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Summary

Understanding the DNA methylation patterns in the human genome is a key step to decipher1

gene regulatory mechanisms and model mutation rate heterogeneity in the human genome.2

We analyzed existing whole genome bisulfite sequencing (WGBS) data across tissues and large3

genetic variation catalogs and observed that 93.2% CpGs hyper-methylated in sperm are poly-4

morphic. Moreover, methylation status of CpGs is spatially correlated, as 94% of CpG pairs5

within 1kb share the same methylation status. Leveraging only these properties, we infer6

germline CpG methylation in the human population using a new method, Methylation Hid-7

den Markov Model (MHMM), and the polymorphism data from TOPMed. Our inference is8

orthogonal to WGBS-based experimental results; still we observed 90% concordance with hu-9

man sperm WGBS while overcoming several challenges in that data: We inferred methylation10

status for ∼ 721, 000 CpG sites that were missing from WGBS due to low coverage, and show11

that 42.2% of CpGs with allele frequency > 5% are hyper-methylated in the population but12

could not be captured in WGBS due to sample genetic variation. Our results provide a unique13

resource for CpG methylation levels in germline cells complementary to the existing WGBS-14

based measures, and can thus be leveraged to enhance analysis such as annotating regulatory15

and inactivated genomic regions in the germline.16
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Introduction

DNA methylation can directly modify protein binding sites or change chromatin 3D organi-17

zation to regulate gene expression[1], and the majority of DNA methylation in mammalian18

cells is contributed by CpG methylation[2]. DNA methylation is also crucial for understanding19

mutation processes. In the human germline, the cytosine to thymine (C>T) mutation rate at20

methylated CpG sites is ten fold greater on average than that of unmethylated CpG sites[3,21

4], leading to the observation that 99% of methylated CpG sites are mutated in at least one of22

390k individuals [5]combining genomAD[6], UK Biobank[7], and DiscovEHR[8].23

Whole genome bisulfite sequencing (WGBS) is the gold standard for measuring CpG methy-24

lation level[9–11], and > 100 human tissues and cell lines have been profiled[12]. However, each25

of these datasets provides measurements for one sample of cells and cannot be extrapolated26

to population level methylation. Moreover, understanding methylation from an evolutionary27

perspective requires historical methylation information, which is never directly measurable. In28

particular, experimental data is limited by germline mutation bias[13], where a typically methy-29

lated C has mutated to a T. Individuals carrying a C>T mutation would be faithfully measured30

as unmethylated by bisulfite sequencing obfuscating the historical methylation at this locus or31

the methylation status of other individuals with a C allele. As methylated CpGs have high32

mutation rates, many such obfuscating mutations have reached high allele frequencies in the33

population. Across 45 million autosomal CpG sites across the genome, random individuals are34

expected to carry 805,979 C>T mutations and to have homozygous T alleles at 135,222 sites,35

based on allele frequencies from Bravo[14]. This mutation bias reduces estimates of the mean36

methylation level, especially in small samples.37

WGBS is especially challenged when estimating germline methylation. Germline methy-38

lation is crucial to understand developmental processes and germline mutations. Germline39

methylation pattern is best estimated from sperms, oocytes, and germline cells at early devel-40

opmental stages[4, 15]. Among them, methylation status in sperm has the strongest correlation41

with germline mutation rate and SNP density in population samples[4]. However, although re-42

searchers have reported high methylation rate and distinct methylation patterns in sperm[4,43

9], the number of available germline WGBS data is too small (1 sperm, 2 testis, and 3 ovary44

samples published on ENCODE[16], all from different studies) to allow conclusive statements45
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about human germ cell methylation[15, 17]. Because DNA methylation is dynamic during de-46

velopment and differs across tissues[15, 17, 18], combining information from WGBS datasets47

across tissues or cell lines will not mitigate the difficulties in studying germline methylation.48

On the other hand, computational approaches have been developed to identify genomic49

features that affect CpG methylation level and predict DNA methylation[19–22]. For example,50

Zhang et al.[20] use a variety of genome annotation, especially histone marks and regulatory51

elements, to train a statistical random forest predictor for methylation level in whole blood,52

for which epigenetic experiments have the largest sample sizes over multiple modalities. Deep-53

CpG[22] combines DNA sequence context and incomplete methylation measures to impute54

missing methylation status using neural network in single cell data. Both methods borrow55

information from observed methylation in a neighborhood to infer missing methylation status56

at a focal CpG position.57

We propose a new method to infer germline methylation level independent from experimen-58

tal methylation measures, using observed allele frequencies in publicly available variant catalogs59

at single base resolution. Allele frequency is informative about germline methylation status at60

a CpG site as methylated sites have very high mutation rates. As a result of their ∼ 10 fold in-61

crease of mutation rate, some CpG sites that are consistently methylated in the population have62

mutated multiple times (recurrently) in the sample history, so that hyper-methylated regions63

are depleted of monomorphic sites and low-frequency variants (Figure 1a). Along the DNA64

sequence, both methylated and unmethylated sites tend to form tight regions with high or low65

methylation rates so that information can usefully be shared locally (Figure 1b). For instance,66

CpG islands, empirically defined as CpG dense segments, are highly enriched in genic region67

and protein binding sites and are often non-methylated. In contrast, methylation of consecutive68

CpGs in a promoter is a mechanism to silence the corresponding genes[23, 24]. Combining this69

information, we developed Methylation Hidden Markov Model (MHMM), which infers hidden70

germline methylation levels at individual CpGs sites from allele frequencies of C>T variants71

(Figure 1c).72

We apply MHMM to whole genome polymorphism data on 132,345 individuals from the73

TOPMed study[14] to infer population level germline methylation. Although our model uses74

information orthogonal to experimental measures or sample specific methylation status, our75
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Figure 1: Data patterns of CpGs leveraged for inference in MHMM. a) Difference of sample frequency
spectrum (SFS) between hyper-methylated (blue), hypo-methylated (yellow), and intermediate (gray)
CpGs in a sample of 132k individuals informs the emission probabilities of the HMM. SFS among
non-CpG sites (black) is provided for comparison. Crosses mark the fraction of monomorphic sites.
Methylation status is based on WGBS measured sperm methylation level. b) Proportion of hyper-
methylated CpGs around a focal CpG site as a function of the distance from the focal site informs
the transition probabilities of HMM. Violin plots show the distribution of this proportion in varying
neighborhood sizes; blue and yellow dashed lines mark the median values when the focal site is hyper-
or hypo-methylated respectively. Within a small distance of a hyper-methylated (hypo-methylated)
CpG, most CpGs are hyper-methylated (hypo-methylated); beyond 20kb from a hypo-methylated
CpG the average methylation rate is close to the global average (gray horizontal line). c) An example
40kb region on chromosome 19 showing the raw data. X-axis is the genomic position in Mb, each point
is one cytosine in a CpG site colored by its allele count among 132k individuals from the TOPMed
study[14]. Y-axis for the points is the methylation level measured by WGBS in sperm. Dashed
line is the MHMM inferred probability of being hyper-methylation using only the allele counts as
observations.

results are consistent with sperm methylation level measured by WGBS at 90% of CpG sites76

and our inferred hypo-methylation CpGs are highly enriched in known active genomic regions.77

Since our results can also be interpreted as accumulated mutation burden at near base pair78

resolution, contrasting the observed and expected allele frequencies suggests CpG sites that are79

likely to be under purifying selection. Our software and inferred methylation levels are available80

at https://github.com/Yichen-Si/cpghmm.81
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Results

Overview of the experiments. We apply our Methylation Hidden Markov Model (MHMM)82

to infer germline methylation levels in humans using the TOPMed variant catalog[14] (freeze83

8, 132,345 genomes) and replicate our observations in gnomAD[6] (v3.0, 71,702 genomes). We84

compute the probability distribution over discretized methylation levels at each of the 45 million85

autosomal CpG loci conditional on all observed CpG allele frequencies (AF) within 20Mb or86

to the end of the chromosome arm.87

Figure 2: Overview of the analyses.

Our estimates are highly consistent with the methylation status measured in sperm cells by88

WGBS, while differences between MHMM and WGBS indicate both limitations of our method89

and blind spots in WGBS. We demonstrate potential applications of the method, showing that90

1) Inferred hypo-methylated CpGs are enriched for active/regulatory genomic regions; 2) CpG91

sites located in inferred hyper-methylated regions but monomorphic in the sample are enriched92

for sites where C>T mutations would cause severe functional consequences (Figure 2).93

Application of MHMM on the TOPMed variant catalog. When applied to the94

TOPMed variant catalog, MHMM assigns most CpG sites to one of the two categories: 77.7%95
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of CpG sites have a > 0.9 probability of being in hyper-methylation regions, 12.0% of CpG sites96

have > 0.9 probability of being in hypo-methylation regions while the remaining 10.3% CpG97

sites have intermediate methylation level or cannot be confidently assigned to either category98

(Figure A.1). The inferred methylation level is associated with local CpG densities, with hypo-99

methylated regions enriched in dense CpG neighborhoods (Figure A.1, A.2). The difference100

between maximum likelihood (MLE, using all observed CpG AF) and leave-one-out likelihood101

(LOO, excluding the focal site’s own AF from its estimator) is generally small, exceeding 0.1102

(probability unit) at only 6.4% of sites. This difference is on average higher in regions with103

lower CpG density, ranging from 0.025 to 0.018 across density deciles.104

Replication of MHMM results with gnomAD. We applied the same model fitting105

process to gnomAD[6] AF based on 71,702 individuals primarily of European and African106

ancestries. Results from gnomAD are consistent with those from TOPMed in general (Table107

A.1) with 90.6% CpGs having the same categorical methylation levels inferred from the two108

variant catalogs. There are 0.73% CpGs inferred as hyper-methylated using one dataset while109

inferred as hypo-methylated using the other, the other 8.72% discrepancy is the result of one of110

the datasets suggesting an intermediate methylation level. The general consistency is expected111

since AF do not differ qualitatively between the two variant catalogs except for rare variants.112

But the two datasets differ in sample sizes and in rare variant calling and quality control113

procedures, both affecting the lower end of the site frequency spectrum (SFS) where most114

signal for our model is from. Henceforth, we present results from TOPMed which has a larger115

sample size.116

Relationship between CpG methylation and SFS is tissue-specific. The high muta-117

tion burden of CpGs consistently methylated in the germline result in a distorted SFS. Figure118

1a shows the SFS of CpGs stratified by their methylation status in sperm measured by the119

whole genome bisulfite sequencing (WGBS), compared with SFS of non-CpGs. Only 6.8% of120

hyper-methylated CpGs remain monomorphic among 132k individuals (TOPMed freeze 8 from121

Bravo[14]), distinct from hypo-methylated CpGs where 53.6% remain monomorphic. Figure122

3 shows that the SFS of hyper-methylated CpGs differs by the tissue where the methylation123

status is measured. CpGs hyper-methylated in sperm are most enriched for polymorphic sites,124

followed by those hyper-methylated in testis tissues. Ovary tissue shows similar level of en-125
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richment to other non-germline tissues. This observation is consistent with previous estimates126

that male contributes 4 times germline mutations than females[25, 26]. We also observe that127

tissue samples show more intermediate methylation levels, 18.1 ∼21.3% among 5 samples of128

testis or ovary compared to 7.7% in the sperm cell line sample. This observation is consistent129

with the fact that these two tissues commonly used as proxies for germline cells[5] consist of130

multiple cell types. These observations demonstrate the limitation of using experimental data131

from tissue samples including testis and ovary to understand germline methylation. Therefore,132

we compare MHMM inferred methylation levels with the WGBS measure of a sperm sample as133

the best approximation of germline methylation unless stated otherwise. In this sperm dataset,134

among 55.3M autosome CpGs 69.4% are hyper-methylated (with measured methylation rate135

≥ 0.75), 14.8% are hypo-methylated (with measured methylation rate ≤ 0.25), and 8.1% are136

missing (Figure A.3).137
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Figure 3: SFS of CpGs hyper-methylated in different tissues. Left: SFS truncated to highlight the
rare variant tail (x- and y-axis are in log scale); right: fold difference of the SFS compared with the
median among non-germline tissues (x-axis is in log scale). Each line is one sample, those from sperm,
testis, and ovary are colored as black, blue, and orange; gray lines are non-germline tissues. The left
most points in both figures represent monomorphic sites in Bravo.

Comparison between MHMM inferred and WGBS measured methylation levels.138

Comparing inferred germline methylation withWGBS measured sperm methylation, we see that139

among inferred hyper-methylated CpGs, 90.0% are measured as hyper-methylated by WGBS140

and 1.7% are measured as hypo-methylated by WGBS; among inferred hypo-methylated CpGs141

90.1% are measured as hypo-methylated and 3.6% are measured as hyper-methylated. Among142

the remaining 10.7% CpGs inferred as having intermediate methylation level, 59.8%, 19.6%,143
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and 18.4% are measured as hyper-methylated, intermediate, and hypo-methylated respectively144

(Figure 4a).145

Figure 4: a) Compare MHMM inferred methylation level with WGBS measures in sperm across
all autosome CpGs. Width of each bar is proportional to the number of CpGs in the corresponding
MHMM inferred methylation category, i.e. the denominator of the proportion on the y-axis. b) is
similar to a) but includes only CpGs that are common variants with AF> 5%. c) Comparison between
MHMM estimated methylation level and that measured by WGBS across 70 samples. Each point is
one sample; colors indicate the ages of donors of non-germline samples, and germline samples are
highlighted by orange (all from adults). All but two samples are tissue samples, the sperm data we
focus on is a primary cell sample (triangle).

We extend this comparison to other 69 samples from diverse tissues and cells (Table A.4)146

and observe that among those other samples, the testis tissues’ methylation levels are the most147

similar with MHMM inference, although less so than sperm. Ovary tissues’ methylation levels148

are less similar with MHMM inference, in fact they are comparable with other non-germline149

tissues (Figure 4c).150

To better understand the 10% discordance between MHMM and WGBS, we identify three151

sequence properties associated with such differences. First, discordance depends on local CpG152

density. In the 10% sparsest regions (less than 10 CpG per 1kb), 74% of measured hypo-153
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methylated sites are inferred to be intermediate or hyper-methylated. In contrast, in the 10%154

densest regions (≥60 CpG per 1kb), 6% of measured hypo-methylated sites are inferred to155

be intermediate or hyper-methylated. This difference in concordance is likely driven by the156

fact that the MHMM integrates information across neighboring CpGs but the correlation of157

methylation levels decays rapidly with distance[20, 22] (Figure 1b). As GC content is higher in158

coding sequence and near transcription start sites (TSS) compared to intronic and intergenic159

regions[24], our inference and WGBS agree more in genic regions (Figure A.4). Second, WGBS160

missing values are distributed unevenly across the genome. After removing regions with low161

mappability or low sequencing quality (see Method), 1.6% of the remaining 45.2M CpG sites162

have missing methylation status, and CpG sites with higher local GC content or higher AF are163

enriched for missing values. Among 5.86M CpGs located in 65,551 autosomal CpG islands[27]164

7.7% are missing WGBS observations (4.8x enrichment), and among 176,257 CpGs with AF165

>0.5, 3.2% are missing WGBS observations (2.0x enrichment).166

Germline mutation bias affects WGBS-based methylation estimates. Third, The167

discordance between MHMM and WGBS is also enriched among CpGs where the mutant T168

alleles have high frequencies (Figure 4b). Because experimental techniques correctly read T169

alleles at mutated CpGs as non-methylated, inference of population level methylation based170

on a small sample of individuals is biased by their germline mutations[13]. Here we assess171

this bias also in the WGBS sperm sample to disentangle this mutation effect from differential172

methylation between tissues or cell types.173

We categorize CpG sites by their T-allele frequencies from Bravo[14] and show the distribu-174

tion of WGBS methylation level in each AF window (Figure 5). Among monomorphic (AF = 0)175

sites and ultra-rare variants (AF < 0.01%) 17% are hypo-methylated while among intermediate176

frequency variants (AF 0.01% ∼ 1%) 4% are unmethylated. This is consistent with the fact177

that hypo-methylated sites have lower mutation rates and so are less likely to be polymorphic.178

However, among common variants (AF >1%) 31% of CpGs measured as partially methylated179

or unmethylated, and 57% of high AF variants (AF >50%) are measured as hypo-methylated.180

This contradicts what is expected based on mutation rate but is consistent with the donor often181

carrying the mutant T alleles at high AF variant sites.182

Further, while methylation status is generally similar among nearby CpGs, CpGs with high183
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T-allele frequencies measured as hypo-methylated by WGBS are typically surrounded by hyper-184

methylated CpGs. For each CpG site we assess the methylation status of its 5 immediate CpG185

neighbors both upstream and downstream as measured by WGBS. Among hypo-methylated186

focal sites with AF <0.01, only 8.0% have any of their 10 neighbors hyper-methylated. In187

contrast, among hypo-methylated focal sites with AF >0.9, ≥95.3% of sites have at least one188

of their 10 neighbors hyper-methylated. For 61.0% of such sites, all of their 10 neighbor CpGs189

are hyper-methylated (Figure A.5), suggesting that these sites would likely to be methylated190

if the C alleles are intact, but are measured to be hypo-methylated only because the sample191

donor carries the T allele.192

The germline bias leads to biased SFS stratified by CpG methylation levels. CpG methy-193

lation is commonly used as a predictor for germline mutation rate, which is in turn an im-194

portant factor to account for when estimating selection signal at gene or region level[6]. Fig-195

ure A.6 highlights the enrichment of intermediate and high frequency variants among CpGs196

measured as hypo- and mid-methylated by WGBS due to the germline bias. Since germline197

hypo-methylation usually indicates low mutation rate and low expected variant density, the198

enrichment of common variants deviates from the expectation and may create false signal for199

balancing or positive selection.200

This germline bias in WGBS contributes to ∼10% of the discordance between MHMM201

inferred germline methylation level and the observed methylation level. Across all CpGs 1.7%202

of MHMM inferred hyper-methylated CpGs are measured to be hypo-methylated by WGBS;203

but among inferred hyper-methylated CpGs with AF 10-50% and AF>90%, 9.1% and 93.6%204

are measured as hypo-methylated by WGBS. In addition, 37.2% of inferred hyper-methylated205

CpGs with AF 10-90% show intermediate methylation level by WGBS, compared to only 7.7%206

of estimated hyper-methylated CpGs with AF below 10%, consistent with the large proportion207

of heterozygous genotypes in the AF range (Figure A.7). If we project the proportion of hyper-208

methylated CpGs among sites with intermediate AF to those with high AF, we expect ∼367,000209

CpG sites hyper-methylated in the population to be mutated in the donor and therefore their210

methylation status obfuscated.211

MHMM-based methylation levels separate known CpG islands into two classes.212

CpG islands are defined as regions that have high local GC content and enriched CG dinu-213
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Figure 5: WGBS measured (left) and MHMM inferred (right) germline methylation level distribution
by AF. We divide whole autosome reference CpG, including monomorphic sites, into 10 (unequal sized)
bins from rare to common (x-axis), and show the proportion of methylation levels according to either
WGBS or MHMM.

cleotides compared to the expectation if nucleotides are distributed randomly[27]. Although214

70% of annotated promoters in the human genome are located in such high CpG density re-215

gions[28], whether a CpG island can function as transcription regulator heavily depends on216

its methylation status[24]. We observe that known CpG islands fall into two distinct groups217

characterized by their inferred germline methylation level, consistent with previous studies eval-218

uating sequence conservation[29]. Among 25,743 autosome CpG islands, 77.1% are primarily219

(>90%) hypo-methylated while 13.4% are primarily (>90%) hyper-methylated. Among hypo-220

methylated CpG islands 42.2% overlap with known promoters and 37.0% overlap with known221

proximal enhancers (Table A.2). Among hyper-methylated CpG islands, only 0.3% overlap222

with known promoters and 0.6% overlap with known proximal enhancers.223

Enrichment of hypo-methylated CpGs in regulatory regions. We further assessed224

the functional annotations of all hypo-methylated CpGs identified by either or both of MHMM225

and WGBS. MHMM and WGBS identify 5.4M and 6.4M hypo-methylated CpGs respectively,226

where 56% MHMM-hypo and 62% WGBS-hypo CpGs are located outside known CpG islands.227

We calculated the enrichment (odds ratios (OR)) of hypo-methylated CpGs in regulatory and228

active genomic elements, including TSS (MHMM OR=35.7), proximal enhancers (OR=3.6),229

open chromatin (OR=43.1), and transcription factor (TF) binding sites (OR=12.1) (Figure 6).230

CpGs identified as hypo-methylated by MHMM show slightly higher enrichment than those231
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identified by WGBS and CpGs identified as hypo-methylated by both MHMM and WGBS232

show slightly higher enrichment than that identified by either method alone.233

Figure 6: Enrichment of known active and regulatory elements among hypo-methylated CpGs. X-
axis is the odds ratio of the enrichment in log scale, from top to bottom shows the enrichment of TSS,
enhancers, TF binding sites, and open chromatin (data sources see B). Rectangles and triangles show
the odds ratio when the methylation status is defined by by WGBS and MHMM respectively. Circles
show the odds ratio with the subset of CpGs where WGBS and MHMM methylation status are the
same. (The approximated confidence intervals are negligible in relation of the scale of the odds ratios)

Monomorphic hyper-methylated CpGs show strong signatures of purifying se-234

lection. The segregation pattern of genetic variations in a population sample is shaped not only235

by the mutation rate, but also by purifying selection. We classify CpG sites by the potential ef-236

fect of C>T mutations using the Ensembl Variant Effect Predictor (VEP)[30] and stratify SFS237

among hyper-methylated CpGs by the functional consequences of the C>T mutation (Figure238

7). Among all hyper-methylated CpGs 94.5% are polymorphic and 26.6% have an AF ≥0.01%.239

Among putative loss of function (LoF) mutations, 71.6% sites are polymorphic and only 7.0%240

reach AF ≥0.01%, suggesting strong purifying selection. We used the leave-one-out estimator241

of MHMM (see Method) to estimate the methylation level of such highly selected CpGs without242

the constraint on allele frequency confounding the estimate (Figure A.8).243

This difference of SFS by predicted variant function suggests that hyper-methylated but244

monomorphic CpGs are likely to be under purifying selection. Table A.3 shows the proportion245

of monomorphic site by mutation consequences and methylation levels. Among CpG sites where246

a C>T mutation would be synonymous, 6.6% of hyper-methylated CpGs remain monomorphic,247
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compared to 61.0% among hypo-methylated CpG sites, a > 9-fold difference due to the lat-248

ter’s low mutation rates. Among CpG sites where a C>T mutation is predicted to cause the249

loss of function (LoF) of the protein, 27.9% of hyper-methylated CpGs remain monomorphic,250

compared to 78.1% among hypo-methylated CpG sites, < 3-fold difference because purifying251

selection partially cancels the mutation rate effect.252
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Figure 7: SFS of CpG C>T mutations stratified by MHMM inferred methylation levels and predicted
variant effects (from Ensembl VEP[30]). Left: hyper-methylated CpGs, right: hypo-methylated CpGs.
Frequency of monomorphic sites are marked separately by crosses.

Discussion

We developed a Methylation Hidden Markov Model (MHMM) to infer population level germline253

methylation at CpG dinucleotides. Our method leverages the high mutation rates and the254

consequently distorted sample frequency spectrum (SFS) at hyper-methylated cytosines and255

the local correlation of methylation status. We applied MHMM to polymorphism data from256

the TOPMed database and inferred whole autosome CpG methylation. Among CpGs inferred257

to be germline hyper-methylated by MHMM 90% are measured as hyper-methylated by WGBS258

in sperm cells, and 93.2% of CpGs hyper-methylated in sperm are polymorphic in the TOPMed.259

The differences between inference by MHMM and experimental measures by WGBS are260

driven both by limitations of MHMM and blind spots in WGBS. As MHMM aggregates the261

signal from nearby CpGs, it has limited information for inferring the methylation level of262

isolated CpGs. Indeed, MHMM differs fromWBGS at about 74% hypo-methylated CpGs in the263

10% lowest density regions but only at 5% hypo-methylated CpGs in the 10% highest density264
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regions. On the other hand, WGBS’s precision is limited in two scenarios. First, originally265

hyper-methylated CpGs that now have high derived T-alleles frequencies in a population sample266

may not be identified by WGBS[13]. Experimental measures from a small number of samples267

reflect the methylation status and the genotypes of those samples. CpG sites carrying a T268

allele are then identified correctly as unmethylated even if the C allele would be methylated,269

thus interrupting the otherwise hyper-methylated regions. On the contrary, MHMM inference270

reflects the population level methylation signature, is independent of individuals’ genotypes,271

and is more locally homogeneous.272

Second, bisulfite sequencing often has low coverage in GC-rich regions and thus low quality273

methylation calls. This GC content bias is more significant with PCR amplification which274

is currently standard in WGBS[11]. In the sperm data (GSM1127119) for example, we have275

observed a 4.8 fold enrichment of missing data in known CpG islands compared to the global276

missing rate. The polymorphism data underlying our methylation inference is primarily from277

PCR-free sequencing protocols therefore are less affected by GC content bias.278

Thus, MHMM creates more comprehensive estimates of germline methylation especially in279

highly mutable and GC-dense regions. and combining MHMM inference with the experimental280

data improves our ability to identify germline open chromatin and regulatory elements that281

are often hypo-methylated. MHMM identified hypo-methylated CpGs are more likely to locate282

in known active genomic regions than WGBS-identified hypo-methylated CpGs, and hypo-283

methylated CpGs supported by both methods are more likely to locate in known active genomic284

regions than those supported by either method alone. Since MHMM is orthogonal to WGBS285

experiments in the source of both information and bias, one can further explore alternative286

strategies to integrate the two methods based on local GC density and allele frequency.287

To the best of our knowledge, MHMM is the first method that infers methylation inde-288

pendent of experimental assays. All exiting prediction methods are supervised methods that289

rely on and thus share the limitations of the technologies like WGBS. Comparing our method290

with other computational methods is also difficult because these methods typically use tissue291

or cell type specific genomic features unavailable for germline cells. For example, Zhang et292

al. (2015) achieved 91.9% prediction accuracy of methylation level in blood cells, which have293

the largest sample size and most complete genomic annotations, by using various functional294
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features including each focal site’s neighboring methylation status.295

Since SFS is shaped by mutations happened in the past generations in the sample genealogy,296

MHMM estimates can be interpreted as the methylation signature accumulated in the popula-297

tion history. The strong deviation of SFS from the expected SFS under the low, genome-wide298

averaged mutation rate is a signature of CpGs consistently methylated over generations thus299

maintaining high germline mutation burden in the population. The high consistency of the300

current day sperm methylation level in a random individual with this accumulated signature301

inferred by MHMM also suggests that human germline methylation pattern is relatively stable302

in the past and across the population.303

Based on this evolutionary interpretation, we show that some CpG sites are maintained304

by purifying selection[5]. A CpG site where its own allele frequency substantially differs from305

that predicted by its neighborhood is 3.7 times more likely to be a potential loss of function306

mutation site. To account for purifying selection in our inference, we calculate two statistics,307

the marginal and leave-one-out likelihoods, for methylation status at single base pair resolution.308

We adopted a heuristic combination of the two statistics that effectively reduces confounding309

from purifying selection while incurring minimal loss of information at the majority of CpG310

sites that are near neutral.311

Although we emphasize the population level interpretation of the inferred methylation sig-312

nature, a future application is to compare our results with more individual measures from313

human and closely related species. For instance, our inferred germline methylation level could314

serve as a baseline to be compared with that measured in specific tissues to identify patterns315

acquired during developmental processes; or with that measured in a small sample from a dis-316

tinct population to investigate germline variation across ancestries; or with that measured in317

chimpanzees, gorillas, or orangutans to detect local fast evolution.318

When applying our method to study germline methylation patterns in different human319

groups or non-human species, high quality sequencing data are critical. An intrinsic limitation320

of our method is its reliance on accurate rare variant genotyping to capture the number of321

monomorphic sites and ultra-rare alleles, because this lower tail of the SFS is the most infor-322

mative about germline mutation rate. To be robust to sample demographics and genotyping323

artifacts, we do not constrain the SFS by population genetics parameters, but instead let the324
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model learn the difference of SFS across genomic regions from the data.325

Overall, we demonstrate that we can leverage the accumulated mutation burden at CpG326

sites to infer germline methylation level averaged over past generations and across the hu-327

man population, and reveal methylation patterns hidden from experimental measures. Our328

results also provide a new resource for interpreting non-coding regions by identifying potential329

regulatory elements and CpGs under mutation constraint.330
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Availability

Our inferred methylation levels using Bravo and genomAD respectively, and a track for UCSC331

Genome Browser are available at https://zenodo.org/records/10140747. Our software is332

available at https://github.com/Yichen-Si/cpghmm.333
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Method

Hidden Markov Model To estimate the unobserved methylation status from polymorphism339

data, we build a continuous time, discrete state HMM. We model discretized methylation levels340

as hidden states, discretized allele frequencies as observations, and construct the transition341

probability as a function of the physical distance between adjacent CpG sites. The stochastic342

process consists of all individual cytosines in CpG sites on both strands of a chromosome343

according to human reference genome GRCh38, and the emission models local sample frequency344

spectrum (SFS) as a result of the local methylation level.345

We discretize methylation level into K(≥ 2) states from hypo- to hyper-methylated, and346

the T-allele frequencies into M categories from monomorphically C to primarily T. Let Zi and347

Xi indicate the hidden state (methylation level) and observation (allele frequencies) at location348

i respectively, so Zi ∈ [K] = {1, . . . , K}, Xi ∈ [M ]. We explicitly include monomorphic (allele349

count AC= 0), singleton (AC= 1), doubletons (AC= 2), up to AC= 5 as separate categories,350

then choose log-linearly spaced break points to group higher allele frequencies. In practice,351

the two tails of the sample frequency spectrum (SFS) are most informative for our inference.352

We choose K > 2 because the historical methylation level averaged over time and population353

is likely to be fractional rather than binary as in a homogeneous cell sample. Choosing a354

state space with finer resolution also increases the robustness to mutation rate variation among355

hyper-methylated CpGs that depends on sequence context and other unmodeled factors[31].356

We assume that the emission probability of a single observation conditional on its state357

follows a multinomial distribution, P (Xi = m|Zi = k) := Ek,m, where Ek,· corresponding to a358

binned SFS specific for state k. We do not assume any structure of E and its estimates are359

dataset specific because methylation-level-stratified SFS depends on population demographics360

and sample size.361

We parameterize transitions among states in two layers. At each position (the C in a CpG),

we first generate its probability of moving out of the current state by the next position based

on an exponential distribution of the distance until a change of state, then sample the next

state if a transition occurs. We consider two adjacent CpG sites i and i+1 separated by di base

pairs (bp). The probability for position i+1 to stay in the same state as position i conditional
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on zi = k is

P (zi+1 = zi|zi = k) = 1− e−θk·di .

Conditional on zi+1 ̸= zi the probability to move to state k′ ̸= k is Ak,k′ , where A is a stochastic

matrix satisfying
∑

k′ ̸=k Ak,k′ = 1, Ak,k = 0 for all k, k′ ∈ [K]. Taken together, the transition

from k to k′ ̸= k over di bp has probability

P (zi+1 = k′|zi = k) = e−θk·diAk,k′ .

We assume theK transition rates θk are independent, capturing the different length distribution362

of hyper- and hypo-methylation regions; we do not constrain conditional probabilities A to any363

structure, allowing the relation among states to be learnt entirely from the data.364

Parameter estimation Unknown parameters in this model include A,E, and {θk}, with365

K2−2K+KM degrees of freedom. Matrices A and E can be estimated with the Baum–Welch366

algorithm[32], but the maximum likelihood estimates for transition rate θk’s do not have ana-367

lytical forms. We use an approximate EM approach and update θk’s iteratively by numerical368

optimization. We choose the Nelder–Mead method, a gradient-free, multi-dimensional opti-369

mization algorithm to search for a local optimum in the K-dimensional parameter space of θk’s370

conditional on A and E in the M-step of each iteration. We estimate the parameters by running371

the above EM algorithm on each arm of the autosomes separately (excluding centromeres), then372

take the genome wide average of learned parameters weighted by the number of CpG sites in373

each chromosome arm.374

Modeling observed allele frequencies as the sole result of underlying methylation level is375

subject to confounding from natural selection. Monomorphic CpG sites in a large sample could376

have low methylation levels and low mutation rates, or could be under purifying selection that377

removes C>T mutations[33]. To reduce the effect of selection on the inference of individual378

CpG sites, we compute a leave-one-out (LOO) likelihood of the hidden states at each CpG379

conditional on all but the focal site’s allele frequency. In this way, we avoid assuming neutrality380

at every single site and instead assume it is rare to have a dense cluster of CpG sites all381

under selection that dominate a neighborhood. This assumption is mild because even in highly382

selected coding regions, fitness effect of CpG C>T mutations is limited by amino acid changes383
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possible in the context. Computing LOO likelihoods only adds a fraction of overhead using384

similar computational tricks as in[34, 35].385

Data application We train the above model and estimate marginal and LOO likelihoods386

for each CpG cytosine to be at each of the discretized methylation levels using autosomal387

allele frequencies from Bravo (132,345 genomes) and gnomAD (71,702 genomes) separately.388

We excluded ∼ 10M CpGs located in regions with low mappability based on the reference from389

the 1000 Genome Project[36] or low variant quality scores reported by the variant catalogs,390

resulting in ∼ 45M autosomal CpG sites.391

We compare our results with methylation levels of 43 different tissues and cell lines from 80392

publicly available WGBS datasets from the ENCODE portal[16] (https://www.encodeproject.org/,393

individual dataset identifiers are listed in supplementary). To best approximate the his-394

torical methylation we aim to estimate, we focus on a sperm cell line from a 28yr male395

(ENCSR705FPH) which is the only sperm sample from ENCODE[16]. We did not include396

female germline because the ratio between male and female contribution to germline muta-397

tions is about 4:1[26] and the available proxy for female germline, ovary tissue samples, contain398

mixtures of cell types with high non-germline contribution. We annotated the functional con-399

sequences of C>T mutations at CpG sites using Ensembl VEP[30].400
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A Supplementary figures and tables

Figure A.1: Distribution of inferred historical methylation status by local CpG density. We group all
autosome CpGs into percentiles based on CpG density within 10kb (the leftmost bin summarizes 10%
CpG sites that have the lowest CpG density neighborhood). Y-axis partitions CpGs in each density
bin by their posterior probability of being hyper- or hypo-methylated, from having >0.95 probability
of being in hyper-methylated state to having >0.95 probability of being in hypo-methylated state.
About 10% CpGs are estimated to have intermediate methylation levels regardless of local densities.

Figure A.2: Distribution of local CpG densities measured as the number of CpG sites within ±10kb
of a focal CpG. Methylation status is based on MHMM. Hypo-methylated CpGs tend to locate in
denser regions.
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Figure A.3: Distribution of methylation status measured in two high quality WGBS germline sam-
ples. X-axis indicates the upper bound of 0.05 intervals (right closed), leftmost point indicates the
missing rate. Proportion is among 55.3M autosome CpGs.

Figure A.4: Comparing HMM estimates with WGBS measures stratified by functional regions. Here
we treat WGBS as the ”true” label to define TPR and FDR for comparison. The two methods differ
more in non-active hypo-methylated sites and negatively selected sites. (TPR: MHMM inferred hyper-
methylated CpGs among WGBS identified methylated sites. FDR: WGBS identified non-methylated
sites among MHMM inferred hyper-methylated CpGs.)
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Figure A.5: Methylation pattern of the close neighborhood around any focal CpG sites measured
by WGBS in a sperm cell line. We stratify the focal CpG according to its measured methylation
level and allele frequency in Bravo (x-axis), then within each stratum visualizes the distribution of
the number of methylated neighbors among ±5 nearby CpG sites. A focal site methylation status is
in general consistent with its neighbors except for high allele frequency non-methylated CpGs, which
are observed much more often in methylated neighborhoods. (WGBS has 2bp resolution, so a non-
methylated site has at most 9 out of its 10 neighbors methylated)
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Figure A.6: SFS of CpG C>T mutations stratified by MHMM inferred germline (yellow) or WGBS
measured sperm (blue) methylation levels (rows) and predicted variant effects from Ensembl VEP[30]
(columns). Y-axis shows the fraction among all CpG sites in the reference genome; fractions of sites
with AF < 0.1% are not shown to focus on the difference in intermediate and high frequency variants.
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Figure A.7: Composition of WGBS measured methylation status among CpGs in each MHMM
inferred state (three panels) and allele frequency categories (x-axis). X-axis shows the allele count
(AC) or allele frequency (AF) of the T allele at CpG sites (data from Bravo), from monomorphic
(left most) to high frequency (right). The high discordance between inferred methylation status and
measured methylation status for high T allele frequency illustrates the germline mutation bias of
WGBS.
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Figure A.8: Joint density distribution of leave-one-out likelihood (x-axis) and the marginal likelihood
(using in addition the focal site’s allele frequency, y-axis) of hyper-methylation at CpGs where the
potential C>T mutations would be loss of function (LoF) or synonymous.Color indicates the number
of CpGs in each discretized parameter window. At LoF variants, cells with large counts tend to be
located below the diagonal, as the marginal likelihood infer hyper-methylation less confidently than
leave-one-out likelihood. At synonymous variants, cells with large counts tend to be located above
the diagonal, as the marginal likelihood infer hyper-methylation more confidently than leave-one-out
likelihood.

MHMM Hyper in Bravo MHMM Hypo in Bravo MHMM Mid in Bravo

MHMM in gnomAD Hyper Hypo Mid Hyper Hypo Mid Hyper Hypo Mid

Hyper WGBS 0.7032 0.0002 0.0190 0.0034 0.0005 0.0007 0.0303 0.0010 0.0059

Hypo WGBS 0.0148 0.0002 0.0020 0.0015 0.0998 0.0018 0.0059 0.0098 0.0054

Mid WGBS 0.0548 0.0002 0.0029 0.0015 0.0029 0.0009 0.0083 0.0026 0.0049

Missing WGBS 0.0120 0.0001 0.0003 0.0003 0.0009 0.0002 0.0011 0.0003 0.0004

Column sum 0.7848 0.0005 0.0242 0.0067 0.1041 0.0036 0.0457 0.0137 0.0166

Table A.1: Compare MHMM results from Bravo v.s. those from gnomAD. Numbers in the table
are fractions among all analyzed autosome CpGs (45M). Fractions of CpGs that the results from two
datasets agree are highlighted by green
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Feature

CpG islands

Fraction that overlaps with known features

Hypo (19842) Other (2447) Hyper (3454)

Promoter 0.4221 0.0327 0.0035

Proximal enhancer 0.3700 0.0372 0.0055

ATAC-seq peak (open chromatin) 0.3488 0.0670 0.0217

TF ChIP-seq (TF binding sites) 0.1618 0.0327 0.0136

Any of above 0.6831 0.1300 0.0431

Table A.2: Hypo- but not hyper-methylated CpGs are enriched in known active elements. Hypo
and hyper labels are based on MHMM, indicating ≥ 90% CpGs in the CpG island are hypo- or hyper-
methylated respectively. Numbers in the table are the proportion of CpG islands overlapping with
known active elements.

Monomorphic proportion

MHMM inferred methylation level Sperm WGBS methylation levelFunctional category
All CpGs (45.2M)

Hyper (34.9M) Mid (4.8M) Hypo (5.5M) Hyper (34.5M) Mid (3.6M) Hypo (6.4M) Missing (0.7M)

LoF (74550) 0.4773 0.2794 0.6162 0.7810 0.4330 0.4541 0.7492 0.3528

Missense (1337129) 0.3155 0.1078 0.2878 0.6668 0.1737 0.2413 0.6632 0.3088

TFBS or 5’ UTR (806960) 0.4962 0.0692 0.2196 0.6679 0.0744 0.1961 0.6607 0.3156

Synonymous (583647) 0.2612 0.0655 0.1223 0.6102 0.0769 0.1505 0.6229 0.2715

Regulatory (2432178) 0.1202 0.0603 0.1973 0.5559 0.0664 0.1543 0.4850 0.1694

Intron (26595687) 0.1287 0.0599 0.1972 0.6090 0.0682 0.1429 0.5341 0.1550

Intergenic (13415783) 0.1257 0.0512 0.2267 0.5917 0.0571 0.1268 0.4735 0.1573

Table A.3: Purifying selection maintains CpGs as monomorphic at functional sites. Numbers in
the table are fractions of monomorphic sites conditional on the CpG’s functional annotation of the
potential T allele (where the C in a CpG site is the reference allele) and methylation level. The light
blue cells highlight the fraction of monomorphic hyper-methylated CpG sites where the C>T mutation
is predicted as loss-of-function, where the methylation levels are from MHMM (left) and sperm WGBS
(right) respectively.

Table A.4: (In Excel file) Overall methylation rates and comparison with MHMM results in 70
publicly available WGBS samples from ENCODE. Ages of the donors of the germline samples are
listed in parentheses. The first two samples are the same as those used in [5]. We only include samples
with missing rate less than 20% in autosomes (after removing CpGs with low mapping or sequencing
qualities).

B List of public materials

• gnomAD[6] v3.0 site lists and allele frequencies: https://gnomad.broadinstitute.org/401

• Bravo[14] (TOPMed freeze 8) site lists and allele frequencies: https://bravo.sph.umich.edu/freeze8/hg38/402
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• Germline CpG methylation from ENCODE[16]403

Sperm primary cell: ENCODE ID ENCSR705FPH (GEO accession GSM1127119)404

Ovary tissue: ENCODE ID ENCSR417YFD (GEO accession GSM1010980)405

• Functional annotation from Ensembl VEP[30]: https://useast.ensembl.org/info/docs/tools/vep406

• Transcription start sites from FANTOM5[37]: https://fantom.gsc.riken.jp/5/407

• Open chromatin annotation from ENCODE[16]:408

ATAC-seq in testis (one male), identifier ENCSR210NKB409

TF CHiP-seq (same individual as the above ATAC-seq data), identifier ENCSR753RME410

• WGBS datasets from ENCODE[16] see Table A.4411
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