

A naturally occurring variant of *MBD4* causes maternal germline hypermutation in primates

Alexandra M. Stendahl^{1,*}, Rashesh Sanghvi^{2,*}, Samuel Peterson^{1,*}, Karina Ray¹, Ana C. Lima¹, Raheleh Rahbari^{2,#}, Donald F. Conrad^{1,#}

1. Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA

2. Cancer, Ageing and Somatic Mutation (CASM), Wellcome Trust Sanger Institute, Hinxton, UK

*These authors contributed equally

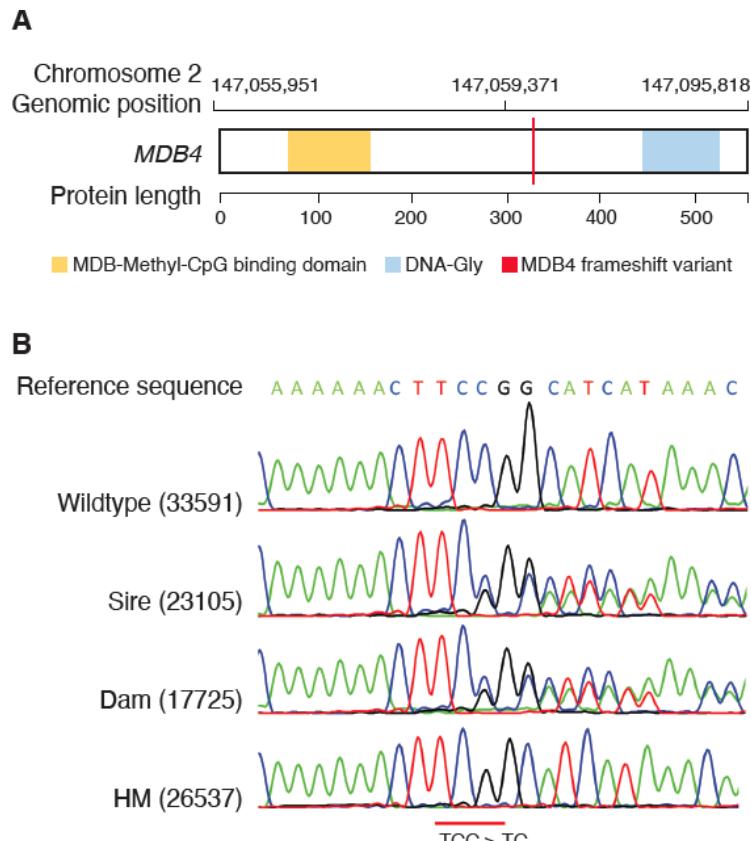
#These authors jointly supervised the project

Correspondence to: rr11@sanger.ac.uk, conradon@ohsu.edu

1 Abstract

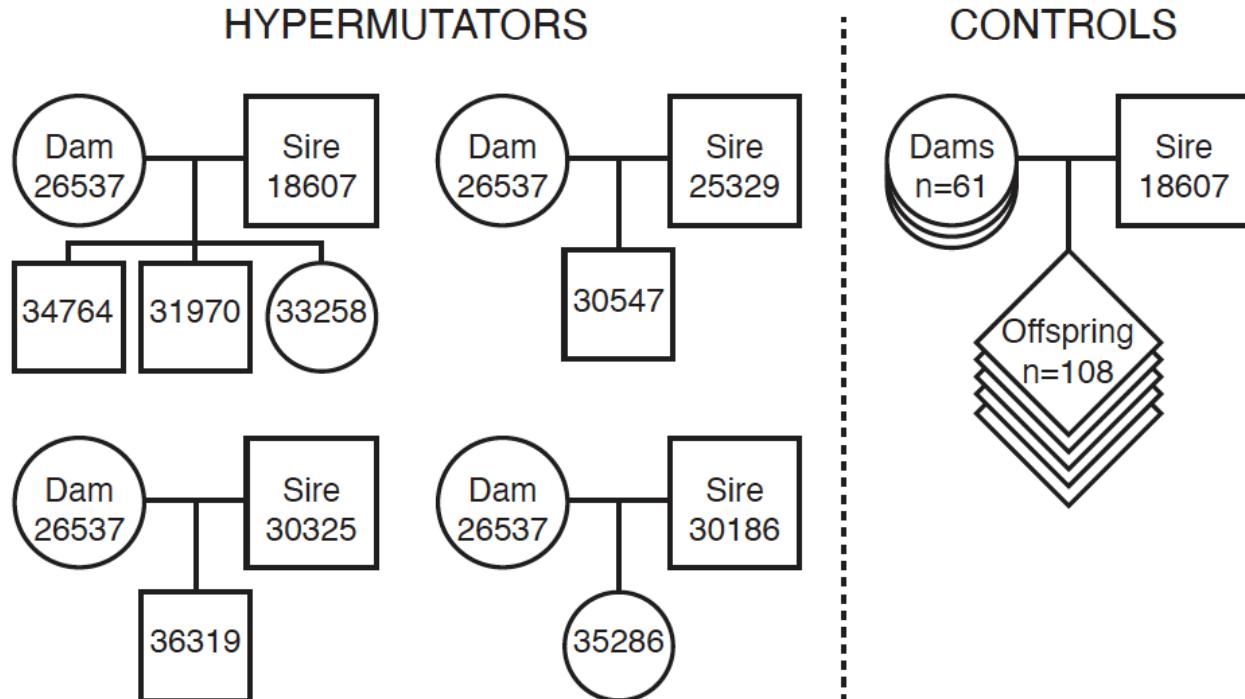
2 As part of an ongoing genome sequencing project at the Oregon National Primate Research
3 Center, we identified a rhesus macaque with a rare homozygous frameshift mutation in the
4 gene Methyl-CpG binding domain 4 (*MBD4*). *MBD4* is responsible for the repair of C>T
5 deamination mutations at CpG locations and has been linked to somatic hypermutation and
6 cancer predisposition in humans. We show here that *MBD4*-associated hypermutation also
7 affects the germline: the 6 offspring of the *MBD4*-null dam have a 4-6 fold increase in *de novo*
8 mutation burden. This excess burden was predominantly C>T mutations at CpG locations
9 consistent with *MBD4* loss-of-function in the dam. There was also a significant excess of C>T at
10 CpA sites, indicating an important, underappreciated role for *MBD4* to repair deamination in
11 CpA contexts. The *MBD4*-null dam developed sustained eosinophilia later in life, but we saw no
12 other signs of neoplastic processes associated with *MBD4* loss-of-function in humans, nor any
13 obvious disease in the hypermutated offspring. This work provides what is likely the first
14 evidence for a genetic factor causing hypermutation in the maternal germline of a mammal,
15 and adds to the very small list of naturally occurring variants known to modulate germline
16 mutation rates in mammals.

17


18

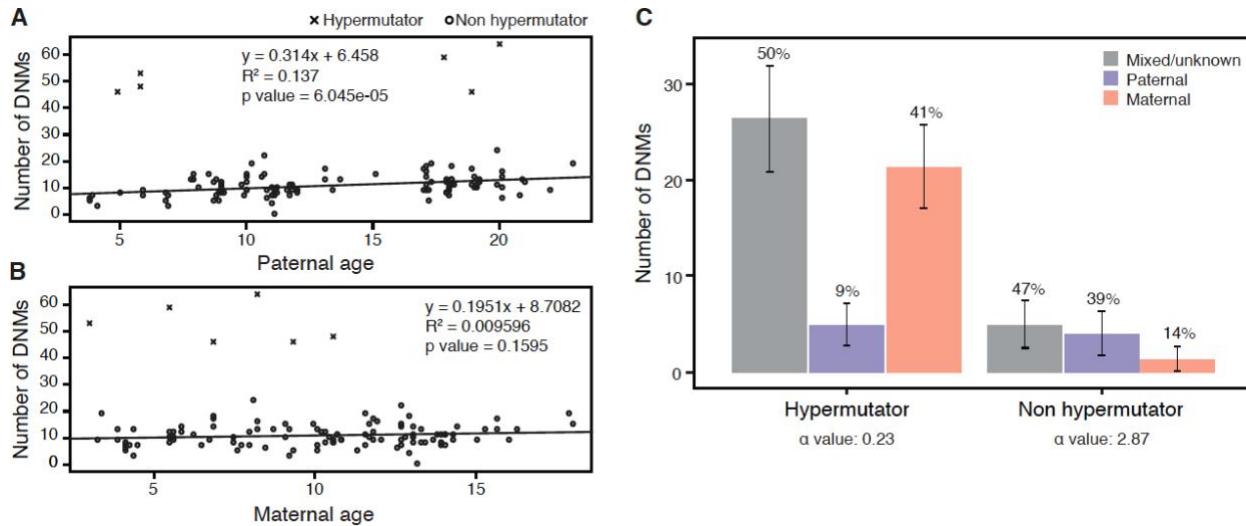
19

20


21 Main Text

22
23
24 The DNA glycosylase *MBD4* (Methyl-CpG binding domain 4, MIM: 603574) repairs C>T
25 mutations through the base excision repair pathway by removing the thymine in a G-T
26 mismatch.¹ *MBD4* is specifically active at repairing the spontaneous deamination of 5-methyl-
27 cytosine to thymine, one of the most common somatic mutations in the genome.²
28
29 *MBD4* is critical for genome stability and preventing mutations, and loss of function of *MBD4*
30 has recently been associated with higher risk of *MBD4*-associated neoplasia syndrome (MIM:
31 619975), a multi-organ tumor predisposition syndrome^{3,4}. It is further associated with several
32 specific cancers including adenomatous colorectal polyposis, acute myeloid leukemia, and uveal
33 melanoma³⁻⁵. Additionally, many types of cancerous tumors are often found to contain
34 mutations in the *MBD4* gene, especially gastric, endometrial, and pancreatic carcinomas⁶.
35 Congruent with the function of *MBD4*, C>T mutations are found in high incidence in gastro-
36 intestinal tumors of *MBD4*^{-/-} mice, with most occurring at CpG locations⁶.
37
38 As part of an ongoing genetic study at Oregon National Primate Research Center (ONPRC), we
39 identified a rhesus macaque (ID: 26537) with a germline homozygous TC>C deletion in the
40 *MBD4* gene at 2:147,059,371 (MMul 10 genome assembly). Sequencing of the parents of 26537
41 confirmed that the *MBD4* genotype is an inherited homozygous deletion (**Figure 1**). In
42 macaques, the *MBD4* protein is 572 amino acids long and consists of a methyl binding domain
43 at the N terminus and a glycosylase domain at the C terminus, which is involved in the DNA
44 repair. The mutation in 26537 results in a frameshift mutation (Gly329fs) leading to a isoleucine
45 to serine substitution at position 330 (Ile330Ser) and an early truncation at the following amino
46 acid (Ile331AUU). Monkey 26537 is the only known homozygote at ONPRC or in mGAP, the
47 database of macaque genomes (currently 2,425 monkeys,⁷). The allele frequency in mGAP is
48 0.0072, with 30 heterozygotes in the population at ONPRC.
49

50
51 **Figure 1. Identification of a biallelic frameshift mutation in MBD4.** (A) Location of the mutation with
52 respect to genome and protein coordinates. (B) Sanger validation of the frameshift indicates germline
53 inheritance from both parents of 26537. HM= hypermutator. Sire and Dam are parents of 26537.


54
55
56 26537 was an Indian-origin rhesus macaque born at ONPRC in 2007. She gave birth to six
57 offspring between the ages of 4 and 10, and was euthanized at age 14. Through this larger
58 genetic study, we sequenced 26537's six offspring, and the sires of her offspring to obtain
59 complete trios (**Figure 2, Table S1**). We also sequenced a large pedigree of macaques from a
60 prolific male breeder (ID: 18607), including his 111 offspring and the 61 dams (**Table S1**). Three
61 of 26537's offspring were sired by this prolific male breeder.
62

63
64 **Figure 2. Overview of families sequenced for the study.**
65
66
67

68 In our analysis of the prolific male's pedigree, all of 26537's offspring were flagged due to the
69 high number of *de novo* mutations. Germline *de novo* mutations are mutations which appear in
70 an offspring without detection in the somatic cells of either parent. Humans have a germline
71 mutation rate of 1.2 to 1.3×10^{-8} per position per generation (~60-70 *de novo* mutations), while
72 macaques appear to have a mutation rate of 0.58 to 0.77×10^{-8} per site per generation⁸⁻¹².
73 Germline *de novo* mutations can originate as errors in DNA replication during gametogenesis or
74 other processes. Males tend to pass on more *de novo* mutations to their offspring, which may
75 be a result of the continuous germ cell division in spermatogenesis as opposed to oogenesis in
76 females, which is finished before birth¹³. However, as Abascal et al. found that somatic
77 mutation rate is more related to tissue type than number of divisions, there may be additional
78 mutational processes involved in *de novo* mutations in sperm¹⁴. Older males are especially at
79 risk of passing high numbers of mutations to their offspring, contributing approximately 1.5-2
80 mutations per year of age^{9,10,14,15}. While some studies do show a maternal age effect, it is
81 considerably smaller, approximately 0.3-0.5 mutations per year^{9,16,17}.

82
83

84

85 **Figure 3. Children of 26537 show rates of germline *de novo* mutation 4-5 higher than children from**

86 control parents. (A) relationship between paternal age and number of DNMs observed in offspring, (B)

87 relationship between maternal age and number of DNMs observed in offspring, (C) Percentage of de

88 novo mutations observed on paternally and maternally inherited chromosomes. Read-based phasing of

89 DNMs shows an excess of maternally-derived DNMs in offspring of 26537 not observed in control

90 offspring. The alpha estimate for each set of phased mutations is shown. Alpha=ratio of

91 paternally:maternal mutations.

92

93 While the average rhesus macaque in this larger study carried 10.5 *de novo* mutations

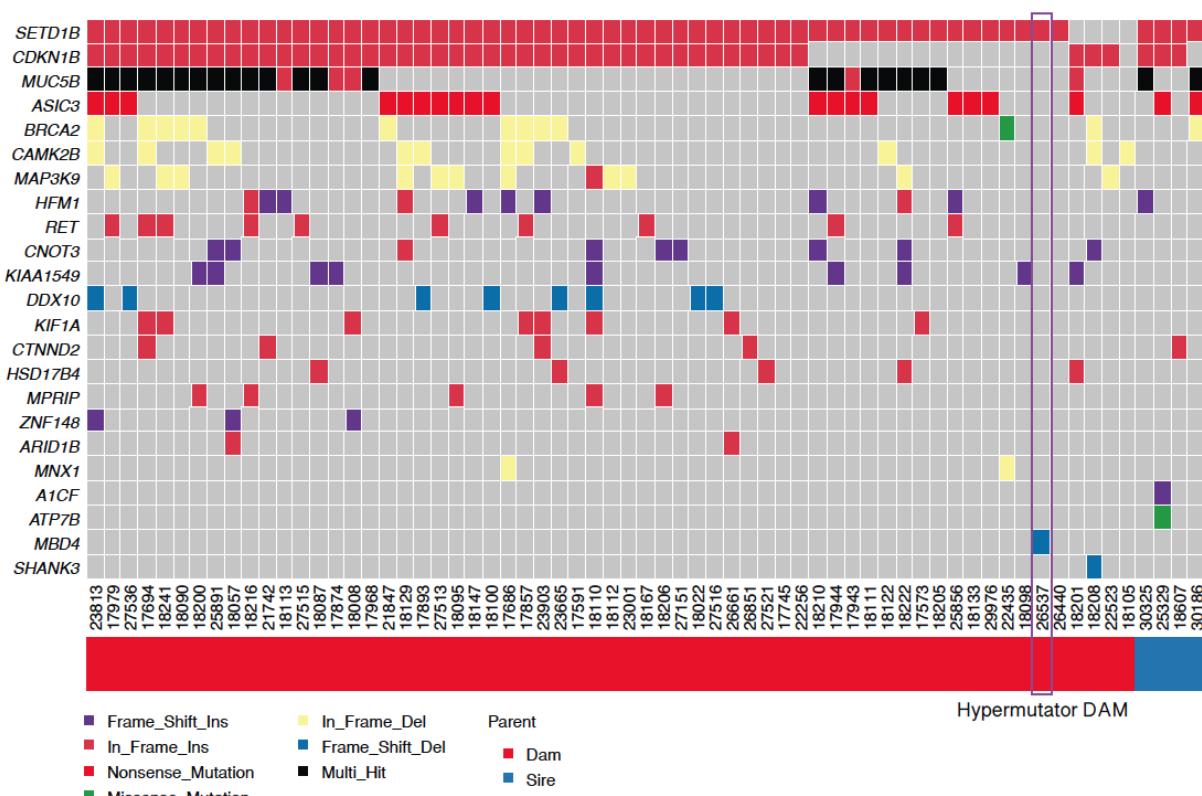
94 (stdev=4), offspring of 26537 carried 46-64 (**Table S1, Figure 3A-3B**). Despite being sired by 4

95 different males, all six offspring of 26537 had extremely high numbers of C>T mutations at CpG

96 locations (between 25-39) compared to the average of 1 mutation per monkey not birthed by

97 26537. Because *MBD4* repairs C>T mutations at CpG locations, an enrichment in C>T mutations

98 at CpG locations originating from the maternal haplotype is consistent with the *MBD4*


99 mutation. Moreover, read-backed phasing revealed a 16-23 fold increase in maternally-derived

100 mutations in offspring of 26537 compared to control trios (**Figure 3C, Table S2**, average of

101 21.33 maternal mutations vs 1.43, $p=1 \times 10^{-95}$ Poisson regression), while there was no

102 difference in paternally-derived mutations (5.0 vs 4.1, $p=0.176$).

103

104

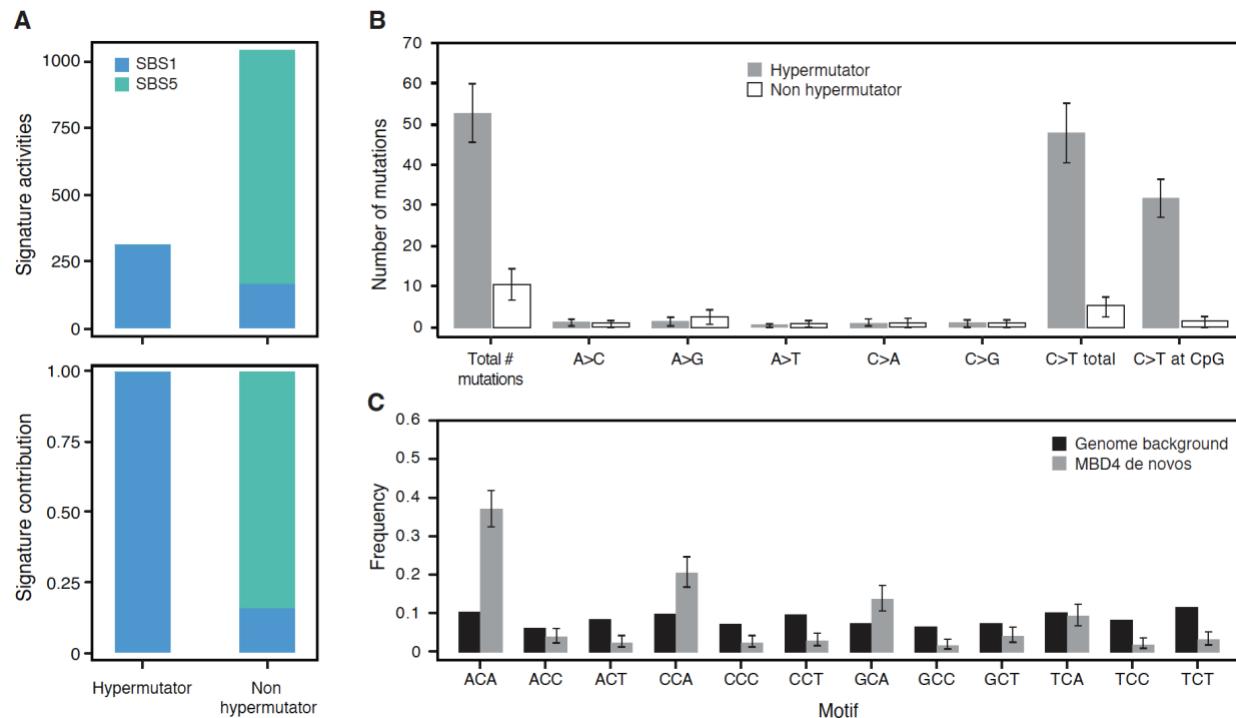
105 **Figure 4. Assessment of damaging variation in candidate hypermutator genes across all parents in the**
 106 **study.** We searched for biallelic damaging mutations across 1,381 candidate genes for germline
 107 hypermutation derived from the literature (Table S3). We identified candidate mutations in 23 genes,
 108 shown here. *MBD4* was the only gene specifically mutated in 26537 and not other parents in the study.

109

110

111 To build further evidence implicating *MBD4* loss-of-function as the cause of the observed
 112 hypermutation, we screened 26537 for other potentially causal mutations in genes potentially
 113 related to genome instability genes (Tables S3-S6), assessing all other parents included in our
 114 study to provide context. These results confirmed that *MBD4* is the most likely cause of
 115 hypermutation (Figure 4).

116


117

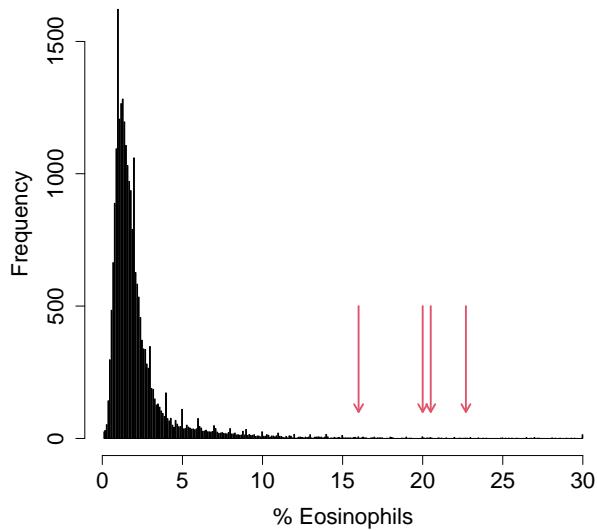
118

119 Mutational signature analysis¹⁸ of all 26537 offsprings showed almost all the mutations were
 120 attributed to signature 1, while in the control trios only 20% of mutations were attributed to
 121 signature 1 and the rest (80%) were signature 5 (Figure 5A). This composition of mutation
 122 signatures is consistent with the mutation data in humans: somatic mutations from *MBD4*-/
 123 individuals have an excess of signature 1³, while germline mutations in typical humans are a
 124 mixture of signatures 1 and 5¹⁵. Mutation signature 1 has been attributed to cytosine
 125 deamination, and is primarily composed of C>T mutations. Indeed, the vast majority of
 126 mutational excess observed in the offspring of 26537 were C>T mutations (Figure 5B). While

127 most cytosine deamination is thought to occur at CpGs, approximately 40% of the C>T
128 mutations in hypermutator offspring were not in CpG. We used poisson regression to test for
129 enrichment of C>T mutations across trinucleotide contexts, and observed a clear enrichment in
130 three trinucleotides that did not contain CpG: ACA, CCA, GCA (**Figure 5C**). This indicates a clear
131 pattern of C>T mutations in locations where a cytosine is followed by an adenine. While CpG
132 methylation is maintained in all tissues over the lifespan of an animal, CpA methylation is
133 observed primarily in fetal development and in adult neurons ¹⁹.

134

135


136 **Figure 5. Mutation signature analysis of MBD4 germline mutations.** (A) Unlike germline mutational
137 signatures in control individuals, which are mostly signature 5 with smaller proportion of signature 1, the
138 majority of mutations in the hypermutated offspring were attributed to signature 1 with very small
139 contribution from signature 5. (B) Of the 6 possible (folded) substitution types, C>T was the only based
140 substitution with a significant excess in offspring of 26537 (Hypermutator). Most of these C>T changes were
141 in a CpG context, consistent with the known function of MBD4 in repairing spontaneous methyl-cytosine
142 deamination. (C) The remaining excess of C>T changes were observed at CpA positions.

143

144

145 In order to understand whether the hypermutation phenotype or *MBD4* frameshift mutation
146 had an effect on offspring or dam health, we reviewed electronic health records and necropsy
147 information if present for these individuals. None of the hypermutated offspring appear to
148 have any major health concerns. While alive, 26537 did not appear to exhibit any major health
149 issues, aside from a single stillbirth, however tissue from the stillborn was not available for
150 analysis. 26537 was necropsied at 14 years of age. There were no gross indications of neoplasia
151 at necropsy, nor during histological analysis of brain, gastric tissues or lymph nodes. However,

152 four blood chemistry tests (complete blood counts; CBCs) run on 26537 during the last year of
153 her life revealed sustained eosinophilia, with an average measurement of 19.8% eosinophils.
154 For context, we compared these measures to 24,638 CBCs run on 4,699 unique animals at
155 ONPRC since 2016. The average % EOS for animals tested over this time was 2.2%; only 71 tests
156 (0.3%) reported higher EOS counts (**Figure 6**). Fecal parasitology excluded parasitemia as a
157 possible cause for eosinophilia in 26537. Eosinophilia is sometimes observed in several cancers
158 and cancer-related syndromes, especially eosinophilic leukemia and myelodysplastic syndrome
159 (MDS). Both MDS and acute myeloid leukemia have been observed in humans with biallelic
160 mutation of *MBD4*³. These findings provide evidence that the *MBD4* mutations in 26537
161 potentially had functional consequences at a cellular level, beyond deficiencies in DNA repair.
162

163
164 **Figure 6. 26537 showed sustained eosinophilia at age 14.** Four independent CBCs run over several
165 weeks showed 16%-22.7% eosinophils (red arrows). These numbers were in the top 0.5% of over 25,000
166 CBCs run at ONPRC since 2016 (histogram).

167
168 In conclusion, through a large genetic sequencing project of macaques at ONPRC, six
169 hypermutated monkeys were identified, all originating from a dam with a homozygous
170 mutation in the *MBD4* gene causing a premature stop codon. This discovery adds to the short
171 list of naturally occurring genetic variants that have been found to modulate germline mutation
172 rates, in humans, in mice, and now in rhesus macaques.

173
174 Hypermutation can be the result of both environmental factors, such as parental exposure to
175 chemotherapy, as well as genetic factors, such as a knockout of a DNA repair gene. Germline
176 hypermutation (a large excess of *de novo* mutations) is quite rare in humans. Kaplanis et al.
177 found twelve individuals out of 21,879 human families with a hypermutated phenotype; only 2
178 of these could be attributed to genetic causes²⁰. Both cases were born to fathers with a

179 germline hypermutation phenotype, attributed to rare biallelic mutations in the DNA repair
180 genes *XPC* (MIM: 613208) and *MPG* (MIM: 156565) . *MPG* encodes N-methylpurine DNA
181 glycosylase, which, similar to *MBD4*, is involved in correction of deaminated purines by the
182 base-excision repair pathway. Inherited variation in another DNA glycosylase, *MUTYH*, can
183 increase somatic mutation rates in humans ²¹, and in the germline in mice ²². Notably, our
184 finding of a maternal germline hypermutator phenotype appears to be the first clear evidence
185 of genetic variants affecting germline mutation in a female mammal. Because the baseline
186 mutation rate in male primates (including humans) is much higher than in females, we expect
187 that statistical power will continue to favor ascertainment of male germline hypermutators
188 when studying population samples, even for genetic variants that affect male and female
189 germlines equally.

190
191

192 Many questions remain about how, and when during the lifecycle, the germline is vulnerable to
193 DNA damage. The data presented here may hold some important clues regarding the timing of
194 cytosine deamination and its repair in the maternal germline. The *de novo* mutations
195 transmitted from 26537 to her offspring were present in the oocytes that generated each
196 offspring. All offspring from 26537 were heterozygous for the *MBD4* mutation, meaning that
197 they were formed by fertilization of an *MBD4*^{-/-} oocyte by a *MBD4*^{+/+} spermatozoa. In principle,
198 the mutations in the *MBD4*^{-/-} oocytes could have originated at any timepoint in the lifecycle of
199 26537, from the zygote to the fertilization of each *MBD4*^{-/-} oocyte. Multiple observations in this
200 study would seem to restrict the plausible developmental window during which the
201 hypermutator phenotype was active. First, there is no detectable effect of maternal age on the
202 number of mutations in the offspring of 26537 (**Figure 3B**). This implies that the excess germline
203 mutation burden in each oocyte from 26537 is not an accumulation of spontaneous
204 deamination over the lifetime of the animal. Second, there is minimal sharing of mutations
205 among the offspring of 26537 - 4 of 316 (1.2%) of filtered mutations in the offspring were
206 observed more than once (**Table S7**). This suggests that none of the mutations were present in
207 the embryonic progenitor of all germ cells, and very few of the 316 mutations were present in
208 the embryo at the time of the PGC specification. Finally, in addition to the expected excess of
209 CpG mutations in the offspring of 26537, we observed a secondary enrichment in CpA contexts
210 accounting for 28% of all calls in these children (**Figure 5C**). non-CpG methylation, especially
211 involving CpA, occurs genomewide in oocytes of mice ²³ and human ²⁴. Human oocytes show
212 dramatic (>100%) increases in CpA methylation during oocyte maturation, while CpG
213 methylation levels stay stable ²⁴. Furthermore, *MBD4* is expressed in developing oocytes, and
214 its expression is highly correlated to the oocyte expression levels of *DNMT3A* (MIM:602769), a
215 methyltransferase responsible for non-CpG methylation. Both *MBD4* and *DNMT3A* show a
216 remarkable increase in transcription in human fetal ovary during 16 weeks gestation, when
217 oocytes are first reaching the germinal vesicle stage ²⁵. Taken together, we propose that the
218 source of the germline hypermutation phenotype from *MBD4*^{-/-} animals is not due to a loss of
219 “maintenance” deamination repair that accumulates over the lifetime of the animal, but,

220 instead due to a time-restricted window of damage, perhaps induced during *de novo* CpA
221 methylation.

222 **Data and code availability**

223
224 The raw whole-genome sequencing data for this study has been uploaded to SRA under
225 bioproject number PRJNA382404. Mapping of sample-level IDs to SRA accessions and mGAP IDs
226 are provided in **Table S8**.

227
228 De Novo Gear:
229 <https://github.com/ultimatesource/denovogear#dng-dnm-finding-denovo-mutations-in-trios-and-pairs>

231
232 PhaseMyDeNovo: <https://github.com/queenjobo/PhaseMyDeNovo>

233
234 SigProfileExtractor: <https://github.com/AlexandrovLab/SigProfilerExtractor>

235 **Supplemental Information**

236
237 Supplemental Information can be found online at XXXX
238

239 **Acknowledgements**

240
241 We thank Rhonda MacAllister and Carolyn Labriola for help with pathology and medical
242 records, and Katinka Vigh-Conrad for assistance with figures. D.F.C. is supported by National
243 Institute of Health Office of Directors (NIH/OD) Grant P51 OD011092 (to the Oregon National
244 Primate Research Center).

245 **Declaration of interests**

246 The authors declare that they have no competing interests.

247 **Web Resources**

248
249 MGAP database, <http://mgap.ohsu.edu>
250

251 **Supplementary Table Captions**

252
253 Table S1: Sample Information
254
255 Table S2: Phased Variants by PhaseMyDeNovo
256
257 Table S3: Candidate genes for hypermutator phenotype
258
259 Table S4. High and Moderate impact variants within the genes of interest (GOI) genes. Impact is
260 determined based on VEP annotation.
261
262 Table S5: High and Moderate impact homozygous variants within the genes of interest (GOI) genes.
263 Impact is determined based on VEP annotation.
264
265 Table S6: High and Moderate impact homozygous variants within the top 100 mutated genes of interest
266 (GOI) genes. Impact is determined based on VEP annotation.
267
268 Table S7: Mutations observed in multiple offspring of 26537.
269
270 Table S8: SRA and MGaP ID mapping for samples in the study.

271 **References**

272

273 1. Pidugu, L.S., Bright, H., Lin, W.-J., Majumdar, C., Van Ostrand, R.P., David, S.S., Pozharski, E., and Drohat, A.C. (2021). Structural Insights into the Mechanism of Base Excision by MBD4. *J. Mol. Biol.* 433, 167097.

274

275 2. Sanders, M.A., Chew, E., Flensburg, C., Zeilemaker, A., Miller, S.E., Al Hinai, A.S., Bajel, A., Luiken, B., Rijken, M., McLennan, T., et al. (2018). MBD4 guards against methylation damage and germ line deficiency predisposes to clonal hematopoiesis and early-onset AML. *Blood* 132, 1526–1534.

276

277

278 3. Palles, C., West, H.D., Chew, E., Galavotti, S., Flensburg, C., Grolleman, J.E., Jansen, E.A.M., Curley, H., Chegwidden, L., Arbe-Barnes, E.H., et al. (2022). Germline MBD4 deficiency causes a multi-tumor predisposition syndrome. *Am. J. Hum. Genet.* 109, 953–960.

279

280

281 4. Derrien, A.-C., Rodrigues, M., Eeckhoutte, A., Dayot, S., Houy, A., Mmobuchon, L., Gardrat, S., Lequin, D., Ballet, S., Pierron, G., et al. (2021). Germline MBD4 Mutations and Predisposition to Uveal Melanoma. *J. Natl. Cancer Inst.* 113, 80–87.

282

283

284 5. Millar, C.B., Guy, J., Sansom, O.J., Selfridge, J., MacDougall, E., Hendrich, B., Keightley, P.D., Bishop,
285 S.M., Clarke, A.R., and Bird, A. (2002). Enhanced CpG mutability and tumorigenesis in MBD4-deficient
286 mice. *Science* 297, 403–405.

287 6. Wong, E., Yang, K., Kuraguchi, M., Werling, U., Avdievich, E., Fan, K., Fazzari, M., Jin, B., Brown, A.M.C.,
288 Lipkin, M., et al. (2002). Mbd4 inactivation increases Cright-arrowT transition mutations and promotes
289 gastrointestinal tumor formation. *Proc. Natl. Acad. Sci. U. S. A.* 99, 14937–14942.

290 7. Bimber, B.N., Yan, M.Y., Peterson, S.M., and Ferguson, B. (2019). mGAP: the macaque genotype and
291 phenotype resource, a framework for accessing and interpreting macaque variant data, and identifying
292 new models of human disease. *BMC Genomics* 20, 176.

293 8. Conrad, D.F., Keebler, J.E.M., DePristo, M.A., Lindsay, S.J., Zhang, Y., Casals, F., Idaghdour, Y., Hartl, C.L.,
294 Torroja, C., Garimella, K.V., et al. (2011). Variation in genome-wide mutation rates within and between
295 human families. *Nat. Genet.* 43, 712–714.

296 9. Kong, A., Frigge, M.L., Masson, G., Besenbacher, S., Sulem, P., Magnusson, G., Gudjonsson, S.A.,
297 Sigurdsson, A., Jonasdottir, A., Jonasdottir, A., et al. (2012). Rate of de novo mutations and the
298 importance of father's age to disease risk. *Nature* 488, 471–475.

299 10. Rahbari, R., UK10K Consortium, Wuster, A., Lindsay, S.J., Hardwick, R.J., Alexandrov, L.B., Al Turki, S.,
300 Dominiczak, A., Morris, A., Porteous, D., et al. (2016). Timing, rates and spectra of human germline
301 mutation. *Nat. Genet.* 48, 126–133.

302 11. Wang, R.J., Thomas, G.W.C., Raveendran, M., Harris, R.A., Doddapaneni, H., Muzny, D.M., Capitanio,
303 J.P., Radivojac, P., Rogers, J., and Hahn, M.W. (2020). Paternal age in rhesus macaques is positively
304 associated with germline mutation accumulation but not with measures of offspring sociability. *Genome*
305 *Res.* 30, 826–834.

306 12. Bergeron, L.A., Besenbacher, S., Bakker, J., Zheng, J., Li, P., Pacheco, G., Sinding, M.-H.S., Kamilari, M.,
307 Gilbert, M.T.P., Schierup, M.H., et al. (2021). The germline mutational process in rhesus macaque and its
308 implications for phylogenetic dating. *Gigascience* 10.,

309 13. Crow, J.F. (2000). The origins, patterns and implications of human spontaneous mutation. *Nat. Rev.*
310 *Genet.* 1, 40–47.

311 14. Abascal, F., Harvey, L.M.R., Mitchell, E., Lawson, A.R.J., Lensing, S.V., Ellis, P., Russell, A.J.C.,
312 Alcantara, R.E., Baez-Ortega, A., Wang, Y., et al. (2021). Somatic mutation landscapes at single-molecule
313 resolution. *Nature* 593, 405–410.

314 15. Moore, L., Cagan, A., Coorens, T.H.H., Neville, M.D.C., Sanghvi, R., Sanders, M.A., Oliver, T.R.W.,
315 Leongamornlert, D., Ellis, P., Noorani, A., et al. (2021). The mutational landscape of human somatic and
316 germline cells. *Nature* 597, 381–386.

317 16. Jónsson, H., Sulem, P., Kehr, B., Kristmundsdottir, S., Zink, F., Hjartarson, E., Hardarson, M.T.,
318 Hjorleifsson, K.E., Eggertsson, H.P., Gudjonsson, S.A., et al. (2017). Parental influence on human germline
319 de novo mutations in 1,548 trios from Iceland. *Nature* 549, 519–522.

320 17. Deciphering Developmental Disorders Study (2017). Prevalence and architecture of de novo
321 mutations in developmental disorders. *Nature* 542, 433–438.

322 18. Tate, J.G., Bamford, S., Jubb, H.C., Sondka, Z., Beare, D.M., Bindal, N., Boutselakis, H., Cole, C.G.,
323 Creatore, C., Dawson, E., et al. (2019). COSMIC: The Catalogue Of Somatic Mutations In Cancer. *Nucleic*
324 *Acids Res.* 47, D941–D947.

325 19. Greenberg, M.V.C., and Bourc'his, D. (2019). The diverse roles of DNA methylation in mammalian
326 development and disease. *Nat. Rev. Mol. Cell Biol.* 20, 590–607.

327 20. Kaplanis, J., Ide, B., Sanghvi, R., Neville, M., Danecek, P., Coorens, T., Prigmore, E., Short, P., Gallone, G.,
328 McRae, J., et al. (2022). Genetic and chemotherapeutic influences on germline hypermutation. *Nature*
329 605, 503–508.

330 21. Robinson, P.S., Thomas, L.E., Abascal, F., Jung, H., Harvey, L.M.R., West, H.D., Olafsson, S., Lee, B.C.H.,
331 Coorens, T.H.H., Lee-Six, H., et al. (2022). Inherited MUTYH mutations cause elevated somatic mutation
332 rates and distinctive mutational signatures in normal human cells. *Nat. Commun.* 13, 3949.

333 22. Sasani, T.A., Ashbrook, D.G., Beichman, A.C., Lu, L., Palmer, A.A., Williams, R.W., Pritchard, J.K., and
334 Harris, K. A natural mutator allele shapes mutation spectrum variation in mice.

335 23. Shirane, K., Toh, H., Kobayashi, H., Miura, F., Chiba, H., Ito, T., Kono, T., and Sasaki, H. (2013). Mouse
336 oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and
337 role of DNA methyltransferases. *PLoS Genet.* 9, e1003439.

338 24. Yu, B., Dong, X., Gravina, S., Kartal, Ö., Schimmel, T., Cohen, J., Tortoriello, D., Zody, R., Hawkins, R.D.,
339 and Vijg, J. (2017). Genome-wide, Single-Cell DNA Methylocomics Reveals Increased Non-CpG Methylation
340 during Human Oocyte Maturation. *Stem Cell Reports* 9, 397–407.

341 25. Galetzka, D., Weis, E., Tralau, T., Seidmann, L., and Haaf, T. (2007). Sex-specific windows for high
342 mRNA expression of DNA methyltransferases 1 and 3A and methyl-CpG-binding domain proteins 2 and 4
343 in human fetal gonads. *Mol. Reprod. Dev.* 74, 233–241.

344