
RFIDeep: Unfolding the Potential of Deep Learning for

Radio-Frequency Identification

Gaël Bardon1,2, Robin Cristofari3, Alexander Winterl4, Téo Barracho2,5, Marine Benoiste2,

Claire Ceresa1, Nicolas Chatelain2, Julien Courtecuisse2, Flávia A.N. Fernandes2,6, Michel

Gauthier-Clerc7, Jean-Paul Gendner2, Yves Handrich2, Aymeric Houstin1,2,8, Adélie

Krellenstein2,4, Nicolas Lecomte5, Charles-Edouard Salmon9, Emiliano Trucchi6, Benoit

Vallas2,10, Emily M. Wong8,11, Daniel P. Zitterbart4,8,*, and Céline Le Bohec1,2,*

1Centre Scientifique de Monaco, Département de Biologie Polaire, Monaco, Principality of Monaco
2Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
3University of Turku, Department of Biology, Turku, Finland
4Friedrich-Alexander-University Erlangen-Nürnberg, Department of Physics, Erlangen, Germany
5University of Moncton, Canada Research Chair in Polar and Boreal Ecology and Centre d’Études

Nordiques, Department of Biology, Moncton, NB, Canada
6Marche Polytechnic University, Department of Life and Environmental Sciences, Ancona, Italy
7Université de Genève, Faculté des Sciences, Genève, Switzerland
8Woods Hole Oceanographic Institution, Applied Ocean Physics and Engineering Department, Woods Hole,

MA, USA
9Beefutures, Nantes, France
10Terres australes et antarctiques françaises, Saint-Pierre, La Réunion, France
11Stanford University, Stanford, CA, USA

*: co-last authors

Correspondence: gbardon@centrescientifique.mc, celine.le-bohec@cnrs.fr

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 27, 2023. ; https://doi.org/10.1101/2023.03.25.534127doi: bioRxiv preprint 

gbardon@centrescientifique.mc
celine.le-bohec@cnrs.fr
https://doi.org/10.1101/2023.03.25.534127
http://creativecommons.org/licenses/by/4.0/


Abstract

1. Automatic monitoring of wildlife is becoming a critical tool in the field of ecology. In particular,

Radio-Frequency IDentification (RFID) is now a widespread technology to assess the phenology,

breeding, and survival of many species. While RFID produces massive datasets, no established fast

and accurate methods are yet available for this type of data processing. Deep learning approaches

have been used to overcome similar problems in other scientific fields and hence might hold the

potential to overcome these analytical challenges and unlock the full potential of RFID studies.

2. We present a deep learning workflow, coined “RFIDeep”, to derive ecological features, such as

breeding status and outcome, from RFID mark-recapture data. To demonstrate the performance of

RFIDeep with complex datasets, we used a long-term automatic monitoring of a long-lived seabird

that breeds in densely packed colonies, hence with many daily entries and exits.

3. To determine individual breeding status and phenology and for each breeding season, we first de-

veloped a one-dimensional convolution neural network (1D-CNN) architecture. Second, to account

for variance in breeding phenology and technical limitations of field data acquisition, we built a

new data augmentation step mimicking a shift in breeding dates and missing RFID detections, a

common issue with RFIDs. Third, to identify the segments of the breeding activity used during

classification, we also included a visualisation tool, which allows users to understand what is usually

considered a “black box” step of deep learning. With these three steps, we achieved a high accuracy

for all breeding parameters: breeding status accuracy = 96.3%; phenological accuracy = 86.9%;

breeding success accuracy = 97.3%.

4. RFIDeep has unfolded the potential of artificial intelligence for tracking changes in animal pop-

ulations, multiplying the benefit of automated mark-recapture monitoring of undisturbed wildlife

populations. RFIDeep is an open source code to facilitate the use, adaptation, or enhancement of

RFID data in a wide variety of species. In addition to a tremendous time saving for analyzing these

large datasets, our study shows the capacities of CNN models to autonomously detect ecologically

meaningful patterns in data through visualisation techniques, which are seldom used in ecology.

Keywords: Artificial intelligence, behaviour, machine learning, RFID, wildlife monitoring
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1 Introduction

Electronic monitoring systems have been widely used over the past two decades to better understand animal

populations without human disturbance (Fagerstone & Johns, 1987; Schooley et al., 1993). Radio-frequency

identification (RFID) technology allows the monitoring of uniquely identified individuals and automated

recording of the presence of tagged individuals at chosen locations (Gibbons & Andrews, 2004). By placing

RFID antennas along animal paths at perches or narrow entries of the breeding site (Gendner et al., 2005;

Bonter & Bridge, 2011), individual survival and breeding rates as well as behaviour and locations can be

precisely estimated in e.g. the classical capture-mark-recapture framework (Le Bohec et al., 2008). While

RFID technology allows the recording of vast amounts of data, it also creates new challenges for data treat-

ment, even if the data structure itself is rather simple (i.e., id, date and time, and location for each detection)

(Iserbyt et al., 2018). Because RFID data are not directly linked with biological parameters, one of the

classic approaches is human expert interpretation (Descamps et al., 2002; Afanasyev et al., 2015). Even

today, most of the information extraction and ecological interpretation from such detection data is done

manually, although this remains extremely time-consuming and potentially biased by human interpretation.

Additionally, the difficulty in manually processing potentially large numbers of detection data is increased

by the possibility of missing detections (Hughes et al., 2021).

A solution to these challenges may lie in automated data processing that could mimic the behaviour of an

expert analyst. Artificial intelligence has been the focus of intense methodological effort in ecology: it has

been used to process various sources of data including imagery or passive and active acoustic data, and to

detect, classify, localise, identify, estimate, and predict at every biological scale, from individuals to ecosys-

tems (Christin et al., 2019; Pichler & Hartig, 2022). Among artificial intelligence methods, deep learning

has a wide and promising scope but often lacks approachable workflows for ecologists. Convolutional Neural

Networks (CNN) have been initially developed for image content classification (Krizhevsky et al., 2017), but

have also been used for classifying signals (Hinton et al., 2012) such as human activity classification (Mutegeki

& Han, 2020), birds vocalisation classification (Kahl et al., 2021) or marine mammal detections (Shiu et al.,

2020). Yet, CNN capacities remain unexplored in numerous fields such as RFID data processing.

Recent efforts have been made to automatically infer behavioural patterns from various types of biologgers

through AI (Fannjiang et al., 2019; Wang, 2019): for instance, accelerometers have shown promising capaci-

ties to detect food-catching events (Brisson-Curadeau et al., 2021) or activity classification (Sakamoto et al.,

2009; Jeantet et al., 2021). RFIDeep builds upon these efforts to address the specific nature of RFID data.

While active biologgers record rich, multidimensional data, their record time is limited because of the required

trade-off between miniaturisation, storage capacity, power consumption and impact on wildlife (Bodey et al.,

2018). In contrast, passive, battery-less RFID tags have no demonstrable impact on an animal’s behaviour

and function throughout the individual’s lifetime: but the trade-off is that although the tag is attached to
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the animal, detection only occurs at one or more fixed points (the active antennas), thereby offering a very

narrow observation window. This creates a rather unique data structure with specific challenges for inter-

pretation. RFID technology is also exposed to two major constraints because of the impossibility to detect

multiple tags at the same time with a single antenna and the impossibility to install several antennas at the

same place, due to electromagnetic interference. By increasing probability of missing detections, the tag and

reader collision problems create a trade-off between the number of deployed tags (the size of the dataset)

and the probability of undetected individuals (the completeness of the dataset). This leads to challenges in

inferring missing detections to correct the locations and movement patterns of individuals. Like in other au-

tomated data processes, such data imperfections need to be considered and if possible repaired with suitable

algorithms.

Here, we demonstrate that non-explicit detection data from fixed observation points contain enough informa-

tion to infer individual behaviour. Taking advantage of the recent developments in deep learning methods, we

develop the “RFIDeep” workflow to automatically extract breeding status and outcome from detection data

acquired by RFID antennas using convolutional neural networks. We illustrate how deep learning methods

detect biological features in RFID data with very high classification accuracy, and demonstrate the use of a

visualisation method not yet commonly implemented in ecology.

RFIDeep was initially developed for an “archetypal” real-life dataset with a ca. 25 years-long RFID detection

time series collected on known-age/history king penguins (Aptenodytes patagonicus) (Gendner et al., 2005).

Unlike flipper bands used until then, which are detrimental to the individuals (Gauthier-Clerc et al., 2004;

Dugger et al., 2006), the recording of every transit between the colony and the sea of RFID-tagged birds,

throughout their life, allowed a more accurate and unbiased description of the reproductive patterns of the

species (Descamps et al., 2002), and of the population’s demographic parameters (Le Bohec et al., 2008).

In these previous studies, all RFID detections were manually analysed by human experts and none of them

used the entire dataset of RFID-tagged penguins. Since breeding king penguins exhibit highly stereotyped

movement patterns (Descamps et al., 2002), they were good candidates for artificial intelligence classification.

Based on direct field observations and molecular sexing data, we trained several CNN to infer RFID-tagged

penguins’ sex, breeding status and outcome (Breeding vs. Non-Breeding; Success vs. Failure), and breed-

ing dates. We developed RFID-specific data augmentation steps to account for biological variance and data

acquisition imperfections. We trained our classification process with field observation data and tested it man-

ually with annotated data to compare the performance of automatic classification with the human experts.

We provide all source codes used in RFIDeep workflow that could be applicable for any study using RFID

data acquisition and that could inspire ecologists to develop their deep learning process. Finally, a software

named Sphenotron, developed to represent movements and locations (in or outside the breeding site) based

on RFID detections, is provided with a sample dataset as an example of an RFID data visualisation method.
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2 Materials and methods

2.1 Overall structure of RFIDeep workflow

Figure 1 summarises the steps needed to classify RFID data within a deep learning framework and provides

a comprehensive view of the use of the RFIDeep workflow.

2.2 Application on a seabird species long-term monitored by RFID

2.2.1 RFID data acquisition

Here, we used data collected from the colony of king penguins (Aptenodytes patagonicus) named ‘La Grande

Manchotière’ and located at Possession Island, Crozet Archipelago (46°25S, 51°45E). A sub-area of the

colony of ca. 10,000 breeding pairs has been electronically monitored since 1998 with RFID technology. As

of 2022, four pathways between the sea and the colony (the only ways in or out of the colony) are equipped

with permanent automatic identification systems (the detailed information of the field site and systems are

described in Gendner et al. (2005)). In short, these automatic systems are composed of paired antennas that

record the direction of each commuting bird that has been implanted subcutaneously with an RFID tag.

Patterns of presence and absence of ca. 15,000 RFID-tagged birds throughout their breeding seasons and life

have thus been recorded since 1998. This has generated a large (and increasing) quantity of data, with, for

instance, 7 million individual detections as of 2022. To manage, visualise and use information in the field (e.g.,

select specific groups of birds of known age or history), we developed a python software, called Sphenotron,

that displays the location (in or out of the colony) of the individuals during their life, based on the latest

known location transition (entrance or exit) for each bird (see Supplement A). Thanks to well-known king

penguin’s stereotyped presence/absence patterns at the breeding site (see Figure S7), we can classify the

breeding status of any RFID-tagged individual (Non-Breeding, Failed Breeding, Successful Breeding). Start

of a breeding cycle (breeding date) can also be determined, it is defined as the beginning of the pattern

characteristic of the courtship and incubation period, i.e., the first long sojourn at the colony following the

annual moult and exceeding 10 days (Descamps et al., 2002). Additionally, the sex of an individual can

also be derived from presence/absence patterns at the colony. An automatic sex determination has great

potential application for many species where sex determination is challenging (i.e., monomorphic species like

king penguins; (Kriesell et al., 2018)).
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C) Model deployment

B) Model development

A) Data preparation

0001111111111100000000000
0020000000000200000000000

Input Prediction

Cycle EXPERT #1 EXPERT #2

RFID#1 YearN Failure Failure

RFID#2 YearN Failure Success

… … …

2018-11-01 2018-12-01 2019-01-01 2019-02-01 2019-03-01

9. Application8. Testing the CNN models

6. Visualisation tools

5. Post-processing

7. Building the testing datasets

RFID #1 Year N: Success
RFID #2 Year N: Failure
RFID #3 Year N: Non Breeding
…

1. RFID data acquisition 2. RFID data pre-processing 3. Building the training dataset

4. Building and tuning the CNN models

Figure 1: Overall structure of the RFIDeep workflow classifying RFID data with deep learning. The
workflow is divided into three phases: data preparation, model development, and model deployment. A)
Data preparation. 1) RFID data acquisition: many individuals are equipped with RFID tags and
antenna systems are installed at key locations to register the detections. A software called Sphenotron
(Supplement A) has been developed to represent detections and transitions (in or out of a specific location,
e.g., a colony or a nest) of RFID-tagged individuals. A coloring scheme is available to picture the ins
(orange) and outs (blue) of tagged individuals. 2) RFID data pre-processing: a correction of missing
detections is first applied. RFID data are then formatted analyses (e.g., in or out of a specific location
encoded as 1 and 0, and number of detections per time period) to have a unique and readable format for
deep learning or for other analyses. 3) Building the training dataset: direct observations of RFID-tagged
individuals are used to build a ground truth dataset of labelled vectors giving the true classification. B)
Model development. 4) Building and tuning the CNN models: the architecture of deep learning models
and hyperparameters are tuned with the training dataset. Data augmentation is implemented to cover
more biological and technical variance. An individual network is built for each classification problem (e.g.,
breeding status, sex). 5) Post-processing: classification networks are derived to extract other biological
information requiring a post-processing step such as location of stereotyped patterns in RFID data (e.g.,
determination of the breeding dates with a probability curve (in blue) over presence/absence pattern in
black and white, respectively). 6) Visualisation tools: models are validated and interpreted with
visualisation tools (e.g., with black curves representing the focus of the model during the breeding season).
C) Model deployment. 7) Building the testing datasets: a testing step is used to remove biases induced
during parameterisation with comparison of model classifications and manual techniques of data processing
(i.e., human expert classifications). 8) Testing the CNN models: model tests using expert-labelled datasets
assess performance but also ensure that model performances are consistent according to classes and
individual characteristics (e.g., age, sex, life stage). 9) Application: classifications are applied to all
detection data after pre-processing and formatting (i.e., after correction of missing detections and building
of vectors), and results are represented in Sphenotron for each individual (successful breeding cycles in
green, failed breeding cycles in red).
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2.2.2 RFID data pre-processing

Input data To prepare the detection data in an appropriate format, we chose to represent absence and

presence time-series for each breeding cycle with two vectors providing the location of the individual at the

end of 12-hour periods (states 0 and 1) and the number of detections occurring during the 12 hours (Figure

S8). For one individual and one given year n, we built vectors encompassing the breeding cycle. For the

King penguin, vectors start October 1st of the year Y and end January 31st of the year Y+2 to cover the

entire >1-year breeding cycle of the species (Figure S7). We obtained two vectors of 974 elements for each

individual and each year. This step can be tailored to match other RFID acquisition systems and species,

for instance by dropping the first vector when no location (‘in’ or ‘out’) is defined but only simple detection

are recorded, e.g., at a feeding site.

Missing detection correction To tackle missing detections that can occur when individuals exit or enter

their breeding site, we developed an algorithm to repair simple missing detections (i.e., detections on only

one antenna of a pair, resulting in uncertainty in the individual’s walking direction). These corrections are

usually trivial: for example, when an individual is detected only on the inside antenna, followed later by

an entrance (i.e., outside-inside transition), an outside detection is inferred to restore a valid pattern in

detections corresponding to the missed exit from the colony. We simply built the algorithm to detect all

unrealistic successions of detections and to add the corresponding missing detections in all possible cases

(See Supplement B).

2.2.3 Building the training dataset

To build a training/ground truth dataset, we visually monitored 295 RFID-tagged individuals over 9 years

(2011-2019), assessing their breeding status and behaviour directly through field observations. Birds were

monitored from the beginning of the breeding season (November-January), thereby we were able to detect

early breeding failures that may have been difficult to distinguish from non-breeding behaviour using RFID

detections alone. Breeding outcomes (S: Success; F: Failure) from these study birds was determined according

to the survival of their chicks until they fledged. The sex of individuals was determined with the observation

of their first period in the colony, as females leave the breeding site right after egg laying, while males care

for the egg (Barrat, 1976). A ground truth database with breeding status, timing of breeding, and sexing for

463 breeding cycles was then compiled over the years.

2.2.4 Building and tuning the CNN models

Several models were built to describe breeding activities from regular movement patterns with a classification

workflow (see Figure S9):

1. two models to determine if an individual in a given year was a breeder (Breeding vs. Non-Breeding)
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and if the breeding cycle was successful (Success vs. Failure),

2. a model to distinguish the sex of an individual through sex classification of only breeding cycles and a

prediction compiling all the sexes identified over the lifetime breeding seasons,

3. a model to determine the most likely breeding date of males and females separately, through post-

processing of a CNN model.

CNN architecture of these models was chosen using a classical simple architecture (see LeCun et al. (2015)

and through trial and error (see details in S10). Each model was trained on a training set of 80% of the

dataset, and the remaining 20% was used as a validation set to measure model performances and avoid

overfitting (shown by low validation accuracy and high training accuracy), as suggested by Christin et al.

(2019). Multiple training of the models with random splitting of the training/validation sets was performed

to cross-validate the hyperparameters. Once the final hyperparameters were chosen, validation accuracy with

the 20% validation set was recorded, and the final models were trained with 100% of the training datasets.

When the models were applied to detection vectors to generate the classifications, the most probable class

was chosen for the classification.

To extend the generalisation capacities of our models, we used a data augmentation process during the

training of the models (LeCun et al., 1998). We used two types of augmentation: the first one consisted in

shifting the breeding cycles by a random number of days, as usually done with imagery data to make the

models translational invariant. At each iteration of the training, we shifted each training vector by a zero

padding at the end or at the beginning of the vector, while trimming the same number of elements on the

opposite side. We used a random offset between -30 days and 30 days to cover large biological variability in

the phenology of our species (but this can be easily changed in the code, and this step can be turned off).

The second augmentation process consisted in simulating missing RFID detections. In the actual dataset, the

most frequent problem is the loss of a single detection, which is solved by our correction algorithm. Therefore,

we chose to remove 10% of the detections at each iteration, before applying our correction algorithm, allowing

a complete recovery of the original detections for at least 50% of individuals (see Supplement C) and leaving

uncorrected detections and erroneous locations to improve training generality. Models for determining the

breeding status were trained with and without these data augmentation processes to assess the benefits of

this step.

2.2.5 Post-processing

Sex determination With RFID detections, a human expert can only distinguish males and females based on

a few features at the beginning of the breeding cycles, therefore we thought it safer to assume that prediction

over a single breeding season would be less reliable than prediction over the whole lifetime. We then averaged

the classification probabilities for each sex, for each identified breeding attempt and we obtained the most
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probable sex over the lifetime of the individuals. We also registered the sex classification for each breeding

cycle to measure the benefit of this pooling in classification performance. This step is specific to King

penguins and can be skipped for species where sex is easily identified.

Breeding date We used CNN models to determine the breeding date by scanning all possible breeding

cycles in a year and determining the most probable one (See Supplement D for details on the method). We

obtained a certainty curve along the year, with the maximum corresponding to the most probable breeding

date (as illustrated in Figure 2 with two true breeding cycles). In our King penguin study case, we trained two

different models for males and females separately to account for the difference in patterns at the beginning

of their breeding cycles.

2018-11-01 2018-12-01 2019-01-01 2019-02-01 2019-03-01

Certainty curve

Maximum of certainty curve

Certainty map giving most probable breeding date according to RFID detections for a male

2016-11-01 2016-12-01 2017-01-01 2017-02-01 2017-03-01

Certainty curve

Maximum of certainty curve

Certainty map giving most probable breeding date according to RFID detections for a female

Figure 2: Examples of certainty maps produced by the scanning algorithm to detect the beginning of a
stereotyped pattern. Here, the most probable breeding date of a male and a female was determined. The
blue curve represents the probability (between 0 and 1) that the breeding cycle starts on a relevant date.
The black and white bars in the lower part of the figures represent the location of the RFID-tagged
individual (inside and outside, respectively). The most probable breeding date corresponds to the
maximum of the blue curve (dashed line).

2.2.6 Visualisation tools

We used visual explanation techniques to show parts of the input data that are identified by the convolutional

layers and used to perform the classification. We leveraged techniques recently developed to produce heat

maps on images classified by a 2-D CNN algorithm to show which pixels contribute most to the classifi-
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cation (saliency maps (Simonyan et al., 2013; Zeiler & Fergus, 2014)) and class activation mapping (Zhou

et al., 2016)). We produced this type of visualisation on breeding cycles with the GRADient-weighted Class

Activation Mapping (Grad-CAM) algorithm (Selvaraju et al., 2017) that was directly applicable to the 1-D

CNN layers. In short, the Grad-CAM uses the gradients of the final convolutional layer to produce a coarse

localization map from an input image (or vector) by searching for pixels whose intensity should be increased

to increase the probability of a given class. We ran this algorithm on all breeding cycles in our dataset and

obtained a graph of importance value for each element of the vector (each 12-hour period in our example)

for a particular class of interest. We computed these activation plots and compared to the raw input detec-

tion data for 1) the Breeding vs. Non-Breeding model, restricting the dataset to breeding cycles classified as

Breeding in order to identify the features used by the algorithm to detect a breeding cycle, and 2) the Success

vs. Failure model, including only breeding cycles classified as successful in order to identify the regions of

the breeding cycle that were indicative of a success.

2.2.7 Testing the CNN models

To compare the overall classification performance, we used a global accuracy metric of the different mod-

els given by: Ncorrectpredictions

Npredictions
(Powers, 2020). Since our ground truth datasets were well balanced across

classes (168 Non-Breeding; 131 Failure; 164 Success), the global accuracy metric did not approach its limits

through class unbalance, and it provided a simple and effective metric of overall classification performance.

To provide a measure of classification accuracy for all possible classification thresholds, we also used the

AUC-ROC score (Area Under the Receiver Operating Characteristic Curve) (Fawcett, 2006). To assess the

accuracy of breeding date determination, we used a threshold of 5 days between the true breeding date and

the predicted date to define whether or not a breeding date was correctly predicted (see Supplement E). To

quantify an unbiased estimate of model performance, we used a testing dataset encompassing 917 breeding

cycles of penguin individuals that were never used in model training (Kuhn et al., 2013). These breeding

cycles were blind-labelled, i.e., breeding status and breeding date were not determined through field obser-

vations, but by human experts who examined the RFID detections of individuals using our custom-designed

Sphenotron software (see Supplement A). Human experts, with a strong knowledge and experience of the

species in the field, were trained using the ground truth dataset, blindly examining detection data to infer

breeding cycles, and cross-checking previously assigned breeding cycles. Two human experts were chosen to

label the same dataset, and we tested our models with both classifications. We also computed the global

accuracy metric between the datasets labelled by the two human experts to assess human variability in clas-

sification. The performance of the lifetime sexing method was compared to a molecular sexing dataset of

6,196 birds (molecular sexing method adapted from Griffiths et al. (1998) showing 100% accuracy in typical

cases (Purwaningrum et al., 2019)). Because sex was estimated with a variable number of breeding cycles

between individuals (we used all available breeding cycles for each bird), we also tested whether the accuracy
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of pooled sexing increased when including additional breeding cycles. Finally, we computed the accuracy of

the models for each age class and for males and females separately to test whether the performance of our

models was consistent over the whole dataset.

3 Results

3.1 Model training

We chose 200 epochs (i.e., training iterations) for training of each model, which yielded the best results for

validating model accuracy while avoiding overfitting. Each model took approximately 1 hour to train using

a laptop computer with a CPU Intel Core i7-10750H (2.60GHz) and a GPU Nvidia GeForce GTX 1660 Ti,

a non-prohibitive technology as of 2023. The performance of models, according to the validation datasets

used to select the CNN architecture and hyperparameters, reached near perfection for the three models, i.e.,

Breeding vs. Non-Breeding, Success vs. Failure, and Male vs. Female, with global accuracy of 99.1%, 99.7%,

and 100%, respectively. As expected, the three models without a data augmentation step achieved lower

performances with global accuracy of 94.6%, 91.5%, and 96.6% for Breeding vs. Non-Breeding, Success vs.

Failure, and Male vs. Female, respectively.

3.2 Model visualisation

Activation maps Lc
(grad−CAM) (Figure 3) showed that for the vectors classified in the Breeding class (i.e.,

individuals that attempt to breed) (Figures 3A and 3C), the model focused on the beginning of breeding,

when long periods in the colony occur for breeders but not for non-breeding birds that do not have long

fasting periods on the breeding site. For the Success class (Figures 3B and 3D), the model focused the

pre-winter period and the post-winter feeding period. As expected, these are the parts of the breeding cycle

that can be missing if the breeding fails during incubation, brooding, or even during the winter fasting

period. Unsurprisingly, the visualisation maps relied on the same regions that human experts reported using

as criteria for determining whether individuals actually attempted to breed and succeeded in breeding.

3.3 Model deployment

The trained models were used to predict the breeding status and dates of all RFID-tagged individuals since

1998 (i.e., 85,524 breeding cycles from 14,795 different individuals). On the laptop computer used here,

prediction (from raw RFID data to classification) of breeding status and sex of all birds required 140 seconds,

but it took 1.1 hours for the determination of the breeding date due to the number of predictions needed

(320 for each breeding cycle). In comparison, it took a human about 1 minute to make the same decision as

RFIDeep for one bird and one breeding cycle, which would correspond to 1320 hours or 165 workdays (8h per
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2013-10-15 

2011-10-15 

Nov 

A) Example of breeding with activation map (blue curve)

2013-12-01 2014-02-01 2014-04-01 2014-06-01 2014-08-01 

B) Example of successful breeding with activation map (blue curve)

2012-01-01 2012-04-01 2012-07-01 2012-10-01 2013-01-01 

C) Activation maps for breeding class D) Activation maps for successful breeding class

Jan Mar May 

Median value 

1st quartile 

3rd quartile 

Jul Sep 

Median value 

1st quartile 

3rd quartile 

Nov Jan Mar May Jul Sep Nov Jan 

Figure 3: Activation map (blue curve) showing regions of the cycle used by the CNN procedure to produce
the classifications and simplified presence/absence pattern (black: inside; white: outside) for two true
breeding cycles (A and B), and median maps (C and D) illustrating all maps with the median curve, the
first quartile, and the third quartile. A and C correspond to the Breeding class (all breeding cycles classified
as Breeding) and B and D to the Success class (all breeding cycles classified as Success), respectively.

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 27, 2023. ; https://doi.org/10.1101/2023.03.25.534127doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.25.534127
http://creativecommons.org/licenses/by/4.0/


day) to classify all breeding cycles. Tests of model’s classifications against two human expert classification

datasets resulted in high global accuracy metric (Table S1, i.e., 0.963 for Breeding vs. Non-Breeding and

0.967 for Success vs. Failure for Prediction vs. Dataset 1). Similarities between the expert-labelled datasets

were globally equivalent to the accuracy of our CNN models, indicating the high performance of the automatic

classification procedure. The AUC scores of Breeding vs. Non-Breeding and Success vs. Failure computed

with the human expert classification were even higher (e.g., AUCBvs.NB = 0.993 and AUCSvs.F = 0.992

for Prediction vs. Dataset 1, see Figure S11). As expected, models with data augmentation consistently

performed better than models without any transformation of the input data. The lifetime classification

sexing procedure yielded an 88.6% accuracy compared to the molecular data (AUCsex = 0.930 see Figure

S12). Before pooling lifetime sex probabilities, the global accuracy of sexing was only 81.7%. As expected,

we also found that sex classification accuracy from the pooling of lifetime sex probabilities increased with

the number of breeding cycles used to determine the sex of an individual (see Figure S12). According to

dataset 1, predictions were slightly better for males than for females for the breeding status (males: 94.5%

vs. females: 93.2%) and inversely for the breeding dates (males: 85.2% vs. females: 88.9%). The breeding

dates also appeared to be less predictable for young individuals (see Figure S13).

4 Discussion

In this study, we developed and tested a complete workflow based on CNN models to automatically infer

behavioural and fitness traits from RFID-tagged animal detection data. Based on a train-test split approach,

we showcased the potential of deep learning to adequately replace human expertise in RFID data processing in

a much shorter time span. Remarkably, humanlike performance to translate patterns from detection data into

meaningful biological parameters was reached with a rather simple CNN architecture and standard desktop

computing capacity. To improve results, we used time-shift data augmentation to mimic the variability that

could occur due to biological mechanisms (e.g., a shift in breeding dates) and simulated data dropouts to

mimic technical constraints (e.g., missing detections). We also developed a post-processing step to extract

dates of breeding, and, with a visualisation technique, we identified the regions of the dataset used by the

models to classify the breeding cycles. Such a framework can be used beyond our example dataset and help to

quickly classify the breeding activities of many individuals, even more so for long-term projects for which pre-

processing analysis is very time- and labor-consuming (in our example, we worked on ca. 15,000 individuals

over ca. 25 years). Certainly, we do anticipate a wide application for other colonial birds with their many ins

and outs of their colonies and with their complex patterns of phenology. For non-colonial species, we anticipate

a good performance of our model with likely simpler RFID data (e.g. simple detection at a feeding site), if

detection rate is high enough to capture regular patterns. While it is still challenging to successfully transfer

pre-trained deep learning from a study case to another (Marcus, 2018), RFIDeep workflow is tailored for any
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study classifying behaviours based on RFID-tagged animal detections. RFIDeep was successfully tested and

used on another species, the Adélie penguin (Pygoscelis adeliae), for which breeding is markedly different

from our first dataset example, yet monitored with a similar automatic RFID setup. Given that our model

performed well for these contrasting datasets (global accuracy of 95.2% for breeding outcome determination

and 93.5% for sex, see Supplement F for details), we argue that any RFID-monitored species with stereotyped

movements during a given life stage could certainly benefit from the RFIDeep workflow, such as bumblebees

(Molet et al., 2008), Leach’s Storm-petrels (Zangmeister et al., 2009), hummingbirds (Bandivadekar et al.,

2018), as well as other penguin species (Kerry et al., 1993; Chiaradia & Kerry, 1999; Horswill et al., 2014).

Furthermore, the missing detection correction and data augmentation algorithms implemented in RFIDeep

have great potential to tackle uncompleted and/or low-quality datasets, such as those produced by mobile

RFID antennas temporarily deployed (Cristofari et al., 2018). We are confident that the RFIDeep workflow

will help biologists to adopt deep learning applications more easily, either by using the codes directly or by

adapting it for their requirements.

Both validation and testing steps showed the high performances of the RFIDeep models, on the one hand,

in reference to the ground truth data and, on the other hand, from a human-machine comparison point of

view. Even though we developed a software to efficiently display detections and locations (inside or outside

the colony) of RFID-tagged individuals during their life (Sphenotron, see Supplement A), the distinction

between specific breeding status can be challenging, if not impossible. For example, a confounding situation

in our case study happens between non-breeding and failed breeding when the failure occurs very early in

the season. By using automatic classification, we standardised the bias among all breeding classifications

throughout the years of monitoring through the removal of variability related to potential differences in

human expert interpretation. This allowed for remarkably fast extraction of life history parameters of the

monitored individuals, necessary to estimate population vital rates (e.g., survival, breeding success) and

viability, in addition to other breeding and phenological traits. For example, breeding success inferred with

a very good classification accuracy (97.5% of accuracy in the classification of successful vs. non- or failed

breeding) can then be used to estimate fecundity rates of the monitored population with high confidence for

all monitored years.

Our analysis highlights the benefits of data augmentation to cope with more biological variance than contained

in our ground truth data. Data augmentation is commonly used to improve deep learning applications (Taylor

& Nitschke, 2018) and sometimes developed in the application of deep learning in ecology (e.g., with image

data (Kälin et al., 2019) or audio data (Kahl et al., 2021)), and has significantly enhanced our classification

process. While data augmentation is usually done by adding random noise to the dataset (e.g., in pictures

for 2-D CNN classification with image rotations for instance, (Pawara et al., 2017)), here we aimed to mimic

biological variance and technical limitations of the RFID data acquisition systems. Doing so, we covered a

large variance in breeding dates, enabling us to anticipate breeding seasons that could begin earlier or later
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than those existing in our ground truth data, because of environmental shifts already observed or expected in

the coming years/decades (Visser et al., 2021). This applies not only for the Sphenisciformes species used in

this study, but likely also for other species with a high variance in breeding phenology (De Villemereuil et al.,

2020). Another interesting aspect of the automatic classification of breeding cycles is the independence among

predictions. Indeed, each breeding cycle was analysed without supplement information about the year (e.g.,

average breeding success, phenological data), the individual (e.g., age, body condition), and previous and

future breeding cycles. The breeding classification of lifetime datasets by human experts can induce bias for

quantifying the inter-individual and intra-individual heterogeneity in breeding cycles since they are usually

not classified independently. However, while there may be an advantage to having independent classifications,

the lifetime information may also be beneficial, for instance to better determine the breeding date of the very

first breeding seasons that tend to be less predictable for numerous species (see Figure S13). It would also

be useful to train CNN models with mixed data (e.g., RFID detections and automated weighting at the

detection point) to increase the classification accuracy and/or complexity, and to refine further some of the

analyses (e.g., the stage of breeding failure), as it has also been done in other fields (Ahsan et al., 2020). With

visualisation techniques, we showed which parts of the datasets are mostly used to perform classification.

They provided a peek into the deep learning ‘black box’, making the process more transparent for the user, a

shortcoming that often prevents its use by ecologists (Borowiec et al., 2022). We argue that such a step can

help expand the potential of deep learning to describe and analyse ecological big data. In our example, while

activation maps are primarily used by CNN for classification, their visualisation allows the detection of the

specific breeding activities or features, such as seasonal phenology. In our application on king penguins, the

CNN models showed that the presence or absence of pre- and post-winter chick feeding patterns were the most

important criteria for predicting breeding outcome. Although these regions can be used for distinguishing

between failure and success, it reinforces our interest in using these visualisation techniques not only to

understand how our deep learning models work, but also to detect regions of interest in our datasets. It also

highlights the use of CNN models that are not frequently found in ecological studies but have great potential,

for instance, to detect hidden patterns in large datasets. Moreover, to cope with the recent explosion of big

data acquisition due to increasingly sophisticated, miniaturised, autonomous, and powerful data collection

instruments (Williams et al., 2020), visualisation tools are becoming increasingly important in detecting

similar patterns in given classes or differences between similar classes. For instance, identifying parts of

the vocalisation essential to distinguish between species or even individuals is key in bioacoustic studies

(Stowell et al., 2016; Kobayashi et al., 2021). Visualisation techniques have also been used to select the most

informative variables to infer animal behaviours from multi-sensor data (in green turtles (Chelonia mydas)

(Jeantet et al., 2021)) or to select the most relevant morphological characters to identify species (among

midges (Milošević et al., 2020) and mosquitoes (Park et al., 2020)). By developing tools to help users unleash

the vast potential of machine learning in ecology and to increase numerous benefits of RFID technology,
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we also aim with RFIDeep to foster low-impact monitoring of sensitive species by reducing human presence

and intervention in wild habitats (Hughes et al., 2021; Rafiq et al., 2021; Harrison & Kelly, 2022). We are

convinced that combining automatic data collection and real-time data analysis and storage will help secure

key ecological information over time necessary to continuously monitor the health of wild populations and

their ecosystems.
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Supplement A Sphenotron software

Sphenotron is an open-source software written in Python. The current version of Sphenotron has been

developed to interact with MySQL databases composed of several tables compiling all known information on

each RFID-tagged individual, such as biometric or phenological data, sampling and recapture events if any,

past breeding territories/coordinates, etc., in addition to detections (see Figure S1). Sphenotron was initially

developed to interact with databases related to specific species (order Sphenisciformes). Yet, the code can be

reused and adjusted to manage and interact with databases of similar or different formats of other species.

The complete Sphenotron software and codes, with examples of database, are downloadable at the following

link (https://github.com/g-bardon/RFIDeep), and can be fully modified for a wide range of species (e.g., sea

or terrestrial birds or mammals, fishes) and monitoring scheme (e.g., with and without mass tracking).

With automatic data pre-processing and analysis, Sphenotron allows the organisation, aggregation, man-

agement, and storage of biological time series in near real time (Figure S2). The development, improvement

and tests have been implemented to long-term monitored penguin populations since 2002. With the de-

velopment of this novel interface, we aim to optimise data reuse following the FAIR principles (Wilkinson

et al., 2016). In addition to automating the time-consuming pre-processing of detection data into biologically

meaningful data (e.g., breeding outcome, sexing), the other advantage of this automatisation is to assist

scientists in the field by accessing information from RFID-tagged individuals to conduct specific experiments

or observations on selected individuals with the desired characteristics.
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IDENTITY CARD
• Name
• RFID
• Date of tagging
• Sex
• …

DETECTIONS
• RFID
• ID of the antenna
• Date and time

ANTENNAS
• ID of the antenna
• Location
• Side (in or out)

MANIPULATIONS
• RFID
• Name
• Year

MEASURES
• RFID
• Measure type
• Value

BREEDING ACTIVITIES
• RFID
• Year
• Breeding status

…

Figure S1: Schematic illustration of the main tables of the database. Each light grey box corresponds to
one table. The database is built around the main table (IDENTITY CARD) containing all the key
information of the individuals. The other tables refer to this main IDENTITY CARD table with the
identity of the individuals given by the RFID numbers. For example, the DETECTIONS table records all
RFID detections with the RFID identity of the detected individual and the identity of the antenna, also
linked to ANTENNAS table compiling all information about the different antennas. Additional information
on the individuals is given in other tables for better clarity and flexibility in data storage. Extract of the
IDENTITY CARD and DETECTIONS table are given on the top and bottom right side, respectively. The
‘id’ column stands for the unique identification number assigned to each row of the table. The ‘rfid’ column
corresponds to the RFID-tag number (and by extension the identity of the associated individual). The
‘name’ column gives the name of the individuals used in the field for simplicity and clarity. The ‘sex’
column gives the molecular sex if known. The ‘rfid_date’ column gives the date of RFID-tagging. The
‘last_detection’ column gives the date of the last detection on the antennas and is continuously updated.
The column ‘antenna_id’ corresponds to the identification number of the antenna. The ‘dtime’ column
gives the date and time of the detection.
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A)

B)

Figure S2: (A) Main window of the Sphenotron showing a search feature to easily find one or more
individuals in the database. The left side of the window contains common filters used to search for specific
birds according to chosen filters (e.g., filter by Sex, PIT-tagging date, or Manipulations). The right side
gives the result of the search in the database and the main information known on the individual. These
individuals can be selected, and the detections can be displayed in (B) Individual window showing the
presence/absence pattern of a selected individual (here KIN-BDM-2013-A-008) during its electronically
monitored lifetime. The right panel displays the individual’s information. The central chart displays the
lifetime locations of the individual: inside the colony in orange, and outside the colony in blue. Yellow and
light blue correspond respectively to inside corrected location and outside corrected location (with the
algorithm of missing detection correction). Each cross corresponds to one detection (with the same colour
scheme). The bottom panel displays the breeding cycles analysed by human experts (top) and by RFIDeep
function (bottom): Success in green, Failure in red, and Non-Breeding in grey. Black triangles correspond
to the Breeding dates.
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Supplement B Missing detection correction algorithm

To build the missing detection correction algorithm, the detections have been converted into short or long

transitions (duration between two following detections and the side of both detections), which were coded

in 3 bits: the 1st bit gives the side of the first detection (0 for outside and 1 for inside), the 2nd bit gives

the duration between the two detections (0 for less than 10 minutes and 1 for more), and the 3rd bit gives

the side of the second detection. These encoded transitions have then been converted into numerical and the

vectors of all transitions have been built. A correct schema of transition is therefore 1-7-4-2 (corresponding

to 001 – 111 – 100 – 010 in 3-bit code) as shown in Figure S3. The algorithm has then been built to detect

the incorrect successions of transitions and to correct each possible error by adding one or several detections

to recover the 1-7-4-2 successive transitions. Some missing detections remain impossible to correct in this

way, e.g., an individual leaving the colony two successive times without entering in between, because no

information is known on the date of the entering.

In

Out

1      7       4       2

In

Out

3      4      2

In

Out

1      7       4       2

A) B) C)

Figure S3: The blue crosses correspond to true detections at the outside antenna and the orange crosses to
true detections at the inside antenna. The green cross corresponds to a logically added detection. Arrows
represent transitions. A) Correct schema of transition. B) Incorrect schema of transition leading to an
impossible long duration between detection time recorded by the outside and inside antennas. C) Schema
that gives the correction of B) with the addition of a logical detection (green cross) just after the first one
to recover the correct schema.
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Supplement C Missing detection correction performances

The algorithm to solve the missing detections was tested based on the detections from our ground truth

dataset to assess its performances according to various degrees of missing detections. The first step was to

get a cleaned detection dataset with corrected detections (because we used detections from the field). Thus,

detections have been corrected with the algorithm to remove original missing detections and we manually

validated the new corrected detections. Then, this cleaned dataset was used to test the algorithm performance

by removing a various number of detections and by comparing the cleaned dataset with the newly corrected

one (Figure S4).

Figure S4: Performance of missing detection correction algorithm with various rates of removed detections.
Similarity of location vectors giving the location (inside or outside) of the individuals in 12-hour periods
during the breeding season are compared to the cleaned location vector where raw RFID data was corrected
by the algorithm. The blue curve gives the median of the similarity of the vectors for the corrected one
while the red curve gives the uncorrected vectors similarity.
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Supplement D Breeding date determination

We trained a new CNN model (with the same architecture and hyperparameters as before) to classify whether

the detection vector was aligned with the breeding date (positive class) or not (negative class). To build

the positive class, a dataset where each vector was aligned to a known breeding date was designed. We

used ground truth breeding cycles with a known breeding date and truncated the detection vectors around

the breeding date (30 days before and 75 days after). These vectors constituted the positive class of our

training dataset with vectors aligned on the breeding date. The dataset was completed with a negative class

corresponding to breeding cycles that were not aligned to the breeding date (e.g., starting at an unrealistic

date): we draw a random breeding date for each correct breeding cycle and truncated the vectors around this

random date, giving us the second half part of our training dataset. This data generation was repeated at

each iteration (epoch) of the training to cover the maximum number of unrealistic breeding cycles possible

while keeping a 50/50 ratio of positive to negative classes at each iteration. The data augmentation process

were tailored to fit with this specific classification: the shift of breeding cycles were turned off because it would

make our classification irrelevant. To apply this model and obtain the most probable breeding date for a given

breeding cycle, we classified detection vectors that were aligned to each 12-hour period between November

1st to April 1st, and assessed the probability of having a correctly aligned vector with the previously trained

model.

Supplement E Computation of breeding dates accuracy

To compute the accuracy of breeding date determination, we used a score giving the proportion of breeding

dates that were correctly determined by taking a threshold of 5 days between the true breeding date and

the prediction. Indeed, most predictions are either perfectly accurate or completely false (Figure S5). This

threshold was chosen to consider uncertainties in the definition of the breeding date (the beginning of the

first long period on the breeding site is not always well clearly recognisable) and because the period of 5 days

before and after the predicted date leads to only one possible breeding date given that the first period on the

breeding site lasts more than 10 days for our species.
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Figure S5: Regression of the Breeding date datasets obtained by the two human experts (Datasets 1 and 2)
and the one predicted by RFIDeep (Prediction).

Supplement F Applying RFIDeep to another species, the Adélie

penguin

Similar to king penguins, Adélie penguins (Pygoscelis adeliae) routinely perform foraging trips between their

breeding colonies and the sea during reproduction. However, their breeding cycle is much more constrained

temporally than that of the king penguin. All land-based breeding activities take place during a 6-month

window between October and March (Ainley & deLeiris, 2002). As part of the long-term monitoring program

137 of the French polar Institute Paul-Emile Victor (IPEV), an Adélie penguin colony of ca. 300 breeding

pairs are electronically monitored with RFID tags off the coast of Adélie Land, Antarctica (ANTAVIA colony,

Île des Pétrels, Pointe Géologie archipelago). Every breeding season since 2009-2010, two-access pathways

equipped with RFID antennas record the colony attendance patterns of known RFID-tagged individuals.

As for king penguins, these patterns are informative on both the breeding outcome (Success or Failure)

and the sex of individuals. These biological parameters are not easily determined by direct observations

yet are critical for understanding population processes from individual-based data. There is thus a genuine

interest in an automated assessment of individual sex and breeding outcome, especially given the potential

for comparisons with other locations around Antarctica, where similar electronic monitoring setups exist

(Kerry et al., 1993; Olmastroni et al., 2000; Ballard et al., 2001; Lescroël et al., 2014; Afanasyev et al., 2015).

Here, the RFIDeep approach was applied to 3,959 breeding cycles collected between 2009-2010 and 2021-

2022 (907 unique individuals). One breeding cycle corresponds to all the detections of an individual in each

breeding season (Figure S6). The algorithm was trained using ground truth data from 319 breeding cycles,

when breeding outcomes and sex were determined by (labor-intensive) field observations. The resulting

model’s accuracy was then tested on a separate dataset of 1,164 breeding cycles, where breeding outcomes

and sex were determined by human observation of breeding cycles (e.g., as in Figure S6). In this new

application, no hyperparameter in the architecture of the model was changed (i.e., we kept the same number

of layers, filters, and kernel), but the length of the input vector (364,2) was modified to fit the shorter
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breeding season of the Adélie penguins (here it corresponds to 182 days with a 12-hour time-steps, meaning

6 months, encompassing all possible breeding season lengths). The accuracy of RFIDeep reached 95.2%

for breeding outcome determination and 93.5% for sex. These values are comparable to those obtained for

king penguins. These results further demonstrate the broad applicability and effectiveness of RFIDeep for

extracting biologically meaningful parameters from RFID data. This electronic monitoring is also paired

with weighbridges, meaning that weights are recorded when an individual crosses the bridge and is detected

by the antenna. In future development of the RFIDeep, mass information could be paired with the detection

vectors to help the model to determine individual status and sex.

Figure S6: Typical pattern of presence/absence of a successful breeding male Adélie penguin. Each cross
corresponds to one detection by an antenna (blue and orange indicating outside and inside, respectively).
Light blue indicates corrected detections and locations at sea.
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Figures and Tables

Figure S7: Representation of the presence/absence patterns at the breeding site of a given RFID-tagged
individual for one successful breeding cycle. Each cross corresponds to one RFID detection (outside
antenna in blue, and inside antenna in orange). The periods outside the colony (in blue) and inside (in
orange, or in yellow after the correction of missing detection) are deduced from the sequence of detection.
The duration in or out of the specific area is given in days (d). The presence/absence patterns presented
here correspond to the annual activities of a male king penguin but can be applied to any individual or any
targeted species to understand, for instance, how long an individual stays or leaves a specific study area
where RFID antennas are installed. Phases of the breeding cycle, identified from the presence/absence
patterns of a bird, are indicated by the white dashed lines. The breeding cycle starts between November
and March, and a successful cycle lasts 12 to 14 months (Barrat, 1976). Three status can be listed: (1)
Successful breeding with regular presence/absence patterns during the first austral summer and after the
austral winter, (2) Failed breeding when at least one major pattern of (1) is lacking, and (3) Non-breeding
when no regular presence/absence pattern is identified.

0001111111111111111111111110000000000000000000000111111……..000001100000011000000001100000000000011000000110000000000
0002000000000000000000000002000000000000000000000200000……..000002020000020200000002020000000000020200000202000000000

In Out

Size (974,2)

Location in 12h timestamp between 2008 October 1st 00:00 and 12:00

Number of detections in 12h period between October 1st 00:00 and 12:00

Location in 12h period between 2010 January 31th 12:00 and 24:00

Breeding year: 2009

Figure S8: Example of one breeding cycle converted into 2 vectors of length 974. The first row corresponds
to the location of the individual at each 12-hour period (0 for outside and 1 for inside). The second row
gives the number of detection per 12-hour period.
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One individual
One season

Breeding ?

Success ?

Sex ?

Yes

Non breeding

No

One individual
All breeding seasons

Sex from pooled 
classification over all 

breeding seasons

Breeding dates of all breeding season 
with male-specific algorithm

Breeding dates of all breeding season 
with female-specific algorithm

Male

Female

Figure S9: The classification scheme used to determine breeding specifications. The top part of the scheme
gives the classification procedure performed on each individual and each season: it leads to classification of
the breeding status (Breeding vs. Non-Breeding), the breeding outcome (Success vs. Failure), and the sex
(Male vs. Female). The lower part of the scheme corresponds to the determination of sex from the pooled
classification of breeding cycles and to the determination of breeding dates of each breeding season
according to the sex.
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20 ; 128 

10 ; 64

5 ; 16 

AveragePooling layer (pool size = 2)
Dropout layer (rate = 0.5)

AveragePooling layer (pool size = 2)
Dropout layer (rate = 0.5)

AveragePooling layer (pool size = 2)
Dropout layer (rate = 0.5)
Flatten

Dense(500)
Dense(200)
Dense(100)

Dense(2)

Convolutionnal building blocks 
(kernel size ; # filters)

Fully-connected layers 
with ReLu activation

Classification layer with 
softmax activation

Input: vectors of locations and # of detections

Output: Vector of probability for each class

Figure S10: CNN architecture used for the classification model of Success vs. Failure. The CNN
architecture consisted of three 1-D convolutional layers (with the size of the kernels and the number of
filters shown in the three boxes on the top). Each convolutional layer was interleaved with a dropout layer
and a common value of 0.5 as drop rate (to avoid overfitting (Srivastava et al., 2014)) and an average
pooling layer (with typical pool size of 2) to keep the most essential elements (see LeCun et al. (2015) for
details on CNN architectures). A flatten function was used at the end of convolution blocks to obtain a
single 1-D vector from the previous layers. Three fully connected layers (Dense) followed the building
blocks with the Rectified Linear Unit or ReLU (default activation function that applies f(x) = max(0,x) to
all neurons, used to improve performance of training) and were included just before the prediction layer to
interpret the learned features. The final classification uses the most common softmax activation function
with a fully connected layer (Dense) that convert vectors of numbers (the last Dense layer) into a vector of 2
output probabilities. Several CNN models were trained to classify the detection vectors into different classes
(Breeding vs. Non-Breeding; Success vs. Failure; Male vs. Female), but the same CNN architecture was
used for each classification, meaning that the same layers were used in the same order. Kernel sizes were
chosen through trials and errors and multiple training of the model leading to kernel of size 20, 10, and 5 for
Success vs. Failure and Male vs. Female models, and 50, 20, and 10 for Breeding vs. Non-Breeding model.
The CNN was implemented using the Keras tensorflow framework (Abadi et al., 2015) in Python 3.9.7.
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B vs. NB
B vs. NB
(without
DA)

S vs. F
S vs. F
(without
DA)

Compiled
NB vs. F
vs. S

Compiled
NB vs. F vs.
S (without
DA)

Breeding
date

Pred. vs. Dat.1 0.963 0.940 0.967 0.904 0.938 0.868 0.869
Pred. vs. Dat.2 0.931 0.905 0.973 0.910 0.910 0.839 0.811
Dat.1 vs. Dat.2 0.951 0.951 0.975 0.975 0.932 0.932 0.858

Table S1: Results of the comparison between the predictions (Pred.) yielded by RFIDeep and two datasets
labelled by human experts (Dat.1 and Dat.2). These datasets were well balanced across classes, with about
50% of Failure and 25% of Success and Non-Breeding. For each model (with and without data
augmentation ‘DA’ procedure), global accuracy metrics between CNN predictions and the two datasets
labelled by human experts are given, as well as the global accuracy between the two datasets. These
accuracy metrics are given for the classifications of Breeding vs. Non-Breeding (B vs. NB), Success vs.
Failure (S vs. F), compiled Non-Breeding vs. Failure vs. Success (NB vs. F vs. S), and Breeding date.

Figure S11: Receiver Operating Characteristic (ROC) curves and associated Area Under the Curve
(AUC)-ROC scores, and best classification threshold for the Breeding vs. Non-Breeding model and for the
Failure vs. Success model. These metrics were computed using two human expert labelled datasets. High
AUC-ROC scores (i.e., > 0.99) reveal high accuracy in comparison to the human performances. The values
of the threshold reveal that the models tend to be less restrictive to classify a breeding cycle as a success
than the human expert.
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Figure S12: A) Receiver Operating Characteristic (ROC) curve of the sex probability for each individual
given by the pooling of its lifetime sex probabilities against the molecular sexing. The Area Under the
Curve (AUC)-ROC score and the best threshold are indicated in the figure. (B) Accuracy of sex
classification according to the number of breeding cycles pooled together to determine the most probable
sex of an individual. Higher number of breeding cycles leads to a better classification of the sex supporting
the benefit of the pooling method.
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B) Breeding date accuracy according to age
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C) Output accuracy according to age and sex
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Figure S13: Age-specific (A, B, C, D) and sex-specific (C, D) accuracy metrics of output classification and
breeding date determination. Output classification (Non-Breeder vs. Failure vs. Success) accuracy
appeared stable according to age and sex. Age-specific accuracy metrics are given for age classes with
sample sizes greater than 10 individuals. Accuracy of breeding date determination is slightly lower for
young birds (breakpoint at 7 years old, from segmented regression analysis, ‘segmented’ R package).
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