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27 Abstract

28  Adipogenesis is a process in which fat-specific progenitor cells (preadipocytes) differentiate
29  into adipocytes that carry out the key metabolic functions of the adipose tissue, including
30 glucose uptake, energy storage, and adipokine secretion. Several cell lines are routinely used
31  to study the molecular regulation of adipogenesis, in particular the immortalized mouse 3T3-
32 L1 line and the primary human Simpson-Golabi-Behmel syndrome (SGBS) line. However, the
33  cell-to-cell variability of transcriptional changes prior to and during adipogenesis in these
34  models is not well understood. Here, we present a single-cell RNA-Sequencing (scRNA-Seq)
35  dataset collected before and during adipogenic differentiation of 3T3-L1 and SGBS cells.
36 To minimize the effects of experimental variation, we mixed 3T3-L1 and SGBS cells and used
37  computational analysis to demultiplex transcriptomes of mouse and human cells. In both
38 models, adipogenesis results in the appearance of three cell clusters, corresponding
39  topreadipocytes, early and mature adipocytes. These data provide a groundwork
40  for comparative studies on human and mouse adipogenesis, as well as on cell-to-cell variability
41 in gene expression during this process.

42

43 Background & Summary

44  Adipose tissue carries out multiple roles that affect whole-body metabolism. In addition
45 to storing energy in the form of lipids, it contributes to the homeostatic maintenance of blood
46  glucose levels by taking up glucose in response to insulin and regulates the function of other
47 metabolic organs by secreting hormones such as leptin and adiponectin?.

48

49  Adipogenesis is a differentiation process in which fat-specific progenitor cells (preadipocytes)
50 convert into adipocytes, which carry out key metabolic functions of the adipose tissue. In vivo,
51 preadipocytes are located in proximity of blood vessels within adipose tissue and contribute
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52 to adipose tissue maintenance and expansion in obesity>. Dysregulation of adipogenesis can
53 result in metabolic disease, including insulin resistance and type 2 diabetes.*
54
55 Several preadipocyte in vitro models are routinely used to study the molecular regulation
56 of adipogenesis. The most commonly used in vitro models include the immortalized mouse
57  3T3-L1 cell line® and the primary, non-immortalized, non-transformed human Simpson-Golabi
58 Behmel syndrome (SGBS) cell line®. These cellular models brought on major breakthroughs
59 inour understanding of molecular mechanisms of adipogenic differentiation, both
60 in development and in obesity”®. However, adipogenic models show high levels of cell-to-cell
61 heterogeneity in their differentiation responses to stimuli®. This heterogeneity can be due
62  to multiple factors, including variations in preadipocyte commitment and stochasticity
63  of responses to differentiation stimuli. Despite that, adipogenesis is often studied using bulk
64  approaches, such as bulk RNA-Sequencing, which ignore the variability between individual
65 cells, likely masking the presence of distinct cell subpopulations during adipogenesis.
66
67 Here, we present a single-cell RNA-Sequencing (scRNA-Seq) dataset collected before and
68 during adipogenic differentiation of 3T3-L1 and SGBS cells to allow for analyses
69 of heterogeneity of transcriptional states before and during adipogenesis, as well as
70  comparisons between mouse and human models of adipogenesis. To minimize technical
71 variation, at two time points (before and during adipogenic differentiation) mouse and human
72 cells were mixed in equal ratios and subjected to scRNA-Seq, followed by computational
73  demultiplexing and separation of data from mouse and human cells (Fig. 1). Through technical
74  validation, we demonstrate quality of this dataset. By unsupervised clustering we identify cell
75 populations that correspond to preadipocytes, differentiating and mature adipocytes in both
76  models.
77
78  This dataset complements recent advances in characterizing the transcriptome of adipose
79  tissue in human and mice at a single-cell*®®2 and single-nucleus level**.
80
81 Methods
82  Cell culture. The 3T3-L1 preadipocyte cell line was maintained in Dulbecco’s Modified Eagle’s
83 Medium (DMEM, Thermo Fisher) with 10% Fetal Bovine Serum (GeminiBio), 100 units/ml
84  penicillin and 100 pg/ml streptomycin, in a humidified 5% CO2 incubator. For adipogenic
85  differentiation cells were grown to confluency. 48 h past confluency, at day O
86 of differentiation, cells were stimulated with 1 uM dexamethasone, 0.5 mM IBMX, 10 pg/ml
87  insulin in growth medium. After 48 h the medium was changed to growth medium with 10
88  upg/mlinsulin in growth medium until day 5.
89
90 The SGBS cell line was cultured and differentiated as previously described®. Cells were
91 maintained in a humidified chamber at 37°C with 5% CO,, and the media was replaced every
92 2-3 days. The standard culture media used was composed of DMEM/Nutrient Mix F-12
93 (Invitrogen), supplemented with 33 uM biotin, 17 uM pantothenic acid, 10 % FBS and
94  antibiotics (100 1U/ml penicillin and 100 ug/ml streptomycin). Differentiation was induced
95 on DO, three days post-confluence, by the change of culture media to DMEM/F-12, 33 uM
96 biotin, 17 uM pantothenic acid, 0.01 mg/ml human transferrin, 100 nM cortisol, 200 pM
97 triiodothyronine, 20 nM human insulin (Sigma-Aldrich), 25 nM dexamethasone, 250 uM IBMX,
98 2 uM rosiglitazone, and antibiotics. After four days of differentiation, the medium was
99 replaced with DMEM/F-12, 33 uM biotin, 17 uM pantothenic acid, 0.01 mg/ml human
100 transferrin, 100 nM cortisol, 200 pM triiodothyronine, 20 nM human insulin and antibiotics.
101  SGBS cells were cultured for eight days after the induction of differentiation.
102
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103 Single-cell sorting and cDNA library preparation. On the day of collection, cells were detached
104  from culture plates using TrypLE Select Enzyme (Gibco), centrifuged at 300 x g for 5 min and
105 resuspended in PBS with 0.04% Bovine Serum Albumin. Lack of staining with propidium iodine
106  (PI) was used to sort live cells using Influx sorter (Beckman Dickinson). Equal numbers of SGBS
107 and 3T3-L1 cells were mixed and subjected to single-cell capture on the 10X Chromium
108  Controller device at Stanford Genomics Service Center during which single cells were
109  encapsulated with individual Gel Beads-in-emulsion (GEMs) using the Chromium Single Cell 3’
110 Library & Gel Bead Kit (10X Genomics). In-drop reverse transcription and cDNA amplification
111  was conducted according to the manufacturer’s protocol to construct expression libraries.
112 Library size was checked using Agilent Bioanalyzer 2100 at the Stanford Genomics facility. The
113 libraries were sequenced using lllumina HiSeq 4000.

114

115 Raw data processing. Cell Ranger v2.10 was used for processing and analysing the raw single
116  cell FASTQ files. The following genome builds were used: mm10 for the mouse genome, hg19
117  for the human genome. Quality control (QC) steps taken to assess the quality of the
118 sequencing data and identify potential included: sample demultiplexing, read alignment and
119 filtering, gene expression quantification, cell filtering and QC metrics, and data normalization
120 and batch correction. Only reads mapping to mm10 or hgl9 were used for downstream
121 processing.

122

123 Bioinformatic analysis of sScRNA-Seq data. Seurat v4.3%® was used to merge processed data
124  for two single cell sequencing runs, combining sequencing data from different stages
125  of adipocyte differentiation. The data was first split between human and mouse data, pre-
126 processed using Seurat, then log normalized. The major variable features within the processed
127 data were identified using Variance Stabilizing Transformation. The gene matrix was then
128  visualized and analysed using principal component analysis (PCA), with gene associations
129  to each principal component displayed. Seurat’s FindNeighbors and FindClusters functions
130  (resolution = 0.09) were used to identify groups within the samples. The data was further
131  visualized via the PCA, Uniform Manifold Approximation and Projection (UMAP), and t-
132  distributed Stochastic Neighbor Embedding (t-SNE) dimensional reduction techniques.
133 Seurat’s FindAllMarkers function identified specific genes specific to each cluster, with
134  previous annotations indicating that genes were clustered by stages in cell differentiation.
135 Feature plots for specific differentiation features were visualized in a t-SNE plot and through
136  heatmaps for each cluster using Seurat’s DoHeatMap and FeaturePlot functions.

137

138 Data Records

139  Sequencing data have been submitted to the NCBI Gene Expression Omnibus (GSE226365).
140  The dataset consists of raw sequencing data in FASTQ format, separated by the time point: DO
141 3T3-L1 and DO SGBS (GSM7073976) and D5 3T3-L1 and D8 SGBS (GSM7073977). In addition,
142  we provide processed data, separated by time point and cell line, including barcodes.tsv,
143  genes.tsv and matrix.mtx files, listing raw UMI counts for each gene (feature) in each cell
144 (barcode) in a sparse matrix format.

145

146 Technical Validation

147  To validate the quality of our data, we investigated the technical quality control and the
148 unsupervised clustering and its reproducibility between the two datasets.

149

150 Quality control of the scRNA-Seq dataset. Interpretation of single-cell transcriptomics data is
151 highly sensitive to technical artifacts. Sequencing data alignment using Cell Ranger led to the
152 identification of comparable numbers of human and mouse cells within each of the analysed
153  time points, as expected (Table 1). We used further steps to filter cells, removing any
154  multiplets and cells with fewer than 200 genes detected (Fig. 2, Table 2).
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155

156  Annotation of cell subpopulations. Adipogenesis is a highly heterogeneous process, and we
157 expected the addition of differentiation stimuli to result in the appearance of additional cell
158 states compared to DO of differentiation, prior to the exposure to differentiation media.
159 In fact, for both 3T3-L1 and SGBS cells we identified three cell clusters whose transcriptional
160  profiles suggest they are preadipocytes, differentiating cells and adipocytes (Fig. 3, Fig. 4).
161 Furthermore, in both cell models there was a clear separation of cells isolated at DO, which
162  corresponded to the preadipocyte clusters, and cells isolated after the induction
163  of adipogenesis (D5 in 3T3-L1, D8 in SGBS), which corresponded to the other clusters (Fig. 3,
164  Fig. 4). Our scRNA-Seq dataset includes cells collected at two separate timepoints and
165 processed independently, therefore we cannot rule out the presence of a batch effect
166  contributing to the separation of DO cells from later time points, which is a limitation of this
167  study. However, analysis of the genes enriched in the identified cell clusters supports the view
168 that the treatment with differentiation media affects the transcriptome, regardless
169  of whether the cells fully differentiate, resulting in the differences between the clusters at DO
170 and D5/D8. In particular, adipogenesis is associated with major changes in the composition of
171 the extracellular matrix (ECM) components. In line with previously published work, the
172 preadipocyte cluster in SGBS cells showed enrichment inthe expression of claudin 11
173  (CLDN11)®, and the clusters containing differentiating cells both in SGBS and 3T3-L1 models
174  showed an enrichment of the expression of collagen type Ill alpha 1 chain (COL3A1, Col3al)
175 which is associated with adipogenic differentiation’’. Furter, adipocyte markers fatty acid
176  binding protein 4 (FABP4)*%%9, adiponectin (ADIPOQ)?, and perilipin 4 (PLIN4)** were identified
177  in the SGBS adipocyte cluster and Fabp4'%*°, lipoprotein lipase (Lp/)?, and resistin (Retn)??
178  were identified in the 3T3-L1 adipocyte cluster (Table 3).

179 Code Availability

180  All analytical code used for processing and technical validation is available on the GitHub
181  Repository (https://github.com/christopherjin/SGBS_3T3-L1_differentiation_scRNASeq).
182  The provided R code was run and tested using R 4.2.2.

183
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311 Figure Legends

312

313 Fig. 1 Workflow of scRNA-Seq of mouse and human adipogenesis. Human SGBS and mouse
314  3T3-L1 cells were analyzed at two time points, corresponding to before (DO) and during (D5
315 for 3T3-L1, D8 for SGBS) adipogenesis. At each time point, live cells were purified using
316 exclusion of propidium iodide-stained cells by FACS. Equal numbers of SGBS and 3T3-L1 cells
317  were then mixed, and subjected to microfluidic single-cell capture with GelBeads-in-emulsion
318 (GEMs) using 10X Chromium Controller. Single-cell cDNA libraries were prepared using the
319  Chromium Single Cell 3’ Library & Gel Bead Kit (10X Genomics), followed by sequencing
320 on lllumina HiSeq4000. Computational analysis involved barcode processing, UMI counting,
321 demultiplexing, gene and cell filtering, normalization, and clustering.

322

323 Fig. 2 Single-cell RNA-Seq dataset quality assessment. (a-b) Violin plots of gene counts and
324 UMl counts after quality control filtering in (a) SGBS cells and (b) 3T3-L1 cells, separated by the
325  day of differentiation.

326

327  Fig. 3 Clustering of scRNA-Seq data in human SGBS cells. (a) Primary component analysis (PCA)
328  plot. (b) UMAP plot. (c) t-SNE plot. (d) Assignment of cells by differentiation day (DO vs. D8),
329  superimposed on the t-SNE plot. (e) Heatmap showing the expression of top 10 enriched genes
330 percell cluster.

331

332 Fig. 4 Clustering of scRNA-Seq data in murine 3T3-L1 cells. (a) Primary component analysis
333 (PCA) plot. (b) UMAP plot. (c) t-SNE plot. (d) Assignment of cells by differentiation day (DO vs.
334 D5), superimposed on the t-SNE plot. (e) Heatmap showing the expression of top 10 enriched
335 genes per cell cluster.
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Tables
Raw sequencing sample SGBS DO, 3T3-L1 DO SGBS D8, 3T3-L1 D5
Number of reads 320,829,287 334,091,518
Q30 bases in barcodes 96.9% 97.5%
Q30 bases in RNA reads 76.7% 77.4%
Q30 bases in UMI reads 96.8% 97.6%
Mean reads per cell 31,460 49,239
Processed sample SGBS DO 3T3-L1 DO SGBS D8 3T3-L1 D5
Reads mapped to genome 30.8% 58.1% 51.1% 41.7%
Reads mapped to exons 25.6% 46.8% 43.2% 33.7%
Reads mapped uniquely to 29.8% 52.6% 49.8% 38.5%
genome
Estimated number of cells 5,672 5,402 3,655 3,305
Fraction of reads in cells 94.40% 94.50% 93.2% 93.3%
Median genes per cell 2,239 3,360 3,199 3,011
Total genes detected 19,339 17,013 19,862 16,444

Table 1. Detailed QC report of 10X Genomics sequencing files (Cell Ranger).

SGBS DO SGBS D8 3T3-L1 DO 3T3-L1 D5
Unfiltered cells 5,672 3,655 5,402 3,305
Filtered cells 4,742 3,480 4,526 3,118
Filtered genes detected 16,486 17,178 14,755 14,436
Table 2. Final cell quantification statistics.
Cell Cluster number Top 5 enriched genes Number | % All
line and description of cells cells
0— preadipocytes MT2A, TGFBI, IGFBP3*, CLDN11%, 4,744 57.70
C12orf75
. . PTGDS*, NID1%®, COL3A1'’, CFD¥,| 2,002 24.35
SGBS | 1 - differentiating ADH18%
2 — adipocytes SCD%, G0S2%°, ADIPOQ?*, PLIN4%, 1,476 17.95
FABP4819
, Hmga2*, Tubalb, Rpl12, Anxa3%*,| 4,574 59.84
0 — preadipocytes 33
3T3-L1 Tnfrsfl2a
1 — differentiating | Col3a1%’, Mgp3*, Cst3, Ptn, Postn 2,612 34.17
2 — adipocytes Fabp4®®1%, Scd1%, Lpl??, Retn?3, Acsl13® 5.99

Table 3. Description of cell clusters identified by unsupervised clustering.
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