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Neurons throughout the brain modulate their firing rate law-
fully in response to changes in sensory input. Theories of neural
computation posit that these modulations reflect the outcome
of a constrained optimization: neurons aim to efficiently and
robustly represent sensory information under resource limita-
tions. Our understanding of how this optimization varies across
the brain, however, is still in its infancy. Here, we show that neu-
ral responses transform along the dorsal stream of the visual
system in a manner consistent with a transition from optimiz-
ing for information preservation to optimizing for perceptual
discrimination. Focusing on binocular disparity – the slight dif-
ferences in how objects project to the two eyes – we re-analyze
measurements from neurons characterizing tuning curves in
macaque monkey brain regions V1, V2, and MT, and compare
these to measurements of the natural visual statistics of binocu-
lar disparity. The changes in tuning curve characteristics are
computationally consistent with a shift in optimization goals
from maximizing the information encoded about naturally oc-
curring binocular disparities to maximizing the ability to sup-
port fine disparity discrimination. We find that a change to-
wards tuning curves preferring larger disparities is a key driver
of this shift. These results provide new insight into previously-
identified differences between disparity-selective regions of cor-
tex and suggest these differences play an important role in sup-
porting visually-guided behavior. Our findings support a key
re-framing of optimal coding in regions of the brain that con-
tain sensory information, emphasizing the need to consider not
just information preservation and neural resources, but also rel-
evance to behavior.

efficient coding | sensory representation | information theory | binocular dis-
parity

Significance

A major role of the brain is to transform information from
the sensory organs into signals that can be used to
guide behavior. Neural activity is noisy and can consume
large amount of energy, so sensory neurons must opti-
mize their information processing so as to limit energy
consumption while maintaining key behaviorally-relevant
information. In this report, we re-examine classically-
defined brain areas in the visual processing hierarchy,
and ask whether neurons in these areas vary lawfully in
how they represent sensory information. Our results sug-
gest that neurons in these brain areas shift from being an
optimal conduit of sensory information to optimally sup-
porting perceptual discrimination during natural tasks.

An appealing theory of neural computation is that neurons
in early sensory areas respond to stimuli in a way that max-
imizes the information carried about the world (1, 2) while
neurons in downstream areas transform this representation so
as to best support specific tasks and computations (3–6). A
careful test of this theory of sensory transformations requires
several elements: we need to characterize the typical proba-
bility distribution of a pertinent sensory variable encountered
in the environment, we need large-scale measurements of
neural responses driven by this sensory variable across mul-
tiple brain areas, and we need a single mathematical frame-
work that can be applied to sensory representations shaped
by different behavioral or computational objectives. Here,
we use binocular disparity in the primate visual system as a
model, and combine across diverse data sets to test this the-
ory. Our results provide strong empirical evidence in support
of a systematic transformation of sensory representations in
the brain: from information preservation at early processing
stages to maximizing perceptual discrimination performance
at later stages.

Binocular disparity between the retinal images offers an ideal
test bed for examining hierarchical sensory representations.
In animals with forward-facing eyes, non-fixated points in
space tend to fall on disparate retinotopic locations because
the eyes are laterally offset from each other (Fig. 1A). Suc-
cessful integration of information from the two eyes relies
on populations of neurons that are tuned for different binoc-
ular disparities–the differences in the retinotopic location of
images in the left and right eyes. While neuronal tuning for
binocular disparity emerges early in the mammalian visual
system (V1), populations of neurons tuned for binocular dis-
parity have also been characterized all along the dorsal and
ventral processing streams (7, 8). Beyond just binocular in-
tegration, sensing of horizontal binocular disparities in par-
ticular provides one of the most reliable cues to the relative
distances of objects in the environment, and as such this cue
supports a variety of high-level perceptual tasks such as fig-
ure/ground segmentation, 3D motion perception, and break-
ing camouflage (9–11). Indeed, the magnitude and direction
of horizontal binocular disparity varies lawfully as a function
of how far objects are from the observer as well as where the
observer is fixating, and prior work has shown that these vari-
ations result in predictable statistical regularities in the binoc-
ular disparities encountered during natural tasks (12–15). We
hypothesized that early representations of horizontal binocu-
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lar disparity maximize the information carried about typical
disparities encountered during natural behavior, while later
representations instead facilitate discrimination of disparity
to support specific perceptual tasks.

Results

Natural distributions of binocular disparity have
strong statistical regularities. To test this sensory trans-
formation hypothesis, we first need an understanding of the
distribution of horizontal binocular disparities that the vi-
sual system is tasked with processing (hereafter simply re-
ferred to as binocular disparities). In recent years, there has
been a concerted effort to characterize the visual “diet" of
binocular disparities that is typical of natural experience (12–
15). This work suggests several robust statistical properties
of typical binocular disparities, most notably that small dis-
parities (near zero) tend to be much more likely than larger
disparities. Optimal sensory representations for binocular
integration should therefore differentially allocate process-
ing resources for small disparities versus large ones. Using
a previously-collected data set in which people were eye-
tracked while performing natural tasks (12), we calculated
the probability distribution of binocular disparities within a
central 10° radius from fixation while people performed two
different tasks: food preparation and navigation (Fig. 1B).
While the precise distribution shape differed between the
tasks, we see that both distributions are approximately zero-
mean, symmetric, and highly kurtotic (consistent with previ-
ous analyses). The increased prevalence of larger disparities
during food preparation is likely due to the different typical
object distances between the tasks: a given depth interval be-
tween two objects maps to a larger disparity if the objects are
relatively close to the observer, as during manual tasks like
preparing food.

Sensory coding theories predict a lawful transition in
how these binocular disparity statistics are reflected
in the brain. Optimal coding frameworks provide concrete,
testable predictions for how a stimulus probability distribu-
tion should be reflected in neural populations. Specifically, if
a population maximizes the information carried about a sen-
sory variable, we often expect the Fisher Information of the
population neural activity (FI; a measure of the precision
with which a sensory variable is encoded) to follow a power
law in which it is proportionate to the stimulus probability
squared (Fig. 1C, “infomax" dashed line)(16, 17). This rep-
resentation can be interpreted as a reference prior (18), which
assumes the least possible information about the world, or
Jeffrey’s prior, providing invariance across transformation of
sensory units (19).

Under common assumptions on computational limits, this
FI ∝ p2 power law corresponds to a neural code that min-
imizes the L0 norm of the stimulus reconstruction error
(5, 6, 16, 17). This means that all error magnitudes are
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Fig. 1. A. Points in the peripheral visual field tend to fall on disparate retinotopic
locations because the eyes are laterally offset. The retinotopic difference in these
locations is called the horizontal binocular disparity (abbreviated as simply disparity
in figures). Populations of neurons that are tuned for different horizontal disparities,
illustrated in the bottom right, are found throughout the visual system. B. Disparities
encountered in the central visual field (10° of fixation) tend to be small. Each plot
shows the probability density distribution of binocular disparity obtained from data
collected by (12) while human participants either navigated an indoor environment
(Left) or prepared a sandwich (Right). C. Information theoretic frameworks indicate
that optimal sensory representations can be described by a power law relationship
between disparity stimulus probability p (shaded region) and the Fisher Information
(F I) of a neuronal population. Information maximizing codes (“infomax", dashed
line) are proportionate to the squared probability, while discrimination maximizing
codes (“discrimax", dotted line) are characterized by a compressive nonlinearity.
D. The plots on the left illustrate normalized error functions that minimize the L0
(top) and L2 (bottom) norms. The plots on the right illustrate example patterns of
disparity estimate errors under each of the respective norms used to optimize the
reconstruction of the ground truth from noisy sensory measurements. For clarity,
disparities are sampled from a uniform distribution. The sets of reconstruction error
under the L0 and L2 norm have equal total error penalty. Dashed line indicates
zero error.
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penalized equally and the expected value of these errors is
minimized (i.e., error sparsity is maximized; Fig. 1D, top)
(5, 6). Prior work has found signatures of this power law
across a range of early sensory brain areas (3, 20). How-
ever, a representation with this distribution is not optimal for
visual tasks that require discrimination between different val-
ues of a stimulus variable, because error magnitude matters
for many tasks. For example, if one is trying to determine
whether their hand can fit in between two sharp objects sep-
arated in depth, a small error may be harmless but a large
error may lead to injury. Thus, for perceptual discrimination,
neural codes that minimize some other error metric like mean
squared error are often appropriate (L2 norm; Fig. 1D, bot-
tom). As such, codes that are optimized for downstream dis-
crimination tasks should reduce the concentration of neural
processing resources on high probability events and spread
FI more equally across the stimulus space (Fig. 1C, “dis-
crimax" dotted line)(5, 17). The discrimination-maximizing
“discrimax" line shown in the Figure corresponds to a spe-
cific power law of FI ∝ p0.5. This objective (along with
objects that aim to minimize other Lp norm errors like the
sum of absolute errors) results in consistently more compres-
sive nonlinearities than information maximization (6, 21)).
For neural codes for binocular disparity, we would therefore
expect the population FI to be more strongly peaked at zero
disparity in early visual regions, and more equally spread out
across a broader range of disparities in later visual regions.

Neural populations differ as predicted by a transition
from information-preservation to supporting percep-
tual discriminations. To test this transformation hypothe-
sis, we must characterize a large number of neuronal tun-
ing curves for binocular disparity across different brain areas,
such that we can calculate the FI associated with these tun-
ings and compare them to the disparity probability distribu-
tions in 1B. Since the precise shape of the disparity probabil-
ity distribution varies between tasks (and different resource
constraints can change the numerical value of the optimal ex-
ponent for the power law (5, 21)), here we focus on the rela-
tive transformation of the FI exponent between brain regions
rather than on its nominal value. To this end, we compiled a
data set of 1056 neurons’ binocular disparity responses span-
ning brain areas V1, V2, and MT of the macaque monkey.
The mean responses of each neuron as a function of binocular
disparity were fit with a continuous 1D Gabor function and
the individual neuron FI associated with each tuning curve
was calculated from these fits based on assumption of Pois-
son spiking (Fig. 2A).

For a single neuron, the FI is high when the tuning curve is
steep and the spike rate (and Poisson noise) is low, and the FI
is low when the tuning curve is flat and the spike rate is high
(for example, note the alignment between the tuning curve
flanks and the FI peaks in Fig. 2A). The total FI of each
population was calculated as a sum across neurons, based on
the assumption that each neuron responds to stimuli indepen-
dently (Fig. 2B). Qualitatively, we see that the population FI
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Fig. 2. A. We compiled a data set of 1056 disparity tuning curves from brain areas
V1, V2, and MT of the macaque monkey. The mean responses of each neuron as a
function of disparity were fit with a continuous function and the individual neuron F I

associated with each tuning curve was calculated from these fits. B. The population
F I (see Fig. 1C) is shown for each brain area (thick lines). Thin lines represent the
population F I computed from 500 bootstrapped samples from each brain area.

is most kurtotic in V1/V2 and least kurtotic in MT, consistent
with the hypothesis that the information-maximizing model
is a better description of the early visual representation (V1
and V2) and the discrimination-maximizing model is a better
description of the downstream representation (MT).

We next directly compared these empirical FI distributions
to the two probability distributions of binocular disparities
in the natural environment. Binocular disparities are dis-
tributed non-uniformly across the visual field during natural
behavior (12), so we started by resampling the natural dis-
parity distributions based on the specific retinotopic locations
of neuronal receptive fields in each population using kernel-
smoothed density estimates (see Fig. S1). The resulting dis-
parity distributions were all similar in shape (Fig. S2A&B),
despite the minor differences in sampling density between the
different brain regions.

We calculated the power law that, when applied to the corre-
sponding disparity distributions, resulted in the best fit to the
measured FI of each neuronal population. We used boot-
strapping of the populations to estimate variability of the
best-fit power law exponent. Consistent with our working
hypothesis, we observed a systematic decrease in the distri-
bution of exponents for the best fit power law from the lower-
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level areas V1 and V2 to mid-level area MT for both natu-
ral tasks (Fig. 3A&C). Note that in both plots, the distribu-
tions for V1 and V2 are largely overlapping. The results of
these fits suggest that V1 and V2 are closer to populations
optimized to preserve information about binocular disparity
(particularly for the food preparation task, for which the best
fit exponents are 1.64 and 1.57, respectively). The best fit
exponent for MT was consistently lower for both tasks, and
therefore less consistent with information maximization and
more consistent with reducing error magnitude. Of course,
the differences between V1/V2 and MT are not as extreme
as the infomax and discrimax examples given in Fig 1, but
the relative shift is robust and persistent across both example
disparity distributions.

However, we observed one notable inconsistency with this
interpretation, with respect to V2 and the food preparation
task. Fig. 3B&D show the matches between the popula-
tion FI (solid lines) and the binocular disparity distributions
scaled by the single best fit exponents (dashed lines) from
Fig. 3A&C. According to our predictions, for each brain area
and each task these pairs of distributions should closely over-
lap. The distributions match closely in all cases except for
the V2 population and the food preparation task (green lines
in Fig. 3B). The power-law scaled binocular disparity distri-
bution in this case is quite biased towards near (negative) dis-
parities, and this bias is not present in the population FI . The
reason for the near disparity bias is clear from the distribution
of receptive field locations (Fig. S1): the V2 receptive fields
are exclusively concentrated in the lower visual field, and the
disparity statistics in the lower visual field are strongly biased
towards near disparities during food preparation (12). For the
navigation task, the binocular disparity statistics are less bi-
ased. At present, we do not understand how the visual system
might flexibly incorporate different biases in stimulus statis-
tics when they differ notably across different tasks. However,
we speculate that the notable lower visual field near bias in
this food preparation task (in which participants made a sand-
wich while sitting at a table) may not be strongly reflected in
the visual experience of macaque monkeys.

To quantify the exponent differences further, we fit the boot-
strapped power law values for each neuronal population with
a Gaussian distribution and measured the effect sizes between
populations. The effect sizes, measured as Cohen’s D be-
tween pairs of populations, were large between the earlier ar-
eas and MT (food preparation: V1 vs. MT = 2.6, V2 vs. MT
= 2.2; navigation: V1 vs. MT = 4.3, V2 vs. MT = 5.5). As
expected from the similarity in their FI distributions, the ef-
fect sizes were small between V1 and V2 (food preparation:
0.36, navigation: V1 vs. V2 = 0.31). Thus, the data support
the notion that the MT FI reflects a different optimization
but that V1 and V2 may contain similar information-driven
codes.

These differences correspond to a broad set of
changes in individual tuning curve characteristics
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Fig. 3. A. The distribution of best-fit power law exponents linking population F I to
the disparity probability densities is plotted for the food preparation data set (using
the kernel-smoothed probability densities to guide sampling). Histogram bars indi-
cate the 500 bootstrapped samples for each brain area and solid lines indicate the
Gaussian distribution fits to each set of samples. Note that the V1 and V2 distribu-
tions are highly overlapping. B. Population F I is plotted for each area (solid lines)
along with the disparity distributions scaled by their respective best fit power laws
(dotted lines; see Fig. S2)). The power law exponents are as follows: V1: 1.51, V2:
1.69, MT:1.22. C & D. As in A & B., but for disparity statistics collected during the
navigation behavioral task. Power law exponents: V1: 0.61, V2: 0.62, MT: 0.41.

from V1/V2 to MT. We next asked which aspects of the neu-
ral responses to disparity could account for the differences
in the FI distributions between V1/V2 and MT. To answer
this question, we first took a parametric approach and lever-
aged the Gabor fits to each of the tuning curves (Fig. 4A).
For each of the cortical populations, we examined the dis-
tributions of each of the six best-fit Gabor parameters (Fig.
4B). In sum, we find that MT neurons generally have higher
response offsets, broader envelopes, and lower disparity fre-
quencies than either V1 or V2. The MT population also has
a broader distribution of best fit envelope means and phases
of the cosine component than the earlier cortical areas. Full
results of the statistical comparisons across populations are
provided in Tables S1 & S2. This analysis expands on a pre-
vious comparison between V1 and MT (22) by including re-
sponses from V2 and a larger number of V1 neurons. One
possible explanation for these differences is that they may re-
flect differences in the retinoptic locations of the receptive
fields across the samples from each brain areas. Our subsam-
pling from the initial larger data set resulted a good match
between the brain areas in terms of eccentricity and vertical
position within the visual field, although the MT data set is
more concentrated in the left visual field and the V1/V2 data
sets are more concentrated in the right visual field (see Fig.
S1). Since there is no reason to hypothesize that disparity
tuning should differ in terms of left or right visual field, these
tuning differences most likely reflect differences in the un-
derlying neural representation.
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Fig. 4. We fit all the neuronal data with a modified 6 parameter Gabor function and
plotted the distribution of best-fitting parameters for each cortical area from which
we have data. A. Decomposing the Gabor function into Gaussian (left plot) and co-
sine (right plot) components clarifies what each parameter contributes to the shape
of the resulting tuning curve. The vertical dashed line in the Gaussian plot marks
the center of the Gaussian envelope while the cosine plot indicates the 0 phase po-
sition. The parameters are defined as follows: A: Amplitude, r0: vertical response
offset, µenv : Gaussian envelope mean, σenv : Gaussian envelope standard devi-
ation, f : cosine frequency, ϕ: cosine phase. The cosine f parameter is shown in
the bottom right panel as defining one quarter of a period. B. Distributions of best
fitting Gabor parameters for each of the 3 cortical areas. Thin white bars indicate
the 25th and 75th quartile and the thick black bar indicates the median.

An increase in neurons preferring larger disparities is
a key factor in the observed coding transformation.
There are clear differences in the distribution of best fit Gabor
parameters and the preferred disparities between the earlier
cortical regions and MT. However, the complex and overlap-
ping effects that these parameters have on the tuning curve
shape make it hard to interpret how each parameter con-
tributes to the transformation of the population FI distribu-
tions between the regions. Therefore, we performed a resam-
pling analysis to see if the changes in any one parameter in
particular could account for the difference in the FI distribu-
tions between V1 and MT. Since the FI distributions from
V1 and V2 were similar, we did not repeat this analysis for
the difference between V2 and MT. The overall approach is
outlined in Fig. 5A: for one tuning curve parameter at a time
(illustrated just for frequency), we replaced the set of true V1
values with a new set of values obtained by randomly sam-
pling from the distribution of MT fits. We then rebuilt each
cell’s tuning curve with their new parameter and used this
to calculate a new FI distribution for each cell. Lastly, we
summed the individual cell FI distributions and normalized
by the area under the curve to compare the overall shapes of
the resampled FI distribution for V1 and the true FI dis-
tribution for MT. This process was repeated a total of 500
times for this Gabor parameter and then another 500 times
for each of the Gabor parameters individually to assess the
variability in the resulting resampled V1 population FI dis-
tributions. Fig. 5B shows the resulting V1 population FI
distributions (black) for each of the parameters alongside the
true MT population FI distribution (red). Of the six param-
eters, replacing the V1 envelope mean parameter with those
from MT qualitatively results in the closest match with the
lowest variability.

To examine the significance of these matches, we calculated
the Jensen-Shannon divergence (JSD) between the FI of
each of the resampled V1 populations and the true MT pop-
ulation FI distribution (Fig. 5C). This information theoretic
measure reflects the dissimilarity between two distributions.
We first tested whether there were significant differences be-
tween the sets of JSDs for each parameter using a Kruskal-
Wallis test and confirmed there were differences in dissimi-
larity between the parameters (χ2 = 1.65E3; df=5; p<2.22E-
16). While there were significant differences between each
of the sets of resampled populations (see Table S3), the µenv

parameter stood out in that it’s associated JSD values were
substantially lower than all other parameters (note the large
z-scores) – that is, it was the least divergent from (most simi-
lar to) the empirical MT distribution. We performed two con-
trol analyses to examine the generality of these results (both
analyses are described in the Methods and reported in Fig.
S4 and Table S5 and S4).

From this pattern of results, we can glean that much of the
difference in how disparity information is represented be-
tween earlier and later cortical areas can be attributed the
presence of a greater number of cells that are selective for
larger disparities in MT.
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500 new bootstrapped V1 populations for each of the 6 parameters. B. The mean
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shown as blue lines for reference (same in each of the 6 subplots). C. Jensen-
Shannon Divergence (JSD) between the resampled V1 population F I distributions
and the true MT population F I distribution. Lower values reflect a closer match
between the two distributions. (Gray circles) JSD between the population F I for
each bootstrapped populations (i.e. RV1) and the true MT population F I. (Black
circles, errorbars) Median JSD and interquartile range across all bootstraps.

Discussion

Here we have taken a theoretical prediction about population-
level neuronal information along the sensory processing hier-
archy and put it to an empirical test. The results are consistent
with the prediction that sensory transformations can be un-
derstood as the result of a constrained optimization, in which
the goal changes sensibly from early to late sensory regions.

While we focused on the power law relationship between
stimulus probability, encoding goals, and population FI , the
optimal population FI can be influenced by other factors
as well. For example, the optimal power law is affected

by the resource constraints (21). We assumed that visual
brain regions in the same species are subject to the same con-
straints. Adaptation studies that dynamically shift stimulus
statistics without affecting constraints may be able to deter-
mine whether or not this assumption holds (23). Similarly,
system noise influences the form of FI , both for individual
neurons and the population as a whole (see (24)). A noise
analysis of our data suggests that, at least in the current data
set, spike count properties were similar across the examined
brain areas (see Fig S3). At the population level, our FI
calculation assumes that the neurons in our populations are
independent, but we cannot confirm the validity of this as-
sumption via measurements of spike count correlations be-
tween neurons since our data consists primarily of single unit
recordings. Response correlations reduce population FI in
many cases, but it isn’t clear whether the magnitude of spike
count correlations vary between the cortical areas analyzed
here. A systematic characterization of neuronal noise proper-
ties and noise correlations along the sensory processing hier-
archy may ultimately reveal that sensory transformations are
subject to differing noise properties as well (25, 26).

Here, we used binocular integration as a model system for
sensory transformations more generally. But our results
also shed light on specific open questions in the neural un-
derpinning of binocular integration and binocular dispar-
ity processing. Previous work has noted that the shape
of disparity tuning curves appears to change systematically
across brain regions, but the reason for these changes is
unknown (22, 27, 28). For example, previous work sug-
gested that MT tuning curves tend to have odd symmetry and
broader tunings, whereas in V1, the best fit tuning curves are
more even symmetric with a narrower range of preferred dis-
parities (22). Here, we did not see evidence for a difference in
even/odd symmetry, but did observe a multifaceted set of dif-
ferences in the distributions of tuning curve shapes. Some of
the difference in tuning shape (e.g., width) may be a side ef-
fect of pooling neurons with different orientation preferences
to generate direction selectivity for patterns (29). However,
a priori it is not necessarily the case that tuning curves get
broader along the sensory processing hierarchy. For exam-
ple, the tuning curve characteristics in V2 were quite similar
to V1. Our information theoretic analysis suggests these dif-
ferences in tuning curve shape may also have direct utility:
they shift the position of a neuron’s peak FI to larger dispar-
ities while maintaining a population peak near zero. Over the
entire population, this effectively makes the population FI
distribution more broad, thus improving disparity discrimi-
nation at higher disparity pedestals.

Of note, we do not claim that a shift from “infomax” to “dis-
crimax” representations is the sole difference in how V1, V2,
and MT represent visual information. For example, it is well-
established that MT encodes binocular disparity in a way
more correlated with perception than V1 does: V1 neurons
invert their disparity tunings with anticorrelated stereoim-
ages (7) and are affected by vergence and absolute disparity
(30, 31), whereas V2 (32, 33) and MT (34) at least partially
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discard false stereo matches and encode relative disparity. It
is also important to consider other sensory variables repre-
sented in these areas. A recent study used an information
theoretic framework to examine the link between the encod-
ing of speed in MT and perceptual biases in speed estimation
(35). They found that the population FI for stimulus speed
in MT can be related to speed perception via a p2 power
law. Our estimates of the power law in MT for binocular
disparity diverge from this idealized “infomax” representa-
tion of speed. However, it is not necessary that every sensory
variable encoded within a population is represented at the
same level–it is entirely possible that the same brain region
could contain an information-maximizing representation of
one sensory variable and a discrimination-maximizing rep-
resentation of another. The information-theoretic framework
provides an additional window into how neural representa-
tions build and interact along sensory processing streams that
can complement other assessments of neural function.

Lastly, our work also highlights the fact that the statistics of
sensory input can be task dependent. The binocular disparity
statistics were quite different for the two tasks that we consid-
ered. This task-dependence can pose a problem for assessing
the encoding optimality of neural populations on the basis of
task-free natural stimulus statistics derived from generic data
sets, for example, of natural images and sounds (3, 4). Here,
we show that generalizations that are robust across tasks can
be made by focusing on relative differences between brain
regions.

With the information theoretic analyses like those presented
here, we gain a more principled understanding of the link
between the hierarchy of cortical areas carrying sensory in-
formation and the complexity of behaviors that rely on that
information. New computational frameworks that can be ap-
plied to dynamic populations of neurons, trial-by-trial varia-
tions, and spike-count correlations between neurons will con-
tribute to the next step in characterizing hierarchical transfor-
mations of sensory signals.

Methods

Definition of Horizontal Binocular Disparity. We define
horizontal binocular disparity (d) as follows:

d = βL −βR, (1)

where βL and βR denote the horizontal angular eccentricity
of an image projected to the left and right retinas, relative to
the fovea. We represent eccentricity and binocular disparity
in units of visual degrees, with negative disparity values in-
dicating points that are closer in depth than the fixation point
and positive values indicating points that are farther in depth
than the fixation point.

Natural Scene Statistics of Binocular Disparity. Natural
statistics of binocular disparity were re-analyzed from a pre-

viously collected data set (12). In brief, three adult human
subjects performed either indoor navigation or food prepara-
tion tasks while wearing a custom-designed headset consist-
ing of a pair of stereocameras and eye trackers. Still images
were sampled from the stereocamera video footage, trans-
formed into head-centered 3D scene geometry, and finally
converted into binocular disparity maps in retina-centered co-
ordinates using the eye-tracking data. Analyses were limited
to data within a 10° radius of the point of fixation.

While the original natural binocular disparity statistics mea-
surements were evenly sampled from a 10° radius of fixation,
the neural data sets contained neurons with receptive fields
that were restricted largely to one hemifield. Given the dif-
ferences in binocular disparity statistics between the upper
and lower hemifields and the expected increase in prevalence
of larger disparities with increasing eccentricity (12), these
biases on receptive field location likely influence the proba-
bility distribution of binocular disparities that each neuronal
population encodes. Thus, we resampled binocular dispar-
ities from the maps based on the receptive field centers of
each neuron. To do so, we calculated 2D kernel-smoothed
probability density distributions (see Fig. S1) for each of the
cortical areas using a 2D Gaussian kernel and used these dis-
tributions to subsample from the original binocular dispar-
ity distribution. To ensure the reliability of this subsampling
procedure, we used a bootstrapping procedure to estimate the
variability of the resulting distribution (errorbars are smaller
than the line width in Fig. 3A&D). In short, we sampled
with replacement from each of the binocular disparity data
sets (navigation and food preparation) to generate 100 boot-
stapped samples of equal size to the empirical distribution,
calculated the disparity probability distribution for each boot-
strap, and recovered the 95% CIs from the cumulative error
distributions.

Neural Recordings. Neural recordings from areas V1, V2,
and MT were re-analyzed from a combination of multiple
previous studies. All recordings come from awake fixating
macaque monkeys and reflect measured action potentials of
isolated neurons. The tuning curves measured in V1 and
V2 come from multiple studies using highly similar methods
measured over the course of a decade in the same laboratory
(36–46). The MT tuning curves were obtained in a single
study with slightly different experimental methods (22).

In all cases, the stimuli used to measure response rate (spikes
per second) as a function of binocular disparity were random
dot stereograms (RDS) with each dot subtending approxi-
mately 0.1°. The methods for the stimuli and data collection
methods for the V1 and V2 data are described in (37, 40).
Briefly, responses from V1 and V2 were collected using RDS
stimuli with no coherent motion, presented on a Wheatstone
mirror haploscope for 400-500ms at a display refresh rates
ranging from 72-100Hz. Responses from MT were collected
using RDS stimuli with 100% coherent motion tailored to
each cell’s preferred direction, speed, and size (22). For each
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of the MT recording sessions, stereoscopic stimuli were pre-
sented for 1500ms on a single monitor with liquid crystal
shutter glasses at a refresh rate of 50Hz for each eye (cross-
talk was measured to be <3%). The stimuli in the MT record-
ing sessions were also presented against a non-overlapping
background of stationary dots at zero disparity to anchor ver-
gence (this vergence lock was located outside of the neuronal
receptive fields in all cases).

Recordings from each area were likewise similar. In brief, af-
ter the receptive field of each neuron was localized, the stim-
ulus was adjusted to the optimal size (and velocity for MT)
and the responses to different magnitudes and directions of
binocular disparity were recorded. For the MT recordings,
the majority of tuning curves were mapped using stimuli with
disparities that ranged from −1.6° to 1.6° in steps of 0.4°,
however for a few neurons larger disparities were used. For
the V1 and V2 recordings, the stimulus disparity ranges were
variable across neurons, with steps ranging from 0.029° to
1.2°. Responses from MT and V2 neurons were collected
solely with single electrodes, while responses from V1 were
collected mostly from single electrodes and a few from mul-
ticontact probes (45). The receptive fields of neurons in V1
and V2 were largely restricted to the lower visual field due
to cortical topography and the positioning of the implanted
recording cylinders. In the MT data set, most recording cylin-
ders were placed above the right hemisphere, so the receptive
fields are largely limited to the left visual field. Horizon-
tal and vertical eccentricity of the stimuli and receptive field
positions were calculated by taking the arctangent of the dis-
tance on the screen from the fixation point and the viewing
distance.

There were slight differences in experimental protocols be-
tween the laboratories (i.e., shutter glasses vs. mirror haplo-
scope, stimulus presentation time, coherent motion vs. inco-
herent motion), but these differences are unlikely to cause the
differences in the FI distributions estimated from the data.
For example, Palanca and DeAngelis (2003) compared dis-
parity tuning in MT for moving and stationary dots, and the
disparity tuning curves were very similar (although responses
were generally weaker for stationary dots) (47). Indeed, mo-
tion and disparity are independently encoded in MT (48), so
it is unlikely that the difference in motion energy between
the stimuli used by the two laboratories would produce con-
sistent biases in disparity tuning. Most neurons in V1 and
MT also do not show a dependence of disparity selectivity
on interocular delay, instead showing an inverse relationship
between response gain and interocular delay; those that do
show disparity-delay inseparability do not exhibit large tun-
ing shifts over the display intervals used in either of the data
sets (40, 49).

Tuning Curve Analysis. A subset of the neural recordings
described in the previous section were selected for analysis
according to set a of inclusion criteria. First, we only in-
cluded neurons with an average of ≥ 3 repeats per stimu-

lus disparity. We then selected neurons for which a signif-
icant amount of the trial-by-trial variance in responses was
explained by the disparity of the stimulus (one-way ANOVA
at a significance level of p < 0.01). For the V1 and V2 record-
ings, the range of stimulus disparities presented was variable,
so to ensure sufficient data to obtain a reliable fit to the tuning
curves we only analyzed neurons with a range of at least 1°
between the nearest and the farthest disparity tested. These
criteria resulted in 690, 531, and 444 neurons from V1, V2,
and MT, respectively.

In each study, stimulus disparity was recorded in screen coor-
dinates rather than retinal coordinates. For example, a point
with the same horizontal coordinate on screen for both eyes
was coded as having zero disparity. However, in retinal coor-
dinates, the locus of points with zero disparity is a circle that
contains the fixation point and the optical center of the two
eyes. Therefore, a point with the same horizontal coordinates
on a planar screen will have an uncrossed (far) retinal dis-
parity. In order to match up the neural recordings to the reti-
nal disparities measured in the scene statistics analysis, we
therefore applied a correction factor. In brief, the retinal ec-
centricity of each on screen stimulus in the left and right eye
was determined based on the screen distance, the horizontal
screen coordinates in the left and right eye, and an assumed
interocular separation of 30mm. These retinal eccentricities
were used to calculate the angular disparity on the retinas,
which were were used in the subsequent analyses.

For each of these neurons, we then fit a continuous tuning
curve to the mean responses as a function of the stimulus
retinal disparity h(d). Tuning curves were parameterized as
a 6-parameter Gabor function:

h(d) = r0 +Aexp
[

(d−µenv)2

2σ2
env

]
cos(2πf(d−µenv)+ϕ).

(2)
Best-fitting parameters for each neuron were determined us-
ing constrained non-linear optimization in MATLAB (Math-
works, Inc.), minimizing the mean squared error (fmincon).
To prevent fits that deviated substantially from the observed
range of spike rates, data were up-sampled by a factor of 2
using linear interpolation prior to fitting. Bounds for param-
eters were as follows: 0 < r0 < 500, 0 < A < 500, −1.75 <
µenv < 1.75, 0 < σenv < 5, 0 < f < 4.5, −2π < ϕ < 2π. Fits
that resulted in a minimum spike rate of less than 0.05 spikes
per second or with a frequency (f ) of less than 0.25 were
strongly penalized (by multiplying the current error by 1E7),
to avoid instability in the calculation of Fisher Information
and the interpretation of the fitted parameters, respectively.
The optimization was initialized at 200 randomly selected
starting points and optimized according to an interior point
algorithm. The parameters with the lowest error across all
initializations were taken as the final fit. A subset of neurons
(less than 30) were identified with poor fits on manual inspec-
tion, so fitting routines were re-run for these neurons with mi-
nor adjustments to the parameter ranges. The R2 across all
fits was greater than 0.3, and the median was above 0.8 for
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all three areas.

We further subsampled the neuronal populations to ensure
that each included cell was well-fit with a Gabor tuning func-
tion (we select only neurons with R2 ≥ 0.75), had RF cen-
ters within the defined region of the disparity image set (i.e.
≤ 10° eccentricity), and had RF centers within the same gen-
eral subregion of the visual field. To enforce the final crite-
rion, we determined the largest vertical and horizontal com-
ponents of the RF centers from the V1/V2 data sets to define
a rectangular bounding box and then selected only MT cells
with RF centers within this region. This was enforced be-
cause the MT data set contained a larger number of cells with
RF centers in the upper visual field, which could potentially
bias the disparity preferences of the sample (12). The final
cell counts from each sample were 393, 442, and 221 from
V1, V2, and MT, respectively.

To investigate differences between the resulting parameter
distributions, we first performed a Kruskal-Wallis omnibus
test to ask if there were any significant differences in median
values between the three cortical regions. Since we were pri-
marily interested in differences in distribution breadth, we
first took the absolute value of the signed parameters (µenv

and ϕ) to test only difference in the median magnitudes of
these values. If the omnibus test revealed a significant dif-
ference between the distributions, we then followed up with
a set of Wilcoxon rank sum tests between each of the pairs
of cortical areas. The results of these tests are presented in
Tables S1 and S2.

Fisher Information. Based on the simplifying assumption
that the spike rates for each neuron are Poisson-distributed,
we calculated the Fisher Information (FIn) of each neuron
as described by (50):

FIn(d) = h′2(d)
h(d) , (3)

where h′(d) denotes the first derivative of the tuning curve.
Negative FIn values, resulting from fits with small negative
spike rates, were set to zero. Assuming that each neuron’s
spike rate is independent, the FI in the population level is
then:

FI =
∑

n

FIn(d) (4)

Thus, we summed together the FIn across the neurons in
each neuronal population.

To examine the variance of the population FI , we repeated
this analysis by bootstrapping samples of 200 neurons (sam-
pled with replacement) 500 times for each region. The sam-
ple size of 200 was selected so that we could match sample
sizes across all three populations.

To ensure that our neuronal data sets contained disparity re-
sponses that were approximately Poisson and did not sub-
stantially vary between areas, we plotted the relationship be-
tween mean spike count and spike count variability for each

of the cell populations (Fig. S3, top). Note that each point
is a unique presented disparity condition and each cell con-
tributes multiple points. Only conditions with ≥ 5 repeated
stimulus presentation were included. We then fit a simple
power law function to each of the distributions:

σ2(rmean) = arb
mean. (5)

Poisson-distributed responses should be best fit with both a,
or slope, and b, or power law, equal to 1. While the best fit
slope for each area is slightly greater than 1, the best fit power
laws did not substantially differ from 1 (Fig. S3, bottom).
Since the populations also did not greatly differ in their best
fit values, our assumption of Poisson spiking statistics for the
calculation of population FI seems well-justified.

Gabor Parameter Resampling Between Cortical Areas.
To identify what aspect of disparity tuning could best explain
the differences in the FI distributions between populations,
we conducted a resampling approach whereby we replaced
the best-fitting Gabor parameters individually for each pa-
rameter (r0, A, µenv , σenv , f , ϕ) from the set of cells in V1
with parameters sampled from the distribution of fits from
the set of cells in MT (diagrammed in Fig. 5A). Since the
FI distributions from V1 and V2 did not significantly dif-
fer, we restricted the analysis to V1 and MT. For each pa-
rameter, we first discarded the best-fit set from the V1 pop-
ulation. We then randomly sampled from a kernel-smoothed
probability density derived from the set of best-fits to MT
neurons and assigned new values to the parameter of interest
for the V1 population. As done previously, we then calcu-
lated the single cell FI distributions given this new set of
tuning curves and summed their values to get the population
FI. We then repeated this process 500 times to obtain con-
fidence intervals on the population Fisher information under
the reparameterization. This process was then repeated for
each of the Gabor parameters individually, with the median
FI distributions and interquartile range for the resampled V1
populations shown in Fig. 5B. To quantitatively determine
which resampled parameter produced a V1 FI distribution
that was closest to the empirical MT distribution, we com-
puted the Jensen-Shannon divergence (JSD) between each of
the bootstrapped V1 FI distributions and the empirical MT
distribution.

We performed two control analyses to examine the gener-
ality of these results. First, we wanted to ensure that our
focus on comparing population FI shape similarity instead
of comparing the similarity in area under the curve (AUC)
of the population FIs did not lead us to a false conclusion
about the influence of each parameter. Therefore, we re-
peated our analysis without normalizing each bootstrap by
the AUC and instead normalized solely by the number of cells
in the bootstrapped sample. Overall, the results again show
a large FI similarity between the resampled µenv parame-
ter populations and the true MT FI distribution (Fig. S4A
& black/gray data points in Fig. S4 B). Note, however, that
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this metric is not very sensitive to differences in the distri-
butions at larger disparity values where probabilities are low
(resulting in deceptively close AUC values between the true
MT population FI and the resampled f parameter population
FI as well). To ensure that the results of our resampling ap-
proach were due to resampling from the MT parameter distri-
butions in particular and not due to simply shuffling the best
fit V1 parameters, we also repeated our AUC and JSD analy-
ses by resampling from the V1 parameter distribution instead
of MT (i.e., we shuffled the parameters between V1 cells with
replacement). We plot the results of these analyses along-
side the MT parameter sampling results for the AUC and JSD
metrics in Fig. S4B & D, respectively (orange data points).
We examined significant differences between the populations
sampled from the V1 and from the MT distributions by per-
forming a Wilcoxon rank-sum test for each Gabor parameter.
The results of these tests are shown in Table S4 (AUC) and
Table S5 (JSD) and significant differences are indicated with
asterisks in Fig. S4B & D. Comparing the results between
the bootstrapped V1 populations that sampled parameter val-
ues from MT and those that had their parameters shuffled
between V1 cells, we find that sampling from MT signifi-
cantly minimized the divergence in population FI between
MT and V1 for the µenv , consistent with the interpretation
from our main analysis. More specifically, it shows that the
specific changes in the distribution of preferred disparities in
MT greatly contributes to the change in FI distribution be-
tween V1 and MT.

Comparison Between Fisher Information and Disparity
Statistics. We used a grid search to determine the power law
that minimized the difference between each population FI
and the sampled binocular disparity probability distributions.
Power laws were applied to the disparity distributions and
then differences were calculated as the mean absolute error
between the two distributions sampled at 51 evenly spaced
binocular disparities between −2° and 2°. We repeated this
minimization for each of the 500 bootstrapped samples from
each neuronal population and fit the resulting distributions
with a Gaussian distribution using maximum likelihood esti-
mation, which also allowed us to characterize the 95% con-
fidence interval of the average power law for each neuronal
population.

Code and Data Availability

The MATLAB code used to pre-process the
neuronal data, perform the neuronal analyses,
and collect the image statistics is available at
https://github.com/tsmanning/DisparityInfoProject. The
neuronal data and BORIS data sets are available at [Redacted
until final publication].
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