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» Abstract

13 Linking cis-regulatory sequences to target genes has been a long-standing
14  challenge. In this study, we introduce CREaTor, an attention-based deep neural
15 network designed to model cis-regulatory patterns for genomic elements up to 2Mb
16  from target genes. Coupled with a training strategy that predicts gene expression
17  from flanking candidate cis-regulatory elements (cCREs), CREaTor can model cell
18  type-specific cis-regulatory patterns in new cell types without prior knowledge of
19 cCRE-gene interactions or additional training. The zero-shot modeling capability,
20 combined with the use of RNA-seq and ChlIP-seq data only, allows for the readily
21  generalization of CREaTor to a broad range of cell types. Evaluation reveals that
22 CREaTor outperforms existing methods in capturing cCRE-gene interactions across
23 various distance ranges in held-out cell types. Further analysis indicates that the
24 superior performance of CREaTor can be attributed to its capacity to model regulatory
25 interactions at multiple levels, including the higher-order genome organizations that
26 govern cCRE activities as well as cCRE-gene interactions. Collectively, our findings
27 highlight CREaTor as a powerful tool for systematically investigating cis-regulatory
28 programs across various cell types, both in normal developmental processes and
29 disease-associated contexts.
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;s Background

36  Cell type-specific cis-regulatory programs allow specialized gene expression and cellular
37  functions in eukaryotic organisms during development and differentiation (1-3). Mutations
38 in cis-regulatory elements (CREs), though having no impact on protein sequences,
39  contribute to various diseases by disrupting the normal functionality of their target genes
40  (4-9). Decoding how CREs regulate gene expression coordinately in different cell types
41  may reveal the mechanisms of cell identity maintenance and hint at the origins of
42  developmental defects and human diseases.

43

44  However, linking candidate CREs (cCREs) to genes remains a substantial challenge.
45  Experimental assays such as Hi-C (10), capture Hi-C (11), and ChIA-PET (12) have been
46  deployed for cCRE-gene mapping, yet they measure physical proximities between
47  elements and genes instead of direct regulatory activities. Systematic evaluation of
48  activities of enhancers, a major type of CREs, becomes possible with CRISPR perturbation
49  tools most recently (13—15), but only a subset of enhancers can be evaluated due to the
50  great number of candidate enhancers in the genome (16,17). Meanwhile, the evaluations
51  are restricted to the cell types examined in the studies.

52

53  Computational-based data-driven methods have been proposed for enhancer regulation
54  prediction (18-22), but their performance and generalization ability are subject to limited
55  data on bona fide enhancer-gene interactions, the varying number of candidate enhancers
56  for different genes, and the complex nature of enhancer-gene regulation (7,23-25). Lack
57  of native context during modeling is another drawback commonly seen due to a trade-off
58  for computational feasibility. A typical case is the binary classification task where a
59  sequence pair of enhancer and promoter is given as input (18-20), which may only recover
60  regulation relationships mediated by conserved transcription factors universally present.
61

62 Interestingly, modeling studies on gene expression prediction from local genome
63  sequences showed that cCRE-gene interactions were implied in the designed neural
64  network architecture (26—28), suggesting an alternative approach for enhancer activity
65 modeling. However, since different cell types in the same organism share the same
66  reference genome, the sequence-based models such as Basenji2 (26) and Enformer (27),
67  which take reference genome as input, cannot predict the activities of cell type-specific cis-
68  regulatory sequences in cell types unseen by the model. While GraphReg (28) introduced
69 a model architecture that can be generalized to new cell types, the model's dependency
70  on 3D genomic data narrows its applicability, as such data is not readily available.

71
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72 To model cCRE-gene interactions and discover universal cis-regulatory patterns across
73 cell types, we developed a hierarchical deep learning model based on the self-attention
74  mechanism. The model named CREaTor (Cis-Regulatory Element auto Translator) utilizes
75  cCREs in open chromatin regions identified by Encyclopedia of DNA Elements (ENCODE)
76  together with ChIP-seqs of transcription factors and histone modifications (16,29) to predict
77  the expression level of target genes. In the design, attention blocks serve as key
78 components for accurate expression prediction, which is achieved by learning relationships
79  between input cCREs and genes, as well as cCREs and cCREs, during training. Therefore,
80 leveraging attention mechanisms and training on richly labeled data generated through
81  standardized experiments, we are able to model element interactions with a zero-shot
82  setting. In other words, the model can present cCRE-gene interactions without requiring
83  training on such data. Moreover, since CREaTor uses cCRE landscape and ChIP-seq
84 profiles as input, which differ between cell types, it can model CRE-gene interactions in
85  new cell types without additional training. Using dispersed elements instead of the entire
86  genomic context flanking each gene also greatly reduces computational costs for modeling.
87  Testing on a held-out cell line, we show that CREaTor can effectively model the interactions
88  between cis-regulatory sequences and target genes for accurate gene expression
89  prediction. Further analysis indicates that CREaTor learns higher-order genome
90 organization and cross-cell type regulatory mechanisms, which might explain its

91  exceptional performance in cell types unseen by the model.

» Results

93  CREaTor predicts cell type-specific gene expression in unseen cell types. CREaTor
94  consists of two transformer models at different resolutions (Fig. 1a and Extended Data Fig.
95  1). Transformer is a deep learning architecture that has been demonstrated as a powerful
96  tool for natural language processing (30-32), computer vision (33,34), and biological
97  modeling (27,35,36). A core component of a transformer is the self-attention module, which
98 extracts sequence-level information by modeling the interactions between elements at
99  different positions in the sequence (30). In CREaTor, the lower-level transformer (element
100  encoder) learns the latent representation for each cCRE from the DNA sequence and
101  chromatin states of the element itself, while the upper-level transformer (regulation encoder)
102  predicts gene expression from a collection of cCRE latent representations flanking the
103  target gene. Self-attention extracted from the regulation encoder is used to interpret the
104  cCRE-gene and cCRE-cCRE interactions.
105
106  We trained CREaTor on 19 human tissues and cell lines whose annotated cCRE

107  information was available in SCREEN Registry (16) (Supplementary Table 1). In each cell
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108  type, chr16 was left out for validation, chr8 and 9 were left out for testing (in-cell type test
109  chromosomes), and all other autosomes were used for training (Fig. 1b and Supplementary
110  Figure 1). By training the model with data from multiple cell types jointly, we expected the
111  model to learn general rules guiding gene regulation across cell types. Next, we evaluated
112  CREaTor’s performance on autosomes of the K562 cell line (cross-cell type test
113  chromosomes), which were unseen by the model, to demonstrate the generalizability of
114  our method (Fig.1b and Supplementary Figure 1). For the in-cell type test chromosomes,
115  CREaTor reached a mean correlation of 0.850 and 0.818 (Pearson r) for chr8 and 9
116  respectively (Fig.1c and Extended Data Table 1). While for the cross-cell type test
117 chromosomes, the correlations between observed and predicted gene expression on
118  different chromosomes ranged from 0.756 to 0.936, with a mean correlation of 0.902
119  (Pearson r) (Fig. 1c and Extended Data Table 2). Notably, the predictive accuracy of K562
120  chr8 and 9 (0.839 and 0.810 respectively, Pearson r) was comparable to that of in-cell type
121  test chromosomes, suggesting that CREaTor can predict gene expression efficiently from
122 cCREs in new cell types.

123

124  However, the performance gap between chr8/9 and other chromosomes in K562 is non-
125  trivial. We reasoned that the presence of housekeeping genes and several hematopoietic
126  cell types in training data alleviated the challenge for expression prediction on
127  chromosomes other than 8 and 9. To assess the generalizability of CREaTor more
128  rigorously, we next examined if CREaTor could make cell type-specific predictions. With
129  gene differential expression (GDE) analysis on paired data between K562 and each of the
130 19 cell types used for model training respectively, we identified 410 genes that were
131  differentially expressed in the K562 cell line (Methods). For a number of these genes,
132  including hematopoietic regulators KLF1 and TAL1 and hemoglobin subunit protein HBE1,
133  CREaTor made a prediction on rival with experimental quantifications (Extended Data Fig.
134  2). In addition, single-linkage clustering analysis demonstrated that the prediction on K562
135  differentially expressed genes was more similar to observed K562 expression compared
136  to other cell types (Pearson r=0.68, Fig. 1d).

137

138  To further demonstrate that the accurate prediction of K562 expression is not attributed to
139  the similarity between K562 and training cell types, we compared the predicted
140  expressions with 122 observed expression profiles of 20 distinct cell types. These profiles
141  included 12 profiles from 3 independent K562 RNA-seq experiments that our model had
142  not previously encountered. We visualized all expression profiles with Uniform Manifold
143 Approximation and Projection (UMAP) in a 2-dimensional space. For different chromosome
144  subsets, predicted expression consistently exhibits high similarity to K562, as opposed to
145  other cell types, including those sharing hematopoietic origins with K562 (Supplementary
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146 Figure 2). Also, we conducted leave-one-chromosome-out and leave-one-cell type-out
147  experiments to confirm that CREaTor’s superior performance was not limited to chr8-9 and
148 K562, respectively (Supplementary Figure 3 and Supplementary Table 2).

149

150 It has been reported that histone modifications and DNA openness proximal to gene
151  transcription start sites (TSS) are significantly correlated with active transcription (37). To
152  demonstrate that distal information contributes to model performance, we compared
153  models trained with cCREs up to 2kb, 5kb, 10kb, 100kb, or 1Mb away from the TSS of
154  target genes. Performance improved with increasing candidate window sizes (Extended
155  Data Fig. 3), suggesting that CREaTor predicts gene expression from both proximal and
156  distal cCREs. Also, this result indicates that distal cCREs are substantial for accurate
157  expression prediction, supporting the importance of long-range cis-regulatory interactions
158  in gene regulation. But meanwhile, it is worth noting that the model trained with cCREs up
159 to 2kb away from target genes performed significantly better than random guesses,
160  consistent with the knowledge that the proximal functional genomes and cCREs are closely
161  related to gene expression.

162

163  Self-attention reveals functional cCREs in unseen cell types. Attention weights
164  between cCREs and target genes extracted from CREaTor (Methods) may be exploited to
165 interpret the importance of each cCRE to genes. To test this hypothesis, we benchmarked
166 ~ CREaTor against 3 CRISPR-based experimental-validated K562 enhancer-target gene
167  datasets (13—15). To be noted, criteria for candidate enhancers vary in each study and few
168  enhancer-target gene pairs tested were shared among studies (Extended Data Fig. 4 and
169  Supplementary Table 3). Thus, we combined the experimental results and identified 1859
170  putative enhancers related to 328 genes that were tested by both the experimental
171  approaches and CREaTor across the K562 genome. CREaTor prioritizes positive
172  enhancer-gene pairs to negative ones with larger attention scores (auROC=0.834,
173 auPRC=0.620; Fig. 2a-b) and the performance is further improved when we adjusted the
174  attention scores with enhancer-gene genomic distances (auROC=0.843, auPRC=0.667;
175  Fig. 2a-b). In addition, we compared the scores derived from the attention weights of
176  CREaTor with a quantitative analysis of enhancer effects as described in a previous study
177 (13). In this study, the enhancer effect on gene expression was defined as the change in
178  gene expression upon enhancer knockdown using CRISPR perturbation. Consequently,
179  the quantitative effect is inversely related to the enhancer activity. In line with this
180  understanding, we observed a negative correlation, with a Spearman p of -0.269, between
181  the CREaTor scores and the quantitative observations (Fig. 2c), implying that CREaTor
182  captures quantitative effects of cCREs to genes.

183


https://doi.org/10.1101/2023.03.28.534267
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.28.534267; this version posted November 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

184  We also compared CREaTor with 4 methods previously used for cCRE-gene interaction
185  modeling: 1) Predictions based solely on genomic distances between cCREs and genes;
186  2) Predictions based on cCRE H3K27ac signals and cCRE-gene distances (approximate
187  version of the Activity-by-Contact (ABC) score(13)). These model-free approaches can
188  estimate activities of cCCREs spanning varying ranges without prior knowledge of cis-
189  regulatory programs in any cell types, or cell types with H3K27ac quantifications, which
190 align well with the setting of CREaTor. Evaluated on a comprehensive set of metrics,
191  CREaTor outperforms both methods at different distance groups (Fig. 2a-b and Extended
192 Data Fig. 5). In addition, we compared CREaTor to 2 state-of-the-art deep learning
193  approaches, 3) Enformer (27) and 4) GraphReg (28). Both Enformer and GraphReg,
194  trained with supervised gene expression prediction tasks, support zero-shot cCRE-gene
195 interaction prediction. However, Enformer’s architecture limits it from long-range enhancer-
196  gene interaction prediction, as the released Enformer model can only predict interactions
197  up to 200kb. Additionally, it cannot generalize to new cell types as it solely relies on
198 genomic sequences for predictions. To simulate prediction tasks in new cell types, we
199  adopted the cell-type-agnostic setting of Enformer (Methods). As expected, predicting
200  enhancer-gene interactions in new cell types with Enformer is not favorable (Fig. 2a-b and
201  Extended Data Fig. 5). GraphReg, on the other hand, predicts CAGE signals from 1D
202  epigenomic data and 3D genomic structures, allowing it to generalize to new cell types.
203  However, its dependency on 3D genomic structures and CAGE profiles narrows its
204  applicability. To evaluate GraphReg, we trained an enhanced GraphReg model using 9 cell
205  types and 16 types of epigenomic profiles from scratch and derived feature importance to
206  estimate enhancer activities in K562 as suggested by the original study (Methods). Our
207  results show that CREaTor greatly outperforms GraphReg (Fig. 2a-b and Extended Data
208  Fig. 5), suggesting the superiority of CREaTor’s design.

209

210  Next, cCRE-gene interactions discovered by CREaTor were further benchmarked against
211  a genome-wide Pol IlI-mediated ChIA-PET dataset (38). Compared with CRISPR
212  perturbation studies, ChIA-PET covers a broader range of genes and regulators, thus
213  capturing more comprehensive interactions between genes and regulators. We recovered
214 6, 132, 740 cCRE-gene pairs (both positive and negative) across the K562 genome from
215  ChlA-PET. To benchmark CREaTor and its counterparts, for each gene, we calculated
216 auROC and auPRC of the corresponding cCRE-gene pairs stratified by their relative
217  genomic distances. Among all, CREaTor shows the highest median auROC and auPRC
218  for gene collections at all distance groups and greatly outperforms Enformer and
219  GraphReg (Fig 2d-e). Strikingly, CREaTor performs substantially better at groups spanning
220  longer ranges.

221
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222  Since ChIA-PET captures physical proximities between genomic regions, false positives
223  exist when active CRE-gene pairs are recovered from ChIA-PET. To benchmark our
224  method more comprehensively, we calculated the precision and specificity scores for
225  different methods considering that these metrics are less impacted by false positives.
226  Consistently, CREaTor outperforms other methods (Extended Data Fig. 6), indicating that
227  CREaTor can capture cCRE-gene interactions efficiently from genomic features flanking
228  target genes in unseen cell types.

229

230  Lastly, we examined if our model recovered regulators of the oncogenic gene MYC (chr8:
231 127,735,434-127,742,951). cCREs of MYC disperse along genomic sequences to as far
232 as 2 Mb downstream MYC TSS and active MYC regulators in K562 were identified by
233  previous studies with various approaches(39—41). Therefore, we examined if CREaTor
234  could pinpoint these regulators accurately. The result indicates that CREaTor prioritizes
235  positive MYC cCREs with larger attention scores and captures active cCREs missed by
236  other predictive approaches (Fig. 2f). In addition, 2 groups of sharp peaks are observed
237  2Mb downstream MYC TSS (Fig. 2f), in concordance with the existence of 2 distal super-
238  enhancerregions of MYC. Since MYC is in both in- and cross-cell type test sets, we believe
239 that CREaTor has learned general rules guiding cCRE-gene interactions in different cell
240  types, rendering it an efficient tool for cCRE activity modeling in unseen cell types.

241

242  CREaTor captures chromatin domain boundaries in unseen cell types. Three-
243  dimensional (3D) chromatin folding allows physical interactions between distal cCCRE and
244  genes and the information can also guide gene regulation modeling (13,28,42). Without
245  incorporating 3D chromatin folding information in our model, we were curious to see if
246  CREaTor captured the topological structure of the genome, considering that CREaTor
247  precisely recovers cCRE-gene interactions even of long ranges.

248

249  Attention matrices extracted from the model imply not only the interactions between cCREs
250  and genes, but also relationships between cCRE-cCRE pairs. To examine if the attention
251  matrix reflects contact frequency between elements, we aggregated the attention matrix at
252  10kb resolution for each gene in K562 and compared the results to a high-resolution Hi-C
253  study (10). In addition to observing similar checkerboard patterns between the attention
254  matrix and Hi-C (Fig. 3a), we systematically evaluated the consistency between the
255  attention matrix and topologically associating domains (TADs) by analyzing insulation
256  scores (Methods). We calculated insulation scores from the attention matrix over 12,584
257 K562 TAD boundaries defined in a recent study (43). The average score across the
258  genome shows a clear insulation pattern on boundaries, similar to that calculated from the
259  Hi-C experiment (Fig. 3b). Meanwhile, no significant decrease over GM12878-specific TAD
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260  boundaries (43) is observed with insulation scores calculated from either K562 attention
261  matrix or K562 Hi-C (Fig. 3b), demonstrating that CREaTor captures K562-specific TAD
262  boundaries. Together, the results show that CREaTor can infer cell type-specific topological
263  structures of genomes in cells unseen by the model.

264

265  We reason that CREaTor infers genome structures by learning the insulating behaviors of
266  CTCF-bound elements. Consistently, we found that paired CTCF-bound insulators flanking
267  the same TAD domain showed significantly larger attention scores compared to either
268  unmatched insulator pairs spanning multiple TADs, or pairs involving non-insulator CTCF-
269  bound elements (Fig. 3c). Thus, CREaTor may predict gene expression and capture cCRE-
270  gene regulation efficiently by modeling topological patterns of the genome.

271

272  CREaTor implies directional regulation between cCREs. It is long proposed that
273  enhancers form hierarchical relationships with each other, yet the relationship is
274  challenging to be disentangled with biological experiments. For example, Carleton et al.
275  developed an enhancer interference technique (Enhancer-i) to study the combinational
276  effects of distal regulatory regions on genes (44). They showed the interdependence
277  between CISH-1 and CISH-2, two estrogen receptor a-bound enhancers of the cytokine
278  signaling suppressor gene CISH. However, the detailed mechanism between interactions
279  of CISH-1 and CISH-2 could not be elucidated. Here, we examined attention scores
280  between cCREs within CISH-1 and CISH-2 regions (denoted as Cr1 and Cr2 respectively)
281  and found that the attention from Cr1 to Cr2 is significantly larger than the other way around
282  (Fig.3f). To rule out potential distance bias, we examined attention score distribution of
283 5773 genes whose cCRE-gene distances were similar to Cr1-CISH and Cr2-CISH
284  (denoted as SDaCr1 and SdaCr2). Remarkably, no directional preference between
285  SDaCr2 and SDaCr2 was observed (Fig.3f). Therefore, our results indicate that there could
286  be a directional relationship between CISH1 and CISH2, which is driven by hierarchical
287  regulation of enhancers. We thus believe that with further development, CREaTor has the
288  potential to become a powerful tool for understanding the causal relationships within
289  enhancer networks.

290

291  cCRE representations learned by CREaTor suggest a new role of CTCF-bound
292 elements. To investigate how CREaTor perceives cCREs and their roles during gene
293  regulation, we clustered cCREs by the 256-dimensional cCRE representations extracted
294  from CREaTor and examined features enriched in each group.

295

296  While different cCRE types are enriched in different clusters (Fig. 4a-b), cCRE
297  representations learned by our model better capture functional variations of elements
298  compared to the classification of ENCODE. For instance, while cCREs are aggregated into
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299 6 clusters, both cluster 0 and cluster 1 are enriched with proximal enhancer-like elements,
300 cCREs that show enhancer-like signatures falling within 200bp of an annotated transcript
301  start site (TSS) (16). However, proximal enhancer-like elements in cluster 0 are enriched
302  for RNA polymerase Il (Pol Il) signals (Extended Fig. 7), markers of active transcription
303  events, compared to those in cluster 1. Since promoter-like elements are also enriched in
304  cluster 0 and enhancers are believed to be able to contribute to promoter activities (45),
305 we reason that CREaTor learns the discrepancies between enhancer-like elements of
306  different roles and therefore associates a subgroup of proximal enhancer-like elements
307  with promoters. Meanwhile, the fuzzy boundaries between clusters may indicate the
308  adaptable functions of elements for gene regulation captured by our model.

309

310 CTCF-only cCREs, which lack both enhancer-like signatures and promoter-like signatures,
311  are more isolated from other elements, consistent with their insulator and looping functions
312  (Fig. 4a). However, CTCF-only cCREs are clustered into 2 separate groups, while a
313  subgroup of CTCF-only cCREs is aggregated with distal enhancer-like elements in cluster
314 5 (Fig. 4b). Compared to other clusters, cluster 5 shows a significant enrichment of
315 H3K36me3 peaks (Fig. 4c), a histone modification associated with diverse functions in
316  conjugation with different types of epigenetic markers (42,46-50), indicating a higher
317  chromatin activity of these elements. Consistent with the result, genes close to CTCF-only
318 cCREs in cluster 5 (denoted as CTCF-H3K36me3 elements) show higher expression
319  values compared to those close to low H3K36me3 CTCF-only elements (Fig. 4d),
320  suggesting a more active role in gene transcription of CTCF-H3K36me3 elements.

321

322  Depletion of repressive histone modification H3K27me3 also supports the greater activity
323  of CTCF-H3K36me3 elements (Fig. 4e). Other from H3K36me3, CTCF-H3K36me3
324  elements are enriched with H3K79me2 and H4K20me1 (Fig. 4e), a pattern that has been
325  previously reported to be associated with active transcription and splicing of exons(46).
326  Meanwhile, CTCF-H3K36me3 elements show increased H3K4me1 and H2AFZ signals
327  (Fig. 4e), both of which are associated with enhanced transcription elongation(51,52).
328  Considering a majority of CTCF-H3K36me3 elements locate outside exon regions, we
329  propose that CTCF-H3K36me3 elements promote transcription elongation by serving as
330  binding hubs for various cis- and trans-regulatory elements (Fig. 4f), which are captured
331 by CREaTor for cross-cell type gene regulation modeling.

;32 Discussion

333  While profiling gene expressions and epigenetic modifications in various cell types is
334 feasible, systematical approaches profiling cell type-specific cis-regulatory patterns are
335  currently not achievable. As a result, deep learning techniques, despite greatly advancing
336  our understanding of gene regulation in many areas, face challenges in this area due to
337  thelack of training data. To overcome this challenge, we introduce the CREaTor framework.
338 By strategically selecting training tasks and incorporating attention mechanism, CREaTor
339 enables zero-shot cis-regulatory pattern modeling and cCRE-gene interaction prediction
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340  at ultra-long range. In addition, it can generalize to new cell types without requiring
341  additional training or relying on 3D genomic data, making CREaTor versatile and applicable
342  to a wide variety of cell types.

343

344  Comprehensive validation and benchmark experiments show that our model outperforms
345  alternative methods in modeling cCRE-gene interactions. Additionally, attention analysis
346  shows that CREaTor learns cell type-specific 3D genome interactions and insulation
347  behaviors, which play crucial roles in gene regulation, during gene expression prediction.
348  These results indicate that our model is able to capture the underlying principles that guide
349  cCRE-gene interactions across different types of cells, utilizing 1D features such as histone
350 modifications on the genome. Further experiments showcase that CREaTor captures
351  regulatory mechanisms at multiple levels. Aside from cCREs, CREaTor also learns gene
352 interpretations during modeling. Our model stratifies genes into distinct groups enriched
353  with different biological processes and molecular functions (Extended Data Fig. 8),
354  indicating that CREaTor has captured active pathways mediated by different transcription
355  factor programs, which allow cell type-specific gene regulation by binding to cCREs. These
356  analyses may explain how our model captures cis-regulatory patterns from a range of
357  cross-cell type gene expression predictions.

358

359  Except for modeling cross-cell type cis-regulatory patterns, the adoption of transformer
360  architecture has allowed for greater flexibility during application. For instance, the element
361 module in CREaTor can handle candidate regulators of different lengths. Also, the
362  regulation module allows the modeling of gene context with varying numbers of cCREs
363  spanning varying genomic ranges. In addition, despite 17 types of input features being
364 used for training, our model can still predict gene expression and infer cCRE-gene
365 interactions when some features are missing, though a lack of features may negatively
366  impact the performance of the model (Fig. 5a). Overall, this flexibility makes CREaTor more
367 adaptable to different situations compared to other methods.

368

369 In order to assess the impact of each input feature on predicting gene expression and
370 modeling cis-regulatory patterns, we conducted an ablation study by excluding individual
371  feature types from the model’s training. Our results revealed inconsistent performance
372  between different tasks - while genome sequence information is dispensable for successful
373  cell type-specific gene expression prediction, it has a moderate impact on the accuracy of
374  CRE-gene interaction inference (Fig. 5b). Likely due to complementary relationships
375  between different feature types, no single feature was found playing a dominant role in
376  CRE-gene interactions. However, the exclusion of any feature type leads to decreased
377 performance for CRE-gene interaction inference, and the model trained with a full
378  collection of features performs significantly better on the cCRE-gene interaction
379 classification task compared to all other settings (Fig. 5b), suggesting that utilization of
380 multiple types of features guarantees our model's performance across cell types and
381 CREaTor may have learned synergistic relationships between features for accurate cis-
382  regulatory pattern modeling. Among all, features that are known to be crucial for gene
383  regulation, such as CTCF, DNase, H3K4me3, H3K27ac, H3K9ac and EP300 show greater
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384 importance. Pol Il with enriched phosphorylated Ser5 in CTD is more important for gene
385  expression prediction and cCRE-gene interaction inference than its unphosphorylated form.
386  This could be explained by the active involvement of phosphorylated CTD in binding trans-
387  and cis-regulatory elements for dynamic transcription regulation. Evaluating the impact of
388 different Pol Il phosphorylation states on gene regulation modeling in the future might give
389  additional insight into their roles. Interestingly, the results imply a paradoxical role of
390 H3K36me3 in gene regulation. This may be due to the fact that the gene sets regulated by
391  H3K36me3 are not included in the CRISPR perturbation experiments.

392

393 It is worth pointing out that our model's performance is constrained by the limited
394  accessibility of functional genomic data, regardless of the features employed. Although the
395 ENCODE project provides various high-quality functional genomic data of many cell types,
396 the coverage is still limited due to the vast number of cell types, histone modifications, and
397  proteins binding to the genome. For example, cohesin, which regulates chromatin structure
398 by participating in the loop extrusion process, was not included in our model data at the
399  time of modeling due to the lack of data in most cell types. We believe that incorporating
400  such data would further improve the generalizability of our method.

401

402  Compared to previous approaches, CREaTor is able to capture distal cis-regulatory
403  patterns and infer cCRE-gene interactions spanning ultra-long distances. We believe that
404  one reason for this improvement is the fact that our model was trained using only cCREs.
405  However, it is also important to note that this approach may lead to bias and neglect of
406  atypical regulators, such as non-canonical enhancers and other low-H3K27ac regulatory
407  elements without typical enhancer chromatin features (53,54). We expect that an end-to-
408  end setting incorporating a deep learning module calling CREs directly from the genome
409  will alleviate the issue of bias and allow for a more comprehensive understanding of cis-
410  regulatory elements.

411

412  Finally, in the interest of simplicity and consistency with previous studies, we have chosen
413  to utilize reference genomes during the training process. However, it is important to note
414  that functional genomic data on ENCODE might have originated from cells with different
415  genomes. Specifically, cell lines may exhibit different nucleotide polymorphisms, structural
416  variations, and karyotypes. As previous studies have demonstrated the predictive
417  capability of genomic sequences in various tasks (26,27,55,56) and we have shown that
418  the absence of sequences negatively impacts the performance of cCRE-gene interaction
419 inference (Fig. 5a), we anticipate that improved model performance will be garnered by
420  considering the diverse variations and associated consequences of different cell types in
421  future work. Despite these limitations, we believe that CREaTor can serve as a powerful
422  tool for studying cell type-specific cis-regulatory patterns and gene regulation networks,
423 with further improvements to be made in the future.

424

425
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2 Methods

427  Model

428  Model architecture. The backbone of CREaTor is composed of two modules: (1) an
429  element module to extract features of cCREs and (2) a regulation module to model the
430  regulations between cCRE and genes.

431

432  CREaTor takes 200 cCREs from up- and down-stream of target gene TSS respectively as
433  input (Note: we have also tried taking cCREs within the £ 1Mb range of a gene TSS for
434  training. The outcomes of both strategies are comparable). Each element is represented
435 by its DNA in the form of one-hot encoding (A=[1,0,0,0,0], T=1[0,1,0,0, 0], C =10, 0,
436 1,0,0,G=10,0,0,1,0], N=[0, 0, 0, 0, 1]) and ChIP-seq/DNase-seq with read-depth
437  normalized signal or fold change over control, although the absence of ChIP-seqs can be
438  tolerated by our proposed framework. We map the input DNA and ChIP-seq/DNase-seq to
439  DNA embedding and ChIP-seq embedding through a linear projection to 256 channels
440  respectively. Then, we organize the feature embedding at each base pair (Emb,,) as the
441  sum of DNA embedding and ChlP-seq embedding.

442

443  The core of the element module is an element encoder based on transformer encoder
444  architecture. Each transformer encoder layer consists of a multi-head self-attention sub-
445 layer and a position-wise fully connected feed-forward network sub-layer®®. In the self-
446  attention sub-layer, scaled dot-product attentions are performed as follows: embeddings
447  calculate the query Q € R™% , key K € R™% , and value V € R™% through linear
448  projection where n is the number of embeddings, d,d, is the number of channels; the

T
449  attention weight is calculated by softmax(%) representing the attention between
k

450  pairwise; lastly, the value representing the semantics of all embeddings are aggregated
451  according to the attention weights as shown in the equations below. Feed-forward network
452  sub-layers introduce non-linearity and interact channel information. Since the transformer
453  encoder is a position-agnostic architecture, we apply a relative positional embedding onto
454 the attention weights to introduce positional information. We follow T5(57) to formulate the
455  position embedding 6, where P is the relative position between base pairs within
456  elements.

457
i (qu + bq)(ka + bk)T
458 Attention(x) = softmax( \/d_ +6(P))(xW, + b,)
k
459 FFN(x) = max(xWj + by, )W, + b,
460

461  We concatenate a learnable [CLS] token to Emb,, in the element encoder. The [CLS]
462  token adaptively attends Emb,, and we use its output as the representation of elements
463 (Emb,;.). The element encoder consists of 2 transformer encoder layers with 4 heads.
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464

465  The regulation module comprises a regulation encoder to model the interactions between
466  genes and cCREs and a prediction head for gene expression prediction.

467

468 Regulation encoder shares a similar architecture with element encoder, but with 4
469  transformer encoder layers and 4 attention heads. We concatenate [GENE] tokens and the
470  corresponding cCRE embeddings Emb,,, to formulate the input of regulation encoder. To
471  be noted, [GENE] tokens are initialized by shared learnable embeddings and different
472  genes are distinguished by their associated TSS positions. Additionally, to ensure proper
473  information flow, we mask out the attention weight between genes. Accordingly, [GENE]
474 tokens adaptively attend Emb,;,, and we use their output as the representation of genes
475  (Embgyey. ). Relative position P is calculated as the relative genomic distances of gene TSS
476  and elements.

477

478 At last, we apply a prediction head comprised of a linear projection and a soft plus
479  activation to predict the gene expression given gene representations Embg,,. output from
480  the regulation encoder.

481

482  Model training. We trained our model with a batch size of 8 for 50, 000 steps using
483  AdamW optimizer. For training stability, we warmed up the learning rate in the first 5, 000
484  steps from 0 to 1e-3 and linearly decayed it to 1e-8. Following previous work (26), we
485  calculated the loss between the ground-truth and predicted values through a Poisson
486  negative log-likelihood function. We also applied a gradient clip by norm with a maximum
487  norm of 1.0 and a dropout rate of 0.1.

488

489  We verified the robustness of our model with 5 random seeds.

490

491  Attention score. Attention logit matrices were extracted from each attention layer in the
492  Regulation Encoder. Both min-max and softmax normalization were applied based on
493  needs. For cCRE-gene interaction modeling, we focused on attention from gene to cCRE
494 only.

495

496  Training data

497  RNA expression, DNase-seq, and ChlP-seq files were downloaded from ENCODE

498  (https://www.encodeproject.org/, by October 2021). For better quality control, we used

499  experiments included in the reference human epigenomes (29) only (ENCODE-Reference
500  epigenome matrix). The complete list of data can be found in Supplementary Table 4.

501

502  RNA-seq processing. Total RNA-seq and polyA plus RNA-seq data in human biosamples
503 were downloaded from ENCODE. Released transcript quantifications mapped to the
504  GRCh38 sequences and annotated to GENCODE V29 were retained. Gene expression
505 level was calculated as the sum of transcript TPM. Log1p normalization was performed.
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506

507 DNA-seq and ChIP-seq processing. DNase-seq, histone ChlP-seq, and TF ChlP-seq
508 files of human biosamples mapped to the GRCh38 sequences were downloaded from
509 ENCODE. Archived files were ignored. We kept read-depth normalized signal files for
510 DNase-seq and fold change over control files for ChlP-seq.

511

512  c¢CREs. cCREs for different biosamples were downloaded from SCREEN Registry V3
513  (https://screen.encodeproject.org/, by October 2021). cCRE count for each biosample
514  ranges from 85248 to 138179 (Supplementary Table 1). DNase-only and Low-DNase
515 elements were removed. All elements were padded to 350bp for the convenience of

516  modeling, which is not mandatory.

517

518 Cell types. We selected human tissues, primary cells, cell lines, and in vitro differentiated
519  cells 1) with RNA-seq, DNase, CTCF ChIP-seq, H3K4me3 ChIP-seq, and H3K27ac ChIP-
520 seq data available on ENCODE and 2) with complete cCRE information on SCREEN
521  Registry V3.

522

523  CRE-gene interaction evaluation

524  Fulco et al. We downloaded the enhancer-gene interaction data from Supplementary
525  Table 6a of the original study (13). We converted genomic coordinates of candidate
526  enhancers from hg19 to hg38 using the liftover program of the UCSC Genome Browser
527  (https://genome.ucsc.edu/cgi-bin/hgLiftOver). Non-autosomal genes were removed.

528

529  Gasperini et al. We downloaded the data from Table S2 of the original study (14). We

530 converted genomic coordinates of candidate enhancers from hg19 to hg38 using the
531 liftover program of the UCSC Genome Browser. To generate gene-mapped negative
532  samples from the Gasperini dataset, we first selected target genes from the identified 664
533  enhancer-gene pairs, and then picked out candidate enhancers within the 1Mb region of
534  each target gene respectively from all enhancers screened. Non-autosomal genes were
535  removed.

536

537  Schraivogel et al. We downloaded the data from Supplementary Table 2 and 3 of the
538  original study (15). We converted genomic coordinates of candidate enhancers from hg19
539  to hg38 using the liftover program of the UCSC Genome Browser. To generate gene-
540 mapped negative samples from the Schraivogel dataset, we first selected target genes
541  from the identified 41 enhancer-gene pairs, and then picked out candidate enhancers
542  within the 1Mb region of each target gene respectively from all enhancers screened.

543
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544  ChIA-PET. We obtained the ChIA-PET data of K562 from the ENCODE portal
545  (ENCSR880DSH). To evaluate the model's performance, for each gene, we used a total of
546 400 regulators upstream and downstream as the evaluation dataset. To calculate the
547 cCRE-gene or cCRE-CRE interaction, for each pair of interacting sequences, we
548  calculated whether the reads pair intersected the gene and CRE, respectively. The gene
549  was considered to interact with the cCRE and regarded as a positive sample if crossed
550  and as a negative sample otherwise.

551

552  ABC score. ABC score was adapted from Fulco et al(13). To be more specific, we collected
553 the bigWig files of H3K27ac and DNase from ENCODE's ENCFF977KGH and
554  ENCFF4140GC, respectively, and converted them to bedGraph files with the UCSC tool
555  bigWigTobedGraph. For each cCRE, we determined its signal by calculating the sum of
556  the signals intersecting with it. Accordingly, we calculated the ABC score as the geometric
557  mean of the H3K27ac and DNase signals multiplied by the reciprocal of the distance
558  between the cCRE and the TSS (27).

559

560 Classification of cCRE-gene interaction by distance groups. For each gene, the
561 cCREs are divided into 4 groups (0-5kb, 5-50kb, 50-1000kb, 100-1000kb, 1000kb+)
562  according to their distances to gene TSS. Groups with less than 10 gene-CREs pairs were
563 filtered. auPRC and auROC for each group of each gene were calculated. For specificity
564  and precision, we used mean values as the cutoff for the classification of positive and
565  negative regulators.

566
567  Enformer(27). Pre-trained Enformer model was downloaded from
568 https://github.com/deepmind/deepmind-research/tree/master/enformer. Genomic

569 sequences flanking genes of interest were prepared following the original study’s
570  instructions. Gradient x input of candidate enhancers was calculated following the original
571  study’s instructions. To be pointed out, to simulate prediction tasks in new cell types, we
572  used the cell-type-agnostic setting during the analysis. More specifically, the gradient was
573  calculated and aggregated from all human tracks of the model.

574

575  GraphReg(28). Epi-GraphReg model was downloaded from
576  https://github.com/karbalayghareh/GraphReg. Genomic sequences and DNase-seq,

577  H3K27ac, H3K4me3 were prepared following the original study’s instructions. For a fair
578  comparison, we incorporated histone modifications and transcription factor (TF) binding
579  profiles used for CREaTor training as well (see Supplementary Table 4 for a full list). For
580 training, we sourced chromosomes from cell lines including GM12878, B cells, HeLa-S3,
581  MCF-7, fibroblast of dermis, CD14 positive monocyte, H1, HepG2, and keratinocyte
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582  (Supplementary Table 4c), deliberately excluding chromosomes Chr8, Chr9, and Chr16.
583 The CAGE data for these cell lines were downloaded from ENCODE, as detailed in
584  Supplementary Table 4c. We replaced the 3D genomic data with the reciprocal of the
585 genomic distances between the cCRE and the TSS. For cCRE-gene interaction
586  classification, we calculated saliency and integrated gradients for candidate enhancers
587  following the original study’s instructions. The feature attribution type led to the best
588  performance was used for comparison.

589

590 TAD prediction

591  Hi-C data processing. We obtained the long-range chromatin interactions of K562Hi-C
592  data from ENCODE (ENCSR545YBD). To estimate the interaction matrix with each cCRE
593  as a bin, the Hi-C pairs that intersected with each cCRE pair were added together.

594

595 Calculation of insulation score. We calculated the sum of the interactions in each bin
596  within 10kb as the Hi-C interaction matrix for 10kb resolution. A similar operation was
597  applied to the attention matrix. We summed the min-max-normalized attention matrix within
598 10kb windows as the attention matrix at 10kb resolution. We obtained the location of the
599  TAD boundary on K562 and GM12878 from the previous study (43). The interactions of
600 the 3*3 matrix were summarized at one bin from the diagonal (58) to represent the
601 insulation score for each TAD boundary. GM12878-specific TAD boundaries are genomics
602  regions called in GM12878 boundary file exclusively.

603

604  Grouping of CTCF-bound elements. For all cCREs showing positive CTCF binding
605  patterns, we determined whether they intersected with the TAD boundary from a previous
606  study (43). We considered the intersecting cCREs as anchors of the TAD boundaries, and
607  others as non-anchors. We extracted the attention scores between these CTCF-bound
608 cCREs and then divided the weights into various groups. Scores for anchor cCRE pairs on
609 the same TAD boundary were classified as “anchor-to-anchor”; scores between anchor
610  cCRE and non-anchor cCRE within the same TAD were classified as “anchor-to-non-
611  anchor”; scores for anchor cCREs on adjacent TADs were classified as “anchor-to-anchor
612  in adjacent TADs”; and scores for anchor cCREs more than one TAD apart were classified
613  as “anchor-to-anchor in remote TADs”.

614

615 Mapping of CISH enhancers. First, we obtained the two regulatory loci Cp1 and Cp2 of
616  CISH from the previous study(44) and converted their genomic coordinates from mm9 to
617 mm10 using the 11 ftover program of the UCSC Genome Browser. Then, for all cCREs
618  of CISH genes in K562, we determined which cCREs intersected with Cp1 and Cp2,

619  representing Cp1 and Cp2 respectively. Finally, we calculated the attention scores from
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620 Cp1to Cp2 in K562 cell line to determine the effect of Cp1 on Cp2; and from Cp2 to Cp1
621  to determine the effect of Cp2 on Cp1. The control background (SDaCp1 and SDaCp2)
622  consisted of interactions between cCREs with the same distance from Cp1 and Cp2 to
623  CISH to all protein-coding genes except CISH.

624

625 Kb562-specific genes. We obtained the expression data of each cell line's gene from
626 ENCODE (Supplementary Table 4a). Using the expression data of K562 as a control, we
627  extracted the count matrix of each other cell line by the function rsem-generate-data-
628 matrix of RSEM. These count matrices were then used to calculate differentially
629  expressed genes using the function rsem-run-ebsegq. After that, we screened the genes
630  with PPDE (posterior probability that a gene/transcript is differentially expressed) greater
631 than 95% as differentially expressed genes for K562 versus each cell line. Finally, the
632 intersection of these differential genes was considered K562-specific genes.

633

634  Representation clustering and visualization. First, we reduced the dimensionality of the
635  256-dimensional representations learned by our model with scanpy.tl.pca (default
636  parameters). After a neighborhold graph is calculated (scanpy.pp.neighbors,
637 n neighbors=20, n pcs=50), we clustered reduced representations with Leiden graph-
638  clustering method (scanpy.tl.leiden, resolution=0.5). The neighborhood graph
639  and clusters were then visualized using Uniform Manifold Approximation and Projection
640  (UMAP).

641

642  Data Availability

643 RNA expression, DNase-seq, ChlP-seq, Hi-C, CAGE and ChIA-PET files were
644  downloaded from https://www.encodeproject.org/ (Supplementary Table 4). cCREs for

645  different  biosamples were downloaded from SCREEN  Registry V3
646  (https://screen.encodeproject.org/). Both K562 TAD boundary and GM12878 TAD
647  boundary file were downloaded from
648  https://drive.google.com/drive/folders/15Rc6PhrrBjThwE-5dSyNX-ILELaUu6uG. CRISPR

649 perturbation experiments of enhancer-gene interactions were downloaded from reference

650  13-15 respectively.

651

652  Code Availability

653 The code for data processing, model training and evaluation are available at
654  https://github.com/DLS5-Omics/CREaTor.
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Figure 1. Accurate gene expression prediction with CREaTor. a) Schema of CREaTor. The model predicts target gene expression
from the flanking cCREs with a hierarchical transformer structure. Localization of cCREs was obtained from ENCODE consortium. A
combination of genomic sequences, chromatin openness, and a collection (3-13) of ChIP-seq profiles was used as input features for each
cCRE. b) Visualization of data split strategy: we trained our model on gene expression of 19 autosomes from 19 different cell lines and
tissues respectively. Genes on chr16 from the 19 cell lines and tissues were used for parameter tuning (validation), while genes on chr8,
9 were used for model evaluation (in-cell type test chromosomes). Genes from all autosomes in K562 (cross-cell type test chromosomes)
were detailedly evaluated to demonstrate the model’s ability on cross-cell type gene expression and regulation modeling. Also see in
Supplementary Figure 1. ¢) Pearson r between observed and predicted expression of genes. Left: Pearson r between observed and
predicted expressions of genes on cross-cell type test chromosomes. Right: Pearson r between observed and predicted expressions of
genes on in-cell type test chromosomes. Green and blue dots indicate chr8 and 9 respectively. See Extended Data Table 2 for results with
different random seeds. d) Clustering map of predicted and observed expression of K562 specific genes (calculated with RSME, see
Methods) in different cell types. The leftmost column is the predicted value, which is clustered with the K562 observed gene expression
data using the hierarchical clustering method. Expression values were transformed with log1p. Observed gene expression profiles from
different sources (with different experiment IDs on ENCODE) for the same cell type are calculated independently.
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Figure 2. Attention matrix of CREaTor implies cCRE-gene interactions. a-b) auROC (a) and auPRC (b) of CREaTor outperform its
counterparts on cCRE-gene pair classification. Attention (attn., yellow): normalized attention weights (genes to cCREs) in CREaTor.
Adjusted attention (adj. attn., red): attention scores / log10 (distance). H3K27ac/dist (blue): approximate of the ABC score. Distance
quantifies relative genomic distances between genes and cCREs. H3K27ac value of a cCRE is calculated as the sum of H3K27ac peak
values of the element. Labels (positive/negative) of cCRE-gene pairs were collected from 3 independent CRISPR perturbation experi-
ments. ¢) Attention scores derived from attention weights are significantly correlated with the effect of enhancer on gene expression
quantified by Fulco et al®®. As the quantification measures the change of target gene expression upon enhancer knock-down using
CRISPR perturbation, the quantitative effect values are invertsely related to enhancer activities. d-e) auPRC (d) and auROC (e) of
CREaTor and its counterparts on the classification of cCRE-gene pairs collected from a Pol-Il mediated ChlA-PET experiment. The
performance is evaluated for each gene and each distance group separately. Groups with <10 samples were filtered out. Center line,
median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. f) MYC locus showing predicted and
previously reported regulators in K562 cells. For CREaTor (red) and H3K27ac/distance (gray), peaks on the tracks represent the scores
of different cCRE regions. Enhancers track (red squares) denotes reported active regulators of MYC. Representative DNase, H3K4me3,
H3K27ac and CTCF tracks as well as ChlIA-PET interactions in K562, are also annotated.
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Figure 3. CREaTor captures hierarchically higher-order genome organizations. a) Example genomic regions showing the
similarity between attention matrix (above the diagnal) and Hi-C contact matrix (below the diagonal). Orange boxes indicate
TAD domains. b) Average insulation scores across the K562 genome at 10-kb resolution calculated from attention matrix and
Hi-C. Blue line and left y-axis: insulation scores of attention matrix. Pink line and right y-axis: the insulation scores of Hi-C. Solid
lines indicate insulation scores over K562 TAD boundaries and dashed lines indicate insulation scores over GM12878 boundar-
ies. The x-axis is centered on TAD boundaries. c) Upper panel: Statistics of attention weights between CTCF-bound element
pairs with different topological relationships. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquar-
tile range. Lower panel: illustration of CTCF-bound element pairs used for the analysis. The red triangle represents TAD
domains called from the Hi-C matrix (blue). d) Average attention scores between elements without normalization. p-value is
calculated with Mann-Whitney U Test.
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Figure 4. cCRE representations learned by CREaTor suggest a new role of CTCF-bound elements. a) Uniform Manifold Approxi-
mation and Projection (UMAP) of cCRE embeddings in K562. Upper: colored and numbered as clusters grouped by the Leiden
algorithm. Bottom: colored and labeled by element type. b) Composition of different element types in each cluster by percentage.
Proximal elements: elements falling within 200bp of an annotated TSS. Distal elements: elements more than 200bp from any annotated
TSS. Promoter-like: elements with high DNase and H3K4me3 signals. Enhancer-like: elements with high DNase and H3K27ac signals.
CTCF-only: elements with high DNase and CTCF signals, as well as low H3K4me3 and H3K27ac signals. c) Fold change of histone
marker peaks of given types of cCREs in cluster 5 with respect to those in other clusters. Top: all cCREs. Middle: distal enhancer-like
elements. Bottom: CTCF-only elements. d) Expression value (log1p) distribution of genes within 10kb of different types of CTCF-bound
elements. e) Average signals of H3K36me3, H3K79me2, H4K20me1, H2AFZ, H3K4me1 and H3K27me3 on different types of
CTCF-bound elements. f) lllustration for the proposed model of CTCF-H3K36me3 elements promoting transcription elongation.
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Figure 5. Feature ablation study demonstrates the importance of feature integration for modeling. a) auROC and auPRC of 4 different
models on cCRE-gene pair classification. Large (red): the model trained with 17 types of features. Medium (yellow): the model trained with 8
types of features (genomic sequence, DNase, CTCF, H3K27ac, H3K4me3, H3K9ac, EP300, and POLR2AphosphoS5). Small (blue): the
model trained with 5 types of features (genomic sequence, DNase, CTCF, H3K27ac, and H3K4me3). b) Large model trained with 17 types
of features outperforms other models on cCRE-gene interaction classification tasks. Minus signs indicate the following type of feature is
removed during model training. Labels (positive/negative) of cCRE-gene pairs were from the same source as Figure 2. The colors of dots
indicate the Pearson r between observed and predicted expression of K562-specific genes.
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Extended Data Figure 1 | Architecture of CREaTor. CREaTor is composed of two modules.
a) Element module encodes the representation of cCREs. We first map DNA and ChIP-
seg/DNase-seq to latent space through a linear projection respectively, and then combine them
through element-wise addition to obtain Emb,,, the feature embedding of each bp. We feed
the Emb,,s into the element encoder together with a [CLS] token. The [CLS] token adaptively
aggregates information from the Emb,,s in the element encoder. We use the output vector of
[CLS] token as the representation of the element, namely Emb,,. b) Regulation module
models the interaction between cCREs and genes. We concatenate the Emb,,, of cCREs
(denoted in blue and yellow) and the [GENE] tokens (denoted in red) as the input of the
regulation encoder. The [GENE] tokens interact with and are regulated by the cCREs in the
regulation encoder. We apply a linear projection with SoftPlus activation on the output vector of
[GENE] tokens to predict their expressions. The size of each component of the architecture is
shown as a tuple inside the block. The shape of the tensor at each step is denoted as a tuple
in the bottom right of the blocks.
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Extended Data Figure 2 | Prediction of K562 differentially expressed genes.
Representative examples of observed and predicted expression of genes KLF1, TAL1 and
HBE1 in 20 different types of cells. The dashed line indicates the predicted values.


https://doi.org/10.1101/2023.03.28.534267
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.28.534267; this version posted November 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1.0 1 . *
?1- *ﬂ I 2kb
0.9 .
- ns. " E S5kb
g { ¢+ mEEEm 10kb
3 0.7 v BN 100kb
% ¢ 2
0.6 o ! B 1Mb
0.5 1
train validation in-cell type cross-cell type
test test

Extended Data Figure 3 | Performance of CREaTor with cCREs up to 2kb, 5kb, 10kb,
100kb, or 1Mb away from the TSS of target genes. The training set includes chr1-7, 10-15,
and 17-22 in 19 cell types other than K562. The validation set includes chr16 in cell types other
than K562. The in-cell type test set includes chr8 and chr9 in cell types other than K562. Cross-
cell type test set represents all chromosomes in the K562 cell line. P values were computed
with the two-sided Mann—Whitney U test.
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Extended Data Figure 4 | Statistics of enhancer-gene interaction data from 3 CRISPRIi-
based studies. The statistics were performed on data after genomic coordinates liftover and
non-autosomosal data filtering. (a) The number of active and inactive enhancers tested by each
study. (b) Enhancer length distribution in each study. (c) Enhancer-gene TSS distance
distribution in each study. (d) Overlapped active enhancers in 3 studies. (e) The number of
enhancers tested for each gene in each study.
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Extended Data Figure 5 | auPRC and auROC of CREaTor and its counterparts on the
classification of cCRE-gene pairs collected from 3 independent CRISPR perturbation
experiments. cCRE-gene pairs are stratified by their relative genomics distances. The number
of positive/negative labels in each group is annotated at the bottom. Labels (positive/negative)
of cCRE-gene pairs were collected from CRISPR perturbation experiments.
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Extended Data Figure 6 | Specificity and precision scores of CREaTor and its
counterparts on cCRE-gene pair classification. Distance denotes the relative genomic
distance between cCREs and genes. The performance is evaluated for each gene and each
distance group separately. The H3K27ac value of a cCRE is calculated as the sum of the
H3K27ac peak values of the element. Positive/negative cutoff is set as mean values of attention
scores in each distance group. Labels (positive/negative) of cCRE-gene pairs were collected
from a Pol-Il mediated ChIA-PET experiment of K562.
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Extended Data Figure 7 | Average signals of RNA Pol Il on cCREs in cluster 0 and cluster
1 respectively. Upper: unphosphorylated form of Pol Il. Bottom: Pol [l CTD phospho Ser5.
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Extended Data Figure 8 | Gene representations learned by CREaTor can be clustered into
groups with different functions. a) Uniform Manifold Approximation and Projection (UMAP)
of gene embedding in K562, colored and numbered as clusters grouped by the Leiden algorithm.
b) Same as (a), but colored by gene expression levels. ¢) Functional annotation clustering with
the DAVID Gene Functional Classification Tool (DAVID, http://david.abcc.ncifcrf.gov) using
UniProtKB biological process keywords. Significantly enriched (adjusted p-value<0.05) groups
for genes in each cluster in (a) are shown. d) Functional annotation clustering with DAVID using
UniProtKB molecular function keywords. Significantly enriched (adjusted p-value<0.05) groups
for genes in each cluster in (a) are shown.
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