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Abstract

Optically pumped magnetometers (OPM) are quantum sensors that offer new possibilities to
measure biomagnetic signals. In magnetomyography (MMG), compared to the current standard
surface electromyography (EMG), OPM sensors offer the advantage of contactless measurements
of muscle activity. However, little is known about the relative performance of OPM-MMG and EMG,
e.g. in their ability to detect and classify finger movements. To address this, we recorded
simultaneous OPM-MMG and EMG of finger flexor muscles for the discrimination of individual finger
movements. Using a deep learning model for movement classification, we found that both sensor
modalities were able to discriminate finger movements with above 89% accuracy. Furthermore,
model predictions for the two sensor modalities showed high agreement in movement detection
(85% agreement; Cohen’s kappa: 0.45). Our findings show that OPM sensors can be employed for
reliable, contactless discrimination of finger movements and incentivize future applications of OPM

in magnetomyography.
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Introduction

Spin exchange relaxation free (SERF) optically pumped magnetometers (OPM) are quantum
sensors for measuring magnetic flux signals with a sensitivity in the order of few 10 fT/v/Hz. SERF-
OPM are based on a zero-field resonance caused by the Zeeman-effect' detected be laser
spectroscopy of spin-polarized alkali metal vapor?. In recent years, several studies have shown the
potential of OPM for measuring biomagnetic signals of the brain, heart, nerves, or muscles, opening
up new opportunities for the research and application of human biomagnetism®®. In particular, in
addition to more traditional applications in magnetoencephalography (MEG)>'®"' OPM are also
increasingly utilized for studying skeletal muscles'®'*. The spatial flexibility, small physical size (few
cubic centimeters) and possibility of bi- or triaxial signal acquisition of OPM, enable the contactless
investigation of muscle physiology in space and time'*. Magnetomyography (MMG) has several
general advantages in comparison to the current gold standard for non-invasive muscle studies,
surface electromyography (EMG)''®. In contrast to electric currents, magnetic fields are far less
affected by the different tissue layers between the electromagnetic source and the skin surface,
resulting in less distorted signals'>'>'7:'8_ Furthermore, in contrast to MMG, EMG electrodes require
contact with the skin where the presence of a charge at the electrode-skin interface creates noise

voltages that can interfere with the signal'®®.

Magnetic flux and electric potentials originate from the same ionic currents and have comparable

temporal and spectral profiles'®?°, but the magnetic flux direction is orthogonal to the source (electric

current). Newly available OPM offer up to triaxial simultaneous signal acquisition (Bx, By, and Bz) with
one sensor, i.e., three-dimensional spatial information on the magnetic flux vector per sensor. The
gain in spatial information per sensor in comparison to EMG could be particularly relevant for human-
machine interfaces based on muscle signals, such as e.g. prosthesis control*'%. Considering this
hypothesis and the current progress in EMG-based human-machine interfaces®, in the present
study, we sought to investigate the potential of biomagnetic measurements as a new modality for
human-machine interfaces. Specifically, we investigated and compared the ability to differentiate

individual finger movements based on EMG and OPM-MMG of the finger flexor muscles.

Methods

Participant

A single human participant volunteered for the study. The participant of the study was male, 28 years
old, 1.76 m tall, and 72 kg weight (BMI = 23.2 kg/m?). The participant was one of the authors and
gave informed consent before participating in the study. The study was conducted in accordance

with the Declaration of Helsinki and approved by the ethics committee of the University of Tubingen.
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Figure 1. A. Photograph depicting the experimental settings. B. Conceptual representation of the sensors
modalities and the location they were placed.

Experimental design

The experiment was designed to record the magnetic activity of the right flexor muscles of the fingers
Digit Il and V (index and little finger; DIl and DV). Muscle activation was measured on the forearm
using simultaneous OPM-MMG and EMG (Fig. 1A-B, 4 bipolar EMG and 4 biaxial OPM channels).
Simultaneously, finger movements were measured using a light sensor. The participant was
instructed to flex a finger and then to return to the rest position (open hand), in three different
sessions. In the first session, the participant flexed DIl for 30 trials, in the second session, the
participant flexed DV for 30 trials, and in the third session, the participant alternated between DIl and
DV for 15 trials, respectively. Every 5 seconds, an auditory cue indicated when to execute the finger
movement. To measure only the movement of the designated finger, we fixated the other fingers
with casts (Fig. 1A).

Sensors

The muscle strands of the individual fingers (DIl, DIV, and DV) were imaged using high-resolution
muscle ultrasound (Mindray TE7, 14Mhz-linear probe) to determine the longitudinal axis of the
muscles. All recordings were collected inside a magnetically shielded room (Ak3b, VAC
Vacuumschmelze, Hanau, Germany). Here, 8 paramagnetic EMG surface electrodes (Conmed,
Cleartrace’ MR-ECG-electrodes) were placed in a bipolar montage along the longitudinal axis of the
muscle. A ground electrode was placed on the right shoulder. 4 biaxial OPM (QZFM-gen-1.5, QuSpin
Inc., Louisville, CO, USA) were placed in between the EMG electrode pairs about 15 mm above the
skin surface. The movement of the fingers was measured using a fiber optic that measured the

distance between the finger and the fiber optic (Keyence Digital Fiber Sensor FS-N10).
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Data acquisition

The analog output of the OPM amplifier was recorded using the data acquisition electronics of a
MEG system (CTF Omega 275, Coquitlam, BC, Canada) and the EEG channels of the MEG system
were used to record the EMG. Both the OPM and EMG recordings were acquired with a sampling
rate of 2343.8Hz. The employed OPMs were capable of measuring two components of the magnetic
field vector: the y- and z-axis. They provided a magnetic field sensitivity of 15 fT/+/Hz in a bandwidth
of 3-135 Hz, an operating range below 200 nT, and a dynamic range of a few nanoteslas. To adapt
to a non-zero magnetic background field, the sensors are equipped with internal compensation coils
that can cancel magnetic background fields of up to 200 nT in the sensing hot rubidium vapor cell

(cell size 3 x 3 x 3 mm).
Data Preprocessing

Data analysis was performed using Python (Python Software Foundation, version 3.7,
http://www.python.org). Data from 8 OPM channels and 4 bipolar EMG channels were demeaned
and filtered using a 25-100 Hz band-pass zero-phase fourth-order butterworth infinite impulse
response (lIR) filter. Line noise was filtered using a 49-51 Hz band-stop zero-phase fourth-order
butterworth IIR filter. Then, we extracted the envelope of the signal by taking the absolute value of

the Hilbert transformed signal and resampled the data at 200 Hz.
Data sampling

We designed our data analysis pipeline to approximate online detection of finger movements. To
this end, we aggregated all data from the three sessions and randomly sampled 100 ms windows of
the signals across all channels, sensor modalities (OPM and EMG) and the finger movement signal.
Crucially, the sampling procedure was nested into a cross-validation scheme (see Classification
analysis section), in order to separate the training and test set at the trial level. This simulates a real-
time system that scans the signal, every 100 ms, and detects finger movements. We sampled 500
windows across all the recordings for each event from the aggregate data to build the training dataset
and 100 windows for the test set, where an event consisted of no motion for both fingers (DIl and
DV, from 1500 ms to 0 ms relative to the onset of each finger movement), DIl motion and DV motion

(both from 0 ms to 300 ms after the onset of each finger movement).
Classification analysis

We performed classification analysis using a supervised learning approach using a deep
convolutional neural network implemented in Tensorflow®?. The network architecture consisted of an
input layer that received batches of data consisting of matrices T x C, where T is the number of time
points and C is the number of channels. Thus, the resulted input was a 3-dimensional array

N x T x C, where N is the batch size that we set to 250. This tensor was passed to a residual block?,
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consisting of a point-wise (kernel size of 1 x 1) 1-dimensional convolutional layer with 128 filters,
stride 1 and without the bias term and padding, followed by a batch normalization (BN)* layer and
a gaussian error linear unit (GELU)** activation function. Then, the residual block continued with a
second zero-padded 1-dimensional convolutional layer with a kernel size of 3 x 3 and C filters, stride
1 and without the bias term, followed by a BN layer and GELU function and concluded by adding the
input array to the resulted array so far and finally applying a GELU function. After the residual block,
the network architecture comprised a zero-padded 1-dimensional convolutional layer with a kernel
size of 3 X 3 and 16 filters, stride 2 and with the bias term and GELU function. Then, the output of
this layer was flattened and passed to a Dropout layer with a dropout rate of 0.1. From here, the
output array was passed to two fully-connected (FC) layers with Z units and GELU as activation
function (here, Z=100), both followed by a Dropout®® layer with a dropout rate of 0.1. Finally, the
output layer consisted of an FC layer of F units and softmax activation function (here, F=3), where
each unit encoded either a finger movement or both as not moving. The network was trained using
250 epochs, the categorical cross-entropy as loss function and Adam?®® as optimizer with a learning
rate of 0.01, §; as 0.9 and B, as 0.999. We trained one model on the OPM signal and one on the
EMG signal. Model evaluation was performed with a stratified 5-fold cross-validation by computing
the accuracy of the model between the ground truth and its predictions. Notably, we z-scored the
data by computing the moments (sample mean and standard deviation computed on the sampled
windows dimension) on the train set and then applying them to the test set to avoid possible

confounders.
Feature importance analysis

We investigated how the models generated predictions in the test set by exploiting a recent approach
in the field of explainable deep learning®®, namely the integrated gradients?’, that allowed us to
perform a feature importance analysis. For each sample of the test set, we first linearly interpolated
the sample (i.e., a T x C matrix) with a “baseline” matrix of zeros with the same dimensionality, using
6 levels of transparency linearly sampled from 0 to 1. We passed these interpolated samples to the
model and compute the partial derivative (i.e., the gradients) of the loss function with respect to the
input. Next, we combined these gradients by computing a numerical approximation of their integral
over the interpolated samples using the Riemann sum approximation and normalized them to make
sure they were in the same scale. We averaged these values across the temporal dimension of the
input and across the samples of the test set to obtain a single value for each fold of the cross-

validation scheme and for each channel.
Inter-rate reliability analysis

We assessed the consistency of the OPM-MMG and EMG model predictions by computing two

metrics of inter-rater reliability. The first one was the percentage agreement, which simply quantifies
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the percentage of predictions for which both models predicted the same class. The second metric
was Cohen’s Kappa, defined as the probability of agreement between the two models normalized

by probability of agreement expected by chance.
Statistical analysis

Statistical analyses were conducted on the comparison between the accuracy values of the two
models against the empirical chance level, separately for each model. The empirical chance level
was computed using a permutation test approach, by permuting the labels of the train set and
repeating the cross-validation for 1000 times to obtain a null distribution. P-value was obtained as
the number of values found in the null distribution that exceeded the observed value, while the effect
size (Cohen’s d) was computed as the difference between the observed value and the mean of the
null distribution, divided by its standard deviation. We also compared the percentage agreement
values, the Cohen’s Kappa values and the integrated gradients values against the resulting null
distribution as above. For the direct comparison between the accuracy of the EMG and OPM models,
we ran two tests specifically suited for comparing the performance between two classifiers®’®. First,
we used the 5x2 cross-validation F-test by repeating 5 times a 2-fold cross validation and testing
both models on the same data. Thus, we computed the pseudo f-statistic and the p-value using an
F distribution with 10 and 5 degrees of freedom®. Finally, we also compared the models’
performance using the McNemar test, by computing a 2 by 2 confusion matrices between the
models’ predictions. Then, we computed the McNemar statistic and the p-value using a X?

distribution with one degree of freedom?’.
Data availability

The data that support the findings of this study are available from the corresponding authors upon

request.

Results

We collected data from a single human participant (male, 28 years old). We measured muscle
activation on the forearm (Fig. 1A) to detect flexion movements of the index (DII) or little finger (DV).
We simultaneously recorded magnetic and electric signals using 4 biaxial OPM sensors and 4 bipolar
surface EMG electrodes, respectively (Fig. 1B). Finger movements were simultaneously recorded
using a light sensor. In three different sessions, the participant was instructed to flex a finger and
then to return to the rest position (open hand). In the first session, the participant flexed the DIl finger,
in the second the DV finger and in the third both DIl and DV, alternatively.
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Figure 2. A. Line plots showing the time course of the aggregated data of the DIl finger movement across the
three sessions and divided by channel. B. Line plots showing the time course of the aggregated data of the DV
finger movement across the three sessions and divided by channel.

We computed the temporal envelope of 25 to 100 Hz power of all MMG and EMG signals (see
methods), aggregated the data from all the three sessions, and computed the time-course of the
signal envelope relative to the onset of DII (Fig. 2A) or DV (Fig. 2B) finger motion for each channel
and sensor modality. The visual inspection of movement-locked envelopes suggested that both,
EMG and MMG captured muscle activity during finger movement and that EMG had a higher signal-
to-noise ratio during finger movement relative to the pre-motion baseline. Furthermore, the pattern
of results suggested that channels positioned on the ulnar side of the forearm (EMG-2, EMG-4,
OPM-2YZ and OPM-4YZ) were measuring signals more during DV motion, while sensors on the
radial side (EMG-1, EMG-3, OPM-1YZ and OPM-3YZ) were measuring signals more during DII

movement.
Classification analysis

To quantify these results and to compare the two sensor modalities, we classified finger movements
from EMG and MMG signals. Specifically, we performed a multiclass classification analysis on
100 ms temporal windows of either EMG or MMG signals using a Deep Residual Convolutional
Neural Network®. The 3 classes to predict were whether finger DIl was moving, finger DV was
moving or both fingers were not moving. We trained two models, one for each sensor modality, using

a stratified 5-fold cross-validation scheme with a nested sampling procedure.

We plotted the models’ predictions as a density plot on a 2-dimensional simplex where vertices
represented the three classes (Fig. 3A). Visual inspection of these plots showed qualitatively similar
distributions across sensor modalities. To assess model convergence, we plotted the loss function
(categorical cross-entropy) as a function of the epochs used for training the models for both EMG
and MMG models (Fig. 3B). Both models reached their plateau performance around 100 epochs,
with the EMG model converging faster than the MMG model.
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Figure 3. A. 2-dimensional simplex density plots of EMG (red) and MMG (blue) models’ predictions divided by
classes. B. Line plots of the loss function across the epochs for EMG (red) and MMG (blue) models. C. Confusion
matrices of the EMG and MMG models’ performance. D. Results of the permutation test on the accuracy of the
EMG (red) and MMG (blue) models. The density plots are the null distributions obtained separately for each
model, while the vertical lines are the observed accuracy values, averaged across folds. E. Results of the 5x2
cross-validation F-test. Scatter dots are individual folds, while error bars represent standard deviation.

To quantitatively assess both models’ performance, we next computed the confusion matrix between
the models’ prediction and ground truth (Fig. 3C). Both models showed high-performance in the
classification task, with similar patterns of errors and accurate predictions. All three states could be
significantly (compared to a null distribution) classified by both models with an overall accuracy of
95.31% (p < 0.001, d = 34.41, 95% CI [32.89, 35.92]) and 89.06% (p < 0.001, d = 53.74, 95% CI
[51.38, 56.11]) for EMG and MMG, respectively (Fig. 3D). The EMG accuracy was significantly
higher than the MMG accuracy (Fig. 3E, F(10,5) = 10.66, p = 0.009, d = 2.97, 95% CI [2.78, 3.16],
5x2 cvtest; X2(1) =9.78, p = 0.002, Cohen’s g = 0.22, McNemar test).

Feature importance analysis

After having established the models’ performance, we investigated which channels the models relied
mostly on to make predictions. We conducted a feature importance analysis exploiting recent
advances in explainable methods in deep learning® such as integrated gradients®’. We computed
integrated gradients for each channel across cross-validation folds and compared them against a
null distribution to test their significant contribution to models’ predictions. We found EMG model
significantly relied on all channels (Fig. 4A, all p < 0.002), even though the channels positioned on
the ulnar side of the forearm had a higher effect size (EMG-2 d = 79.39, 95% CI [75.91, 82.88],
EMG-4 d = 24.27, 95% CI [23.21, 25.34]) compared to the others (EMG-1 d = 5.03, 95% CI [4.81,
5.26], EMG-3 d = 5.28, 95% CI [5.04, 5.52]). For the MMG model, we found that it significantly relied
on all channels (all p < 0.018) but OPM-1Y, OPM-3Y and OPM-4Y (all p > 0.05). We also found that
the effect size was generally larger on the ulnar side for the Z-axis (OPM-2Z d =18.24, 95% CI
[17.43, 19.05], OPM-4Z d = 3.66, 95% CI [3.49, 3.84]) compared to the opposite side (OPM-1Z d
=9.74, 95% CI1[9.30, 10.17], OPM-3Z d = 2.79, 95% CI [2.65, 2.93]).
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Figure 4. A. Results of the permutation test on the integrated gradients values representing the feature
importance scores for each channel and sensor modality, i.e. EMG (red) and MMG (blue for y-axis and green for
z-axis). The density plots are the null distributions, while the vertical lines are the observed values, averaged
across folds. B. Consensus matrix between EMG and MMG models’ predictions. C. Permutation test showing
the percentage agreement values between EMG and MMG models’ predictions. The density plot is the null
distribution, while the vertical line represents the observed percentage agreement, averaged across folds. D.
Permutation test showing the Cohen’s Kappa values between EMG and MMG models’ predictions. The density
plot is the null distribution, while the vertical line represents the observed Cohen’s Kappa, averaged across folds.

Inter-rate reliability analysis

Finally, we investigated the model agreement, by directly comparing their predictions. We computed
a consensus matrix, where the row and column entries of the matrix where the MMG and EMG
predictions, respectively (Fig. 4B). We found that their predictions were highly aligned. For all three
individual states as well as for the average across all states the agreement between MMG and EMG
models was significantly higher than expected by chance (Fig. 4C, mean percentage agreement =
85.26%, p < 0.001, d = 48.79, 95% CI [46.65, 50.94]). We also observed that the average Cohen’s
kappa of 0.45 between the two models’ predictions was significantly higher than expected by chance
(Fig. 4D, p <0.001, d = 33.68, 95% CI [32.19, 35.16]).

Discussion

In this study, we measured muscle activation using OPM-MMG and EMG to detect finger
movements. We found that both sensor modalities were able to discriminate DIl, DV and non-
movement. Our EMG results add to previous studies showing the capability to discriminate finger
movements with EMG 2~ by demonstrating finger movement discrimination using an end-to-end
learning framework based on only 4 EMG channels without explicit feature extraction. Our OPM
results are, to the best of our knowledge, the first demonstration of finger movement discrimination
with OPM-MMG. We show that also for OPM-MMG an end-to-end learning framework can be

adopted for efficient movement discrimination.

We found better performance for the EMG model as compared to the OPM-MMG model. This likely
reflects a lower signal-to-noise ratio (SNR) of OPM-MMG. On the one hand, this may reflect a

9


https://doi.org/10.1101/2023.03.27.534368
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534368; this version posted March 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

genuinely lower sensor SNR. On the other hand, this may be due to geometrical factors. While the
surface-EMG was attached to the skin of the forearm, the OPM sensors were positioned above the
skin and independently with respect to the forearm. Thus, both the distance between sensors and

muscles and their relative motion was larger for OPM-MMG than for EMG.

The feature importance analysis revealed that both sensor modalities relied more on channels
positioned on the ulnar side of the forearm to classify finger movements. This can be explained by
the fact that the flexor digitorum muscles (DII-DV) are positioned more on the ulnar side of the
forearm than the radial side. Notably, the z-axis (perpendicular to the skin) of the OPM sensor,
positioned on the ulnar side of the forearm (OPM-2Z and OPM-4Z), was the feature most used by
the model. This highlights the relevance of the spatial axis of MMG measurements and suggests

that the skin perpendicular axis may be particularly suited to differentiate the signals of finger flexors.

We found that OPM-MMG and EMG models were highly consistent in their prediction of finger
movements. This demonstrates the potential of OPM-MMG as an alternative to EMG, since both do
not only have similar classification performance, but also consistent prediction patterns. As OPM-
MMG allows contactless measurements, it may be particularly suited for clinical applications in which
skin contact is undesirable, such as e.g. measurements in autistic patients®' or patients with skin-

diseases.

Some limitations of this study need to be considered. First, measurements were performed in a
single participant. Thus, although the results provide a proof-of-principle and show that the SNR of
the OPM-MMG sufficient for use in single subjects, further studies with larger samples are required
to validate the results and estimate population variance. Second, we placed sensors only on the
ventral forearm because we focused on palmar flexion movements of the fingers. Future studies
may add sensors on the dorsal forearm to also exploit extensor muscles’ signal. Lastly, we collected
all data in ideal conditions, for example by using a cast to allow only the fingers of our interest to
move. Further studies are required to compare sensor modalities in more naturalistic settings, such

as free finger movements.

In sum, our findings show that OPM sensors can be employed to reliably discriminate finger

movements and incentivize future applications of OPM in magnetomyography.
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