

1 **Title**

2 *Single-cell transcriptome dataset of human and mouse in vitro adipogenesis models*

3

4 **Authors**

5 Jiehan Li^{1,2,3,8}, Christopher Jin^{1,8}, Stefan Gustafsson⁴, Abhiram Rao⁵, Martin Wabitsch⁶, Chong
6 Y. Park^{1,2,3}, Thomas Quertermous^{1,3}, Ewa Bielczyk-Maczynska^{1,2,3,8}✉, Joshua W.
7 Knowles^{1,2,3,7}✉

8

9 **Affiliations**

10 1. Division of Cardiovascular Medicine, Department of Medicine, Stanford University School
11 of Medicine, Stanford, CA, 94305, USA.

12 2. Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA,
13 94305, USA.

14 3. Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, 94305, USA.

15 4. Clinical Epidemiology Unit, Department of Medical Sciences, Uppsala University, Uppsala,
16 Sweden.

17 5. Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

18 6. Department of Pediatrics and Adolescent Medicine, Center for Rare Endocrine Diseases,
19 Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Centre, Ulm, 89075,
20 Germany.

21 7. Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA,
22 94305, USA.

23 8. These authors contributed equally: Jiehan Li, Christopher Jin.

24 ✉Corresponding authors: Joshua W. Knowles (knowlej@stanford.edu), Ewa Bielczyk-
25 Maczynska (ewabm@stanford.edu)

26

27 **Abstract**

28 Adipogenesis is a process in which fat-specific progenitor cells (preadipocytes) differentiate
29 into adipocytes that carry out the key metabolic functions of the adipose tissue, including
30 glucose uptake, energy storage, and adipokine secretion. Several cell lines are routinely used
31 to study the molecular regulation of adipogenesis, in particular the immortalized mouse 3T3-
32 L1 line and the primary human Simpson-Golabi-Behmel syndrome (SGBS) line. However, the
33 cell-to-cell variability of transcriptional changes prior to and during adipogenesis in these
34 models is not well understood. Here, we present a single-cell RNA-Sequencing (scRNA-Seq)
35 dataset collected before and during adipogenic differentiation of 3T3-L1 and SGBS cells.
36 To minimize the effects of experimental variation, we mixed 3T3-L1 and SGBS cells and used
37 computational analysis to demultiplex transcriptomes of mouse and human cells. In both
38 models, adipogenesis results in the appearance of three cell clusters, corresponding
39 to preadipocytes, early and mature adipocytes. These data provide a groundwork
40 for comparative studies on human and mouse adipogenesis, as well as on cell-to-cell variability
41 in gene expression during this process.

42

43 **Background & Summary**

44 Adipose tissue carries out multiple roles that affect whole-body metabolism. In addition
45 to storing energy in the form of lipids, it contributes to the homeostatic maintenance of blood
46 glucose levels by taking up glucose in response to insulin and regulates the function of other
47 metabolic organs by secreting hormones such as leptin and adiponectin^{1,2}.

48

49 Adipogenesis is a differentiation process in which fat-specific progenitor cells (preadipocytes)
50 convert into adipocytes, which carry out key metabolic functions of the adipose tissue. *In vivo*,
51 preadipocytes are located in proximity of blood vessels within adipose tissue and contribute

52 to adipose tissue maintenance and expansion in obesity³. Dysregulation of adipogenesis can
53 result in metabolic disease, including insulin resistance and type 2 diabetes.⁴

54

55 Several preadipocyte *in vitro* models are routinely used to study the molecular regulation
56 of adipogenesis. The most commonly used *in vitro* models include the immortalized mouse
57 3T3-L1 cell line⁵ and the primary, non-immortalized, non-transformed human Simpson-Golabi
58 Behmel syndrome (SGBS) cell line⁶. These cellular models brought on major breakthroughs
59 in our understanding of molecular mechanisms of adipogenic differentiation, both
60 in development and in obesity^{7,8}. However, adipogenic models show high levels of cell-to-cell
61 heterogeneity in their differentiation responses to stimuli⁹. This heterogeneity can be due
62 to multiple factors, including variations in preadipocyte commitment and stochasticity
63 of responses to differentiation stimuli. Despite that, adipogenesis is often studied using bulk
64 approaches, such as bulk RNA-Sequencing, which ignore the variability between individual
65 cells, likely masking the presence of distinct cell subpopulations during adipogenesis.

66

67 Here, we present a single-cell RNA-Sequencing (scRNA-Seq) dataset collected before and
68 during adipogenic differentiation of 3T3-L1 and SGBS cells to allow for analyses
69 of heterogeneity of transcriptional states before and during adipogenesis, as well as
70 comparisons between mouse and human models of adipogenesis. To minimize technical
71 variation, at two time points (before and during adipogenic differentiation) mouse and human
72 cells were mixed in equal ratios and subjected to scRNA-Seq, followed by computational
73 demultiplexing and separation of data from mouse and human cells (Fig. 1). Through technical
74 validation, we demonstrate quality of this dataset. By unsupervised clustering we identify cell
75 populations that correspond to preadipocytes, differentiating and mature adipocytes in both
76 models.

77

78 This dataset complements recent advances in characterizing the transcriptome of adipose
79 tissue in human and mice at a single-cell¹⁰⁻¹³ and single-nucleus level¹⁴.

80

81 **Methods**

82 **Cell culture.** The 3T3-L1 preadipocyte cell line was maintained in Dulbecco's Modified Eagle's
83 Medium (DMEM, Thermo Fisher) with 10% Fetal Bovine Serum (GeminiBio), 100 units/ml
84 penicillin and 100 µg/ml streptomycin, in a humidified 5% CO₂ incubator. For adipogenic
85 differentiation cells were grown to confluence. 48 h past confluence, at day 0
86 of differentiation, cells were stimulated with 1 µM dexamethasone, 0.5 mM IBMX, 10 µg/ml
87 insulin in growth medium. After 48 h the medium was changed to growth medium with 10
88 µg/ml insulin in growth medium until day 5.

89

90 The SGBS cell line was cultured and differentiated as previously described⁶. Cells were
91 maintained in a humidified chamber at 37°C with 5% CO₂, and the media was replaced every
92 2-3 days. The standard culture media used was composed of DMEM/Nutrient Mix F-12
93 (Invitrogen), supplemented with 33 uM biotin, 17 uM pantothenic acid, 10 % FBS and
94 antibiotics (100 IU/ml penicillin and 100 ug/ml streptomycin). Differentiation was induced
95 on D0, three days post-confluence, by the change of culture media to DMEM/F-12, 33 uM
96 biotin, 17 uM pantothenic acid, 0.01 mg/ml human transferrin, 100 nM cortisol, 200 pM
97 triiodothyronine, 20 nM human insulin (Sigma-Aldrich), 25 nM dexamethasone, 250 uM IBMX,
98 2 uM rosiglitazone, and antibiotics. After four days of differentiation, the medium was
99 replaced with DMEM/F-12, 33 uM biotin, 17 uM pantothenic acid, 0.01 mg/ml human
100 transferrin, 100 nM cortisol, 200 pM triiodothyronine, 20 nM human insulin and antibiotics.
101 SGBS cells were cultured for eight days after the induction of differentiation.

102

103 **Single-cell sorting and cDNA library preparation.** On the day of collection, cells were detached
104 from culture plates using TrypLE Select Enzyme (Gibco), centrifuged at 300 x g for 5 min and
105 resuspended in PBS with 0.04% Bovine Serum Albumin. Lack of staining with propidium iodine
106 (PI) was used to sort live cells using Influx sorter (Beckman Dickinson). Equal numbers of SGBS
107 and 3T3-L1 cells were mixed and subjected to single-cell capture on the 10X Chromium
108 Controller device at Stanford Genomics Service Center during which single cells were
109 encapsulated with individual Gel Beads-in-emulsion (GEMs) using the Chromium Single Cell 3'
110 Library & Gel Bead Kit (10X Genomics). In-drop reverse transcription and cDNA amplification
111 was conducted according to the manufacturer's protocol to construct expression libraries.
112 Library size was checked using Agilent Bioanalyzer 2100 at the Stanford Genomics facility. The
113 libraries were sequenced using Illumina HiSeq 4000.
114

115 **Raw data processing.** Cell Ranger v2.10 was used for processing and analysing the raw single
116 cell FASTQ files. The following genome builds were used: mm10 for the mouse genome, hg19
117 for the human genome. Quality control (QC) steps taken to assess the quality of the
118 sequencing data and identify potential included: sample demultiplexing, read alignment and
119 filtering, gene expression quantification, cell filtering and QC metrics, and data normalization
120 and batch correction. Only reads mapping to mm10 or hg19 were used for downstream
121 processing.

122 **Bioinformatic analysis of scRNA-Seq data.** Seurat v4.3¹⁵ was used to merge processed data
123 for two single cell sequencing runs, combining sequencing data from different stages
124 of adipocyte differentiation. The data was first split between human and mouse data, pre-
125 processed using Seurat, then log normalized. The major variable features within the processed
126 data were identified using Variance Stabilizing Transformation. The gene matrix was then
127 visualized and analysed using principal component analysis (PCA), with gene associations
128 to each principal component displayed. Seurat's *FindNeighbors* and *FindClusters* functions
129 (resolution = 0.09) were used to identify groups within the samples. The data was further
130 visualized via the PCA, Uniform Manifold Approximation and Projection (UMAP), and t-
131 distributed Stochastic Neighbor Embedding (t-SNE) dimensional reduction techniques.
132 Seurat's *FindAllMarkers* function identified specific genes specific to each cluster, with
133 previous annotations indicating that genes were clustered by stages in cell differentiation.
134 Feature plots for specific differentiation features were visualized in a t-SNE plot and through
135 heatmaps for each cluster using Seurat's *DoHeatMap* and *FeaturePlot* functions.
136

137

138 **Data Records**

139 Sequencing data have been submitted to the NCBI Gene Expression Omnibus (GSE226365).
140 The dataset consists of raw sequencing data in FASTQ format, separated by the time point: D0
141 3T3-L1 and D0 SGBS (GSM7073976) and D5 3T3-L1 and D8 SGBS (GSM7073977). In addition,
142 we provide processed data, separated by time point and cell line, including *barcodes.tsv*,
143 *genes.tsv* and *matrix.mtx* files, listing raw UMI counts for each gene (feature) in each cell
144 (barcode) in a sparse matrix format.

145

146 **Technical Validation**

147 To validate the quality of our data, we investigated the technical quality control and the
148 unsupervised clustering and its reproducibility between the two datasets.

149

150 **Quality control of the scRNA-Seq dataset.** Interpretation of single-cell transcriptomics data is
151 highly sensitive to technical artifacts. Sequencing data alignment using Cell Ranger led to the
152 identification of comparable numbers of human and mouse cells within each of the analysed
153 time points, as expected (**Table 1**). We used further steps to filter cells, removing any
154 multiplets and cells with fewer than 200 genes detected (**Fig. 2, Table 2**).

155
156 **Annotation of cell subpopulations.** Adipogenesis is a highly heterogeneous process, and we
157 expected the addition of differentiation stimuli to result in the appearance of additional cell
158 states compared to D0 of differentiation, prior to the exposure to differentiation media.
159 In fact, for both 3T3-L1 and SGBS cells we identified three cell clusters whose transcriptional
160 profiles suggest they are preadipocytes, differentiating cells and adipocytes (**Fig. 3, Fig. 4**).
161 Furthermore, in both cell models there was a clear separation of cells isolated at D0, which
162 corresponded to the preadipocyte clusters, and cells isolated after the induction
163 of adipogenesis (D5 in 3T3-L1, D8 in SGBS), which corresponded to the other clusters (**Fig. 3,**
164 **Fig. 4**). Our scRNA-Seq dataset includes cells collected at two separate timepoints and
165 processed independently, therefore we cannot rule out the presence of a batch effect
166 contributing to the separation of D0 cells from later time points, which is a limitation of this
167 study. However, analysis of the genes enriched in the identified cell clusters supports the view
168 that the treatment with differentiation media affects the transcriptome, regardless
169 of whether the cells fully differentiate, resulting in the differences between the clusters at D0
170 and D5/D8. In particular, adipogenesis is associated with major changes in the composition of
171 the extracellular matrix (ECM) components. In line with previously published work, the
172 preadipocyte cluster in SGBS cells showed enrichment in the expression of claudin 11
173 (*CLDN11*)¹⁶, and the clusters containing differentiating cells both in SGBS and 3T3-L1 models
174 showed an enrichment of the expression of collagen type III alpha 1 chain (*COL3A1*, *Col3a1*)
175 which is associated with adipogenic differentiation¹⁷. Furter, adipocyte markers fatty acid
176 binding protein 4 (*FABP4*)^{18,19}, adiponectin (*ADIPOQ*)²⁰, and perilipin 4 (*PLIN4*)²¹ were identified
177 in the SGBS adipocyte cluster and *Fabp4*^{18,19}, lipoprotein lipase (*Lpl*)²², and resistin (*Retn*)²³
178 were identified in the 3T3-L1 adipocyte cluster (**Table 3**).

179 **Code Availability**

180 All analytical code used for processing and technical validation is available on the GitHub
181 Repository (https://github.com/christopherjin/SGBS_3T3-L1_differentiation_scRNASeq).
182 The provided R code was run and tested using R 4.2.2.

183

184 **Acknowledgements**

185 The authors would like thank Dr. Erik Ingelsson for his support of this project. We acknowledge
186 the technical assistance of the Stanford Genomics Service Center and the Stanford Shared
187 FACS Facility.

188

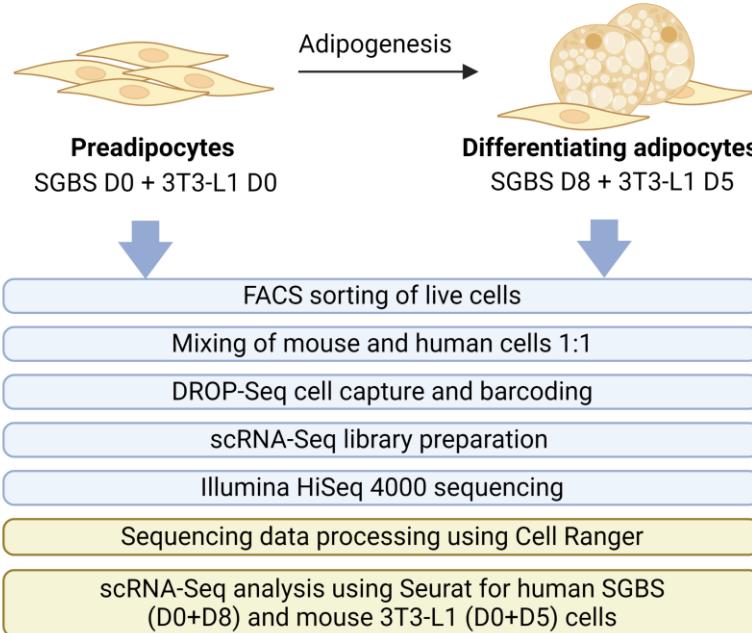
189 E.B.M. was supported by the American Heart Association (AHA) postdoctoral fellowship
190 (18POST34030448). T.Q. was supported by R01HL134817, R01HL139478, R01HL156846,
191 R01HL151535, R01HL145708, UM1 HG011972 from the NIH, as well as by a Human Cell Atlas
192 grant from the Chan Zuckerberg Foundation. J.W.K. was funded by NIH R01 DK116750, R01
193 DK120565, R01 DK106236, R01 DK107437, P30DK116074, and ADA 1-19-JDF-108.

194

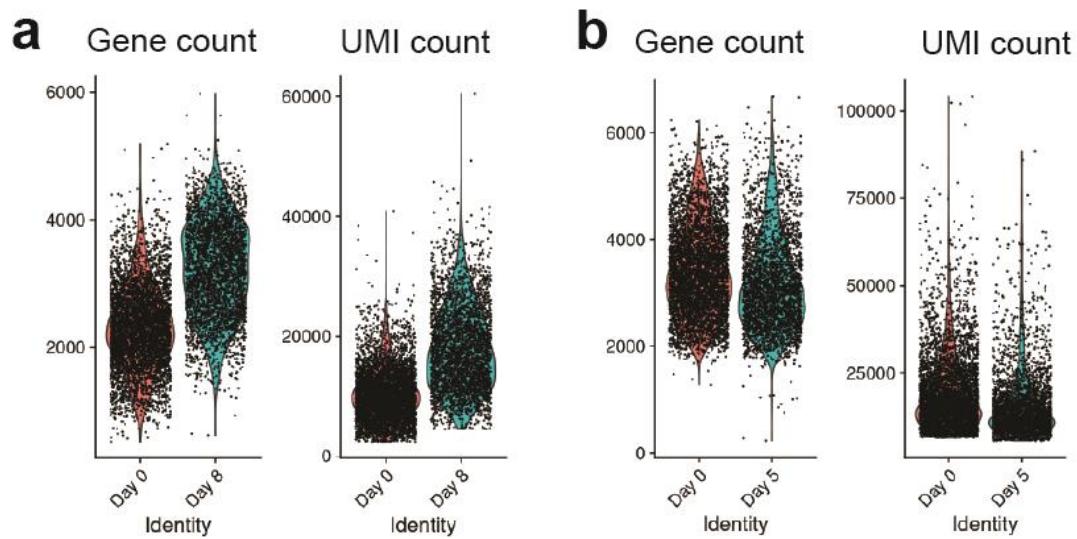
195 **Author contributions**

196 J.L. conceived the project, conducted experiments and analysed the data; C.J. conducted
197 bioinformatic analyses, created figures and wrote the manuscript; S.G. assisted with
198 bioinformatic analysis; A.R. assisted with bioinformatic analysis; M.W. provided critical
199 resources for the project; C.Y.P. conceived the project and assisted with the experiments; T.Q.
200 guided the bioinformatic analysis and critically reviewed the manuscript; E.B.M. analysed data,
201 created figures and wrote the manuscript with the input from all the authors; J.W.K. oversaw
202 the project and critically reviewed the manuscript.

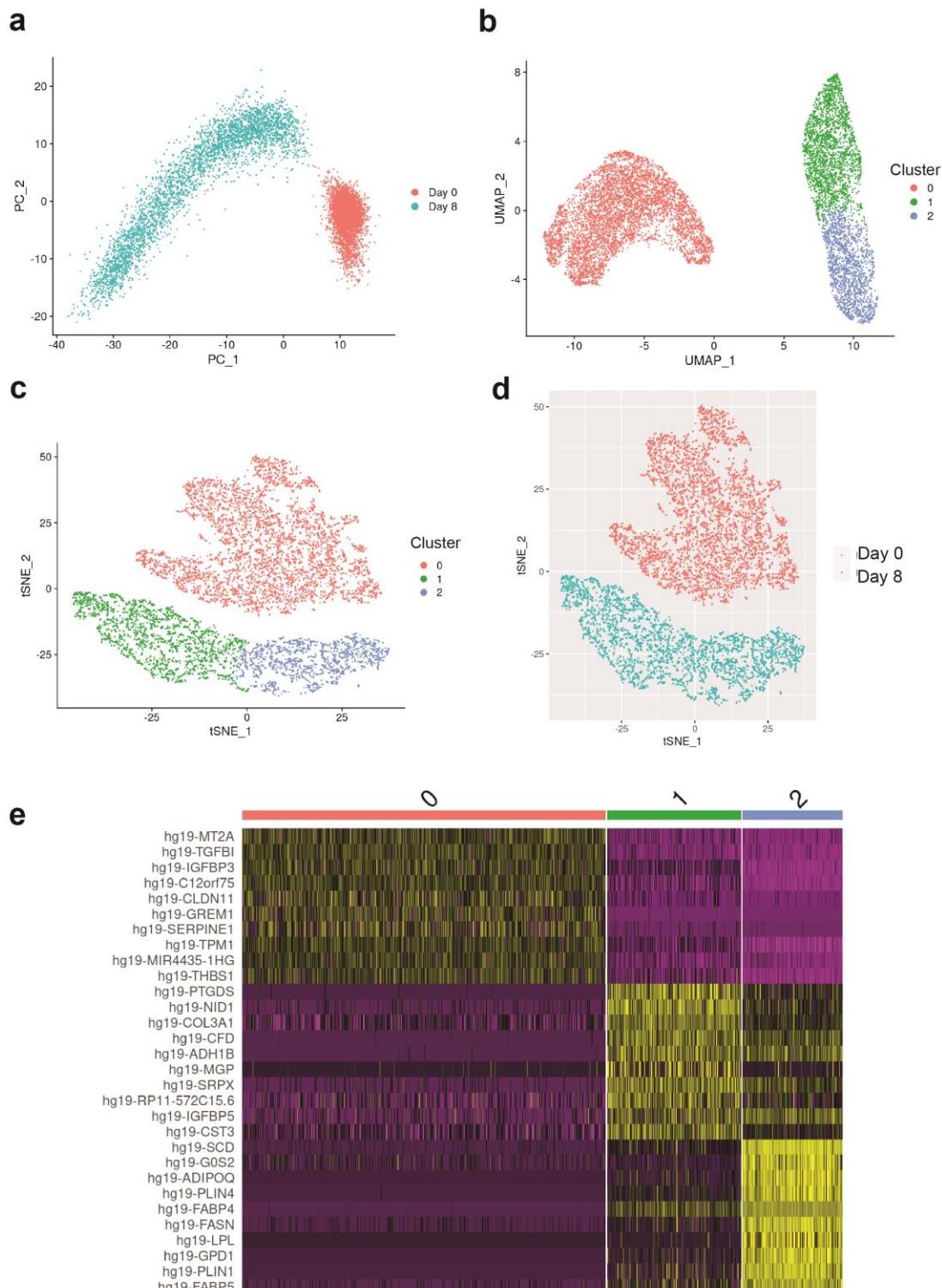
203


204 **Competing interests**

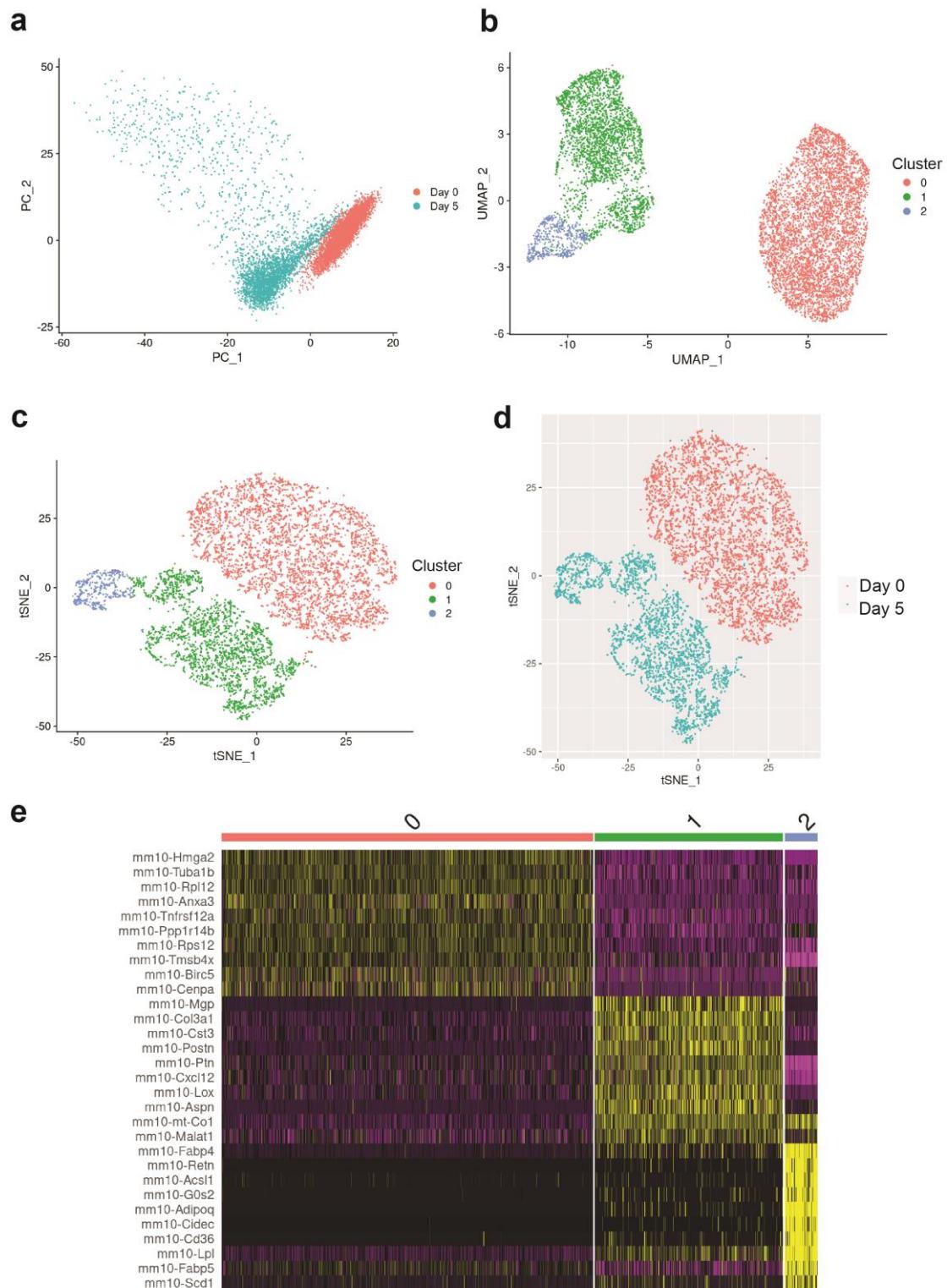
205 The authors declare no competing interests.


- 206 **References**
- 207 1 Scheja, L. & Heeren, J. The endocrine function of adipose tissues in health and
208 cardiometabolic disease. *Nature reviews endocrinology* **15**, 507-524 (2019).
- 209 2 Frayn, K., Karpe, F., Fielding, B., Macdonald, I. & Coppack, S. Integrative physiology of
210 human adipose tissue. *International journal of obesity* **27**, 875-888 (2003).
- 211 3 Tang, W. *et al.* White fat progenitor cells reside in the adipose vasculature. *Science*
212 **322**, 583-586 (2008).
- 213 4 Smith, U. & Kahn, B. B. Adipose tissue regulates insulin sensitivity: role of
214 adipogenesis, de novo lipogenesis and novel lipids. *Journal of internal medicine* **280**,
215 465-475 (2016).
- 216 5 Mackall, J., Student, A., Polakis, S. E. & Lane, M. Induction of lipogenesis during
217 differentiation in a "preadipocyte" cell line. *Journal of Biological Chemistry* **251**, 6462-
218 6464 (1976).
- 219 6 Wabitsch, M. *et al.* Characterization of a human preadipocyte cell strain with high
220 capacity for adipose differentiation. *International journal of obesity* **25**, 8-15 (2001).
- 221 7 Tews, D. *et al.* 20 Years with SGBS cells-a versatile in vitro model of human adipocyte
222 biology. *International Journal of Obesity* **46**, 1939-1947 (2022).
- 223 8 Kuri-Harcuch, W., Velez-delValle, C., Vazquez-Sandoval, A., Hernández-Mosqueira, C.
224 & Fernandez-Sanchez, V. A cellular perspective of adipogenesis transcriptional
225 regulation. *Journal of cellular physiology* **234**, 1111-1129 (2019).
- 226 9 Park, B. O., Ahrends, R. & Teruel, M. N. Consecutive positive feedback loops create a
227 bistable switch that controls preadipocyte-to-adipocyte conversion. *Cell reports* **2**,
228 976-990 (2012).
- 229 10 Vijay, J. *et al.* Single-cell analysis of human adipose tissue identifies depot-and disease-
230 specific cell types. *Nature metabolism* **2**, 97-109 (2020).
- 231 11 Hildreth, A. D. *et al.* Single-cell sequencing of human white adipose tissue identifies
232 new cell states in health and obesity. *Nature immunology* **22**, 639-653 (2021).
- 233 12 Hepler, C. *et al.* Identification of functionally distinct fibro-inflammatory and
234 adipogenic stromal subpopulations in visceral adipose tissue of adult mice. *Elife* **7**,
235 e39636 (2018).
- 236 13 Schwalie, P. C. *et al.* A stromal cell population that inhibits adipogenesis in mammalian
237 fat depots. *Nature*, 1 (2018).
- 238 14 Emont, M. P. *et al.* A single-cell atlas of human and mouse white adipose tissue. *Nature*
239 **603**, 926-933, doi:10.1038/s41586-022-04518-2 (2022).
- 240 15 Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-3587.
241 e3529 (2021).
- 242 16 Ullah, M., Sittinger, M. & Ringe, J. Extracellular matrix of adipogenically differentiated
243 mesenchymal stem cells reveals a network of collagen filaments, mostly interwoven
244 by hexagonal structural units. *Matrix Biology* **32**, 452-465 (2013).
- 245 17 Al Hasan, M., Martin, P. E., Shu, X., Patterson, S. & Bartholomew, C. Type III collagen
246 is required for adipogenesis and actin stress fibre formation in 3T3-L1 preadipocytes.
247 *Biomolecules* **11**, 156 (2021).
- 248 18 Bernlohr, D. A., Angus, C. W., Lane, M. D., Bolanowski, M. A. & Kelly Jr, T. Expression
249 of specific mRNAs during adipose differentiation: identification of an mRNA encoding
250 a homologue of myelin P2 protein. *Proceedings of the National Academy of Sciences*
251 **81**, 5468-5472 (1984).
- 252 19 Matarese, V. & Bernlohr, D. Purification of murine adipocyte lipid-binding protein.
253 Characterization as a fatty acid-and retinoic acid-binding protein. *Journal of Biological*
254 *Chemistry* **263**, 14544-14551 (1988).
- 255 20 Hu, E., Liang, P. & Spiegelman, B. M. AdipoQ Is a Novel Adipose-specific Gene
256 Dysregulated in Obesity (*). *Journal of biological chemistry* **271**, 10697-10703 (1996).

- 257 21 Wolins, N. E. *et al.* Adipocyte protein S3-12 coats nascent lipid droplets. *Journal of Biological Chemistry* **278**, 37713-37721 (2003).
- 259 22 Semenkovich, C., Wims, M., Noe, L., Etienne, J. & Chan, L. Insulin regulation of lipoprotein lipase activity in 3T3-L1 adipocytes is mediated at posttranscriptional and posttranslational levels. *Journal of Biological Chemistry* **264**, 9030-9038 (1989).
- 262 23 Steppan, C. M. *et al.* The hormone resistin links obesity to diabetes. *Nature* **409**, 307-312 (2001).
- 264 24 Chan, S. S., Schedlich, L. J., Twigg, S. M. & Baxter, R. C. Inhibition of adipocyte differentiation by insulin-like growth factor-binding protein-3. *American Journal of Physiology-Endocrinology and Metabolism* **296**, E654-E663 (2009).
- 267 25 Quinkler, M., Bujalska, I. J., Tomlinson, J. W., Smith, D. M. & Stewart, P. M. Depot-specific prostaglandin synthesis in human adipose tissue: a novel possible mechanism of adipogenesis. *Gene* **380**, 137-143 (2006).
- 270 26 Ambele, M. A., Dessels, C., Durandt, C. & Pepper, M. S. Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation. *Stem Cell Research* **16**, 725-734 (2016).
- 274 27 Song, N.-J. *et al.* Small molecule-induced complement factor D (Adipsin) promotes lipid accumulation and adipocyte differentiation. *PLoS One* **11**, e0162228 (2016).
- 276 28 Morales, L. D. *et al.* Further evidence supporting a potential role for ADH1B in obesity. *Scientific reports* **11**, 1932 (2021).
- 278 29 Christy, R. *et al.* Differentiation-induced gene expression in 3T3-L1 preadipocytes: CCAAT/enhancer binding protein interacts with and activates the promoters of two adipocyte-specific genes. *Genes & development* **3**, 1323-1335 (1989).
- 281 30 Yang, X. *et al.* The G0/G1 switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. *Cell metabolism* **11**, 194-205 (2010).
- 283 31 Anand, A. & Chada, K. In vivo modulation of Hmgic reduces obesity. *Nature genetics* **24**, 377-380 (2000).
- 285 32 Watanabe, T. *et al.* Annexin A3 as a negative regulator of adipocyte differentiation. *The journal of biochemistry* **152**, 355-363 (2012).
- 287 33 Hung, S.-C., Chang, C.-F., Ma, H.-L., Chen, T.-H. & Ho, L. L.-T. Gene expression profiles of early adipogenesis in human mesenchymal stem cells. *Gene* **340**, 141-150 (2004).
- 289 34 Li, C. *et al.* Matrix Gla protein regulates adipogenesis and is serum marker of visceral adiposity. *Adipocyte* **9**, 68-76 (2020).
- 291 35 Kansara, M. S., Mehra, A. K., Von Hagen, J., Kabotyansky, E. & Smith, P. J. Physiological concentrations of insulin and T3 stimulate 3T3-L1 adipocyte acyl-CoA synthetase gene transcription. *American Journal of Physiology-Endocrinology And Metabolism* **270**, E873-E881 (1996).
- 295


296 **Figures**
297

298
299 **Fig. 1**
300


301
302 **Fig. 2**
303

304

305 **Fig. 3**

306

307

308 **Fig. 4**

309

310

311 **Figure Legends**

312

313 **Fig. 1** Workflow of scRNA-Seq of mouse and human adipogenesis. Human SGBS and mouse
314 3T3-L1 cells were analyzed at two time points, corresponding to before (D0) and during (D5
315 for 3T3-L1, D8 for SGBS) adipogenesis. At each time point, live cells were purified using
316 exclusion of propidium iodide-stained cells by FACS. Equal numbers of SGBS and 3T3-L1 cells
317 were then mixed, and subjected to microfluidic single-cell capture with GelBeads-in-emulsion
318 (GEMs) using 10X Chromium Controller. Single-cell cDNA libraries were prepared using the
319 Chromium Single Cell 3' Library & Gel Bead Kit (10X Genomics), followed by sequencing
320 on Illumina HiSeq4000. Computational analysis involved barcode processing, UMI counting,
321 demultiplexing, gene and cell filtering, normalization, and clustering.

322

323 **Fig. 2** Single-cell RNA-Seq dataset quality assessment. **(a-b)** Violin plots of gene counts and
324 UMI counts after quality control filtering in **(a)** SGBS cells and **(b)** 3T3-L1 cells, separated by the
325 day of differentiation.

326

327 **Fig. 3** Clustering of scRNA-Seq data in human SGBS cells. **(a)** Primary component analysis (PCA)
328 plot. **(b)** UMAP plot. **(c)** t-SNE plot. **(d)** Assignment of cells by differentiation day (D0 vs. D8),
329 superimposed on the t-SNE plot. **(e)** Heatmap showing the expression of top 10 enriched genes
330 per cell cluster.

331

332 **Fig. 4** Clustering of scRNA-Seq data in murine 3T3-L1 cells. **(a)** Primary component analysis (PCA)
333 (PCA) plot. **(b)** UMAP plot. **(c)** t-SNE plot. **(d)** Assignment of cells by differentiation day (D0 vs.
334 D5), superimposed on the t-SNE plot. **(e)** Heatmap showing the expression of top 10 enriched
335 genes per cell cluster.

336 **Tables**

337

Raw sequencing sample	SGBS D0, 3T3-L1 D0		SGBS D8, 3T3-L1 D5	
Number of reads	320,829,287		334,091,518	
Q30 bases in barcodes	96.9%		97.5%	
Q30 bases in RNA reads	76.7%		77.4%	
Q30 bases in UMI reads	96.8%		97.6%	
Mean reads per cell	31,460		49,239	
Processed sample	SGBS D0	3T3-L1 D0	SGBS D8	3T3-L1 D5
Reads mapped to genome	30.8%	58.1%	51.1%	41.7%
Reads mapped to exons	25.6%	46.8%	43.2%	33.7%
Reads mapped uniquely to genome	29.8%	52.6%	49.8%	38.5%
Estimated number of cells	5,672	5,402	3,655	3,305
Fraction of reads in cells	94.40%	94.50%	93.2%	93.3%
Median genes per cell	2,239	3,360	3,199	3,011
Total genes detected	19,339	17,013	19,862	16,444

338

339 **Table 1.** Detailed QC report of 10X Genomics sequencing files (Cell Ranger).

340

341

	SGBS D0	SGBS D8	3T3-L1 D0	3T3-L1 D5
Unfiltered cells	5,672	3,655	5,402	3,305
Filtered cells	4,742	3,480	4,526	3,118
Filtered genes detected	16,486	17,178	14,755	14,436

342

343 **Table 2.** Final cell quantification statistics.

344

345

Cell line	Cluster number and description	Top 5 enriched genes	Number of cells	% All cells
SGBS	0 – preadipocytes	<i>MT2A</i> , <i>TGFBI</i> , <i>IGFBP3</i> ²⁴ , <i>CLDN11</i> ¹⁶ , <i>C12orf75</i>	4,744	57.70
	1 – differentiating	<i>PTGDS</i> ²⁵ , <i>NID1</i> ²⁶ , <i>COL3A1</i> ¹⁷ , <i>CFD</i> ²⁷ , <i>ADH1B</i> ²⁸	2,002	24.35
	2 – adipocytes	<i>SCD</i> ²⁹ , <i>GOS2</i> ³⁰ , <i>ADIPOQ</i> ²⁰ , <i>PLIN4</i> ²¹ , <i>FABP4</i> ^{18,19}	1,476	17.95
3T3-L1	0 – preadipocytes	<i>Hmga2</i> ³¹ , <i>Tuba1b</i> , <i>Rpl12</i> , <i>Anxa3</i> ³² , <i>Tnfrsf12a</i> ³³	4,574	59.84
	1 – differentiating	<i>Col3a1</i> ¹⁷ , <i>Mgp</i> ³⁴ , <i>Cst3</i> , <i>Ptn</i> , <i>Postn</i>	2,612	34.17
	2 – adipocytes	<i>Fabp4</i> ^{18,19} , <i>Scd1</i> ²⁹ , <i>Lpl</i> ²² , <i>Retn</i> ²³ , <i>Acsl1</i> ³⁵	458	5.99

346

347 **Table 3.** Description of cell clusters identified by unsupervised clustering.