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Abstract 12 

Linking cis-regulatory sequences to target genes has been a long-standing 13 

challenge. In this study, we introduce CREaTor, an attention-based deep neural 14 

network designed to model cis-regulatory patterns for genomic elements up to 2Mb 15 

from target genes. Coupled with a training strategy that predicts gene expression 16 

from flanking candidate cis-regulatory elements (cCREs), CREaTor can model cell 17 

type-specific cis-regulatory patterns in new cell types without prior knowledge of 18 

cCRE-gene interactions or additional training. The zero-shot modeling capability, 19 

combined with the use of RNA-seq and ChIP-seq data only, allows for the readily 20 

generalization of CREaTor to a broad range of cell types. Evaluation reveals that 21 

CREaTor outperforms existing methods in capturing cCRE-gene interactions across 22 

various distance ranges in held-out cell types. Further analysis indicates that the 23 

superior performance of CREaTor can be attributed to its capacity to model regulatory 24 

interactions at multiple levels, including the higher-order genome organizations that 25 

govern cCRE activities as well as cCRE-gene interactions. Collectively, our findings 26 

highlight CREaTor as a powerful tool for systematically investigating cis-regulatory 27 

programs across various cell types, both in normal developmental processes and 28 

disease-associated contexts. 29 

 30 
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Background 35 

Cell type-specific cis-regulatory programs allow specialized gene expression and cellular 36 

functions in eukaryotic organisms during development and differentiation (1–3). Mutations 37 

in cis-regulatory elements (CREs), though having no impact on protein sequences, 38 

contribute to various diseases by disrupting the normal functionality of their target genes 39 

(4–9). Decoding how CREs regulate gene expression coordinately in different cell types 40 

may reveal the mechanisms of cell identity maintenance and hint at the origins of 41 

developmental defects and human diseases. 42 

 43 

However, linking candidate CREs (cCREs) to genes remains a substantial challenge. 44 

Experimental assays such as Hi-C (10), capture Hi-C (11), and ChIA-PET (12) have been 45 

deployed for cCRE-gene mapping, yet they measure physical proximities between 46 

elements and genes instead of direct regulatory activities. Systematic evaluation of 47 

activities of enhancers, a major type of CREs, becomes possible with CRISPR perturbation 48 

tools most recently (13–15), but only a subset of enhancers can be evaluated due to the 49 

great number of candidate enhancers in the genome (16,17). Meanwhile, the evaluations 50 

are restricted to the cell types examined in the studies.  51 

 52 

Computational-based data-driven methods have been proposed for enhancer regulation 53 

prediction (18–22), but their performance and generalization ability are subject to limited 54 

data on bona fide enhancer-gene interactions, the varying number of candidate enhancers 55 

for different genes, and the complex nature of enhancer-gene regulation (7,23–25). Lack 56 

of native context during modeling is another drawback commonly seen due to a trade-off 57 

for computational feasibility. A typical case is the binary classification task where a 58 

sequence pair of enhancer and promoter is given as input (18–20), which may only recover 59 

regulation relationships mediated by conserved transcription factors universally present.  60 

 61 

Interestingly, modeling studies on gene expression prediction from local genome 62 

sequences showed that cCRE-gene interactions were implied in the designed neural 63 

network architecture (26–28), suggesting an alternative approach for enhancer activity 64 

modeling. However, since different cell types in the same organism share the same 65 

reference genome, the sequence-based models such as Basenji2 (26) and Enformer (27), 66 

which take reference genome as input, cannot predict the activities of cell type-specific cis-67 

regulatory sequences in cell types unseen by the model. While GraphReg (28) introduced 68 

a model architecture that can be generalized to new cell types, the model’s dependency 69 

on 3D genomic data narrows its applicability, as such data is not readily available. 70 

 71 
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To model cCRE-gene interactions and discover universal cis-regulatory patterns across 72 

cell types, we developed a hierarchical deep learning model based on the self-attention 73 

mechanism. The model named CREaTor (Cis-Regulatory Element auto Translator) utilizes 74 

cCREs in open chromatin regions identified by Encyclopedia of DNA Elements (ENCODE) 75 

together with ChIP-seqs of transcription factors and histone modifications (16,29) to predict 76 

the expression level of target genes. In the design, attention blocks serve as key 77 

components for accurate expression prediction, which is achieved by learning relationships 78 

between input cCREs and genes, as well as cCREs and cCREs, during training. Therefore, 79 

leveraging attention mechanisms and training on richly labeled data generated through 80 

standardized experiments, we are able to model element interactions with a zero-shot 81 

setting. In other words, the model can present cCRE-gene interactions without requiring 82 

training on such data. Moreover, since CREaTor uses cCRE landscape and ChIP-seq 83 

profiles as input, which differ between cell types, it can model CRE-gene interactions in 84 

new cell types without additional training. Using dispersed elements instead of the entire 85 

genomic context flanking each gene also greatly reduces computational costs for modeling. 86 

Testing on a held-out cell line, we show that CREaTor can effectively model the interactions 87 

between cis-regulatory sequences and target genes for accurate gene expression 88 

prediction. Further analysis indicates that CREaTor learns higher-order genome 89 

organization and cross-cell type regulatory mechanisms, which might explain its 90 

exceptional performance in cell types unseen by the model.  91 

Results 92 

CREaTor predicts cell type-specific gene expression in unseen cell types. CREaTor 93 

consists of two transformer models at different resolutions (Fig. 1a and Extended Data Fig. 94 

1). Transformer is a deep learning architecture that has been demonstrated as a powerful 95 

tool for natural language processing (30–32), computer vision (33,34), and biological 96 

modeling (27,35,36). A core component of a transformer is the self-attention module, which 97 

extracts sequence-level information by modeling the interactions between elements at 98 

different positions in the sequence (30). In CREaTor, the lower-level transformer (element 99 

encoder) learns the latent representation for each cCRE from the DNA sequence and 100 

chromatin states of the element itself, while the upper-level transformer (regulation encoder) 101 

predicts gene expression from a collection of cCRE latent representations flanking the 102 

target gene. Self-attention extracted from the regulation encoder is used to interpret the 103 

cCRE-gene and cCRE-cCRE interactions. 104 

 105 

We trained CREaTor on 19 human tissues and cell lines whose annotated cCRE 106 

information was available in SCREEN Registry (16) (Supplementary Table 1). In each cell 107 
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type, chr16 was left out for validation, chr8 and 9 were left out for testing (in-cell type test 108 

chromosomes), and all other autosomes were used for training (Fig. 1b and Supplementary 109 

Figure 1). By training the model with data from multiple cell types jointly, we expected the 110 

model to learn general rules guiding gene regulation across cell types. Next, we evaluated 111 

CREaTor’s performance on autosomes of the K562 cell line (cross-cell type test 112 

chromosomes), which were unseen by the model, to demonstrate the generalizability of 113 

our method (Fig.1b and Supplementary Figure 1). For the in-cell type test chromosomes, 114 

CREaTor reached a mean correlation of 0.850 and 0.818 (Pearson r) for chr8 and 9 115 

respectively (Fig.1c and Extended Data Table 1). While for the cross-cell type test 116 

chromosomes, the correlations between observed and predicted gene expression on 117 

different chromosomes ranged from 0.756 to 0.936, with a mean correlation of 0.902 118 

(Pearson r) (Fig. 1c and Extended Data Table 2). Notably, the predictive accuracy of K562 119 

chr8 and 9 (0.839 and 0.810 respectively, Pearson r) was comparable to that of in-cell type 120 

test chromosomes, suggesting that CREaTor can predict gene expression efficiently from 121 

cCREs in new cell types.  122 

 123 

However, the performance gap between chr8/9 and other chromosomes in K562 is non-124 

trivial. We reasoned that the presence of housekeeping genes and several hematopoietic 125 

cell types in training data alleviated the challenge for expression prediction on 126 

chromosomes other than 8 and 9. To assess the generalizability of CREaTor more 127 

rigorously, we next examined if CREaTor could make cell type-specific predictions. With 128 

gene differential expression (GDE) analysis on paired data between K562 and each of the 129 

19 cell types used for model training respectively, we identified 410 genes that were 130 

differentially expressed in the K562 cell line (Methods). For a number of these genes, 131 

including hematopoietic regulators KLF1 and TAL1 and hemoglobin subunit protein HBE1, 132 

CREaTor made a prediction on rival with experimental quantifications (Extended Data Fig. 133 

2). In addition, single-linkage clustering analysis demonstrated that the prediction on K562 134 

differentially expressed genes was more similar to observed K562 expression compared 135 

to other cell types (Pearson r=0.68, Fig. 1d). 136 

 137 

To further demonstrate that the accurate prediction of K562 expression is not attributed to 138 

the similarity between K562 and training cell types, we compared the predicted 139 

expressions with 122 observed expression profiles of 20 distinct cell types. These profiles 140 

included 12 profiles from 3 independent K562 RNA-seq experiments that our model had 141 

not previously encountered. We visualized all expression profiles with Uniform Manifold 142 

Approximation and Projection (UMAP) in a 2-dimensional space. For different chromosome 143 

subsets, predicted expression consistently exhibits high similarity to K562, as opposed to 144 

other cell types, including those sharing hematopoietic origins with K562 (Supplementary 145 
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Figure 2). Also, we conducted leave-one-chromosome-out and leave-one-cell type-out 146 

experiments to confirm that CREaTor’s superior performance was not limited to chr8-9 and 147 

K562, respectively (Supplementary Figure 3 and Supplementary Table 2). 148 

 149 

It has been reported that histone modifications and DNA openness proximal to gene 150 

transcription start sites (TSS) are significantly correlated with active transcription (37). To 151 

demonstrate that distal information contributes to model performance, we compared 152 

models trained with cCREs up to 2kb, 5kb, 10kb, 100kb, or 1Mb away from the TSS of 153 

target genes. Performance improved with increasing candidate window sizes (Extended 154 

Data Fig. 3), suggesting that CREaTor predicts gene expression from both proximal and 155 

distal cCREs. Also, this result indicates that distal cCREs are substantial for accurate 156 

expression prediction, supporting the importance of long-range cis-regulatory interactions 157 

in gene regulation. But meanwhile, it is worth noting that the model trained with cCREs up 158 

to 2kb away from target genes performed significantly better than random guesses, 159 

consistent with the knowledge that the proximal functional genomes and cCREs are closely 160 

related to gene expression. 161 

 162 

Self-attention reveals functional cCREs in unseen cell types. Attention weights 163 

between cCREs and target genes extracted from CREaTor (Methods) may be exploited to 164 

interpret the importance of each cCRE to genes. To test this hypothesis, we benchmarked 165 

CREaTor against 3 CRISPR-based experimental-validated K562 enhancer-target gene 166 

datasets (13–15). To be noted, criteria for candidate enhancers vary in each study and few 167 

enhancer-target gene pairs tested were shared among studies (Extended Data Fig. 4 and 168 

Supplementary Table 3). Thus, we combined the experimental results and identified 1859 169 

putative enhancers related to 328 genes that were tested by both the experimental 170 

approaches and CREaTor across the K562 genome. CREaTor prioritizes positive 171 

enhancer-gene pairs to negative ones with larger attention scores (auROC=0.834, 172 

auPRC=0.620; Fig. 2a-b) and the performance is further improved when we adjusted the 173 

attention scores with enhancer-gene genomic distances (auROC=0.843, auPRC=0.667; 174 

Fig. 2a-b). In addition, we compared the scores derived from the attention weights of 175 

CREaTor with a quantitative analysis of enhancer effects as described in a previous study 176 

(13). In this study, the enhancer effect on gene expression was defined as the change in 177 

gene expression upon enhancer knockdown using CRISPR perturbation. Consequently, 178 

the quantitative effect is inversely related to the enhancer activity. In line with this 179 

understanding, we observed a negative correlation, with a Spearman ρ of -0.269, between 180 

the CREaTor scores and the quantitative observations (Fig. 2c), implying that CREaTor 181 

captures quantitative effects of cCREs to genes. 182 

 183 
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We also compared CREaTor with 4 methods previously used for cCRE-gene interaction 184 

modeling: 1) Predictions based solely on genomic distances between cCREs and genes; 185 

2) Predictions based on cCRE H3K27ac signals and cCRE-gene distances (approximate 186 

version of the Activity-by-Contact (ABC) score(13)). These model-free approaches can 187 

estimate activities of cCREs spanning varying ranges without prior knowledge of cis-188 

regulatory programs in any cell types, or cell types with H3K27ac quantifications, which 189 

align well with the setting of CREaTor. Evaluated on a comprehensive set of metrics, 190 

CREaTor outperforms both methods at different distance groups (Fig. 2a-b and Extended 191 

Data Fig. 5). In addition, we compared CREaTor to 2 state-of-the-art deep learning 192 

approaches, 3) Enformer (27) and 4) GraphReg (28). Both Enformer and GraphReg, 193 

trained with supervised gene expression prediction tasks, support zero-shot cCRE-gene 194 

interaction prediction. However, Enformer’s architecture limits it from long-range enhancer-195 

gene interaction prediction, as the released Enformer model can only predict interactions 196 

up to 200kb. Additionally, it cannot generalize to new cell types as it solely relies on 197 

genomic sequences for predictions. To simulate prediction tasks in new cell types, we 198 

adopted the cell-type-agnostic setting of Enformer (Methods). As expected, predicting 199 

enhancer-gene interactions in new cell types with Enformer is not favorable (Fig. 2a-b and 200 

Extended Data Fig. 5). GraphReg, on the other hand, predicts CAGE signals from 1D 201 

epigenomic data and 3D genomic structures, allowing it to generalize to new cell types. 202 

However, its dependency on 3D genomic structures and CAGE profiles narrows its 203 

applicability. To evaluate GraphReg, we trained an enhanced GraphReg model using 9 cell 204 

types and 16 types of epigenomic profiles from scratch and derived feature importance to 205 

estimate enhancer activities in K562 as suggested by the original study (Methods). Our 206 

results show that CREaTor greatly outperforms GraphReg (Fig. 2a-b and Extended Data 207 

Fig. 5), suggesting the superiority of CREaTor’s design.  208 

 209 

Next, cCRE-gene interactions discovered by CREaTor were further benchmarked against 210 

a genome-wide Pol II-mediated ChIA-PET dataset (38). Compared with CRISPR 211 

perturbation studies, ChIA-PET covers a broader range of genes and regulators, thus 212 

capturing more comprehensive interactions between genes and regulators. We recovered 213 

6, 132, 740 cCRE-gene pairs (both positive and negative) across the K562 genome from 214 

ChIA-PET. To benchmark CREaTor and its counterparts, for each gene, we calculated 215 

auROC and auPRC of the corresponding cCRE-gene pairs stratified by their relative 216 

genomic distances. Among all, CREaTor shows the highest median auROC and auPRC 217 

for gene collections at all distance groups and greatly outperforms Enformer and 218 

GraphReg (Fig 2d-e). Strikingly, CREaTor performs substantially better at groups spanning 219 

longer ranges. 220 

 221 
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Since ChIA-PET captures physical proximities between genomic regions, false positives 222 

exist when active CRE-gene pairs are recovered from ChIA-PET. To benchmark our 223 

method more comprehensively, we calculated the precision and specificity scores for 224 

different methods considering that these metrics are less impacted by false positives. 225 

Consistently, CREaTor outperforms other methods (Extended Data Fig. 6), indicating that 226 

CREaTor can capture cCRE-gene interactions efficiently from genomic features flanking 227 

target genes in unseen cell types.  228 

 229 

Lastly, we examined if our model recovered regulators of the oncogenic gene MYC (chr8: 230 

127,735,434-127,742,951). cCREs of MYC disperse along genomic sequences to as far 231 

as 2 Mb downstream MYC TSS and active MYC regulators in K562 were identified by 232 

previous studies with various approaches(39–41). Therefore, we examined if CREaTor 233 

could pinpoint these regulators accurately. The result indicates that CREaTor prioritizes 234 

positive MYC cCREs with larger attention scores and captures active cCREs missed by 235 

other predictive approaches (Fig. 2f). In addition, 2 groups of sharp peaks are observed 236 

2Mb downstream MYC TSS (Fig. 2f), in concordance with the existence of 2 distal super-237 

enhancer regions of MYC. Since MYC is in both in- and cross-cell type test sets, we believe 238 

that CREaTor has learned general rules guiding cCRE-gene interactions in different cell 239 

types, rendering it an efficient tool for cCRE activity modeling in unseen cell types. 240 

 241 

CREaTor captures chromatin domain boundaries in unseen cell types. Three-242 

dimensional (3D) chromatin folding allows physical interactions between distal cCRE and 243 

genes and the information can also guide gene regulation modeling (13,28,42). Without 244 

incorporating 3D chromatin folding information in our model, we were curious to see if 245 

CREaTor captured the topological structure of the genome, considering that CREaTor 246 

precisely recovers cCRE-gene interactions even of long ranges.  247 

 248 

Attention matrices extracted from the model imply not only the interactions between cCREs 249 

and genes, but also relationships between cCRE-cCRE pairs. To examine if the attention 250 

matrix reflects contact frequency between elements, we aggregated the attention matrix at 251 

10kb resolution for each gene in K562 and compared the results to a high-resolution Hi-C 252 

study (10). In addition to observing similar checkerboard patterns between the attention 253 

matrix and Hi-C (Fig. 3a), we systematically evaluated the consistency between the 254 

attention matrix and topologically associating domains (TADs) by analyzing insulation 255 

scores (Methods). We calculated insulation scores from the attention matrix over 12,584 256 

K562 TAD boundaries defined in a recent study (43). The average score across the 257 

genome shows a clear insulation pattern on boundaries, similar to that calculated from the 258 

Hi-C experiment (Fig. 3b). Meanwhile, no significant decrease over GM12878-specific TAD 259 
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boundaries (43) is observed with insulation scores calculated from either K562 attention 260 

matrix or K562 Hi-C (Fig. 3b), demonstrating that CREaTor captures K562-specific TAD 261 

boundaries. Together, the results show that CREaTor can infer cell type-specific topological 262 

structures of genomes in cells unseen by the model. 263 

 264 

We reason that CREaTor infers genome structures by learning the insulating behaviors of 265 

CTCF-bound elements. Consistently, we found that paired CTCF-bound insulators flanking 266 

the same TAD domain showed significantly larger attention scores compared to either 267 

unmatched insulator pairs spanning multiple TADs, or pairs involving non-insulator CTCF-268 

bound elements (Fig. 3c). Thus, CREaTor may predict gene expression and capture cCRE-269 

gene regulation efficiently by modeling topological patterns of the genome.  270 

 271 

CREaTor implies directional regulation between cCREs. It is long proposed that 272 

enhancers form hierarchical relationships with each other, yet the relationship is 273 

challenging to be disentangled with biological experiments. For example, Carleton et al. 274 

developed an enhancer interference technique (Enhancer-i) to study the combinational 275 

effects of distal regulatory regions on genes (44). They showed the interdependence 276 

between CISH-1 and CISH-2, two estrogen receptor α-bound enhancers of the cytokine 277 

signaling suppressor gene CISH. However, the detailed mechanism between interactions 278 

of CISH-1 and CISH-2 could not be elucidated. Here, we examined attention scores 279 

between cCREs within CISH-1 and CISH-2 regions (denoted as Cr1 and Cr2 respectively) 280 

and found that the attention from Cr1 to Cr2 is significantly larger than the other way around 281 

(Fig.3f). To rule out potential distance bias, we examined attention score distribution of 282 

5773 genes whose cCRE-gene distances were similar to Cr1-CISH and Cr2-CISH 283 

(denoted as SDaCr1 and SdaCr2). Remarkably, no directional preference between 284 

SDaCr2 and SDaCr2 was observed (Fig.3f). Therefore, our results indicate that there could 285 

be a directional relationship between CISH1 and CISH2, which is driven by hierarchical 286 

regulation of enhancers. We thus believe that with further development, CREaTor has the 287 

potential to become a powerful tool for understanding the causal relationships within 288 

enhancer networks. 289 

 290 
cCRE representations learned by CREaTor suggest a new role of CTCF-bound 291 
elements. To investigate how CREaTor perceives cCREs and their roles during gene 292 
regulation, we clustered cCREs by the 256-dimensional cCRE representations extracted 293 
from CREaTor and examined features enriched in each group.  294 
 295 
While different cCRE types are enriched in different clusters (Fig. 4a-b), cCRE 296 
representations learned by our model better capture functional variations of elements 297 
compared to the classification of ENCODE. For instance, while cCREs are aggregated into 298 
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6 clusters, both cluster 0 and cluster 1 are enriched with proximal enhancer-like elements, 299 
cCREs that show enhancer-like signatures falling within 200bp of an annotated transcript 300 
start site (TSS) (16). However, proximal enhancer-like elements in cluster 0 are enriched 301 
for RNA polymerase II (Pol II) signals (Extended Fig. 7), markers of active transcription 302 
events, compared to those in cluster 1. Since promoter-like elements are also enriched in 303 
cluster 0 and enhancers are believed to be able to contribute to promoter activities (45), 304 
we reason that CREaTor learns the discrepancies between enhancer-like elements of 305 
different roles and therefore associates a subgroup of proximal enhancer-like elements 306 
with promoters. Meanwhile, the fuzzy boundaries between clusters may indicate the 307 
adaptable functions of elements for gene regulation captured by our model.  308 
 309 
CTCF-only cCREs, which lack both enhancer-like signatures and promoter-like signatures, 310 
are more isolated from other elements, consistent with their insulator and looping functions 311 
(Fig. 4a). However, CTCF-only cCREs are clustered into 2 separate groups, while a 312 
subgroup of CTCF-only cCREs is aggregated with distal enhancer-like elements in cluster 313 
5 (Fig. 4b). Compared to other clusters, cluster 5 shows a significant enrichment of 314 
H3K36me3 peaks (Fig. 4c), a histone modification associated with diverse functions in 315 
conjugation with different types of epigenetic markers (42,46–50), indicating a higher 316 
chromatin activity of these elements. Consistent with the result, genes close to CTCF-only 317 
cCREs in cluster 5 (denoted as CTCF-H3K36me3 elements) show higher expression 318 
values compared to those close to low H3K36me3 CTCF-only elements (Fig. 4d), 319 
suggesting a more active role in gene transcription of CTCF-H3K36me3 elements. 320 
 321 
Depletion of repressive histone modification H3K27me3 also supports the greater activity 322 
of CTCF-H3K36me3 elements (Fig. 4e). Other from H3K36me3, CTCF-H3K36me3 323 
elements are enriched with H3K79me2 and H4K20me1 (Fig. 4e), a pattern that has been 324 
previously reported to be associated with active transcription and splicing of exons(46). 325 
Meanwhile, CTCF-H3K36me3 elements show increased H3K4me1 and H2AFZ signals 326 
(Fig. 4e), both of which are associated with enhanced transcription elongation(51,52). 327 
Considering a majority of CTCF-H3K36me3 elements locate outside exon regions, we 328 
propose that CTCF-H3K36me3 elements promote transcription elongation by serving as 329 
binding hubs for various cis- and trans-regulatory elements (Fig. 4f), which are captured 330 
by CREaTor for cross-cell type gene regulation modeling. 331 

Discussion 332 

While profiling gene expressions and epigenetic modifications in various cell types is 333 
feasible, systematical approaches profiling cell type-specific cis-regulatory patterns are 334 
currently not achievable. As a result, deep learning techniques, despite greatly advancing 335 
our understanding of gene regulation in many areas, face challenges in this area due to 336 
the lack of training data. To overcome this challenge, we introduce the CREaTor framework. 337 
By strategically selecting training tasks and incorporating attention mechanism, CREaTor 338 
enables zero-shot cis-regulatory pattern modeling and cCRE-gene interaction prediction 339 
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at ultra-long range. In addition, it can generalize to new cell types without requiring 340 
additional training or relying on 3D genomic data, making CREaTor versatile and applicable 341 
to a wide variety of cell types. 342 
 343 
Comprehensive validation and benchmark experiments show that our model outperforms 344 
alternative methods in modeling cCRE-gene interactions. Additionally, attention analysis 345 
shows that CREaTor learns cell type-specific 3D genome interactions and insulation 346 
behaviors, which play crucial roles in gene regulation, during gene expression prediction. 347 
These results indicate that our model is able to capture the underlying principles that guide 348 
cCRE-gene interactions across different types of cells, utilizing 1D features such as histone 349 
modifications on the genome. Further experiments showcase that CREaTor captures 350 
regulatory mechanisms at multiple levels. Aside from cCREs, CREaTor also learns gene 351 
interpretations during modeling. Our model stratifies genes into distinct groups enriched 352 
with different biological processes and molecular functions (Extended Data Fig. 8), 353 
indicating that CREaTor has captured active pathways mediated by different transcription 354 
factor programs, which allow cell type-specific gene regulation by binding to cCREs. These 355 
analyses may explain how our model captures cis-regulatory patterns from a range of 356 
cross-cell type gene expression predictions. 357 
 358 
Except for modeling cross-cell type cis-regulatory patterns, the adoption of transformer 359 
architecture has allowed for greater flexibility during application. For instance, the element 360 
module in CREaTor can handle candidate regulators of different lengths. Also, the 361 
regulation module allows the modeling of gene context with varying numbers of cCREs 362 
spanning varying genomic ranges. In addition, despite 17 types of input features being 363 
used for training, our model can still predict gene expression and infer cCRE-gene 364 
interactions when some features are missing, though a lack of features may negatively 365 
impact the performance of the model (Fig. 5a). Overall, this flexibility makes CREaTor more 366 
adaptable to different situations compared to other methods.  367 
 368 
In order to assess the impact of each input feature on predicting gene expression and 369 
modeling cis-regulatory patterns, we conducted an ablation study by excluding individual 370 
feature types from the model’s training. Our results revealed inconsistent performance 371 
between different tasks - while genome sequence information is dispensable for successful 372 
cell type-specific gene expression prediction, it has a moderate impact on the accuracy of 373 
CRE-gene interaction inference (Fig. 5b). Likely due to complementary relationships 374 
between different feature types, no single feature was found playing a dominant role in 375 
CRE-gene interactions. However, the exclusion of any feature type leads to decreased 376 
performance for CRE-gene interaction inference, and the model trained with a full 377 
collection of features performs significantly better on the cCRE-gene interaction 378 
classification task compared to all other settings (Fig. 5b), suggesting that utilization of 379 
multiple types of features guarantees our model’s performance across cell types and 380 
CREaTor may have learned synergistic relationships between features for accurate cis-381 
regulatory pattern modeling. Among all, features that are known to be crucial for gene 382 
regulation, such as CTCF, DNase, H3K4me3, H3K27ac, H3K9ac and EP300 show greater 383 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.03.28.534267doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.28.534267
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 
 

importance. Pol II with enriched phosphorylated Ser5 in CTD is more important for gene 384 
expression prediction and cCRE-gene interaction inference than its unphosphorylated form. 385 
This could be explained by the active involvement of phosphorylated CTD in binding trans- 386 
and cis-regulatory elements for dynamic transcription regulation. Evaluating the impact of 387 
different Pol II phosphorylation states on gene regulation modeling in the future might give 388 
additional insight into their roles. Interestingly, the results imply a paradoxical role of 389 
H3K36me3 in gene regulation. This may be due to the fact that the gene sets regulated by 390 
H3K36me3 are not included in the CRISPR perturbation experiments. 391 
 392 
It is worth pointing out that our model's performance is constrained by the limited 393 
accessibility of functional genomic data, regardless of the features employed. Although the 394 
ENCODE project provides various high-quality functional genomic data of many cell types, 395 
the coverage is still limited due to the vast number of cell types, histone modifications, and 396 
proteins binding to the genome. For example, cohesin, which regulates chromatin structure 397 
by participating in the loop extrusion process, was not included in our model data at the 398 
time of modeling due to the lack of data in most cell types. We believe that incorporating 399 
such data would further improve the generalizability of our method. 400 
 401 

Compared to previous approaches, CREaTor is able to capture distal cis-regulatory 402 

patterns and infer cCRE-gene interactions spanning ultra-long distances. We believe that 403 

one reason for this improvement is the fact that our model was trained using only cCREs. 404 

However, it is also important to note that this approach may lead to bias and neglect of 405 

atypical regulators, such as non-canonical enhancers and other low-H3K27ac regulatory 406 

elements without typical enhancer chromatin features (53,54). We expect that an end-to-407 

end setting incorporating a deep learning module calling CREs directly from the genome 408 

will alleviate the issue of bias and allow for a more comprehensive understanding of cis-409 

regulatory elements. 410 

 411 

Finally, in the interest of simplicity and consistency with previous studies, we have chosen 412 
to utilize reference genomes during the training process. However, it is important to note 413 
that functional genomic data on ENCODE might have originated from cells with different 414 
genomes. Specifically, cell lines may exhibit different nucleotide polymorphisms, structural 415 
variations, and karyotypes. As previous studies have demonstrated the predictive 416 
capability of genomic sequences in various tasks (26,27,55,56) and we have shown that 417 
the absence of sequences negatively impacts the performance of cCRE-gene interaction 418 
inference (Fig. 5a), we anticipate that improved model performance will be garnered by 419 
considering the diverse variations and associated consequences of different cell types in 420 
future work. Despite these limitations, we believe that CREaTor can serve as a powerful 421 
tool for studying cell type-specific cis-regulatory patterns and gene regulation networks, 422 
with further improvements to be made in the future. 423 
 424 
 425 
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Methods 426 

Model 427 

Model architecture. The backbone of CREaTor is composed of two modules: (1) an 428 

element module to extract features of cCREs and (2) a regulation module to model the 429 

regulations between cCRE and genes.  430 

 431 
CREaTor takes 200 cCREs from up- and down-stream of target gene TSS respectively as 432 
input (Note: we have also tried taking cCREs within the ± 1Mb range of a gene TSS for 433 
training. The outcomes of both strategies are comparable). Each element is represented 434 
by its DNA in the form of one-hot encoding (A = [1, 0, 0, 0, 0], T = [0, 1, 0, 0, 0], C = [0, 0, 435 
1, 0, 0], G = [0, 0, 0, 1, 0], N = [0, 0, 0, 0, 1]) and ChIP-seq/DNase-seq with read-depth 436 
normalized signal or fold change over control, although the absence of ChIP-seqs can be 437 
tolerated by our proposed framework. We map the input DNA and ChIP-seq/DNase-seq to 438 
DNA embedding and ChIP-seq embedding through a linear projection to 256 channels 439 
respectively. Then, we organize the feature embedding at each base pair (𝐸𝑚𝑏௕௣ሻ as the 440 

sum of DNA embedding and ChIP-seq embedding.  441 
 442 
The core of the element module is an element encoder based on transformer encoder 443 
architecture. Each transformer encoder layer consists of a multi-head self-attention sub-444 
layer and a position-wise fully connected feed-forward network sub-layer30. In the self-445 
attention sub-layer, scaled dot-product attentions are performed as follows: embeddings 446 
calculate the query 𝑄 ∈ ℝ௡ൈௗೖ , key 𝐾 ∈ ℝ௡ൈௗೖ , and value 𝑉 ∈ ℝ௡ൈௗೡ  through linear 447 
projection where 𝑛 is the number of embeddings, 𝑑௞ ,𝑑௩ is the number of channels; the 448 

attention weight is calculated by 𝑠𝑜𝑓𝑡𝑚𝑎𝑥ሺ
ொ௄೅

ඥௗೖ
ሻ  representing the attention between 449 

pairwise; lastly, the value representing the semantics of all embeddings are aggregated 450 
according to the attention weights as shown in the equations below. Feed-forward network 451 
sub-layers introduce non-linearity and interact channel information. Since the transformer 452 
encoder is a position-agnostic architecture, we apply a relative positional embedding onto 453 
the attention weights to introduce positional information. We follow T5(57) to formulate the 454 
position embedding 𝜃 , where 𝑃  is the relative position between base pairs within 455 
elements.  456 
 457 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ሺ𝑥ሻ ൌ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥ሺ
൫𝑥𝑊௤ ൅ 𝑏௤൯ሺ𝑥𝑊௞ ൅ 𝑏௞ሻ்

ඥ𝑑௞
൅ 𝜃ሺ𝑃ሻሻሺ𝑥𝑊௩ ൅ 𝑏௩ሻ 458 

𝐹𝐹𝑁ሺ𝑥ሻ ൌ 𝑚𝑎𝑥ሺ𝑥𝑊ଵ ൅ 𝑏ଵ, 0ሻ𝑊ଶ ൅ 𝑏ଶ 459 
 460 
We concatenate a learnable [CLS] token to 𝐸𝑚𝑏௕௣  in the element encoder. The [CLS] 461 
token adaptively attends 𝐸𝑚𝑏௕௣ and we use its output as the representation of elements 462 

(𝐸𝑚𝑏௘௟௘). The element encoder consists of 2 transformer encoder layers with 4 heads. 463 
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 464 
The regulation module comprises a regulation encoder to model the interactions between 465 
genes and cCREs and a prediction head for gene expression prediction.  466 
 467 
Regulation encoder shares a similar architecture with element encoder, but with 4 468 
transformer encoder layers and 4 attention heads. We concatenate [GENE] tokens and the 469 
corresponding cCRE embeddings 𝐸𝑚𝑏௘௟௘ to formulate the input of regulation encoder. To 470 
be noted, [GENE] tokens are initialized by shared learnable embeddings and different 471 
genes are distinguished by their associated TSS positions. Additionally, to ensure proper 472 
information flow, we mask out the attention weight between genes. Accordingly, [GENE] 473 
tokens adaptively attend 𝐸𝑚𝑏௘௟௘ and we use their output as the representation of genes 474 
(𝐸𝑚𝑏௚௘௡௘). Relative position 𝑃 is calculated as the relative genomic distances of gene TSS 475 

and elements. 476 
 477 
At last, we apply a prediction head comprised of a linear projection and a soft plus 478 
activation to predict the gene expression given gene representations 𝐸𝑚𝑏௚௘௡௘ output from 479 

the regulation encoder. 480 
 481 
Model training. We trained our model with a batch size of 8 for 50, 000 steps using 482 
AdamW optimizer. For training stability, we warmed up the learning rate in the first 5, 000 483 
steps from 0 to 1e-3 and linearly decayed it to 1e-8. Following previous work (26), we 484 
calculated the loss between the ground-truth and predicted values through a Poisson 485 
negative log-likelihood function. We also applied a gradient clip by norm with a maximum 486 
norm of 1.0 and a dropout rate of 0.1. 487 
 488 
We verified the robustness of our model with 5 random seeds. 489 
 490 

Attention score. Attention logit matrices were extracted from each attention layer in the 491 

Regulation Encoder. Both min-max and softmax normalization were applied based on 492 

needs. For cCRE-gene interaction modeling, we focused on attention from gene to cCRE 493 

only. 494 

 495 

Training data 496 

RNA expression, DNase-seq, and ChIP-seq files were downloaded from ENCODE 497 

(https://www.encodeproject.org/, by October 2021). For better quality control, we used 498 

experiments included in the reference human epigenomes (29) only (ENCODE-Reference 499 

epigenome matrix). The complete list of data can be found in Supplementary Table 4. 500 

 501 

RNA-seq processing. Total RNA-seq and polyA plus RNA-seq data in human biosamples 502 

were downloaded from ENCODE. Released transcript quantifications mapped to the 503 

GRCh38 sequences and annotated to GENCODE V29 were retained. Gene expression 504 

level was calculated as the sum of transcript TPM. Log1p normalization was performed.  505 
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 506 

DNA-seq and ChIP-seq processing. DNase-seq, histone ChIP-seq, and TF ChIP-seq 507 

files of human biosamples mapped to the GRCh38 sequences were downloaded from 508 

ENCODE. Archived files were ignored. We kept read-depth normalized signal files for 509 

DNase-seq and fold change over control files for ChIP-seq.  510 

 511 

cCREs. cCREs for different biosamples were downloaded from SCREEN Registry V3 512 

(https://screen.encodeproject.org/, by October 2021). cCRE count for each biosample 513 

ranges from 85248 to 138179 (Supplementary Table 1). DNase-only and Low-DNase 514 

elements were removed. All elements were padded to 350bp for the convenience of 515 

modeling, which is not mandatory. 516 

 517 

Cell types. We selected human tissues, primary cells, cell lines, and in vitro differentiated 518 

cells 1) with RNA-seq, DNase, CTCF ChIP-seq, H3K4me3 ChIP-seq, and H3K27ac ChIP-519 

seq data available on ENCODE and 2) with complete cCRE information on SCREEN 520 

Registry V3. 521 

 522 

CRE-gene interaction evaluation 523 

Fulco et al. We downloaded the enhancer-gene interaction data from Supplementary 524 

Table 6a of the original study (13). We converted genomic coordinates of candidate 525 

enhancers from hg19 to hg38 using the liftover program of the UCSC Genome Browser 526 

(https://genome.ucsc.edu/cgi-bin/hgLiftOver). Non-autosomal genes were removed. 527 

 528 

Gasperini et al. We downloaded the data from Table S2 of the original study (14). We 529 

converted genomic coordinates of candidate enhancers from hg19 to hg38 using the 530 

liftover program of the UCSC Genome Browser. To generate gene-mapped negative 531 

samples from the Gasperini dataset, we first selected target genes from the identified 664 532 

enhancer-gene pairs, and then picked out candidate enhancers within the 1Mb region of 533 

each target gene respectively from all enhancers screened. Non-autosomal genes were 534 

removed. 535 

 536 

Schraivogel et al. We downloaded the data from Supplementary Table 2 and 3 of the 537 

original study (15). We converted genomic coordinates of candidate enhancers from hg19 538 

to hg38 using the liftover program of the UCSC Genome Browser. To generate gene-539 

mapped negative samples from the Schraivogel dataset, we first selected target genes 540 

from the identified 41 enhancer-gene pairs, and then picked out candidate enhancers 541 

within the 1Mb region of each target gene respectively from all enhancers screened.  542 

 543 
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ChIA-PET. We obtained the ChIA-PET data of K562 from the ENCODE portal 544 

(ENCSR880DSH). To evaluate the model's performance, for each gene, we used a total of 545 

400 regulators upstream and downstream as the evaluation dataset. To calculate the 546 

cCRE-gene or cCRE-CRE interaction, for each pair of interacting sequences, we 547 

calculated whether the reads pair intersected the gene and CRE, respectively. The gene 548 

was considered to interact with the cCRE and regarded as a positive sample if crossed 549 

and as a negative sample otherwise. 550 

 551 

ABC score. ABC score was adapted from Fulco et al(13). To be more specific, we collected 552 

the bigWig files of H3K27ac and DNase from ENCODE's ENCFF977KGH and 553 

ENCFF414OGC, respectively, and converted them to bedGraph files with the UCSC tool 554 

bigWigTobedGraph. For each cCRE, we determined its signal by calculating the sum of 555 

the signals intersecting with it. Accordingly, we calculated the ABC score as the geometric 556 

mean of the H3K27ac and DNase signals multiplied by the reciprocal of the distance 557 

between the cCRE and the TSS (27). 558 

 559 

Classification of cCRE-gene interaction by distance groups. For each gene, the 560 

cCREs are divided into 4 groups (0-5kb, 5-50kb, 50-1000kb, 100-1000kb, 1000kb+) 561 

according to their distances to gene TSS. Groups with less than 10 gene-CREs pairs were 562 

filtered. auPRC and auROC for each group of each gene were calculated. For specificity 563 

and precision, we used mean values as the cutoff for the classification of positive and 564 

negative regulators.  565 

 566 

Enformer(27). Pre-trained Enformer model was downloaded from 567 

https://github.com/deepmind/deepmind-research/tree/master/enformer. Genomic 568 

sequences flanking genes of interest were prepared following the original study’s 569 

instructions. Gradient x input of candidate enhancers was calculated following the original 570 

study’s instructions. To be pointed out, to simulate prediction tasks in new cell types, we 571 

used the cell-type-agnostic setting during the analysis. More specifically, the gradient was 572 

calculated and aggregated from all human tracks of the model. 573 

 574 

GraphReg(28). Epi-GraphReg model was downloaded from 575 

https://github.com/karbalayghareh/GraphReg. Genomic sequences and DNase-seq, 576 

H3K27ac, H3K4me3 were prepared following the original study’s instructions. For a fair 577 

comparison, we incorporated histone modifications and transcription factor (TF) binding 578 

profiles used for CREaTor training as well (see Supplementary Table 4 for a full list). For 579 

training, we sourced chromosomes from cell lines including GM12878, B cells, HeLa-S3, 580 

MCF-7, fibroblast of dermis, CD14 positive monocyte, H1, HepG2, and keratinocyte 581 
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(Supplementary Table 4c), deliberately excluding chromosomes Chr8, Chr9, and Chr16. 582 

The CAGE data for these cell lines were downloaded from ENCODE, as detailed in 583 

Supplementary Table 4c. We replaced the 3D genomic data with the reciprocal of the 584 

genomic distances between the cCRE and the TSS. For cCRE-gene interaction 585 

classification, we calculated saliency and integrated gradients for candidate enhancers 586 

following the original study’s instructions. The feature attribution type led to the best 587 

performance was used for comparison. 588 

 589 

TAD prediction 590 

Hi-C data processing. We obtained the long-range chromatin interactions of K562Hi-C 591 

data from ENCODE (ENCSR545YBD). To estimate the interaction matrix with each cCRE 592 

as a bin, the Hi-C pairs that intersected with each cCRE pair were added together. 593 

 594 

Calculation of insulation score. We calculated the sum of the interactions in each bin 595 

within 10kb as the Hi-C interaction matrix for 10kb resolution. A similar operation was 596 

applied to the attention matrix. We summed the min-max-normalized attention matrix within 597 

10kb windows as the attention matrix at 10kb resolution. We obtained the location of the 598 

TAD boundary on K562 and GM12878 from the previous study (43). The interactions of 599 

the 3*3 matrix were summarized at one bin from the diagonal (58) to represent the 600 

insulation score for each TAD boundary. GM12878-specific TAD boundaries are genomics 601 

regions called in GM12878 boundary file exclusively.  602 

 603 

Grouping of CTCF-bound elements. For all cCREs showing positive CTCF binding 604 

patterns, we determined whether they intersected with the TAD boundary from a previous 605 

study (43). We considered the intersecting cCREs as anchors of the TAD boundaries, and 606 

others as non-anchors. We extracted the attention scores between these CTCF-bound 607 

cCREs and then divided the weights into various groups. Scores for anchor cCRE pairs on 608 

the same TAD boundary were classified as “anchor-to-anchor”; scores between anchor 609 

cCRE and non-anchor cCRE within the same TAD were classified as “anchor-to-non-610 

anchor”; scores for anchor cCREs on adjacent TADs were classified as “anchor-to-anchor 611 

in adjacent TADs”; and scores for anchor cCREs more than one TAD apart were classified 612 

as “anchor-to-anchor in remote TADs”.  613 

 614 

Mapping of CISH enhancers. First, we obtained the two regulatory loci Cp1 and Cp2 of 615 

CISH from the previous study(44) and converted their genomic coordinates from mm9 to 616 

mm10 using the liftover program of the UCSC Genome Browser. Then, for all cCREs 617 

of CISH genes in K562, we determined which cCREs intersected with Cp1 and Cp2, 618 

representing Cp1 and Cp2 respectively. Finally, we calculated the attention scores from 619 
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Cp1 to Cp2 in K562 cell line to determine the effect of Cp1 on Cp2; and from Cp2 to Cp1 620 

to determine the effect of Cp2 on Cp1. The control background (SDaCp1 and SDaCp2) 621 

consisted of interactions between cCREs with the same distance from Cp1 and Cp2 to 622 

CISH to all protein-coding genes except CISH. 623 

 624 

K562-specific genes. We obtained the expression data of each cell line's gene from 625 

ENCODE (Supplementary Table 4a). Using the expression data of K562 as a control, we 626 

extracted the count matrix of each other cell line by the function rsem-generate-data-627 

matrix of RSEM. These count matrices were then used to calculate differentially 628 

expressed genes using the function rsem-run-ebseq. After that, we screened the genes 629 

with PPDE (posterior probability that a gene/transcript is differentially expressed) greater 630 

than 95% as differentially expressed genes for K562 versus each cell line. Finally, the 631 

intersection of these differential genes was considered K562-specific genes.  632 

 633 

Representation clustering and visualization. First, we reduced the dimensionality of the 634 

256-dimensional representations learned by our model with scanpy.tl.pca (default 635 

parameters). After a neighborhold graph is calculated (scanpy.pp.neighbors, 636 

n_neighbors=20, n_pcs=50), we clustered reduced representations with Leiden graph-637 

clustering method (scanpy.tl.leiden, resolution=0.5). The neighborhood graph 638 

and clusters were then visualized using Uniform Manifold Approximation and Projection 639 

(UMAP). 640 

 641 

Data Availability 642 

RNA expression, DNase-seq, ChIP-seq, Hi-C, CAGE and ChIA-PET files were 643 

downloaded from https://www.encodeproject.org/ (Supplementary Table 4). cCREs for 644 

different biosamples were downloaded from SCREEN Registry V3 645 

(https://screen.encodeproject.org/). Both K562 TAD boundary and GM12878 TAD 646 

boundary file were downloaded from 647 

https://drive.google.com/drive/folders/15Rc6PhrrBjThwE-5dSyNX-ILELaUu6uG. CRISPR 648 

perturbation experiments of enhancer-gene interactions were downloaded from reference 649 

13-15 respectively. 650 

 651 

Code Availability 652 

The code for data processing, model training and evaluation are available at 653 

https://github.com/DLS5-Omics/CREaTor.  654 
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Figure 1. Accurate gene expression prediction with CREaTor. a) Schema of CREaTor. The model predicts target gene expression 
from the flanking cCREs with a hierarchical transformer structure. Localization of cCREs was obtained from ENCODE consortium. A 
combination of genomic sequences, chromatin openness, and a collection (3-13) of ChIP-seq profiles was used as input features for each 
cCRE. b) Visualization of data split strategy: we trained our model on gene expression of 19 autosomes from 19 different cell lines and 
tissues respectively. Genes on chr16 from the 19 cell lines and tissues were used for parameter tuning (validation), while genes on chr8, 
9 were used for model evaluation (in-cell type test chromosomes). Genes from all autosomes in K562 (cross-cell type test chromosomes) 
were detailedly evaluated to demonstrate the model’s ability on cross-cell type gene expression and regulation modeling. Also see in 
Supplementary Figure 1. c) Pearson r between observed and predicted expression of genes. Left:  Pearson r between observed and 
predicted expressions of genes on cross-cell type test chromosomes. Right: Pearson r between observed and predicted expressions of 
genes on in-cell type test chromosomes. Green and blue dots indicate chr8 and 9 respectively. See Extended Data Table 2 for results with 
different random seeds. d) Clustering map of predicted and observed expression of K562 specific genes (calculated with RSME, see 
Methods) in different cell types. The leftmost column is the predicted value, which is clustered with the K562 observed gene expression 
data using the hierarchical clustering method. Expression values were transformed with log1p. Observed gene expression profiles from 
different sources (with different experiment IDs on ENCODE) for the same cell type are calculated independently.
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Figure 2. Attention matrix of CREaTor implies cCRE-gene interactions. a-b) auROC (a) and auPRC (b) of CREaTor outperform its 
counterparts on cCRE-gene pair classification. Attention (attn., yellow): normalized attention weights (genes to cCREs) in CREaTor. 
Adjusted attention (adj. attn., red): attention scores / log10 (distance). H3K27ac/dist (blue): approximate of the ABC score. Distance 
quantifies relative genomic distances between genes and cCREs. H3K27ac value of a cCRE is calculated as the sum of H3K27ac peak 
values of the element. Labels (positive/negative) of cCRE-gene pairs were collected from 3 independent CRISPR perturbation experi-
ments. c) Attention scores derived from attention weights are significantly correlated with the effect of enhancer on gene expression 
quantified by Fulco et al13. As the quantification measures the change of target gene expression upon enhancer knock-down using 
CRISPR perturbation, the quantitative effect values are invertsely related to enhancer activities. d-e)  auPRC (d) and auROC (e) of 
CREaTor and its counterparts on the classification of cCRE-gene pairs collected from a Pol-II mediated ChIA-PET experiment. The 
performance is evaluated for each gene and each distance group separately. Groups with <10 samples were filtered out. Center line, 
median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. f) MYC locus showing predicted and 
previously reported regulators in K562 cells. For CREaTor (red) and H3K27ac/distance (gray), peaks on the tracks represent the scores 
of different cCRE regions. Enhancers track (red squares) denotes reported active regulators of MYC. Representative DNase, H3K4me3, 
H3K27ac and CTCF tracks  as well as ChIA-PET interactions in K562, are also annotated. 
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Figure 3. CREaTor captures hierarchically higher-order genome organizations. a) Example genomic regions showing the 
similarity between attention matrix (above the diagnal) and Hi-C contact matrix (below the diagonal). Orange boxes indicate 
TAD domains. b) Average insulation scores across the K562 genome at 10-kb resolution calculated from attention matrix and 
Hi-C. Blue line and left y-axis: insulation scores of attention matrix. Pink line and right y-axis: the insulation scores of Hi-C. Solid 
lines indicate insulation scores over K562 TAD boundaries and dashed lines indicate insulation scores over GM12878 boundar-
ies. The x-axis is centered on TAD boundaries.  c) Upper panel: Statistics of attention weights between CTCF-bound element 
pairs with different topological relationships. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquar-
tile range. Lower panel: illustration of CTCF-bound element pairs used for the analysis. The red triangle represents TAD 
domains called from the Hi-C matrix (blue). d) Average attention scores between elements without normalization. p-value is 
calculated with Mann-Whitney U Test.
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Figure 4. cCRE representations learned by CREaTor suggest a new role of CTCF-bound elements. a) Uniform Manifold Approxi-
mation and Projection (UMAP) of cCRE embeddings in K562. Upper: colored and numbered as clusters grouped by the Leiden 
algorithm. Bottom: colored and labeled by element type. b) Composition of different element types in each cluster by percentage. 
Proximal elements: elements falling within 200bp of an annotated TSS. Distal elements: elements more than 200bp from any annotated 
TSS.   Promoter-like: elements with high DNase and H3K4me3 signals. Enhancer-like: elements with high DNase and H3K27ac signals. 
CTCF-only: elements with high DNase and CTCF signals, as well as low H3K4me3 and H3K27ac signals. c) Fold change of histone 
marker peaks of given types of cCREs in cluster 5 with respect to those in other clusters. Top: all cCREs. Middle: distal enhancer-like 
elements. Bottom: CTCF-only elements. d) Expression value (log1p) distribution of genes within 10kb of different types of CTCF-bound 
elements. e) Average signals of H3K36me3, H3K79me2, H4K20me1, H2AFZ, H3K4me1 and H3K27me3 on different types of 
CTCF-bound elements. f) Illustration for the proposed model of CTCF-H3K36me3 elements promoting transcription elongation.
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a

Figure 5. Feature ablation study demonstrates the importance of feature integration for modeling. a) auROC and auPRC of 4 different 
models on cCRE-gene pair classification. Large (red): the model trained with 17 types of features. Medium (yellow): the model trained with 8 
types of features (genomic sequence, DNase, CTCF, H3K27ac, H3K4me3, H3K9ac, EP300, and POLR2AphosphoS5). Small  (blue): the 
model trained with 5 types of features (genomic sequence, DNase, CTCF, H3K27ac, and H3K4me3). b) Large model trained with 17 types 
of features outperforms other models on cCRE-gene interaction classification tasks. Minus signs indicate the following type of feature is 
removed during model training. Labels (positive/negative) of cCRE-gene pairs were from the same source as Figure 2. The colors of dots 
indicate the Pearson r between observed and predicted expression of K562-specific genes. 
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Extended Data Figure 1 | Architecture of CREaTor. CREaTor is composed of two modules. 
a) Element module encodes the representation of cCREs. We first map DNA and ChIP-
seq/DNase-seq to latent space through a linear projection respectively, and then combine them 
through element-wise addition to obtain 𝐸𝑚𝑏௕௣, the feature embedding of each bp. We feed 
the 𝐸𝑚𝑏௕௣s into the element encoder together with a [CLS] token. The [CLS] token adaptively 
aggregates information from the 𝐸𝑚𝑏௕௣s in the element encoder. We use the output vector of 
[CLS] token as the representation of the element, namely 𝐸𝑚𝑏௘௟௘ . b) Regulation module 
models the interaction between cCREs and genes. We concatenate the 𝐸𝑚𝑏௘௟௘  of cCREs 
(denoted in blue and yellow) and the [GENE] tokens (denoted in red) as the input of the 
regulation encoder. The [GENE] tokens interact with and are regulated by the cCREs in the 
regulation encoder. We apply a linear projection with SoftPlus activation on the output vector of 
[GENE] tokens to predict their expressions. The size of each component of the architecture is 
shown as a tuple inside the block. The shape of the tensor at each step is denoted as a tuple 
in the bottom right of the blocks.  
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Extended Data Figure 2 | Prediction of K562 differentially expressed genes. 
Representative examples of observed and predicted expression of genes KLF1, TAL1 and 
HBE1 in 20 different types of cells. The dashed line indicates the predicted values. 
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Extended Data Figure 3 | Performance of CREaTor with cCREs up to 2kb, 5kb, 10kb, 
100kb, or 1Mb away from the TSS of target genes. The training set includes chr1-7, 10-15, 
and 17-22 in 19 cell types other than K562. The validation set includes chr16 in cell types other 
than K562. The in-cell type test set includes chr8 and chr9 in cell types other than K562. Cross-
cell type test set represents all chromosomes in the K562 cell line. P values were computed 
with the two-sided Mann–Whitney U test. 
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Extended Data Figure 4 | Statistics of enhancer-gene interaction data from 3 CRISPRi-
based studies. The statistics were performed on data after genomic coordinates liftover and 
non-autosomosal data filtering. (a) The number of active and inactive enhancers tested by each 
study. (b) Enhancer length distribution in each study. (c) Enhancer-gene TSS distance 
distribution in each study. (d) Overlapped active enhancers in 3 studies. (e) The number of 
enhancers tested for each gene in each study. 
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Extended Data Figure 5 | auPRC and auROC of CREaTor and its counterparts on the 
classification of cCRE-gene pairs collected from 3 independent CRISPR perturbation 
experiments. cCRE-gene pairs are stratified by their relative genomics distances. The number 
of positive/negative labels in each group is annotated at the bottom. Labels (positive/negative) 
of cCRE-gene pairs were collected from CRISPR perturbation experiments. 
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Extended Data Figure 6 | Specificity and precision scores of CREaTor and its 
counterparts on cCRE-gene pair classification. Distance denotes the relative genomic 
distance between cCREs and genes. The performance is evaluated for each gene and each 
distance group separately. The H3K27ac value of a cCRE is calculated as the sum of the 
H3K27ac peak values of the element. Positive/negative cutoff is set as mean values of attention 
scores in each distance group. Labels (positive/negative) of cCRE-gene pairs were collected 
from a Pol-II mediated ChIA-PET experiment of K562. 
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Extended Data Figure 7 | Average signals of RNA Pol II on cCREs in cluster 0 and cluster 
1 respectively. Upper: unphosphorylated form of Pol II. Bottom: Pol II CTD phospho Ser5.  
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Extended Data Figure 8 | Gene representations learned by CREaTor can be clustered into 
groups with different functions. a) Uniform Manifold Approximation and Projection (UMAP) 
of gene embedding in K562, colored and numbered as clusters grouped by the Leiden algorithm. 
b) Same as (a), but colored by gene expression levels. c) Functional annotation clustering with 
the DAVID Gene Functional Classification Tool (DAVID, http://david.abcc.ncifcrf.gov) using 
UniProtKB biological process keywords. Significantly enriched (adjusted p-value<0.05) groups 
for genes in each cluster in (a) are shown. d) Functional annotation clustering with DAVID using 
UniProtKB molecular function keywords. Significantly enriched (adjusted p-value<0.05) groups 
for genes in each cluster in (a) are shown. 
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