786 Plantain 148 and 149, Silk 139 and 140) (Martin et al., 2023). Combining the above  
787 steps, the final results were obtained.

788 **Analysis of synteny and whole-genome duplication**

789 Syntenic blocks were identified using jcvi (MCScanX (Wang et al., 2012) Python  
790 version with default parameters. Proteins were used as queries in searching against  
791 genomes of other plant species to find the best matching pairs. Each aligned block  
792 represented an orthologous pair derived from the common ancestor. In general, the  
793 ratio of nonsynonymous substitution rate (Ka) and synonymous substitution rate (Ks)  
794 was used to assess gene selection by PAML. As input files, the sequences of the  
795 homologous genes were imported into WGDI (Sun et al., 2021) to calculate the gene  
796 pair values.

797 **Statistics of lost homologous gene pairs**

798 We aligned DH-Pahang, DH-PKW, and sub-genomes of Plantain and Silk using  
799 GeneTribe (Chen et al., 2020), respectively, and examined the presence/absence of  
800 orthologous pairs in the Pa/Pb and Sa/Sb genomes. We extracted 1:1 ortholog pairs  
801 shared by DH-Pahang and DH-PKW and examined the presence/absence of  
802 orthologous pairs in the Pa/Sa and Pb/Sb genomes. We then selected a subset of genes  
803 that had lost their orthologous pair either in Pa/Pb or Sa/Sb genomes but not in all  
804 genomes to study the mechanism of gene fractionation. A genome-wide Chi-squared  
805 test was performed to determine whether the number of DH-Pahang/Pa lost genes  
806 differed significantly from the number of DH-PKW/Pb lost genes ( $P \leq 0.05$ ). Genes in  
807 each orthologous pair were categorized as singletons or duplicates based on their  
808 duplication status in DH-Pahang and DH-PKW genomes. For orthologous pairs where  
809 one gene was annotated as a singleton and another as a duplicate, we calculated the  
810 percentage of lost genes in each category and tested for deviation from a 1:1 ratio

811 using a Chi-squared test. We measured the Ka/Ks values for lost and conserved  
812 orthologous gene pairs based on their counterparts from DH-Pahang and DH-PKW  
813 genomes. We used the sequences of lost genes from *M. acuminata* or *M. balbisiana*  
814 genomes as queries and mapped them back to the Plantain and Silk genomes using  
815 BLASTN v2.7.1 (evalue 1e-10; word\_size 30; -qcov\_hsp\_perc 0.8) (Altschul et al.,  
816 1990) to study the segmentation/deletion mechanism.

817 **Statistics of expression bias of homologous genes**

818 The triallellic data obtained by MCscan (Tang et al., 2008) and the expression result  
819 file obtained by RSEM (Li et al., 2011) were used to obtain the corresponding  
820 expression levels. The expression level of sub-genome A was calculated as (A1+A2)/2,  
821 and expressed genes with TPM>=1 were selected as candidate genes. A Chi-square  
822 test was then performed to determine whether the expression of sub-genome A  
823 significantly differed from that of sub-genome B ( $P \leq 0.05$ ), thus identifying the sub-  
824 genome with dominant expression. To examine the effect of TE insertion on gene  
825 expression, the distance of the nearest TE inserted into the upstream region of a gene  
826 was identified using BEDtools (Quinlan, 2014) (closest -id -D a), and the correlation  
827 was compared for the orthologous pairs between the A and B genomes.

828 **Identification of alleles**

829 To identify the homologous regions between three haplotypes of Plantain and Silk, we  
830 applied the MCscan with lastal parameters '--cscore=.99' to contain reciprocal best hit  
831 (RBH) for construct the syntenic blocks based on well-aligned genes. Allelic gene  
832 pairs were selected according to the following rules: (1) paired regions must be on  
833 homologous haplotypes; (2) when there is one-to-many paired genes, take the one  
834 with the higher C-score ( $\text{score}(A, B) / \max(\text{score}(A, ), \text{score}(B, ))$ ); (3) the three genes  
835 are paired with each other are identified as 3 alleles, the two genes are paired with  
836 each other are identified as 2 alleles, the others are 1 allele; (4) Syntenic gene pairs  
837 defined above were double-checked manually.

838 **Identification of differential expression allelic genes (DEA)**

839 RNA samples from 35 Plantain and 23 Silk sets were trimmed using the Trimmomatic  
840 program (Bolger et al., 2014) and mapped against annotated gene models using  
841 STAR/2.7.3a (Dobin et al., 2013), with only the best alignment retained for each read  
842 using the parameters --twopassMode Basic --outSAMmultNmax 1. The RSEM  
843 program (Li et al., 2011) was then used to estimate TPM values.

844 1) RNA data without duplicates. First, sort TPM from high to low (I, II, III) of 3  
845 alleles, second, identify DEA adopted five standards:

846 1.  $TPM_{A1} \geq 1$  or  $TPM_{A2} \geq 1$  or  $TPM_B \geq 1$ ;  
847 2.  $Count_{A1} \geq 10$  or  $Count_{A2} \geq 10$  or  $Count_B \geq 10$ ;  
848 3. I/II or II/III, more than twofold difference (Alleles 3);  
849 4.  $TPM_{A1} / TPM_{A2} \geq 2$  or  $\leq 0.5$ ;  $TPM_{A1} / TPM_B \geq 2$  or  $\leq 0.5$ ;  $TPM_{A2} / TPM_B \geq 2$  or  $\leq 0.5$  (Alleles 2);  
850 5. Detected in at least 2 samples.

851 2) RNA data with biological replicates, DEA was determined if the log fold change of  
852 TPM values between two alleles was greater than 2 with adjusted P value  $< 0.05$ , and  
853 was detected in at least 2 samples.

855 **Culture of Foc-TR4 strain and preparation of inoculant**

856 The strains were provided by the Guangdong Provincial Key Laboratory of Tropical  
857 and Subtropical Fruit Tree Research. The 1 cm<sup>2</sup> size bacteria were taken in the ultra-  
858 clean workbench and inoculated into 50 ml of sterile Potato Dextrose Broth (PDB)  
859 medium, 28 °C for about 7 days. Aspirate the spore suspension, observe the number of  
860 spores under a light microscope using a hemocytometer, and measure the  
861 concentration of the spore suspension to be 1×10<sup>8</sup> ml<sup>-1</sup>. Dilute the spore suspension to  
862 1×10<sup>6</sup> ml<sup>-1</sup> with sterile water for use.

863 **Inoculation and resistance evaluation (potted and field evaluation)**

864 Banana seedlings that have grown to 4-6 leaves are removed from the substrate,  
865 rinsed, and their roots completely immersed in the spore suspension for 30 minutes.  
866 Using the "double-pot system" of (Mohamed et al., 2001), the seedlings were planted  
867 in a nutrient cup (20cm in diameter, 15cm in bottom diameter, 17.5cm in height)  
868 containing sterilized perlite, and the nutrient cup was placed in a 50cm long, in a  
869 plastic box with a width of 30cm and a height of 10cm without a lid, there is tap water  
870 at the bottom of the box, the water depth is 1-2cm, and the hoagland nutrient solution  
871 is regularly poured. Set Silk as the susceptible control and Plantain as the resistant  
872 control. At the time of uninoculation (week 0) and the first to fifth weeks after  
873 inoculation, 3 plants of each variety were taken from the inoculated treatment group  
874 and the non-inoculated control group (only the control group was taken in the 0th  
875 week), and the whole plant was longitudinally cut. Photographs were taken and the  
876 rhizomes were taken as samples, and the samples were stored at -80°C. Referring to  
877 the method of (Viljoen et al., 2017), the rhizome discoloration index (RDI) was  
878 calculated according to the discoloration inside the rhizome to evaluate the disease  
879 resistance of bananas,  $5 < RDI \leq 6$  is high sensitivity.

880 The field evaluation was carried out in the experimental field of Banana and  
881 Vegetable Research Institute in Dongguan City, Guangdong Province, where the soil  
882 had been infected with Foc-TR4, and the incidence rate of 'Cavendish' planted in this  
883 field was not less than 70% (Zuo et al., 2018). No chemicals were applied during the  
884 test. Two evaluations were conducted in November 2020 and November 2021. When  
885 the plant became ill or the test was over, the rhizome and pseudostems were cut and  
886 photographed.

#### 887 **Analysis of Plantain and Silk resistance to Foc-TR4 in five stages using RNA seq**

888 RNA-seq was performed on three biological replicates of post-inoculated and  
889 uninoculated rhizomes at five different developmental stages (1- 5 weeks) of Plantain  
890 and Silk. Trimmomatic (Bolger et al., 2014) was used to remove low-quality reads,  
891 and clean reads were then mapped to the reference genomes of Plantain and Silk using

892 STAR/2.7.3a ([Dobin et al., 2013](#)). The mapping reads corresponding to each transcript  
893 were assembled, and TPM values were calculated using RSEM. DEG analysis was  
894 conducted using DESeq2 from the R Bioconductor package, with  $\log_{2}FC > 2$  for  
895 genes with increased transcript abundance and  $\log_{2}FC < -2$  for genes with decreased  
896 transcript abundance, and a P-value threshold of  $\leq 0.05$ . Comparisons were made  
897 between post-inoculation and control groups at weeks 1 to 5 for both Plantain and Silk.

898 **Co-expression network between differentially expressed MYB transcription  
899 factors and lignin biosynthesis genes after inoculation**

900 The co-expression algorithm in R package WGCNA ([Langfelder et al., 2008](#)) was  
901 used to identify co-expression modules. The power value threshold option was  
902 disabled while constructing modules, and the obtained power values ranged from 1 to  
903 20. To determine the average and independence connection degrees of multiple  
904 modules, the gradient technique was employed. A degree of independence of 0.8 was  
905 considered suitable for the power value. Modules were built using the WGCNA  
906 method once the power value threshold was established, and genes related to each  
907 module were examined. To ensure the findings' high reliability, the minimum number  
908 of genes in a module was set at 30. Co-expression networks were visualized using  
909 Cytoscape ([Shannon et al., 2003](#)). MYB TFs typically recognize specific AC-rich cis  
910 elements ([ACC(A/T)A(A/C)(T/C)]) that are especially prevalent in the promoters of  
911 PAL, 4CL, CCR, and CAD (Zhao et al., 2011), regulating the lignin biosynthesis.

912

913 **REFERENCES**

914 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local  
915 alignment search tool. *J. Mol. Biol.* **215**, 403–410 (1990).

916 Akyeampong, E. & Escalant, J. V. Plantains in West and Central Africa: an overview.  
917 In: Boto, I., Fouré, E., Ngalani, J., Thornton, T., Valat, M. (Eds.), *Bananas and*  
918 *Food Security. CIRAD, Montpellier* 10–11 (1998).

919 Bairoch, A., & Apweiler, R. The SWISS-PROT protein sequence database and its

920 supplement TrEMBL in 2000. *Nucleic Acids Res.* **28**, 45–48 (2000).

921 Bao, W., Kojima, K. K., & Kohany, O. Repbase update, a database of repetitive  
922 elements in eukaryotic genomes. *Mob. DNA* **6**, 11 (2015).

923 Belser, C. et al. Telomere-to-telomere gapless chromosomes of banana using  
924 nanopore sequencing. *Commun. Biol.* **4**, 1047 (2021).

925 Belton, J. M., McCord, R. P., Gibcus, J. H., Naumova, N., Zhan, Y. & Dekker, J. Hi-  
926 C: a comprehensive technique to capture the conformation of genomes. *Methods*  
927 **58**, 268-276 (2012).

928 Benson, G. Tandem repeats finder: a program to analyze DNA sequences. *Nucleic  
929 Acids Res.* **27**, 573–580 (1999).

930 Bird, K. A., VanBuren, R., Puzey, J.R. & Edger, P. P. The causes and consequences of  
931 subgenome dominance in hybrids and recent polyploids. *New Phytol.* **220**, 87-93  
932 (2018).

933 Bolger, A. M., Lohse, M., & Usadel, B. Trimmomatic: a flexible trimmer for Illumina  
934 sequence data. *Bioinformatics* **30**, 2114–2120 (2014).

935 Castresana, J. Selection of conserved blocks from multiple alignments for their use in  
936 phylogenetic analysis. *Mol. Biol. Evol.* **17**, 540-552 (2000).

937 Cenci, A. et al. Unravelling the complex story of intergenomic recombination in ABB  
938 allotriploid bananas. *Ann. Bot.* **127**, 7–20 (2021).

939 Chan, P. P., & Lowe, T. M. tRNAscan-SE: searching for tRNA genes in genomic  
940 sequences. *Methods Mol. Biol.* **1962**, 1–14 (2019).

941 Chen, K. et al. MdMYB46 could enhance salt and osmotic stress tolerance in apple by  
942 directly activating stress-responsive signals. *Plant Biotechnol. J.* **17**, 2341-2355  
943 (2019).

944 Chen, Y. et al. A collinearity-incorporating homology inference strategy for  
945 connecting emerging assemblies in the Triticeae tribe as a pilot practice in the  
946 plant pangenomic era. *Mol. Plant* **13**, 1694-1708 (2020).

947 Cheng, H. et al. Haplotype-resolved assembly of diploid genomes without parental  
948 data. *Nat. Biotechnol.* **40**, 1332-1335 (2022).

949 Chin, C. S. et al. Phased diploid genome assembly with single-molecule real-time  
950 sequencing. *Nat. Methods* **13**, 1050–1054 (2016).

951 Cingolani, P. et al. A program for annotating and predicting the effects of single  
952 nucleotide polymorphisms, SnpEff: SNPs in the genome of *Drosophila*  
953 *melanogaster* strain w1118; iso-2; iso-3. *Fly (Austin)* **6**, 80–92 (2012).

954 Čížková, J., Hřibová, E., Humplíková, L., Christelová, P., Suchánková, P. & Doležel,  
955 J. Molecular analysis and genomic organization of major DNA satellites in

956 banana (*Musa* spp.). *PLoS One* **8**, e54808 (2013).

957 D'Hont, A., Paget-Goy, A., Escoute, J. & Carreel, F. The interspecific genome  
958 structure of cultivated banana, *Musa* spp. revealed by genomic DNA in situ  
959 hybridization. *Theor. Appl. Genet.* **100**, 177–183 (2000).

960 D'Hont, A. et al. The banana (*Musa acuminata*) genome and the evolution of  
961 monocotyledonous plants. *Nature* **488**, 213-217 (2012).

962 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21  
963 (2013).

964 Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C. & Lepiniec, L. MYB  
965 transcription factors in *Arabidopsis*. *Trends Plant Sci.* **15**, 573–581 (2010).

966 Dudchenko, O. et al. De novo assembly of the *Aedes aegypti* genome using Hi-C  
967 yields chromosome-length scaffolds. *Science* **356**, 92-95 (2017).

968 Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution  
969 Hi-C experiments. *Cell Syst.* **3**, 95-98 (2016).

970 Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible  
971 software for *de novo* detection of LTR retrotransposons. *BMC Bioinformatics* **9**,  
972 18 (2008).

973 Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for  
974 comparative genomics. *Genome Biol.* **20**, 238 (2019).

975 FAOSTAT Crops (Food and Agriculture Organization of the United Nations, 2022),  
976 <http://www.fao.org/faostat/en/#data/QC> (2022).

977 Feng, J. W., Lu, Y., Shao, L., Zhang, J., Li, H., & Chen, L. L. Phasing analysis of the  
978 transcriptome and epigenome in a rice hybrid reveals the inheritance and  
979 difference in DNA methylation and allelic transcription regulation. *Plant  
980 Commun.* **2**, 100185. (2021).

981 Ferrer, J. L., Jez, J. M., Bowman, M. E., Dixon, R. A. & Noel, J. P. Structure of  
982 chalcone synthase and the molecular basis of plant polyketide biosynthesis. *Nat.  
983 Struct. Biol.* **6**, 775-84 (1999).

984 Flynn, J. M., Hubley, R., Goubert, C., Rosen, J., Clark, A. G., Feschotte, C., & Smit,  
985 A. F. RepeatModeler2 for automated genomic discovery of transposable element  
986 families. *Proc. Natl. Acad. Sci. USA* **117**, 9451–9457 (2020).

987 Goel, M., Sun, H., Jiao, W. B. & Schneeberger, K. SyRI: finding genomic  
988 rearrangements and local sequence differences from whole-genome assemblies.  
989 *Genome Biol.* **20**, 277 (2019).

990 Goodstein, D. M. et al. Phytozome: a comparative platform for green plant genomics.  
991 *Nucleic Acids Res.* **40**, D1178-D1186 (2012).

992 Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data

993 without a reference genome. *Nat. Biotechnol.* **29**, 644–652 (2011).

994 Han, M. V., Thomas, G. W. C., Lugo-Martinez, J. & Hahn, M. W. Estimating gene  
995 gain and loss rates in the presence of error in genome assembly and annotation  
996 using CAFE 3. *Mol. Biol. Evol.* **30**, 1987-1997 (2013).

997 Hirschberg, J. Carotenoid biosynthesis in flowering plants. *Curr. Opin. Plant Biol.* **4**,  
998 210-218 (2001).

999 Hribová, E., Neumann, P., Matsumoto, T., Roux, N., Macas, J. & Dolezel, J.  
1000 Repetitive part of the banana (*Musa acuminata*) genome investigated by low-  
1001 depth 454 sequencing. *BMC Plant Biol.* **10**, 204 (2010).

1002 Ibobondji, L. et al. Musalogue: Catalogue de germoplasme de *Musa*, Plantains  
1003 d'Afrique occidentale et centrale-Collection CARBAP [Musalogue: Catalog of  
1004 *Musa* germplasm, West and central African plantains-CARBAP collection.  
1005 *Bioversity International* 338 (2018).

1006 Katoh, K., Asimenos, G. & Toh, H. Multiple alignment of DNA sequences with  
1007 MAFFT. *Methods Mol Biol* **537**, 39-64 (2009).

1008 Kema, G. H. J. & Drenth, A. Achieving sustainable cultivation of bananas. Volume 2:  
1009 Germplasm and genetic improvement. *Burleigh Dodds Science Publishing*  
1010 (2020).

1011 Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. Graph-based genome  
1012 alignment and genotyping with HISAT2 and HISAT-genotype. *Nat. Biotechnol.*  
1013 **37**, 907–915 (2019).

1014 Koren, S. et al. De novo assembly of haplotype-resolved genomes with trio binning.  
1015 *Nat. Biotechnol.* **36**, 1174–1182 (2018).

1016 Kurtz, S. et al. Versatile and open software for comparing large genomes. *Genome*  
1017 *Biol.* **5**, R12 (2004).

1018 Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation  
1019 network analysis. *BMC Bioinformatics* **9**, 559 (2008).

1020 Langhe, E. D. et al. Integrating morphological and molecular taxonomy in *Musa*: the  
1021 African plantains (*Musa* spp. AAB group). *Plant Syst. Evol.* **255**, 225-236 (2005).

1022 Langhe, E. D., Vrydaghs, L., Maret P. D., Perrier, X. & Denham, T. Why Bananas  
1023 Matter: An introduction to the history of banana domestication. *Ethnobotany*  
1024 *Research and Applications* **7**, 322-326 (2008).

1025 Lescot, M. et al. Insights into the *Musa* genome: Syntenic relationships to rice and  
1026 between *Musa* species. *BMC Genomics* **9**, 58 (2008).

1027 Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for  
1028 phylogenetic tree display and annotation. *Nucleic Acids Res.* **49**, W293-W296  
1029 (2021).

1030 Li, B., & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data  
1031 with or without a reference genome. *BMC bioinformatics* **12**, 323 (2011).

1032 Li, H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* **34**,  
1033 3094–3100 (2018).

1034 Li, L., Stoeckert, C. J., Jr, & Roos, D. S. OrthoMCL: identification of ortholog groups  
1035 for eukaryotic genomes. *Genome Res.* **13**, 2178–2189 (2003).

1036 Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019.  
1037 *Nucleic Acids Res.* **47**, W636–W641 (2019).

1038 Marçais, G., Delcher, A. L., Phillippy, A. M., Coston, R., Salzberg, S. L. & Zimin, A.  
1039 MUMmer4: A fast and versatile genome alignment system. *PLoS Comput. Biol.*  
1040 **14**, e1005944 (2018).

1041 Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting  
1042 of occurrences of k-mers. *Bioinformatics* **27**, 764–770 (2011).

1043 Martin, G. et al. Improvement of the banana "Musa acuminata" reference sequence  
1044 using NGS data and semi-automated bioinformatics methods. *BMC Genomics* **17**,  
1045 243 (2016).

1046 Martin, G., Cottin, A., Baurens, F.-C., Labadie, K., Hervouet, C., Salmon, F., Paulo-  
1047 de-la-Reberdiere, N., Van den Houwe, I., Sardos, J., Aury, J.-M., D'Hont, A. and  
1048 Yahiaoui, N., Interspecific introgression patterns reveal the origins of worldwide  
1049 cultivated bananas in New Guinea. *Plant J.* **113**, 802-818 (2023).

1050 McCarthy, R. L., Zhong, R. & Ye, Z. H. MYB83 is a direct target of SND1 and acts  
1051 redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in  
1052 *Arabidopsis*. *Plant Cell Physiol.* **50**, 1950-1964 (2009).

1053 Md, V., Misra, S., Li, H. & Aluru, S. Efficient architecture-aware acceleration of  
1054 BWA-MEM for multicore systems. *IEEE 10.1109/IPDPS.2019.00041*. (2019).

1055 Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A., & Punta, M. Challenges in  
1056 homology search: HMMER3 and convergent evolution of coiled-coil regions.  
1057 *Nucleic Acids Res.* **41**, e121 (2013).

1058 Mohamed, A. A., Mak, C., Liew, K. W., & Ho, Y. W. Early evaluation of banana  
1059 plants at nursery stage for fusarium wilt tolerance. (2001).

1060 Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches.  
1061 *Bioinformatics* **29**, 2933–2935 (2013).

1062 Ou, S., Chen, J., & Jiang, N. Assessing genome assembly quality using the LTR  
1063 Assembly Index (LAI). *Nucleic Acids Res.* **46**, e126 (2018).

1064 Ou, S. et al. Benchmarking transposable element annotation methods for creation of a  
1065 streamlined, comprehensive pipeline. *Genome Biol.* **20**, 275 (2019).

1066 Ou, S. & Jiang, N. LTR\_retriever: a highly accurate and sensitive program for

1067 identification of long terminal repeat retrotransposons. *Plant Physiol.* **176**, 1410-  
1068 1422 (2018)

1069 Perrier, X. et al. Multidisciplinary perspectives on banana (*Musa* spp.) domestication.  
1070 *Proc Natl Acad Sci USA* **108**, 11311-11318 (2011).

1071 Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T., & Salzberg,  
1072 S. L. StringTie enables improved reconstruction of a transcriptome from RNA-  
1073 seq reads. *Nat. Biotechnol.* **33**, 290–295 (2015).

1074 Pham, G. M., Newton, L., Wiegert-Rininger, K., Vaillancourt, B., Douches, D. S. &  
1075 Buell, C. R. Extensive genome heterogeneity leads to preferential allele  
1076 expression and copy number-dependent expression in cultivated potato. *Plant J.*  
1077 **92**, 624–637 (2017).

1078 Puttick, M. N. MCMCTreeR: functions to prepare MCMCTree analyses and visualize  
1079 posterior ages on trees. *Bioinformatics* **35**, 5321-5322 (2019).

1080 Quinlan, A. R. BEDTools: the swiss-army tool for genome feature analysis. *Curr.*  
1081 *Protoc. Bioinformatics* **47**, 11.12.1-34 (2014).

1082 Ravi, I. & Mustaffa, M.M. Starch and amylose variability in banana cultivars. *Indian*  
1083 *J. Plant Physiol.* **18**, 83-87 (2013).

1084 Rhie, A., Walenz, B. P., Koren, S., Phillippy A. M. Merqury: reference-free quality,  
1085 completeness, and phasing assessment for genome assemblies. *Genome Biol.* **21**,  
1086 245 (2020).

1087 Robinson, J. C. & Sauco, V. G. Bananas and Plantains, 2nd ed.; *CABI Publishing:*  
1088 *Wallingford, UK* (2010).

1089 Robinson, M. D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for  
1090 differential expression analysis of digital gene expression data. *Bioinformatics* **26**,  
1091 139-140 (2010).

1092 Shannon, P. et al. Cytoscape: a software environment for integrated models of  
1093 biomolecular interaction networks. *Genome Res.* **13**, 2498-504 (2003).

1094 Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M.  
1095 BUSCO: assessing genome assembly and annotation completeness with single-  
1096 copy orthologs. *Bioinformatics* **31**, 3210–3212 (2015).

1097 Simmonds, N. W. & Shepherd, K. The taxonomy and origins of the cultivated  
1098 bananas. *Bot. J. Linn. Soc.* **55**, 302–312 (1955).

1099 Song, J. M. et al. Two gap-free reference genomes and a global view of the  
1100 centromere architecture in rice. *Mol Plant* **14**, 1757-1767 (2021).

1101 Sun, P., Jiao, B., Yang, Y., Shan, L. & Liu, J. WGDI: A user-friendly toolkit for  
1102 evolutionary analyses of whole-genome duplications and ancestral karyotypes.  
1103 *Cold Spring Harbor Laboratory* (2021).

1104 Sun, S. et al. Extensive intraspecific gene order and gene structural variations between  
1105 Mo17 and other maize genomes. *Nat. Genet.* **50**, 1289-1295 (2018).

1106 Stamatakis, A. Using RAxML to infer phylogenies. *Curr. Protoc. Bioinformatics* **51**,  
1107 6.14.1-6.14.14 (2015).

1108 Steuernagel, B. et al. The NLR-annotator tool enables annotation of the intracellular  
1109 immune receptor repertoire. *Plant Physiol.* **183**, 468–482 (2020).

1110 Tang, H., Bowers, J. E., Wang, X., Ming, R., Alam, M., & Paterson, A. H. Synteny  
1111 and collinearity in plant genomes. *Science* **320**, 486–488 (2008).

1112 Trapnell, C., Pachter, L., & Salzberg, S. L. TopHat: discovering splice junctions with  
1113 RNA-Seq. *Bioinformatics* **25**, 1105–1111 (2009).

1114 Van de Weyer, A. L. et al. A species-wide inventory of NLR genes and alleles in  
1115 *Arabidopsis thaliana*. *Cell* **178**, 1260–1272.e14 (2019).

1116 Viljoen, A., Mahuku, G., Massawe, C., Ssali, R.T., Kimunye, J., Mostert, G.,  
1117 Ndayihanzamaso, P., & Coyne, D. Banana diseases and pests: field guide for  
1118 diagnostics and data collection. (2017).

1119 Villa Zabala, C. C. An overview on starch structure and chemical nature. *Starch-based*  
1120 *Nanomaterials* 3-9 (2020).

1121 Wall, M. M. Ascorbic acid, vitamin A, and mineral composition of banana (*Musa* sp.)  
1122 and papaya (*Carica papaya*) cultivars grown in Hawaii. *J. Food Compos. Anal.*  
1123 **19**, 434-445 (2006).

1124 Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene  
1125 synteny and collinearity. *Nucleic Acids Res.* **40**, e49 (2012).

1126 Wang, Z. et al. A chromosome-level reference genome of *Ensete glaucum* gives  
1127 insight into diversity and chromosomal and repetitive sequence evolution in the  
1128 Musaceae. *Gigascience* **11**, giac027 (2022).

1129 Wang, Z. et al. *Musa balbisiana* genome reveals subgenome evolution and functional  
1130 divergence. *Nat. Plants* **5**, 810-821 (2019).

1131 Wicker, T. et al. A unified classification system for eukaryotic transposable elements.  
1132 *Nat. Rev. Genet.* **8**, 973-982 (2007).

1133 Xu, Z. & Wang, H. LTR\_FINDER: an efficient tool for the prediction of full-length  
1134 LTR retrotransposons. *Nucleic Acids Res.* **35**, W265–W268 (2007).

1135 Yang, C., Xu, Z., Song, J., Conner, K., Vizcay Barrena, G. & Wilson, Z. A.  
1136 *Arabidopsis* MYB26/MALE STERILE35 regulates secondary thickening in the  
1137 endothecium and is essential for anther dehiscence. *Plant Cell* **19**, 534-548  
1138 (2007).

1139 Yang, P. et al. Chromosome-level genome assembly and functional characterization of  
1140 terpene synthases provide insights into the volatile terpenoid biosynthesis of

1141        *Wurfbainia villosa*. *Plant J.* **112**, 630-645 (2021).

1142        Zdobnov, E. M., & Apweiler, R. InterProScan--an integration platform for the  
1143        signature-recognition methods in InterPro. *Bioinformatics* **17**, 847–848 (2001).

1144        Zhang, R. G., Li, G. Y., Wang, X. L., Dainat, J., Wang, Z. X., Ou, S. & Ma, Y.  
1145        TEsorter: an accurate and fast method to classify LTR-retrotransposons in plant  
1146        genomes. *Hortic. Res.* **9**, uhac017 (2022).

1147        Zhang, X. et al. Haplotype-resolved genome assembly provides insights into  
1148        evolutionary history of the tea plant *Camellia sinensis*. *Nat. Genet.* **53**, 1250–  
1149        1259 (2021).

1150        Zhang, X., Zhang, S., Zhao, Q., Ming, R. & Tang, H. Assembly of allele-aware,  
1151        chromosomal-scale autopolyploid genomes based on Hi-C data. *Nat. Plants* **5**,  
1152        833–845 (2019).

1153        Zhao, M., Zhang, B., Lisch, D. & Ma, J. Patterns and consequences of subgenome  
1154        differentiation provide insights into the nature of paleopolyploidy in plants. *Plant  
1155        Cell* **29**, 2974-2994 (2017).

1156        Zhao, Q., Dixon, R. A. Transcriptional networks for lignin biosynthesis: more  
1157        complex than we thought? *Trends Plant Sci.* **16**, 227-233 (2011).

1158        Zhi, D., Raphael, B. J., Price, A. L., Tang, H. & Pevzner, P. A. Identifying repeat  
1159        domains in large genomes. *Genome Biol.* **7**, R7 (2006).

1160        Zhong, R., Richardson, E. A. & Ye, Z. H. The MYB46 transcription factor is a direct  
1161        target of SND1 and regulates secondary wall biosynthesis in *Arabidopsis*. *Plant  
1162        Cell* **19**, 2776-2792 (2007).

1163        Zhou, J. et al. Multilayered synergistic regulation of phytoalexin biosynthesis by  
1164        ethylene, jasmonate, and MAPK signaling pathways in *Arabidopsis*. *Plant Cell*  
1165        **34**, 3066–3087 (2022).

1166        Zuo, C., Deng, G., Li, B., Huo, H., & Yi, G. Germplasm screening of *Musa* spp. for  
1167        resistance to *Fusarium oxysporum* f. sp. *cubense* tropical race 4 (Foc TR4). *Eur.  
1168        J. Plant Pathol.* **3**, 1-12 (2018).

1169

## 1170        **DATA AVAILABILITY**

1171        The Plantain and Silk genome assembly have been deposited in the Genome  
1172        Warehouse in National Genomics Data Center, Beijing Institute of Genomics, Chinese  
1173        Academy of Sciences / China National Center for Bioinformation, under project  
1174        number PRJCA015888 that is publicly accessible at <https://ngdc.cncb.ac.cn/gwh>.

## 1175        **FUNDING**

1176 This work was jointly funded by National Key R&D Program of China  
1177 (2019YFD1000203, 2019YFD1000900), the National Natural Science Foundation of  
1178 China (32270712), the earmarked fund for CARS (CARS-31-01), GDAAS  
1179 (202102TD, R2020PY-JX002), funds for the strategy of rural vitalization of  
1180 Guangdong provinces, Laboratory of Lingnan Modern Agriculture Project  
1181 (NT2021004) and Maoming Branch Grant (2021TDQD003).

1182 **AUTHOR CONTRIBUTIONS**

1183 L.-L.C., O.S., J.-M.S. and G.Y. conceived and supervised this study. O.S., G.Y., W.  
1184 H., F. B., Y. L., T. D., G. M., S. L., C. L., Q. Y., C. H., H. G., and T. D. collected  
1185 samples and performed experiments. W.-Z.X., Y.-Y.Z., L.-L.C., J.-M.S., R.Z., Y.-X.  
1186 G., W.-H. Z., M.-H. Y., S.-J. P., X.-T. Z., X.-D. X., Z.-W. Z., J.-W. F. and J. Z.  
1187 performed genome assembling and annotation, comparative genomics analysis, and  
1188 transcriptome data analysis. J.D. and Q.G. performed karyotype analysis of Plantain  
1189 and Silk banana, W.-Z.X., Y.-Y.Z., J.-M.S., O.S. and L.-L.C. wrote and revised the  
1190 paper.

1191 **ACKNOWLEDGEMENTS**

1192 We sincerely thank professor Maojun Wang in Huazhong Agricultural University for  
1193 his guidance in asymmetric evolution of Plantain and Silk genomes. We also  
1194 acknowledge the computing platform of the National Key Laboratory of Crop Genetic  
1195 Improvement in HZAU for providing the computational resources.

1196 **ONLINE CONTENT**

1197 Any methods, additional references, research reporting summaries, source data,  
1198 statements of code and data availability and associated accession codes are available  
1199 online.

1200

1201 **FIGURE LEGENDS**

1202 **Figure 1. Overview of the Plantain (Batard) and Silk (Figue Pomme Géante)**  
1203 **genomes assembly and features.**

1204 **a**, Karyotype of Plantain with a scale of 5 um. **b**, The flowchart of genome assembly  
1205 and haplotype phasing. **c**, The circos diagram of Plantain and Silk. The circles from  
1206 outer to inner separately represented contigs and gaps (A), GC (guanine cytosine)  
1207 content (window size of 500 kb) (B), gene density (window size of 100 kb) (C),  
1208 transposable element (TE) density (window size of 100 kb) (D), SNPs density  
1209 (window size of 100 kb) (E), HiFi, CLR and Illumina reads coverage (window size of  
1210 100 kb) (F). For each track, the outer and inner layers indicate Plantain and Silk data,  
1211 respectively.

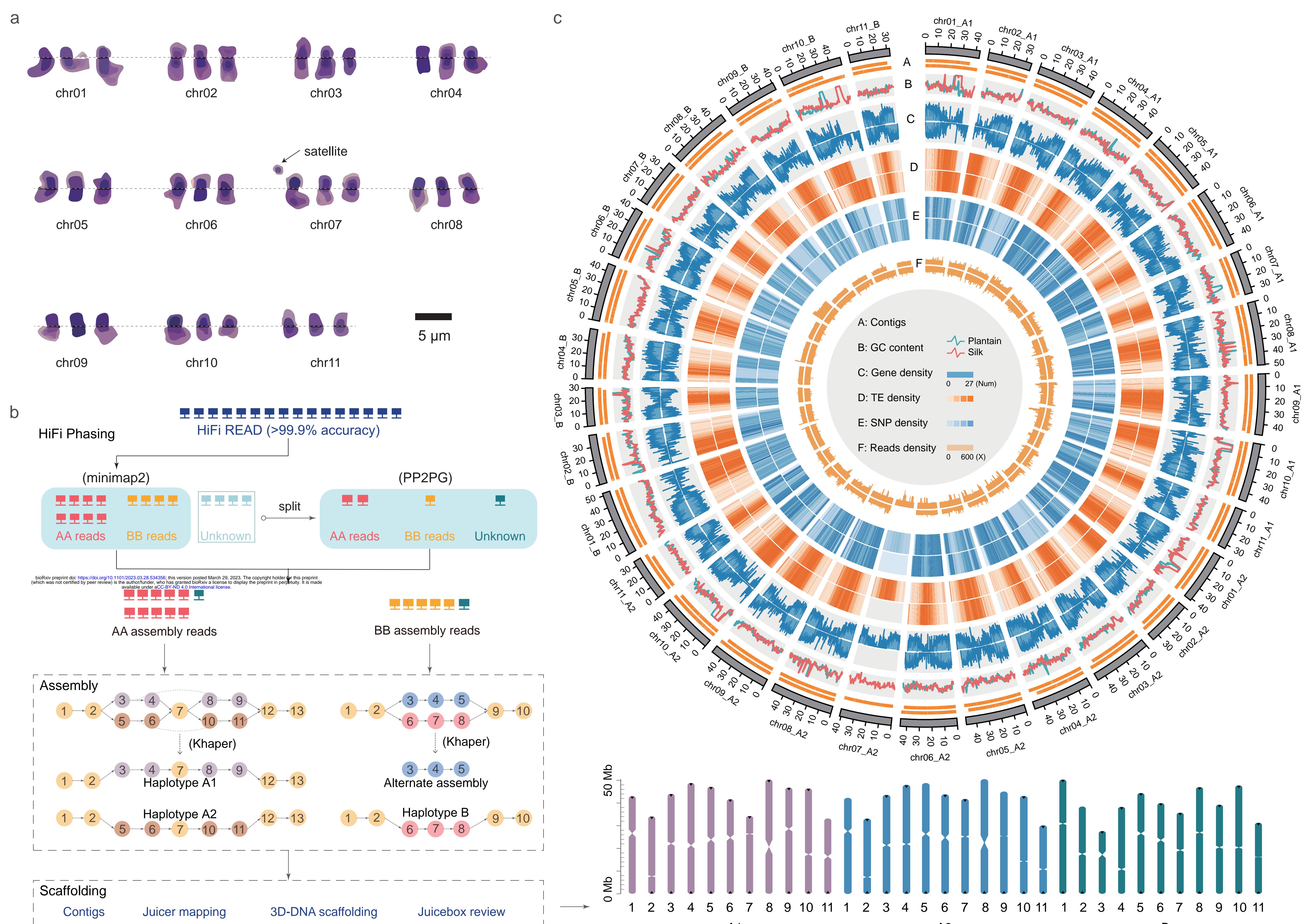
1212 **Figure 2. Phylogenetic relationships of Musaceae and genome ancestry mosaics**  
1213 **for triploid cultivars Plantain and Silk.**

1214 **a**, Phylogenetic tree of Plantain, Silk and other 9 Musaceae species (*Ensete glaucum*  
1215 (Snow banana); *M. textilis* (Abaca); *M. troglodytarum* (Utafun); *M. balbisiana* (DH-  
1216 PKW); *M. schizocarpa* (Schizocarpa); *M. acuminata* ssp. *burmannica* (Calcutta 4); *M.*  
1217 *acuminata* ssp. *zebrina* (Maia oa); *M. acuminata* ssp. *malaccensis* (DH-Pahang); *M.*  
1218 *acuminata* ssp. *banksii* (Banksii)) including their divergence time based on  
1219 orthologues of the single gene family. **b**, Density distributions of the Ks values for  
1220 homologous genes. Wvi represents *Wurfbainia villosa*. **c**, The pedigree composition of  
1221 subgenome A in the triploid cultivated bananas Plantain and Silk. **d**, Chromosome  
1222 ancestry painting of Plantain. The contributions of ancestral groups are represented  
1223 along the 11 chromosomes by segments of different colors (green is *M. acuminata*  
1224 ssp. *banksii*, red is *M. acuminata* ssp. *zebrina* and blue is *M. schizocarpa* of  
1225 Literature).

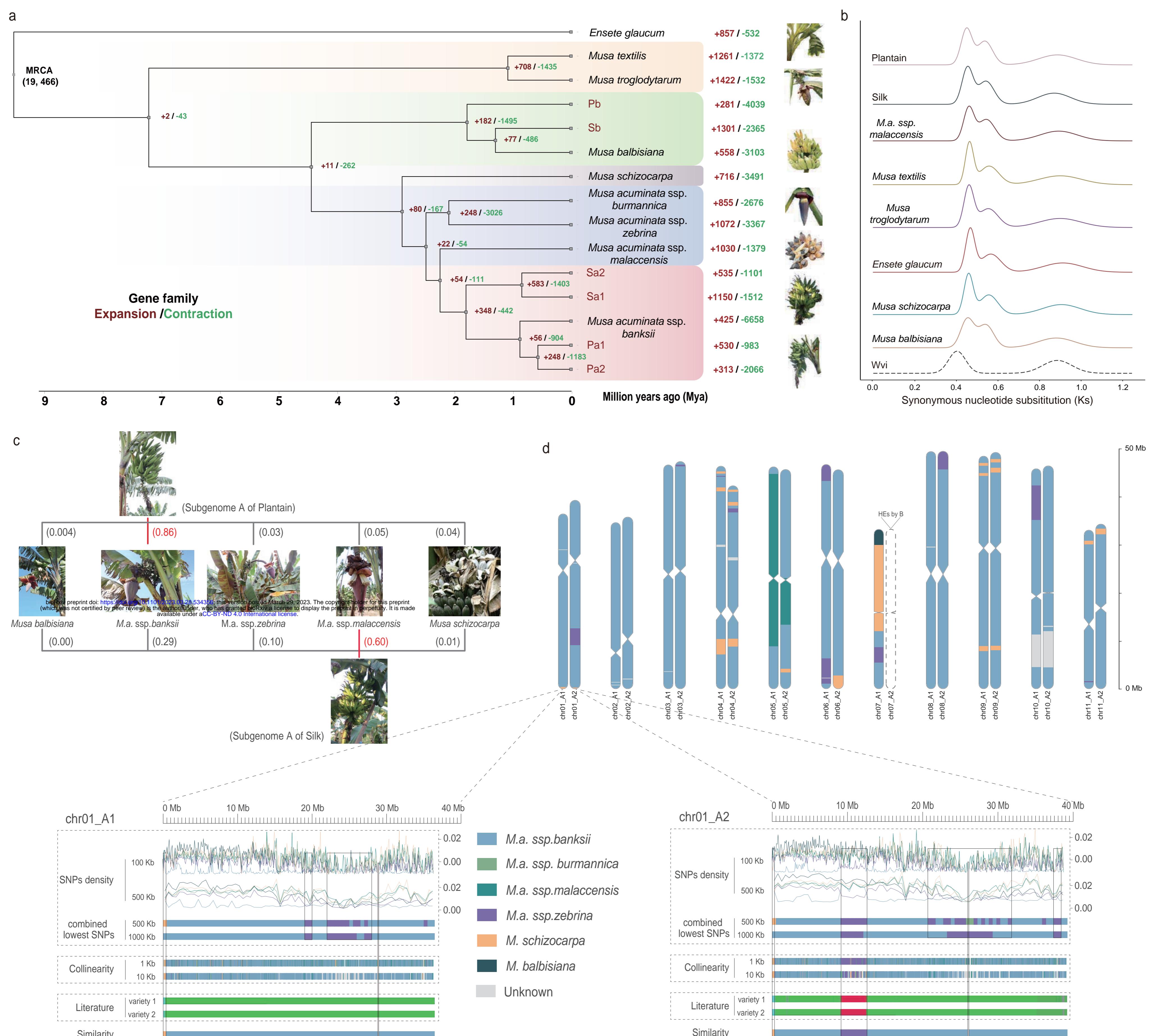
1226 **Figure 3. Subgenomic differentiation, asymmetric fractionation and expression**  
1227 **of haplotypes.**

1228 **a**, Asymmetry analysis between subgenome Pa1 and Pb. All gene loss regions  
1229 between Pa1 and Pb are shown in yellow blocks. DEA percentage distribution is  
1230 plotted above or under each chromosome in 100-kb bins. The area framed by the box  
1231 are HEs. The black triangles indicate the presence of telomere sequence repeats. The  
1232 collinear regions between Pa1 and Pb are shown linked by gray lines. **b**, The picture  
1233 shows the evolutionary tree of the WRKY33 gene family in Plantain, and its changing  
1234 hot map of the expression (log2 (TPM)) in each period after the pathogen is infected.  
1235 In the evolution, Missing represents the loss of genes in A1 or A2 subunit, and the  
1236 brown font represents genetic variations resulting in functional changes. **c**,  
1237 Identification strategies and statistics for alleles. Allelic gene pairs were selected  
1238 according to the following rules: (1) paired regions must be on homologous  
1239 haplotypes; (2) when there is one-to-many paired genes, take the one with the higher  
1240 C-score (score(A, B) / max(score(A,), score (B))); (3) the three genes are paired with

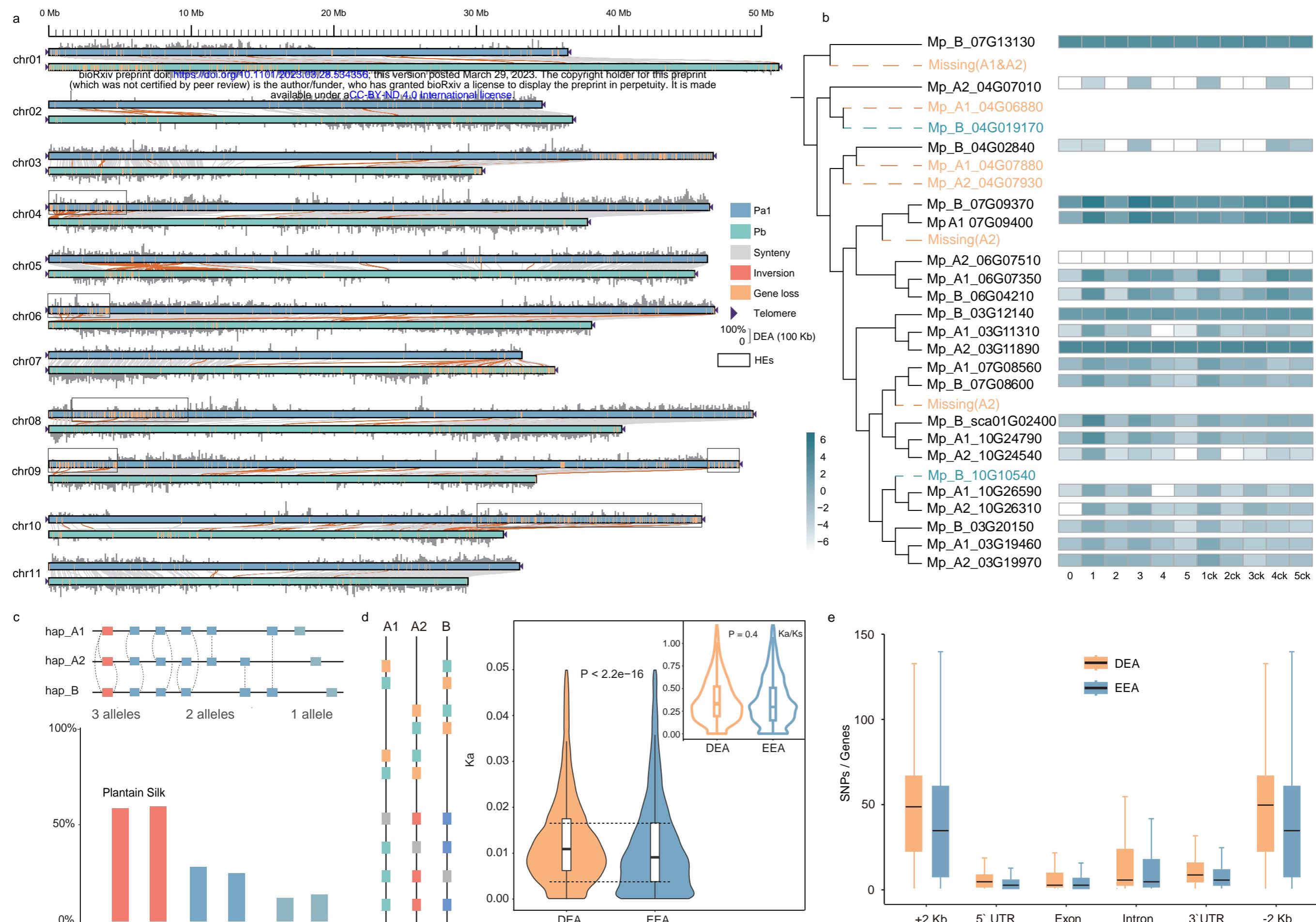
1241 each other are identified as 3 alleles, the two genes are paired with each other are  
1242 identified as 2 alleles, the others are 1 allele; (4) Syntenic gene pairs defined above  
1243 were double-checked manually. **d**, DEAs has relatively higher Ka and Ka/Ks value  
1244 than EEAs in Plantain. P-values were calculated with two-sided Student's t-test. **e**,  
1245 SNPs density in DEAs/EEAs features of Plantain.


1246 **Figure 4. Resistance and mechanism differences of *Fusarium oxysporum* f. sp.**  
1247 ***cubense* Tropical Race 4 between Plantain (Batard) and Silk (Figue Pomme**  
1248 **Géante).**

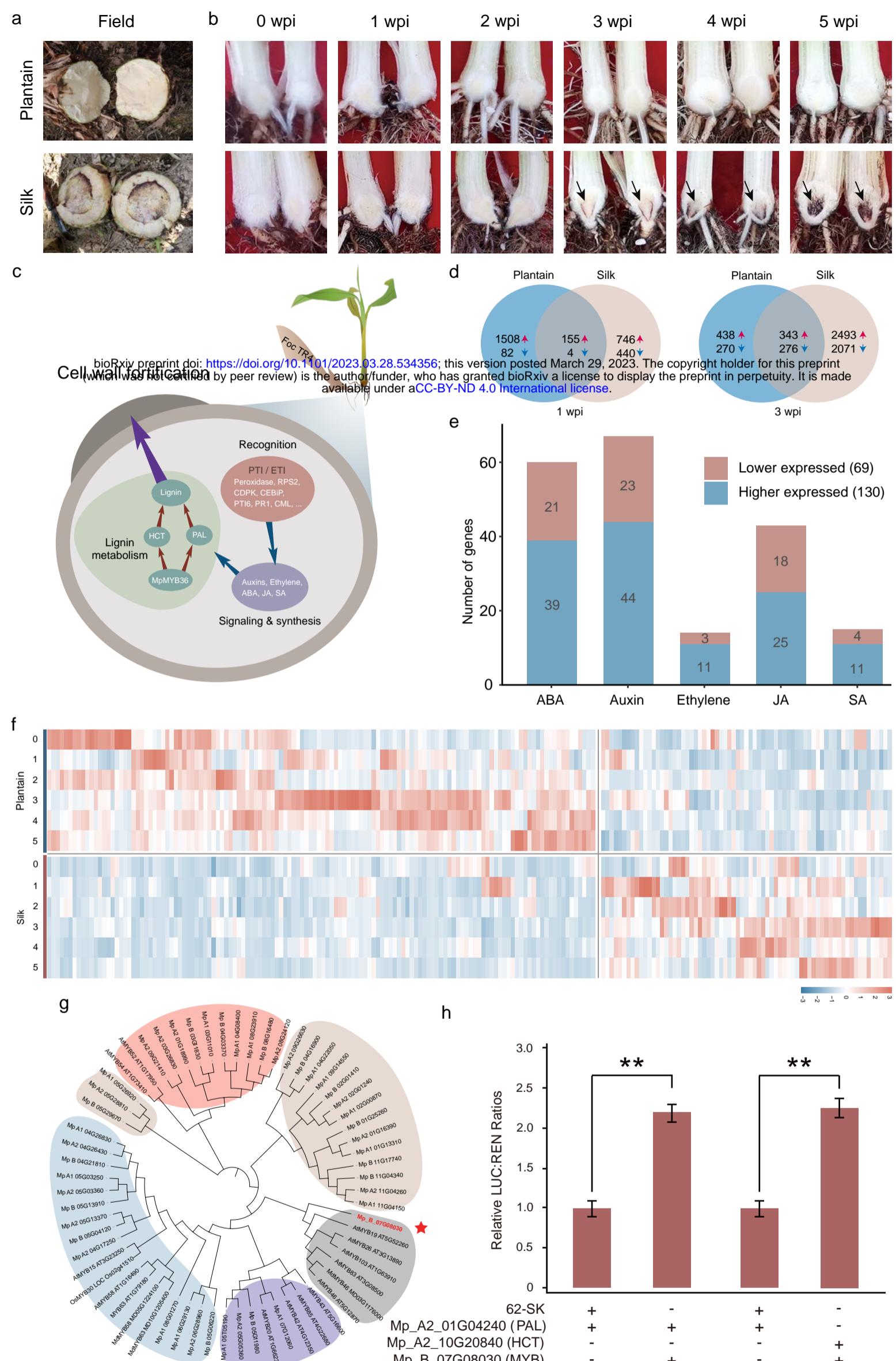
1249 **a**, The rhizome of the Plantain and Silk inoculated with Foc-TR4 in the field. A deep  
1250 golden discoloration of the inner rhizome develops of Silk. **b**, The rhizome of Plantain  
1251 and Silk, which cut in half longitudinally, inoculated with Foc-TR4. Plantain's  
1252 rhizome showed no traces of brown discoloration in the lower and center regions,  
1253 while Silk's rhizome developed extensive brown discoloration from 3 wpi, which  
1254 associated with high Foc sensitivity. **c**, Schematic representation of the response of  
1255 banana against Foc-TR4. **d**, Venn diagrams of differentially expressed genes at 1 wpi  
1256 and 3 wpi of Plantain and Silk. **e**, Pathway distribution of the 199 differentially  
1257 expressed genes involved in plant hormone signal transduction. Blue color indicates  
1258 higher and orange color indicates lower relative expression in Plantain compared with  
1259 Silk. **f**, Heatmap of genes at 1-5 wpi after inoculated with Foc-TR4 which from e. **g**,  
1260 Phylogenetic tree of differentially expressed MYBs in Plantain with other known cell  
1261 wall-associated MYB transcription factors. **h**, Mp\_B\_07G08030 (MYB) enhanced  
1262 fluorescence intensity of LUC driven by the Mp\_A2\_01G04240 (PAL) and  
1263 Mp\_A2\_10G20840 (HCT) promoter compared to the control. The mean  $\pm$  s.d. of  
1264 three biological replicates is shown.


1265 **Figure 5. Multi-omics differential analysis of carotenoids and starches**  
1266 **metabolism.**

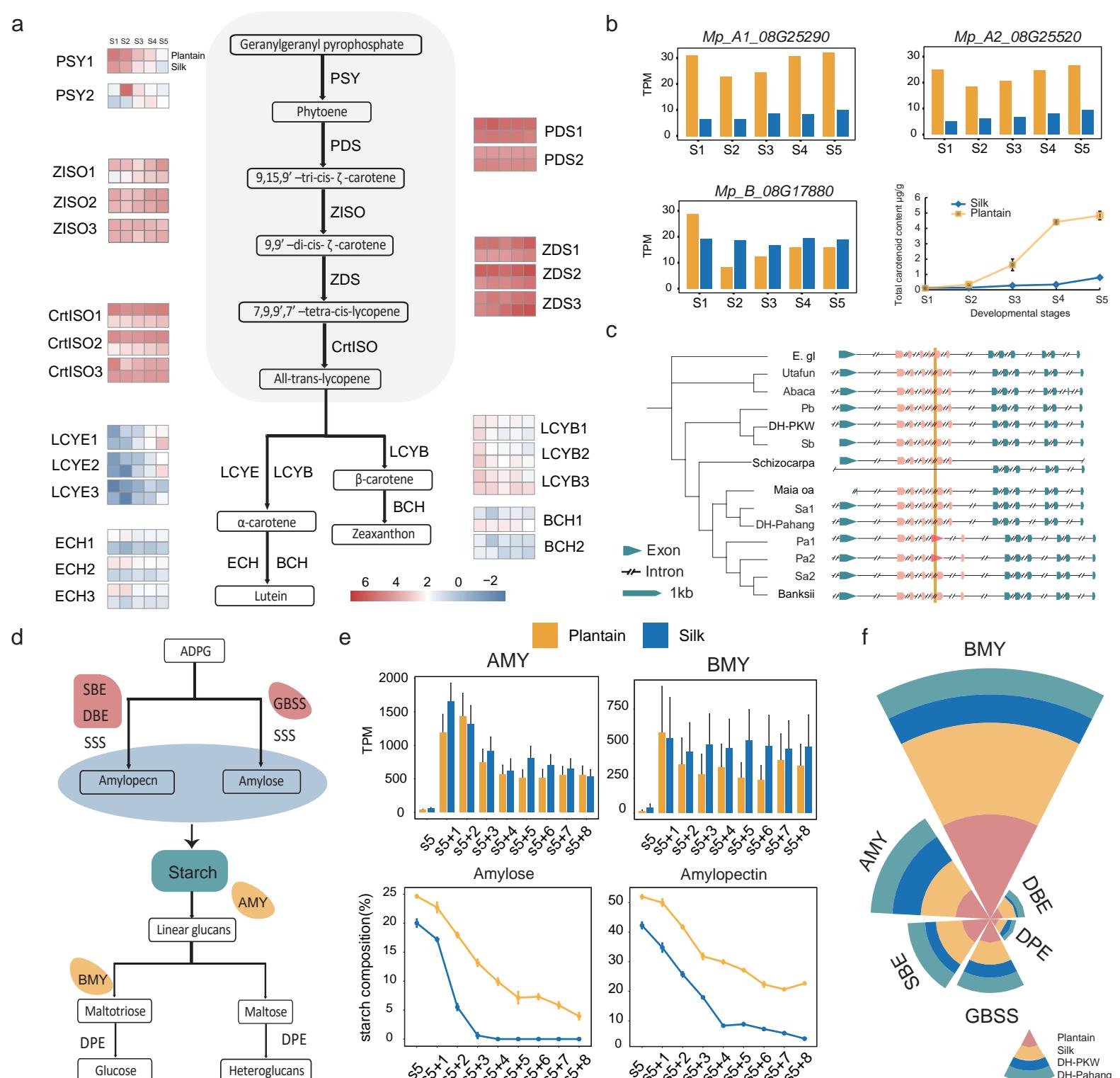
1267 **a**, Overview of the carotenoid synthesis pathway. Genes aligned horizontally in the  
1268 heatmap indicate genes at five developmental stages in Plantain genomes. We divided  
1269 the carotenoid synthesis pathway encoding genes into two groups designated as  
1270 'early' (grey background) and 'late', respectively. Low to high expression is indicated  
1271 by a change in color from blue to red. PSY: phytoene synthase; PDS:  
1272 phytoenesaturase; ZISO:  $\epsilon$ -carotene isomerase; ZDS:  $\epsilon$ -carotenedesaturase;  
1273 CRTISO: carotenoid isomerase; LCYE: lycopene  $\delta$ -cyclase; LCYB: lycopene  $\beta$ -  
1274 cyclase; BCH:  $\beta$ -carotene hydroxylase; ECH:  $\epsilon$ -carotene hydroxylase. **b**, The barplot  
1275 graph shows the gene expression profile (TPM) of CRTISO1 at five developmental  
1276 stages in Plantain and Silk. The line graph shows changes of all carotenoid content. **c**,  
1277 CDS sequence comparison of CRTISO in 11 species (Egl: *E. glaucum*; SY137: *M.*


1278 *troglodytarum*; U9: *Musa textilis*; BB: *M. balbisiana*; SS: *M. schizocarpa*; Bur: *M.*  
1279 *acuminata* spp. *burmannica*; Zeb: *M. acuminata* spp. *zebrina*; AA: *M. acuminata* spp.  
1280 *malaccensis*; Ban: *M. acuminata* spp. *banksii*). **d**, Overview of the starch synthesis  
1281 and degradation pathway. GBSS: Granule-bound starch synthase; SSS: Soluble starch  
1282 synthase; SBE: Starch branching enzyme; DBE: Starch debranching enzyme. AMY:  
1283  $\alpha$ -amylase; BMY:  $\beta$ -amylase; DPE: Starch phosphorylase. **e**, The bar graph shows the  
1284 gene expression profile (TPM) at eight postharvest stages in Plantain and Silk. The  
1285 other two graphs below show the starch hydrolysis of the fruit at 8 stages after  
1286 harvest. **f**, The circular bar graph shows the gene numbers of 6 types of genes of 4  
1287 species (Plantain, Silk, AA and BB) related to starch metabolism.




**Figure 1. Overview of the Plantain (Batard) and Silk (Figue Pomme Géante) genomes assembly and features.** **a**, Karyotype of Plantain with a scale of 5  $\mu$ m. **b**, The flowchart of genome assembly and haplotype phasing. **c**, The circos diagram of Plantain and Silk. The circles from outer to inner separately represented contigs and gaps (A), GC (guanine cytosine) content (window size of 500 Kb) (B), gene density (window size of 100 Kb) (C), transposable element (TE) density (window size of 100 Kb) (D), SNPs density (window size of 100 Kb) (E), HIF; CLR and Illumina reads coverage (window size of 100 Kb) (F). For each track, the outer and inner layers indicate Plantain and Silk data, respectively.




**Figure 2. Phylogenetic relationships of Musaceae and genome ancestry mosaics for triploid cultivars Plantain and Silk.** **a**, Phylogenetic tree of Plantain, Silk and other 9 Musaceae species (*Ensete glaucum* (Snow banana); *Musa textilis* (Abaca); *Musa troglodytarum* (Utafun); *Musa balbisiana* (DH-PKW); *Musa schizocarpa* (Schizocarpa); *Musa acuminata* ssp. *burmannica* (Calcutta 4); *Musa acuminata* ssp. *zebrina* (Maia oa); *Musa acuminata* ssp. *malaccensis* (DH-Pahang); *Musa acuminata* ssp. *banksii* (Banksii)) including their divergence time based on orthologues of the single gene family. **b**, Density distributions of the Ks values for homologous genes. Wvi represents Wurfbainia villosa. **c**, The pedigree composition of subgenome A in the triploid cultivated bananas Plantain and Silk. **d**, Chromosome ancestry painting of Plantain. The contributions of ancestral groups are represented along the 11 chromosomes by segments of different colors (green is *Musa acuminata* ssp. *banksii*, red is *Musa acuminata* ssp. *zebrina* and blue is *Musa schizocarpa* of Literature).



**Figure 3. Subgenomic differentiation, asymmetric fractionation and expression of haplotypes.** **a**, Asymmetry analysis between subgenome Pa1 and Pb. All gene loss regions between Pa1 and Pb are shown in yellow blocks. DEA percentage distribution is plotted above or under each chromosome in 100-kb bins. The area framed by the box are HEs. The black triangles indicate the presence of telomere sequence repeats. The collinear regions between Pa1 and Pb are shown linked by gray lines. **b**, The picture shows the evolutionary tree of the WRKY33 gene family in Plantain, and its changing hot map of the expression ( $\log_2$  (TPM)) in each period after the pathogen is infected. In the evolution, Missing represents the loss of genes in A1 or A2 subunit, and the brown font represents genetic variations resulting in functional changes. **c**, Identification strategies and statistics for alleles. Allelic gene pairs were selected according to the following rules: (1) paired regions must be on homologous haplotypes; (2) when there is one-to-many paired genes, take the one with the higher C-score ( $\text{score}(A, B) / \max(\text{score}(A_1), \text{score}(A_2))$ ); (3) the three genes are paired with each other are identified as 3 alleles, the two genes are paired with each other are identified as 2 alleles, the others are 1 allele; (4) Syntenic gene pairs defined above were double-checked manually. **d**, DEAs has relatively higher Ka and Ka/Ks value than EEA in Plantain. P-values were calculated with two-sided Student's t-test. **e**, SNPs density in DEAs/EEAs features of Plantain.



**Figure 4. Resistance and mechanism differences of *Fusarium oxysporum* f. sp. *cubense* Tropical Race 4 between Plantain ('Batard') and Silk ('Figue Pomme Géante').** **a**, The rhizome of the Plantain and Silk inoculated with Foc-TR4 in the field. A deep golden discoloration of the inner rhizome develops of Silk. **b**, The rhizome of Plantain and Silk, which cut in half longitudinally, inoculated with Foc-TR4. Plantain's rhizome showed no traces of brown discoloration in the lower and center regions, while Silk's rhizome developed extensive brown discoloration from 3 wpi, which associated with high Foc sensitivity. **c**, Schematic representation of the response of banana against Foc-TR4. **d**, Venn diagrams of differentially expressed genes at 1 wpi and 3 wpi of Plantain and Silk. **e**, Pathway distribution of the 199 differentially expressed genes involved in plant hormone signal transduction. Blue color indicates higher and orange color indicates lower relative expression in Plantain compared with Silk. **f**, Heatmap of genes at 1-5 wpi after inoculated with Foc-TR4 which from e. **g**, Phylogenetic tree of differentially expressed MYBs in Plantain with other known cell wall-associated MYB transcription factors. **h**, Mp\_B\_07G08030 (MYB) enhanced fluorescence intensity of LUC driven by the Mp\_A2\_01G04240 (PAL) and Mp\_A2\_10G20840 (HCT) promoter compared to the control. The mean  $\pm$  s.d. of three biological replicates is shown.



**Figure 5. Multi-omics differential analysis of carotenoids and starches metabolism.** **a**, Overview of the carotenoid synthesis pathway. Genes aligned horizontally in the heatmap indicate genes at five developmental stages in Plantain genomes. We divided the carotenoid synthesis pathway encoding genes into two groups designated as 'early' (grey background) and 'late', respectively. Low to high expression is indicated by a change in color from blue to red. PSY: phytoene synthase; PDS: phytoenedesaturase; ZISO:  $\epsilon$ -carotene isomerase; ZDS:  $\epsilon$ -carotenedesaturase; CRTISO: carotenoid isomerase; LCYE: lycopene  $\delta$ -cyclase; LCYB: lycopene  $\beta$ -cyclase; BCH:  $\beta$ -carotene hydroxylase; ECH:  $\epsilon$ -carotene hydroxylase. **b**, The barplot graph shows the gene expression profile (TPM) of CRTISO1 at five developmental stages in Plantain and Silk. The line graph shows changes of all carotenoid content. **c**, CDS sequence comparison of CRTISO in 11 species (E. gl, Utafun, Abaca, DH-PKW, Schizocarpa, Maia oa, DH-Pahang and Banksii). **d**, Overview of the starch synthesis and degradation pathway. GBSS: Granule-bound starch synthase; SSS: Soluble starch synthase; SBE: Starch branching enzyme; DBE: Starch debranching enzyme. AMY:  $\alpha$ -amylase; BMY:  $\beta$ -amylase; DPE: Starch phosphorylase. **e**, The bar graph shows the gene expression profile (TPM) at eight postharvest stages in Plantain and Silk. The other two graphs below show the starch hydrolysis of the fruit at 8 stages after harvest. **f**, The circular bar graph shows the gene numbers of 6 types of genes of 4 species (Plantain, Silk, DH-Pahang and DH-PKW) related to starch metabolism.