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Summary

Understanding the DNA methylation patterns in the human genome is a key step to decipher
gene regulatory mechanisms and model mutation rate heterogeneity in the human genome.
We analyzed existing whole genome bisulfite sequencing (WGBS) data across tissues and large
genetic variation catalogs and observed that 93.2% CpGs hyper-methylated in sperm are poly-
morphic. Moreover, methylation status of CpGs is spatially correlated, as 94% of CpG pairs
within 1kb share the same methylation status. Leveraging only these properties, we infer
germline CpG methylation in the human population using a new method, Methylation Hid-
den Markov Model (MHMM), and the polymorphism data from TOPMed. Our inference is
orthogonal to WGBS-based experimental results; still we observed 90% concordance with hu-
man sperm WGBS while overcoming several challenges in that data: We inferred methylation
status for ~ 721,000 CpG sites that were missing from WGBS due to low coverage, and show
that 42.2% of CpGs with allele frequency > 5% are hyper-methylated in the population but
could not be captured in WGBS due to sample genetic variation. Our results provide a unique
resource for CpG methylation levels in germline cells complementary to the existing WGBS-
based measures, and can thus be leveraged to enhance analysis such as annotating regulatory

and inactivated genomic regions in the germline.
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Introduction

DNA methylation can directly modify protein binding sites or change chromatin 3D organi-
zation to regulate gene expression[l], and the majority of DNA methylation in mammalian
cells is contributed by CpG methylation|2]. DNA methylation is also crucial for understanding
mutation processes. In the human germline, the cytosine to thymine (C>T) mutation rate at
methylated CpG sites is ten fold greater on average than that of unmethylated CpG sites[3),
4], leading to the observation that 99% of methylated CpG sites are mutated in at least one of
390k individuals [5]combining genomAD[6], UK Biobank|7], and DiscovEHRJ[§].

Whole genome bisulfite sequencing (WGBS) is the gold standard for measuring CpG methy-
lation level[9H11], and > 100 human tissues and cell lines have been profiled[12]. However, each
of these datasets provides measurements for one sample of cells and cannot be extrapolated
to population level methylation. Moreover, understanding methylation from an evolutionary
perspective requires historical methylation information, which is never directly measurable. In
particular, experimental data is limited by germline mutation bias[13], where a typically methy-
lated C has mutated to a T. Individuals carrying a C>T mutation would be faithfully measured
as unmethylated by bisulfite sequencing obfuscating the historical methylation at this locus or
the methylation status of other individuals with a C allele. As methylated CpGs have high
mutation rates, many such obfuscating mutations have reached high allele frequencies in the
population. Across 45 million autosomal CpG sites across the genome, random individuals are
expected to carry 805,979 C>T mutations and to have homozygous T alleles at 135,222 sites,
based on allele frequencies from Bravo[l4]. This mutation bias reduces estimates of the mean
methylation level, especially in small samples.

WGBS is especially challenged when estimating germline methylation. Germline methy-
lation is crucial to understand developmental processes and germline mutations. Germline
methylation pattern is best estimated from sperms, oocytes, and germline cells at early devel-
opmental stages[4] [15]. Among them, methylation status in sperm has the strongest correlation
with germline mutation rate and SNP density in population samples[4]. However, although re-
searchers have reported high methylation rate and distinct methylation patterns in sperm[4}
9], the number of available germline WGBS data is too small (1 sperm, 2 testis, and 3 ovary

samples published on ENCODE][16], all from different studies) to allow conclusive statements
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about human germ cell methylation[15, |17]. Because DNA methylation is dynamic during de-
velopment and differs across tissues|15, 17, 18], combining information from WGBS datasets
across tissues or cell lines will not mitigate the difficulties in studying germline methylation.

On the other hand, computational approaches have been developed to identify genomic
features that affect CpG methylation level and predict DNA methylation|19-22]. For example,
Zhang et al.[20] use a variety of genome annotation, especially histone marks and regulatory
elements, to train a statistical random forest predictor for methylation level in whole blood,
for which epigenetic experiments have the largest sample sizes over multiple modalities. Deep-
CpGJ[22] combines DNA sequence context and incomplete methylation measures to impute
missing methylation status using neural network in single cell data. Both methods borrow
information from observed methylation in a neighborhood to infer missing methylation status
at a focal CpG position.

We propose a new method to infer germline methylation level independent from experimen-
tal methylation measures, using observed allele frequencies in publicly available variant catalogs
at single base resolution. Allele frequency is informative about germline methylation status at
a CpG site as methylated sites have very high mutation rates. As a result of their ~ 10 fold in-
crease of mutation rate, some CpG sites that are consistently methylated in the population have
mutated multiple times (recurrently) in the sample history, so that hyper-methylated regions
are depleted of monomorphic sites and low-frequency variants (Figure [lp). Along the DNA
sequence, both methylated and unmethylated sites tend to form tight regions with high or low
methylation rates so that information can usefully be shared locally (Figure [1b). For instance,
CpG islands, empirically defined as CpG dense segments, are highly enriched in genic region
and protein binding sites and are often non-methylated. In contrast, methylation of consecutive
CpGs in a promoter is a mechanism to silence the corresponding genes[23|, 24]. Combining this
information, we developed Methylation Hidden Markov Model (MHMM), which infers hidden
germline methylation levels at individual CpGs sites from allele frequencies of C>T variants
(Figure [Lk).

We apply MHMM to whole genome polymorphism data on 132,345 individuals from the
TOPMed study|14] to infer population level germline methylation. Although our model uses

information orthogonal to experimental measures or sample specific methylation status, our
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Figure 1: Data patterns of CpGs leveraged for inference in MHMM. a) Difference of sample frequency
spectrum (SFS) between hyper-methylated (blue), hypo-methylated (yellow), and intermediate (gray)
CpGs in a sample of 132k individuals informs the emission probabilities of the HMM. SFS among
non-CpG sites (black) is provided for comparison. Crosses mark the fraction of monomorphic sites.
Methylation status is based on WGBS measured sperm methylation level. b) Proportion of hyper-
methylated CpGs around a focal CpG site as a function of the distance from the focal site informs
the transition probabilities of HMM. Violin plots show the distribution of this proportion in varying
neighborhood sizes; blue and yellow dashed lines mark the median values when the focal site is hyper-
or hypo-methylated respectively. Within a small distance of a hyper-methylated (hypo-methylated)
CpG, most CpGs are hyper-methylated (hypo-methylated); beyond 20kb from a hypo-methylated
CpG the average methylation rate is close to the global average (gray horizontal line). ¢) An example
40kb region on chromosome 19 showing the raw data. X-axis is the genomic position in Mb, each point
is one cytosine in a CpG site colored by its allele count among 132k individuals from the TOPMed
study. Y-axis for the points is the methylation level measured by WGBS in sperm. Dashed
line is the MHMM inferred probability of being hyper-methylation using only the allele counts as
observations.

results are consistent with sperm methylation level measured by WGBS at 90% of CpG sites
and our inferred hypo-methylation CpGs are highly enriched in known active genomic regions.
Since our results can also be interpreted as accumulated mutation burden at near base pair
resolution, contrasting the observed and expected allele frequencies suggests CpG sites that are

likely to be under purifying selection. Our software and inferred methylation levels are available

at https://github.com/Yichen-Si/cpghmm.
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Results

Overview of the experiments. We apply our Methylation Hidden Markov Model (MHMM)
to infer germline methylation levels in humans using the TOPMed variant catalog[14] (freeze
8, 132,345 genomes) and replicate our observations in gnomAD|6] (v3.0, 71,702 genomes). We
compute the probability distribution over discretized methylation levels at each of the 45 million
autosomal CpG loci conditional on all observed CpG allele frequencies (AF) within 20Mb or

to the end of the chromosome arm.

SNV Catalog WGBS-based Methylation Measures
with Allele Frequencies
- secondary secondary

TOPMed Freeze 9

(n=132k) primary
\. J

I primary [WGBS Sperm ]

4 N\
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germline methylation WGBS-based estimates and selection on CpGs.

Figure 2: Overview of the analyses.

Our estimates are highly consistent with the methylation status measured in sperm cells by
WGBS, while differences between MHMM and WGBS indicate both limitations of our method
and blind spots in WGBS. We demonstrate potential applications of the method, showing that
1) Inferred hypo-methylated CpGs are enriched for active/regulatory genomic regions; 2) CpG
sites located in inferred hyper-methylated regions but monomorphic in the sample are enriched
for sites where C>T mutations would cause severe functional consequences (Figure .

Application of MHMM on the TOPMed variant catalog. When applied to the

TOPMed variant catalog, MHMM assigns most CpG sites to one of the two categories: 77.7%
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o of CpG sites have a > 0.9 probability of being in hyper-methylation regions, 12.0% of CpG sites
o have > 0.9 probability of being in hypo-methylation regions while the remaining 10.3% CpG
s sites have intermediate methylation level or cannot be confidently assigned to either category
o (Figure . The inferred methylation level is associated with local CpG densities, with hypo-
wo methylated regions enriched in dense CpG neighborhoods (Figure [A2). The difference
1 between maximum likelihood (MLE, using all observed CpG AF) and leave-one-out likelihood
02 (LOO, excluding the focal site’s own AF from its estimator) is generally small, exceeding 0.1
103 (probability unit) at only 6.4% of sites. This difference is on average higher in regions with
s lower CpG density, ranging from 0.025 to 0.018 across density deciles.
105 Replication of MHMM results with gnomAD. We applied the same model fitting
s process to gnomADI[6] AF based on 71,702 individuals primarily of European and African
w7 ancestries. Results from gnomAD are consistent with those from TOPMed in general (Table
s [A.1)) with 90.6% CpGs having the same categorical methylation levels inferred from the two
wo variant catalogs. There are 0.73% CpGs inferred as hyper-methylated using one dataset while
o inferred as hypo-methylated using the other, the other 8.72% discrepancy is the result of one of
w  the datasets suggesting an intermediate methylation level. The general consistency is expected
n2 since AF do not differ qualitatively between the two variant catalogs except for rare variants.
u3 But the two datasets differ in sample sizes and in rare variant calling and quality control
us procedures, both affecting the lower end of the site frequency spectrum (SFS) where most
us signal for our model is from. Henceforth, we present results from TOPMed which has a larger
s sample size.
17 Relationship between CpG methylation and SFS is tissue-specific. The high muta-
us tion burden of CpGs consistently methylated in the germline result in a distorted SFS. Figure
119 shows the SF'S of CpGs stratified by their methylation status in sperm measured by the
10 whole genome bisulfite sequencing (WGBS), compared with SES of non-CpGs. Only 6.8% of
1 hyper-methylated CpGs remain monomorphic among 132k individuals (TOPMed freeze 8 from
122 Bravo[l4]), distinct from hypo-methylated CpGs where 53.6% remain monomorphic. Figure
123 |3 shows that the SE'S of hyper-methylated CpGs differs by the tissue where the methylation
124 status is measured. CpGs hyper-methylated in sperm are most enriched for polymorphic sites,

s followed by those hyper-methylated in testis tissues. Ovary tissue shows similar level of en-
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richment to other non-germline tissues. This observation is consistent with previous estimates
that male contributes 4 times germline mutations than females|25, 26]. We also observe that
tissue samples show more intermediate methylation levels, 18.1 ~21.3% among 5 samples of
testis or ovary compared to 7.7% in the sperm cell line sample. This observation is consistent
with the fact that these two tissues commonly used as proxies for germline cells[5] consist of
multiple cell types. These observations demonstrate the limitation of using experimental data
from tissue samples including testis and ovary to understand germline methylation. Therefore,
we compare MHMM inferred methylation levels with the WGBS measure of a sperm sample as
the best approximation of germline methylation unless stated otherwise. In this sperm dataset,

among 55.3M autosome CpGs 69.4% are hyper-methylated (with measured methylation rate

> 0.75), 14.8% are hypo-methylated (with measured methylation rate < 0.25), and 8.1% are

missing (Figure |A.3]).

0.1
c 14
n ke
2z 5
= 9]
o =
S 209
@] = M2
%5 0.05+ “é, X
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v} — Sperm (1) o
© o
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Other (64)
X
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Frequency of CpG>TpG in TOPMed (n=132k) Frequency of CpG>TpG in TOPMed (n=132k)

Figure 3: SFS of CpGs hyper-methylated in different tissues. Left: SFS truncated to highlight the
rare variant tail (x- and y-axis are in log scale); right: fold difference of the SF'S compared with the
median among non-germline tissues (x-axis is in log scale). Each line is one sample, those from sperm,
testis, and ovary are colored as black, blue, and orange; gray lines are non-germline tissues. The left
most points in both figures represent monomorphic sites in Bravo.

Comparison between MHMM inferred and WGBS measured methylation levels.
Comparing inferred germline methylation with WGBS measured sperm methylation, we see that
among inferred hyper-methylated CpGs, 90.0% are measured as hyper-methylated by WGBS
and 1.7% are measured as hypo-methylated by WGBS; among inferred hypo-methylated CpGs
90.1% are measured as hypo-methylated and 3.6% are measured as hyper-methylated. Among

the remaining 10.7% CpGs inferred as having intermediate methylation level, 59.8%, 19.6%,
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and 18.4% are measured as hyper-methylated, intermediate, and hypo-methylated respectively

(Figure [dh).

a) MHMM v.s. sperm WGBS, all CpGs ¢) MHMM v.s. WGBS across 70 samples
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Figure 4: a) Compare MHMM inferred methylation level with WGBS measures in sperm across
all autosome CpGs. Width of each bar is proportional to the number of CpGs in the corresponding
MHMM inferred methylation category, i.e. the denominator of the proportion on the y-axis. b) is
similar to a) but includes only CpGs that are common variants with AF> 5%. ¢) Comparison between
MHMM estimated methylation level and that measured by WGBS across 70 samples. Each point is
one sample; colors indicate the ages of donors of non-germline samples, and germline samples are
highlighted by orange (all from adults). All but two samples are tissue samples, the sperm data we
focus on is a primary cell sample (triangle).

We extend this comparison to other 69 samples from diverse tissues and cells (Table
and observe that among those other samples, the testis tissues’ methylation levels are the most
similar with MHMM inference, although less so than sperm. Ovary tissues’ methylation levels
are less similar with MHMM inference, in fact they are comparable with other non-germline
tissues (Figure k).

To better understand the 10% discordance between MHMM and WGBS, we identify three
sequence properties associated with such differences. First, discordance depends on local CpG

density. In the 10% sparsest regions (less than 10 CpG per 1kb), 74% of measured hypo-

8
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methylated sites are inferred to be intermediate or hyper-methylated. In contrast, in the 10%
densest regions (>60 CpG per 1kb), 6% of measured hypo-methylated sites are inferred to
be intermediate or hyper-methylated. This difference in concordance is likely driven by the
fact that the MHMM integrates information across neighboring CpGs but the correlation of
methylation levels decays rapidly with distance[20} 22] (Figure[Ib). As GC content is higher in
coding sequence and near transcription start sites (T'SS) compared to intronic and intergenic
regions[24], our inference and WGBS agree more in genic regions (Figure[A.4)). Second, WGBS
missing values are distributed unevenly across the genome. After removing regions with low
mappability or low sequencing quality (see Method), 1.6% of the remaining 45.2M CpG sites
have missing methylation status, and CpG sites with higher local GC content or higher AF are
enriched for missing values. Among 5.86M CpGs located in 65,551 autosomal CpG islands|27]
7.7% are missing WGBS observations (4.8x enrichment), and among 176,257 CpGs with AF
>0.5, 3.2% are missing WGBS observations (2.0x enrichment).

Germline mutation bias affects WGBS-based methylation estimates. Third, The
discordance between MHMM and WGBS is also enriched among CpGs where the mutant T
alleles have high frequencies (Figure 4b). Because experimental techniques correctly read T
alleles at mutated CpGs as non-methylated, inference of population level methylation based
on a small sample of individuals is biased by their germline mutations[13]. Here we assess
this bias also in the WGBS sperm sample to disentangle this mutation effect from differential
methylation between tissues or cell types.

We categorize CpG sites by their T-allele frequencies from Bravo|l4] and show the distribu-
tion of WGBS methylation level in each AF window (Figure[5). Among monomorphic (AF = 0)
sites and ultra-rare variants (AF < 0.01%) 17% are hypo-methylated while among intermediate
frequency variants (AF 0.01% ~ 1%) 4% are unmethylated. This is consistent with the fact
that hypo-methylated sites have lower mutation rates and so are less likely to be polymorphic.
However, among common variants (AF >1%) 31% of CpGs measured as partially methylated
or unmethylated, and 57% of high AF variants (AF >50%) are measured as hypo-methylated.
This contradicts what is expected based on mutation rate but is consistent with the donor often
carrying the mutant T alleles at high AF variant sites.

Further, while methylation status is generally similar among nearby CpGs, CpGs with high
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T-allele frequencies measured as hypo-methylated by WGBS are typically surrounded by hyper-
methylated CpGs. For each CpG site we assess the methylation status of its 5 immediate CpG
neighbors both upstream and downstream as measured by WGBS. Among hypo-methylated
focal sites with AF <0.01, only 8.0% have any of their 10 neighbors hyper-methylated. In
contrast, among hypo-methylated focal sites with AF >0.9, >95.3% of sites have at least one
of their 10 neighbors hyper-methylated. For 61.0% of such sites, all of their 10 neighbor CpGs
are hyper-methylated (Figure , suggesting that these sites would likely to be methylated
if the C alleles are intact, but are measured to be hypo-methylated only because the sample
donor carries the T allele.

The germline bias leads to biased SFS stratified by CpG methylation levels. CpG methy-
lation is commonly used as a predictor for germline mutation rate, which is in turn an im-
portant factor to account for when estimating selection signal at gene or region level[6]. Fig-
ure highlights the enrichment of intermediate and high frequency variants among CpGs
measured as hypo- and mid-methylated by WGBS due to the germline bias. Since germline
hypo-methylation usually indicates low mutation rate and low expected variant density, the
enrichment of common variants deviates from the expectation and may create false signal for
balancing or positive selection.

This germline bias in WGBS contributes to ~10% of the discordance between MHMM
inferred germline methylation level and the observed methylation level. Across all CpGs 1.7%
of MHMM inferred hyper-methylated CpGs are measured to be hypo-methylated by WGBS;
but among inferred hyper-methylated CpGs with AF 10-50% and AF>90%, 9.1% and 93.6%
are measured as hypo-methylated by WGBS. In addition, 37.2% of inferred hyper-methylated
CpGs with AF 10-90% show intermediate methylation level by WGBS, compared to only 7.7%
of estimated hyper-methylated CpGs with AF below 10%, consistent with the large proportion
of heterozygous genotypes in the AF range (Figure . If we project the proportion of hyper-
methylated CpGs among sites with intermediate AF to those with high AF, we expect ~367,000
CpG sites hyper-methylated in the population to be mutated in the donor and therefore their
methylation status obfuscated.

MHMM-based methylation levels separate known CpG islands into two classes.

CpG islands are defined as regions that have high local GC content and enriched CG dinu-

10
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a) Sperm methylation level by WGBS b) Germline methylation level inferred by MHMM
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Figure 5: WGBS measured (left) and MHMM inferred (right) germline methylation level distribution
by AF. We divide whole autosome reference CpG, including monomorphic sites, into 10 (unequal sized)

bins from rare to common (x-axis), and show the proportion of methylation levels according to either
WGBS or MHMM.

cleotides compared to the expectation if nucleotides are distributed randomly[27]. Although
70% of annotated promoters in the human genome are located in such high CpG density re-
gions|28], whether a CpG island can function as transcription regulator heavily depends on
its methylation status[24]. We observe that known CpG islands fall into two distinct groups
characterized by their inferred germline methylation level, consistent with previous studies eval-
uating sequence conservation[29]. Among 25,743 autosome CpG islands, 77.1% are primarily
(>90%) hypo-methylated while 13.4% are primarily (>90%) hyper-methylated. Among hypo-
methylated CpG islands 42.2% overlap with known promoters and 37.0% overlap with known
proximal enhancers (Table . Among hyper-methylated CpG islands, only 0.3% overlap
with known promoters and 0.6% overlap with known proximal enhancers.

Enrichment of hypo-methylated CpGs in regulatory regions. We further assessed
the functional annotations of all hypo-methylated CpGs identified by either or both of MHMM
and WGBS. MHMM and WGBS identify 5.4M and 6.4M hypo-methylated CpGs respectively,
where 56% MHMM-hypo and 62% WGBS-hypo CpGs are located outside known CpG islands.
We calculated the enrichment (odds ratios (OR)) of hypo-methylated CpGs in regulatory and
active genomic elements, including TSS (MHMM OR=35.7), proximal enhancers (OR=3.6),
open chromatin (OR=43.1), and transcription factor (TF) binding sites (OR=12.1) (Figure [6)).

CpGs identified as hypo-methylated by MHMM show slightly higher enrichment than those
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identified by WGBS and CpGs identified as hypo-methylated by both MHMM and WGBS

show slightly higher enrichment than that identified by either method alone.

TSS
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( ) -
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H
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Figure 6: Enrichment of known active and regulatory elements among hypo-methylated CpGs. X-
axis is the odds ratio of the enrichment in log scale, from top to bottom shows the enrichment of TSS,
enhancers, TF binding sites, and open chromatin (data sources see . Rectangles and triangles show
the odds ratio when the methylation status is defined by by WGBS and MHMM respectively. Circles
show the odds ratio with the subset of CpGs where WGBS and MHMM methylation status are the
same. (The approximated confidence intervals are negligible in relation of the scale of the odds ratios)

Monomorphic hyper-methylated CpGs show strong signatures of purifying se-
lection. The segregation pattern of genetic variations in a population sample is shaped not only
by the mutation rate, but also by purifying selection. We classify CpG sites by the potential ef-
fect of C>T mutations using the Ensembl Variant Effect Predictor (VEP)[30] and stratify SF'S
among hyper-methylated CpGs by the functional consequences of the C>T mutation (Figure
[7). Among all hyper-methylated CpGs 94.5% are polymorphic and 26.6% have an AF >0.01%.
Among putative loss of function (LoF) mutations, 71.6% sites are polymorphic and only 7.0%
reach AF >0.01%, suggesting strong purifying selection. We used the leave-one-out estimator
of MHMM (see Method) to estimate the methylation level of such highly selected CpGs without
the constraint on allele frequency confounding the estimate (Figure .

This difference of SFS by predicted variant function suggests that hyper-methylated but
monomorphic CpGs are likely to be under purifying selection. Table shows the proportion
of monomorphic site by mutation consequences and methylation levels. Among CpG sites where

a C>T mutation would be synonymous, 6.6% of hyper-methylated CpGs remain monomorphic,
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compared to 61.0% among hypo-methylated CpG sites, a > 9-fold difference due to the lat-

ter’s low mutation rates. Among CpG sites where a C>T mutation is predicted to cause the

loss of function (LoF') of the protein, 27.9% of hyper-methylated CpGs remain monomorphic,

compared to 78.1% among hypo-methylated CpG sites, < 3-fold difference because purifying

selection partially cancels the mutation rate effect.

Hyper MHMM Hypo_MHMM
! X
X
" le-14 g .
L Functional category
o le-24 — LoF
2 — Missense
ﬁof le.3) — TFBS_5prime_UTR
s Synonymous
g le-44 — Intron '
f — Intergenic
le-5-

0 le-5 le-4 le-3 0 le-5 le-4 le-3
Frequency of CpG>TpG in TOPMed (n=132k)

Figure 7: SFS of CpG C>T mutations stratified by MHMM inferred methylation levels and predicted
variant effects (from Ensembl VEP). Left: hyper-methylated CpGs, right: hypo-methylated CpGs.
Frequency of monomorphic sites are marked separately by crosses.

Discussion

We developed a Methylation Hidden Markov Model (MHMM) to infer population level germline
methylation at CpG dinucleotides. Our method leverages the high mutation rates and the
consequently distorted sample frequency spectrum (SFS) at hyper-methylated cytosines and
the local correlation of methylation status. We applied MHMM to polymorphism data from
the TOPMed database and inferred whole autosome CpG methylation. Among CpGs inferred
to be germline hyper-methylated by MHMM 90% are measured as hyper-methylated by WGBS
in sperm cells, and 93.2% of CpGs hyper-methylated in sperm are polymorphic in the TOPMed.

The differences between inference by MHMM and experimental measures by WGBS are
driven both by limitations of MHMM and blind spots in WGBS. As MHMM aggregates the
signal from nearby CpGs, it has limited information for inferring the methylation level of
isolated CpGs. Indeed, MHMM differs from WBGS at about 74% hypo-methylated CpGs in the

10% lowest density regions but only at 5% hypo-methylated CpGs in the 10% highest density
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regions. On the other hand, WGBS’s precision is limited in two scenarios. First, originally
hyper-methylated CpGs that now have high derived T-alleles frequencies in a population sample
may not be identified by WGBS[13|. Experimental measures from a small number of samples
reflect the methylation status and the genotypes of those samples. CpG sites carrying a T
allele are then identified correctly as unmethylated even if the C allele would be methylated,
thus interrupting the otherwise hyper-methylated regions. On the contrary, MHMM inference
reflects the population level methylation signature, is independent of individuals’ genotypes,
and is more locally homogeneous.

Second, bisulfite sequencing often has low coverage in GC-rich regions and thus low quality
methylation calls. This GC content bias is more significant with PCR amplification which
is currently standard in WGBS[11]. In the sperm data (GSM1127119) for example, we have
observed a 4.8 fold enrichment of missing data in known CpG islands compared to the global
missing rate. The polymorphism data underlying our methylation inference is primarily from
PCR-free sequencing protocols therefore are less affected by GC content bias.

Thus, MHMM creates more comprehensive estimates of germline methylation especially in
highly mutable and GC-dense regions. and combining MHMM inference with the experimental
data improves our ability to identify germline open chromatin and regulatory elements that
are often hypo-methylated. MHMM identified hypo-methylated CpGs are more likely to locate
in known active genomic regions than WGBS-identified hypo-methylated CpGs, and hypo-
methylated CpGs supported by both methods are more likely to locate in known active genomic
regions than those supported by either method alone. Since MHMM is orthogonal to WGBS
experiments in the source of both information and bias, one can further explore alternative
strategies to integrate the two methods based on local GC density and allele frequency.

To the best of our knowledge, MHMM is the first method that infers methylation inde-
pendent of experimental assays. All exiting prediction methods are supervised methods that
rely on and thus share the limitations of the technologies like WGBS. Comparing our method
with other computational methods is also difficult because these methods typically use tissue
or cell type specific genomic features unavailable for germline cells. For example, Zhang et
al. (2015) achieved 91.9% prediction accuracy of methylation level in blood cells, which have

the largest sample size and most complete genomic annotations, by using various functional
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features including each focal site’s neighboring methylation status.

Since SF'S is shaped by mutations happened in the past generations in the sample genealogy,
MHMM estimates can be interpreted as the methylation signature accumulated in the popula-
tion history. The strong deviation of SFS from the expected SFS under the low, genome-wide
averaged mutation rate is a signature of CpGs consistently methylated over generations thus
maintaining high germline mutation burden in the population. The high consistency of the
current day sperm methylation level in a random individual with this accumulated signature
inferred by MHMM also suggests that human germline methylation pattern is relatively stable
in the past and across the population.

Based on this evolutionary interpretation, we show that some CpG sites are maintained
by purifying selection[5]. A CpG site where its own allele frequency substantially differs from
that predicted by its neighborhood is 3.7 times more likely to be a potential loss of function
mutation site. To account for purifying selection in our inference, we calculate two statistics,
the marginal and leave-one-out likelihoods, for methylation status at single base pair resolution.
We adopted a heuristic combination of the two statistics that effectively reduces confounding
from purifying selection while incurring minimal loss of information at the majority of CpG
sites that are near neutral.

Although we emphasize the population level interpretation of the inferred methylation sig-
nature, a future application is to compare our results with more individual measures from
human and closely related species. For instance, our inferred germline methylation level could
serve as a baseline to be compared with that measured in specific tissues to identify patterns
acquired during developmental processes; or with that measured in a small sample from a dis-
tinct population to investigate germline variation across ancestries; or with that measured in
chimpanzees, gorillas, or orangutans to detect local fast evolution.

When applying our method to study germline methylation patterns in different human
groups or non-human species, high quality sequencing data are critical. An intrinsic limitation
of our method is its reliance on accurate rare variant genotyping to capture the number of
monomorphic sites and ultra-rare alleles, because this lower tail of the SFS is the most infor-
mative about germline mutation rate. To be robust to sample demographics and genotyping

artifacts, we do not constrain the SF'S by population genetics parameters, but instead let the
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model learn the difference of SF'S across genomic regions from the data.
Overall, we demonstrate that we can leverage the accumulated mutation burden at CpG
sites to infer germline methylation level averaged over past generations and across the hu-
man population, and reveal methylation patterns hidden from experimental measures. Our

results also provide a new resource for interpreting non-coding regions by identifying potential

regulatory elements and CpGs under mutation constraint.
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Availability

Our inferred methylation levels using Bravo and genomAD respectively, and a track for UCSC
Genome Browser are available at https://zenodo.org/records/10140747. Our software is

available at https://github.com/Yichen-Si/cpghmm.
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Method

Hidden Markov Model To estimate the unobserved methylation status from polymorphism
data, we build a continuous time, discrete state HMM. We model discretized methylation levels
as hidden states, discretized allele frequencies as observations, and construct the transition
probability as a function of the physical distance between adjacent CpG sites. The stochastic
process consists of all individual cytosines in CpG sites on both strands of a chromosome
according to human reference genome GRCh38, and the emission models local sample frequency
spectrum (SFS) as a result of the local methylation level.

We discretize methylation level into K (> 2) states from hypo- to hyper-methylated, and
the T-allele frequencies into M categories from monomorphically C to primarily T. Let Z; and
X; indicate the hidden state (methylation level) and observation (allele frequencies) at location
i respectively, so Z; € [K| ={1,..., K}, X; € [M]. We explicitly include monomorphic (allele
count AC= 0), singleton (AC= 1), doubletons (AC= 2), up to AC= 5 as separate categories,
then choose log-linearly spaced break points to group higher allele frequencies. In practice,
the two tails of the sample frequency spectrum (SFS) are most informative for our inference.
We choose K > 2 because the historical methylation level averaged over time and population
is likely to be fractional rather than binary as in a homogeneous cell sample. Choosing a
state space with finer resolution also increases the robustness to mutation rate variation among
hyper-methylated CpGs that depends on sequence context and other unmodeled factors|31].

We assume that the emission probability of a single observation conditional on its state
follows a multinomial distribution, P(X; = m|Z; = k) := Ej,, where E} . corresponding to a
binned SFS specific for state k. We do not assume any structure of £ and its estimates are
dataset specific because methylation-level-stratified SF'S depends on population demographics
and sample size.

We parameterize transitions among states in two layers. At each position (the C in a CpG),
we first generate its probability of moving out of the current state by the next position based
on an exponential distribution of the distance until a change of state, then sample the next
state if a transition occurs. We consider two adjacent CpG sites ¢ and i+ 1 separated by d; base

pairs (bp). The probability for position i + 1 to stay in the same state as position i conditional
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on z; = k is

P(Zi+1 - ZZ|Z7, = ]{j) — 1 _ e_ek'di.

Conditional on z; 11 # z; the probability to move to state k' # k is Ay y, where A is a stochastic
matrix satisfying Zk,?ﬁk Apw = 1, Agx = 0 for all k, k" € [K]. Taken together, the transition

from k to k' # k over d; bp has probability

Pz =Kz =k) = e "% App.

We assume the K transition rates 6, are independent, capturing the different length distribution
of hyper- and hypo-methylation regions; we do not constrain conditional probabilities A to any
structure, allowing the relation among states to be learnt entirely from the data.

Parameter estimation Unknown parameters in this model include A, F, and {6}, with
K? - 2K + KM degrees of freedom. Matrices A and E can be estimated with the Baum-Welch
algorithm[32], but the maximum likelihood estimates for transition rate 6;’s do not have ana-
lytical forms. We use an approximate EM approach and update 6;’s iteratively by numerical
optimization. We choose the Nelder-Mead method, a gradient-free, multi-dimensional opti-
mization algorithm to search for a local optimum in the K-dimensional parameter space of 6,’s
conditional on A and E in the M-step of each iteration. We estimate the parameters by running
the above EM algorithm on each arm of the autosomes separately (excluding centromeres), then
take the genome wide average of learned parameters weighted by the number of CpG sites in
each chromosome arm.

Modeling observed allele frequencies as the sole result of underlying methylation level is
subject to confounding from natural selection. Monomorphic CpG sites in a large sample could
have low methylation levels and low mutation rates, or could be under purifying selection that
removes C>T mutations|33]. To reduce the effect of selection on the inference of individual
CpG sites, we compute a leave-one-out (LOO) likelihood of the hidden states at each CpG
conditional on all but the focal site’s allele frequency. In this way, we avoid assuming neutrality
at every single site and instead assume it is rare to have a dense cluster of CpG sites all
under selection that dominate a neighborhood. This assumption is mild because even in highly

selected coding regions, fitness effect of CpG C>T mutations is limited by amino acid changes
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possible in the context. Computing LOO likelihoods only adds a fraction of overhead using
similar computational tricks as in[34} [35].

Data application We train the above model and estimate marginal and LOO likelihoods
for each CpG cytosine to be at each of the discretized methylation levels using autosomal
allele frequencies from Bravo (132,345 genomes) and gnomAD (71,702 genomes) separately.
We excluded ~ 10M CpGs located in regions with low mappability based on the reference from
the 1000 Genome Project|36] or low variant quality scores reported by the variant catalogs,

resulting in ~ 45M autosomal CpG sites.

We compare our results with methylation levels of 43 different tissues and cell lines from 80

publicly available WGBS datasets from the ENCODE portal[16] (https://www.encodeproject.org/,

individual dataset identifiers are listed in supplementary). To best approximate the his-
torical methylation we aim to estimate, we focus on a sperm cell line from a 28yr male
(ENCSR705FPH) which is the only sperm sample from ENCODE[16]. We did not include
female germline because the ratio between male and female contribution to germline muta-
tions is about 4:1]26] and the available proxy for female germline, ovary tissue samples, contain
mixtures of cell types with high non-germline contribution. We annotated the functional con-

sequences of C>T mutations at CpG sites using Ensembl VEP[30].
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Figure A.1: Distribution of inferred historical methylation status by local CpG density. We group all
autosome CpGs into percentiles based on CpG density within 10kb (the leftmost bin summarizes 10%
CpG sites that have the lowest CpG density neighborhood). Y-axis partitions CpGs in each density
bin by their posterior probability of being hyper- or hypo-methylated, from having >0.95 probability
of being in hyper-methylated state to having >0.95 probability of being in hypo-methylated state.
About 10% CpGs are estimated to have intermediate methylation levels regardless of local densities.
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Figure A.2: Distribution of local CpG densities measured as the number of CpG sites within £10kb

of a focal CpG. Methylation status is based on MHMM. Hypo-methylated CpGs tend to locate in
denser regions.
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Figure A.3: Distribution of methylation status measured in two high quality WGBS germline sam-
ples. X-axis indicates the upper bound of 0.05 intervals (right closed), leftmost point indicates the
missing rate. Proportion is among 55.3M autosome CpGs.
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Figure A.4: Comparing HMM estimates with WGBS measures stratified by functional regions. Here
we treat WGBS as the "true” label to define TPR and FDR for comparison. The two methods differ
more in non-active hypo-methylated sites and negatively selected sites. (TPR: MHMM inferred hyper-
methylated CpGs among WGBS identified methylated sites. FDR: WGBS identified non-methylated
sites among MHMM inferred hyper-methylated CpGs.)
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Figure A.5: Methylation pattern of the close neighborhood around any focal CpG sites measured
by WGBS in a sperm cell line. We stratify the focal CpG according to its measured methylation
level and allele frequency in Bravo (x-axis), then within each stratum visualizes the distribution of
the number of methylated neighbors among +5 nearby CpG sites. A focal site methylation status is
in general consistent with its neighbors except for high allele frequency non-methylated CpGs, which
are observed much more often in methylated neighborhoods. (WGBS has 2bp resolution, so a non-
methylated site has at most 9 out of its 10 neighbors methylated)
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Fraction of CpG sites

Figure A.6:
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measured sperm (blue) methylation levels (rows) and predicted variant effects from Ensembl VEP[30]
(columns). Y-axis shows the fraction among all CpG sites in the reference genome; fractions of sites
with AF < 0.1% are not shown to focus on the difference in intermediate and high frequency variants.
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Figure A.7: Composition of WGBS measured methylation status among CpGs in each MHMM

inferred state (three panels) and allele frequency categories (x-axis).

X-axis shows the allele count

(AC) or allele frequency (AF) of the T allele at CpG sites (data from Bravo), from monomorphic
(left most) to high frequency (right). The high discordance between inferred methylation status and
measured methylation status for high T allele frequency illustrates the germline mutation bias of
WGBS.
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Marginal likelihood of being hyper-methylated

Figure A.8: Joint density distribution of leave-one-out likelihood (x-axis) and the marginal likelihood
(using in addition the focal site’s allele frequency, y-axis) of hyper-methylation at CpGs where the
potential C>T mutations would be loss of function (LoF) or synonymous.Color indicates the number
of CpGs in each discretized parameter window. At LoF variants, cells with large counts tend to be
located below the diagonal, as the marginal likelihood infer hyper-methylation less confidently than
leave-one-out likelihood. At synonymous variants, cells with large counts tend to be located above
the diagonal, as the marginal likelihood infer hyper-methylation more confidently than leave-one-out

likelihood.

MHMM Hyper in Bravo

Synonymous

MHMM Hypo in Bravo

MHMM Mid in Bravo

MHMM in gnomAD | Hyper Hypo Mid | Hyper Hypo Mid | Hyper Hypo  Mid

Hyper WGBS 0.7032 0.0002 0.0190 | 0.0034 0.0005 0.0007 | 0.0303 0.0010 0.0059
Hypo WGBS 0.0148 0.0002 0.0020 | 0.0015 0.0998 0.0018 | 0.0059 0.0098 0.0054
Mid_-WGBS 0.0548 0.0002 0.0029 | 0.0015 0.0029 0.0009 | 0.0083 0.0026 0.0049
Missing WGBS 0.0120 0.0001 0.0003 | 0.0003 0.0009 0.0002 | 0.0011 0.0003 0.0004
Column sum 0.7848 0.0005 0.0242 | 0.0067 0.1041 0.0036 | 0.0457 0.0137 0.0166

Table A.1: Compare MHMM results from Bravo v.s. those from gnomAD. Numbers in the table
are fractions among all analyzed autosome CpGs (45M). Fractions of CpGs that the results from two

datasets agree are highlighted by green
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CpG islands
Feature Fraction that overlaps with known features

Hypo (19842) Other (2447) Hyper (3454)

Promoter 0.4221 0.0327 0.0035
Proximal enhancer 0.3700 0.0372 0.0055
ATAC-seq peak (open chromatin) 0.3488 0.0670 0.0217
TF ChIP-seq (TF binding sites) 0.1618 0.0327 0.0136
Any of above 0.6831 0.1300 0.0431

Table A.2: Hypo- but not hyper-methylated CpGs are enriched in known active elements. Hypo
and hyper labels are based on MHMM, indicating > 90% CpGs in the CpG island are hypo- or hyper-
methylated respectively. Numbers in the table are the proportion of CpG islands overlapping with
known active elements.

Monomorphic proportion

Functional category MHMM inferred methylation level Sperm WGBS methylation level
All CpGs (45.2M) m m

Hypo (5.5M) Hypo (6.4M)
LoF (74550) 0.4773 0.2794 0.6162 0.7810 0.4330 0.4541 0.7492 0.3528
Missense (1337129) 0.3155 0.1078 0.2878 0.6668 0.1737 0.2413 0.6632 0.3088
TFBS or 5 UTR (806960) 0.4962 0.0692 0.2196 0.6679 0.0744 0.1961 0.6607 0.3156
Synonymous (583647) 0.2612 0.0655 0.1223 0.6102 0.0769 0.1505 0.6229 0.2715
Regulatory (2432178) 0.1202 0.0603 0.1973 0.5559 0.0664 0.1543 0.4850 0.1694
Intron (26595687) 0.1287 0.0599 0.1972 0.6090 0.0682 0.1429 0.5341 0.1550
Intergenic (13415783) 0.1257 0.0512 0.2267 0.5917 0.0571 0.1268 0.4735 0.1573

Table A.3: Purifying selection maintains CpGs as monomorphic at functional sites. Numbers in
the table are fractions of monomorphic sites conditional on the CpG’s functional annotation of the
potential T allele (where the C in a CpG site is the reference allele) and methylation level. The light
blue cells highlight the fraction of monomorphic hyper-methylated CpG sites where the C>T mutation
is predicted as loss-of-function, where the methylation levels are from MHMM (left) and sperm WGBS
(right) respectively.

Table A.4: (In Excel file) Overall methylation rates and comparison with MHMM results in 70
publicly available WGBS samples from ENCODE. Ages of the donors of the germline samples are
listed in parentheses. The first two samples are the same as those used in [5]. We only include samples
with missing rate less than 20% in autosomes (after removing CpGs with low mapping or sequencing
qualities).

B List of public materials

401 e gnomAD|6] v3.0 site lists and allele frequencies: https://gnomad.broadinstitute.org/

202 e Bravo[l4] (TOPMed freeze 8) site lists and allele frequencies: https://bravo.sph.umich.edu/freeze8/h;

26


https://doi.org/10.1101/2023.03.24.534151
http://creativecommons.org/licenses/by-nc-nd/4.0/

403

404

407

408

409

410

411

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.24.534151; this version posted January 3, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

e Germline CpG methylation from ENCODE[16]
Sperm primary cell: ENCODE ID ENCSR705FPH (GEO accession GSM1127119)
Ovary tissue: ENCODE ID ENCSR417YFD (GEO accession GSM1010980)

e Functional annotation from Ensembl VEP[30]: https://useast.ensembl.org/info/docs/tools/vep
e Transcription start sites from FANTOMS5[37]: https://fantom.gsc.riken.jp/5/

e Open chromatin annotation from ENCODE|16|:
ATAC-seq in testis (one male), identifier ENCSR210NKB
TF CHiP-seq (same individual as the above ATAC-seq data), identifier ENCSR753RME

e WGBS datasets from ENCODE[16] see Table
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