

Conserving genetic diversity during climate change: Niche marginality and discrepant monitoring capacity in Europe

Peter B. Pearman*

1. Department of Plant Biology and Ecology, Faculty of Sciences and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain

2. IKERBASQUE Basque Foundation for Science. Plaza Euskadi 5, 48009 Bilbao, Spain

3. BC3 Basque Center for Climate Change, Sede Building, Scientific Campus of the University of the Basque Country, 48940 Leioa, Spain

ORCID: 0000-0002-0794-101X

Email: peter.b.pearman@gmail.com

Submitting author

Olivier Broennimann*

4. Department of Ecology and Evolution, Biophore, University of Lausanne, Switzerland

5. Institute of Earth Surface Dynamics, Geopolis, University of Lausanne, Switzerland

ORCID: 0000-0001-9913-3695

Tamer Albayrak

6. Burdur Mehmet Akif Ersoy University, Science and Art Faculty, Department of Biology, Lab of Ornithology, 15100, Burdur, Turkey

ORCID: 0000-0003-4115-3946

Paulo Célio Alves

7.CIBIO-InBIO Laboratório Associado & Departamento de Biologia, Faculdade de Ciências do Porto, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal

8. BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal

9. EBM, Estação Biológica de Mértola, Praça Luís de Camões, Mértola, 7750-329 Mértola.

Portugal

ORCID: 0000-0003-4797-0939

Laura D. Bertola

10. Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark

ORCID: 0000-0002-3445-0355

Aleksandra Biedrzycka

11. Institute of Nature Conservation, Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120 Kraków, Poland

ORCID: 0000-0001-5096-2767

Elena Buzan

12. University of Primorska, Faculty of Mathematics, Natural Sciences, and Information Technologies, Glagoljaška 8, 6000 Koper, Slovenia

13. Faculty of Environmental Protection, Traj mladosti 7, 3320 Velenje, Slovenia

ORCID: 0000-0003-0714-5301

- 50 **Vlatka Cubric-Curik**
51 14. Department of Animal Science, University of Zagreb Faculty of Agriculture,
52 10000 Zagreb, Croatia
53 ORCID: 0000-0002-2223-5957
- 54
55 **Ancuta Fedorca**
56 15. Department of Wildlife, National Institute for Research and Development in Forestry "Marin
57 Dracea", Closca 13, Brasov, Romania
58 16. Department of Silviculture, Faculty of Silviculture and Forest Engineering, Transilvania
59 University of Brasov, Beethoven Lane 1, Brasov, Romania
60 ORCID: 0000-0001-5828-5422
- 61
62 **José A. Godoy**
63 17. Estación Biológica de Doñana (EBD), CSIC, C/ Americo Vespucio, 26, 41092 Seville, Spain
64 ORCID: 0000-0001-7502-9471
- 65
66 **Christina Hvilsom**
67 18. Copenhagen Zoo, Roskildevej 38, 2000 Frederiksberg, Denmark
68 ORCID: 0000-0001-7870-6888
- 69
70 **Peter Klinga**
71 19. Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, SK-96001 Zvolen,
72 Slovakia
73 ORCID: 0000-0003-1530-670X
- 74
75 **Maciej K. Konopiński**
76 11. Institute of Nature Conservation, Polish Academy of Sciences, Al. Adama Mickiewicza 33,
77 31-120 Kraków, Poland
78 ORCID: 0000-0003-0893-0846
- 79
80 **Alexander Kopatz**,
81 20. Norwegian Institute for Nature Research, P.O. Box 5685 Torgarden, 7485 Trondheim,
82 Norway
83 ORCID: 0000-0002-9139-1179
- 84
85 **Linda Laikre**,
86 21. Department of Zoology, Division of Population Genetics, Stockholm University, SE-10691
87 Stockholm, Sweden
88 ORCID: 0000-0001-9286-3361
- 89
90 **Margarida Lopez Fernandez**
91 22. Centre for Research in Anthropology, CRIA NOVA FCSH, Lisbon, Portugal
92 23. Institute for Nature Conservation and Forests, Lisbon, Portugal
93 ORCID: 0000-0001-9239-1202
- 94
95
96
97
98
99

- 100 **Joachim Mergeay**
101 24. Research Institute for Nature and Forest (INBO), Gaverstraat 4, 9500 Geraardsbergen
102 Belgium.
103 25. KU Leuven, Ecology, Evolution and Biodiversity Conservation, Charles Deberiotstraat 32
104 Box2439, 3000 Leuven, Belgium
105 ORCID 0000-0002-6504-0551
106
107 **Charalambos Neophytou**,
108 26. Institute of Silviculture, Department of Forest and Soil Sciences, University of Natural
109 Resources and Life Sciences (BOKU), Peter-Jordan-Str. 82, 1190 Vienna, Austria
110 27. Department of Forest Nature Conservation, Forest Research Institute (FVA) Baden-
111 Württemberg, Wonnhaldestr. 4, 79100 Freiburg, Germany
112 ORCID: 0000-0003-1383-6942
113
114 **Snæbjörn Pálsson**,
115 28. Department of Biology, University of Iceland, 102 Reykjavik, Iceland
116 ORCID: 0000-0002-4297-3500
117
118 **Ivan Paz-Vinas**,
119 29. Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO,
120 80523-1878, USA
121 ORCID: 0000-0002-0043-9289
122
123 **Diana Posledovich**,
124 30. Department of Zoology, Division of Population Genetics, Stockholm University, SE-10691
125 Stockholm, Sweden
126 ORCID: 0000-0002-7262-6091
127
128 **Barbora Rolečková**,
129 31. Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech
130 Republic
131 ORCID: 0000-0003-0088-9922
132
133 **Dainis Runģis**,
134 32. Genetic Resource Centre, Latvian State Forest Research Institute "Silava", 111 Rigas st,
135 Salaspils, LV-2169, Latvia.
136 ORCID: 0000-0001-5173-2912
137
138 **Gernot Segelbacher**,
139 33. Wildlife Ecology and Management, University Freiburg, Tennenbacher Str. 4, D-79106
140 Freiburg
141 ORCID: 0000-0002-8024-7008
142
143 **Katja Kavčič Sonnenschein**,
144 34. Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
145
146 **Henrik Thurfjell**,
147 35. Swedish Species Information Centre, Swedish University of Agricultural Sciences SE-75007
148 Uppsala, Sweden.
149 ORCID: 0000-0001-9261-7654
150

151 **Sabrina Träger,**
152 36. Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-
153 Wittenberg, 06108 Halle (Saale), Germany
154 37. German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103
155 Leipzig, Germany
156 ORCID: 0000-0001-6389-2745
157

158 **Cristiano Vernesi**
159 38. Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach,
160 via E. Mach, 1-San Michele all'Adige 38010 (TN), Italy
161 ORCID: 0000-0001-7534-5669
162

163 **Carles Vilà,**
164 17. Estación Biológica de Doñana (EBD), CSIC, C/ Americo Vespucio, 26, 41092 Seville, Spain
165 ORCID: 0000-0002-4206-5246
166

167 **Marjana Westergren,**
168 39. Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
169 ORCID: 0000-0002-4204-0161
170

171 **Frank E. Zachos**
172 40. Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
173 41. Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna,
174 Austria
175 42. Department of Genetics, University of the Free State, PO Box 339, Bloemfontein, South
176 Africa
177 ORCID: 0000-0002-0133-6265
178

179 **Antoine Guisan****
180 4. Department of Ecology and Evolution, Biophore, University of Lausanne, Switzerland
181 5. Institute of Earth Surface Dynamics, Geopolis, University of Lausanne, Switzerland
182 ORCID: 0000-0002-3998-4815
183

Michael Bruford**
184 43. School of Biosciences, Cardiff University, Cathays Park, Cardiff CF10 3AX, UK
185 44. Department of Biochemistry, Genetics and Molecular Biology, University of Pretoria, Private
186 Bag x 20, Hatfield, Pretoria 0028, South Africa
187 ORCID: 0000-0001-6357-6080
188

189 * These authors contributed equally

190 ** Senior authors

191

192

193

194

195

196

197

198

199 **Abstract**

200 Genetic monitoring of populations currently attracts interest in the context of the Convention on
201 Biological Diversity but needs long-term planning and investments. Genetic diversity has been
202 largely neglected in biodiversity monitoring, and when addressed is treated separately, detached
203 from other conservation issues, such as habitat alteration due to climate change. Genetic
204 monitoring supports the conservation and management of fisheries, game, and threatened
205 populations. It also can contribute to the assessment of predicted and realized impacts of climate
206 change, and their management. We report the first accounting of genetic monitoring efforts
207 among countries in Europe (their ‘genetic monitoring capacity’, GMC) to determine where GMC
208 suggests the combination of national infrastructure, political support and resources for continued
209 and expanded monitoring. Overlaying GMC with areas where species ranges approach current
210 and future climate niche limits (i.e., niche marginality) helps identify whether GMC coincides
211 with anticipated climate change effects on biodiversity. Our analysis suggests that country area
212 extent, financial resources, and conservation policy influence GMC, high values of which
213 inconsistently match joint species patterns of climate niche marginality. Populations at niche
214 margins likely hold genetic diversity that is important to adaptation to changing climate, and our
215 results illuminate the need in Europe for expanded genetic monitoring across the climate
216 gradients occupied by species, a need arguably greatest in southeastern European countries.
217

218 Key words: climate change, Convention on Biological Diversity, COST, Europe, genetic
219 monitoring, Kunming-Montreal, niche marginality, population genetic diversity
220
221

222 Maintenance of wild population genetic diversity is an important component of the Convention
223 on Biodiversity (CBD)¹, but it has received little international attention until recently¹⁻⁴,
224 reducing our ability to monitor and manage wild populations to sustain population genetic
225 diversity⁵. The resulting urgent need for expanded monitoring of population genetic diversity
226 (PGD) motivates development of globally implementable indicators of genetic diversity⁶⁻⁹, some
227 of which are included in the recently-adopted CBD Kunming-Montreal Global Biodiversity
228 Framework^{3,10}. But while ongoing anthropogenic loss of PGD is being documented¹¹⁻¹³, efforts
229 to detect climate change effects on PGD are taxonomically and geographically limited^{14,15}, and
230 absent from international biodiversity agreements. Populations in extreme climatic conditions,
231 such as those near their climatic niche margins, are particularly relevant to species potential for
232 adaptation to changing climate¹⁶. Nonetheless, multi-species patterns of populations near to
233 niche margins, as indicators of adaptive potential and, thus, possible PGD monitoring sites,
234 remain unidentified. This calls for improved accounting of the relationship between species
235 limits along environmental gradients and associated PGD^{17,18}.
236

237 Species populations close to their environmental niche margin may differ genetically from those
238 at the niche center, and influence the course of adaptation to changing environment^{19,20}.
239 Evidence shows that populations at niche margins toward stressful environmental extremes are
240 locally adapted²¹, having distinguishable genetic architecture independent of their geographic
241 position within the species range²². Populations near warm/dry niche limits likely hold important
242 adaptive genetic diversity²²⁻²⁴ that can reduce predicted range loss^{18,25}, and contribute to
243 adaptation in environmentally central populations²⁶ to warming, drying climate, despite greater
244 gene flow from niche center to these marginal populations²⁷. Nonetheless, genetic diversity held
245 in marginal populations may be endangered when gene flow to environmentally central areas is
246 impeded²⁸. These results suggest that global genetic monitoring frameworks¹⁰ need to anticipate

247 climate impacts, collect samples across entire climate gradients, and evaluate the contributions of
248 marginal populations to genetic diversity and adaptive potential²⁹. However, no accounting of
249 recent and historical PGD monitoring exists, leaving us ignorant of taxonomic, national, and
250 geographic trends in monitoring effort, thus hampering our capacity to detect PGD and adaptive
251 potential under climate change threat. Yet, even without such accounting, known PDG
252 monitoring efforts suggest notable resources, infrastructure, and political support and can serve
253 as an index of current and potential future ‘genetic monitoring capacity’ (GMC).
254

255 Here, we aim to fill this gap by asking: (1) How is GMC distributed across Europe and on which
256 taxa has PGD monitoring focused? (2) Which factors explain among-country variation in GMC?
257 (3) How will countries differ in climate change exposure of threatened species? Finally, (4) How
258 does GMC coincide with anticipated impacts of climate change on habitat suitability for
259 populations? Using evidence of monitoring from the peer reviewed and technical literature, we
260 examine how countries in the European Commission’s Cooperation in Science and Technology
261 (COST) program³⁰ demonstrate GMC for purposes of biodiversity conservation and
262 management. We explain variation in GMC in relation to two fundamental characteristics of
263 countries, per capita Gross Domestic Product (GDP) and area extent. We then compare GMC to
264 multi-species indicators of niche marginality and declining environmental conditions due to
265 climate change. We use climate and biological data to stratify species ranges into climatic niche
266 centrality and marginality areas. We then estimate impacts of climate change on the future
267 geographic distribution of conditions near climatic niche margins³¹, range-wide and for four
268 groups of species selected for recognized and potential conservation and management interest
269 (amphibians, large birds, carnivorans, and forest trees). We estimate how climate change impacts
270 on these species distribute among European countries, as indicated by present and future patterns
271 of climate niche marginality, and compare it to the distribution of GMC among countries.
272

273 **Results**

274 Between 22.11.2019 and 31.12.2021, we received 480 submissions of candidate monitoring
275 projects from conservation geneticists, practitioners and stakeholders. We evaluated these for
276 validity as Category II genetic monitoring³², which report temporally separate assessments of
277 genetic diversity metrics of one or more populations of a species. We focus here exclusively on
278 this type of genetic monitoring because it directly tracks PGD over time, while we also recognize
279 that other genetic monitoring, including genetic assessments and sample identification programs,
280 are also highly relevant to conservation, but address other questions. We found 38 additional
281 candidate Category II monitoring projects through a structured search of the Web of Science. Of
282 the total 518 candidates, we identify 103 as valid Category II monitoring projects, the vast
283 majority of which report sampled populations from one (84) or two (14) countries. We tally
284 international and transboundary projects separately by country, and we document a total of 151
285 national-level projects of Category II genetic monitoring. We find Category II monitoring in 31
286 of 38 COST countries that were full members at the beginning of data solicitation (Fig 1a, b).
287

288 *Genetic monitoring capacity--GMC*

289 To understand the patterns of GMC among countries, we examine the variation in the tally of
290 Category II PGD monitoring projects among COST countries, and partition this indicator of
291 GMC to taxonomic and functional groups. We find that GMC is not uniquely attributable to the
292 geographic location of countries, although we generally find few PGD monitoring projects in

293 southeastern Europe. European countries with few PGD monitoring projects (three or fewer)
294 occur across a range of latitudes and present no striking north-south pattern (Fig. 1a, b).
295 Countries with high GMC appear in both northern and southern Europe (Fig. 1a). We document
296 a maximum of 12 projects for Belgium and Sweden, and 11 projects for Spain and France (Fig.
297 1a). We find no GMC in eight countries (Fig. 1b), including ones as geographically and
298 economically disparate as Turkey and Luxemburg. Nonetheless, a majority of countries (31 of
299 38) demonstrated some GMC. This pattern is robust to the exclusive consideration of terrestrial
300 wild species (i.e. exclusion of programs monitoring fish, marine species, and
301 domesticated/captive populations; Extended Data Fig. 1, Appendix S1, Supplementary
302 Materials).

303
304 The GMC of COST countries varies greatly by taxonomic and functional groups. For example,
305 while many amphibians are of recognized conservation concern, only two European countries
306 demonstrate GMC for amphibians (Belgium and Spain, Fig. 2a). Many more countries (9) have
307 monitored PGD in at least one bird species (Fig. 2b, Extended Data Fig. 2b). Approximately half
308 of COST countries (17) have monitored PGD in one or more large carnivorans (Fig. 2c,
309 Extended Data Fig. 2c), although certain carnivorans are absent from some COST countries
310 (Extended Data Fig. 3a-c). In contrast, while all COST countries have tree species, less than one
311 quarter of COST countries (7) have monitored PGD in at least one of these species (Fig. 2d,
312 Extended Data Fig. 2d).

313
314 Inspection of the data on PGD monitoring programs for COST countries, especially the lower
315 number of projects documented from countries in southeastern Europe, led us to ask whether
316 fundamental geographical and economic data are consistent with this variation. We examine the
317 relationship between GMC and both land area and recent GDP, and we present generalized linear
318 models to test the form and significance of the relationships. Turkey is by far the largest COST
319 country by area, and with almost 784,600 km², it is 42% larger than the next largest country,
320 France (excluding its overseas territories). With no documented PGD monitoring, Turkey is an
321 outlier for its size and absence of GMC, and is an influential observation in statistical analysis.
322 Omitting Turkey, other COST countries demonstrate that larger countries tend to have higher
323 GMC (Fig. 3a, neg. binomial regression, P=0.02). In contrast, intermediate GDP is associated
324 with greater GMC (Fig. 3b, binomial regression, GDP quadratic term P=0.003; model pseudo-R²
325 = 0.47; Appendix S2, Supplemental Materials). Substantial residual variation remains, with
326 Finland, the United Kingdom, and Norway having fewer projects than expected, and Belgium
327 and Sweden more projects, in relation to both size and GDP (Fig 3b). The negative quadratic
328 relationship of GMC with GDP remains statistically significant despite the potential omission of
329 data from any single potential outlier or extreme value.

330
331 *Joint environmental niche marginality framework*
332 To integrate PGD monitoring into a framework for addressing climate change impacts, we
333 evaluate the relationship between GMC and expected climate change effects on species climatic
334 niche marginality at the national level. Countries with a relatively large GMC should be well
335 prepared to evaluate climate impacts on genetic diversity. These countries have much relevant
336 infrastructure (i.e., genetic laboratories) and some aspects of adapting monitoring programs to
337 detect effects of climate change are technically simple, such as expanding sampling to cover
338 climate gradients. In contrast, countries with relatively little GMC and substantial predicted,

339 climate-driven decline in habitat suitability likely present opportunities for focused development
340 of PGD monitoring capacity, to help predict, evaluate and manage climate impacts on important
341 populations. We calculated for each species separately an index of climate niche marginality³¹,
342 based on variation in climate across the entire species range, as an indicator of marginally
343 suitable habitat for the species (but not necessarily for other species). Areas at niche margins
344 within species ranges are those areas that coincide with the most marginal 25% of climatic
345 conditions within the species global range, while areas in the rest of the species range experience
346 core climatic conditions. We present the joint geographic distribution of niche marginality across
347 a total of 185 species, spread across amphibians (44 Anura, 26 Caudata), large birds (16 species
348 in the Accipitridae, Anatidae, Gallidae and Otididae), carnivorans (eight species), and forest trees
349 (91 species), which are of current or potential future conservation or management interest
350 (Extended Data Table 1).

351
352 Species vary in range size and geographic location, with the result that current and future
353 distributions of niche marginality conditions for groups of species are diverse and complex
354 (Appendices S3- S6, Supplementary Materials). Patterns of current joint niche marginality vary
355 greatly among the four study groups, with foci of joint niche marginality in the Iberian Peninsula
356 (amphibians, large birds and forest trees), central Turkey (large birds), coastal areas in
357 southeastern Europe (forest trees), and the Carpathian Mountains (amphibians, forest trees; Fig.
358 4). Increases and decreases in the total number of study species with populations at niche
359 margins vary broadly across COST countries (compare Figs. 5a, b). Assuming that species
360 climatic niches remain stable in time, we predict decreases in the number of species with
361 marginal habitat in France, Italy, and Turkey, but increases in Bulgaria, Hungary, and Poland.
362 Spatiotemporal trends in niche marginality in the four groups of species also differ substantially
363 among COST countries (Extended data Fig. 4, Appendices S3-S6, Supplementary Materials).
364 For example, many amphibian species are endemic to Europe or nearly so (Appendix S3,
365 Supplementary Materials). European endemic amphibian species inhabit areas at niche margins
366 in both the northern, higher (cool) and southern, lower (warm) portions of their ranges
367 (Appendix S3, Supplementary Materials). This is also true for a group of large European birds
368 (Appendix S4, Supplementary Materials).
369

370 Comparison of current and future distributions of niche marginality in individual species often
371 indicates increasing area of environmental marginality, but not always in the southern portion of
372 species ranges (Appendices S3, S4, and S6, Supplementary Materials). In contrast, species with
373 only a small portion of their range in COST countries, such as wolverine (*Gulo gulo*) and brown
374 bear (*Ursus arctos*), show little change in distribution of habitat at climatic niche margins in
375 COST countries (Appendix S5, Supplementary Materials). Across the four groups, the number of
376 species with habitat at niche margins in each country is similar between current and future time
377 periods (Fig. 5a, b). Nonetheless, we predict that future numbers of species with habitat at
378 climatic niche margins will decline in some countries, while increasing in others. For example,
379 the number of species of amphibians with climate conditions at niche margins increases in
380 central Europe (Extended Data Fig. 4a, b) but the number of large bird species with niche margin
381 conditions decreases in this region, as well as in France and Italy (Extended Data Fig. 4c, d). We
382 predict that the number of carnivorans that experience climates at niche margins decreases in
383 some Nordic countries and in Spain (Extended Data Fig. 4e, f), providing no evidence of a north-
384 south trend in changing niche marginality in Europe for this taxon. The data suggest that the

385 number of tree species experiencing niche margin conditions will increase in some countries in
386 southeastern Europe, decrease in others, and decrease in both Spain and Italy (Extended Data
387 Fig. 4g, h). Regional trends in niche marginality are also visible at the pixel level, at which
388 national trends are more difficult to visualize (Extended Data Figure 5).

389
390 Future numbers of species with habitats at niche margins and GMC vary greatly among
391 countries, but show no linear relationship (Fig. 6). Generally, we predict countries with larger
392 geographical extent have more species with niche margin habitat, and have greater GMC, with
393 the exception of Turkey. This country rivals Spain in likely having many species with niche
394 margin habitat in the future, but lacks documented GMC (Fig. 6).

395

396 Discussion

397 Contrary to our expectations, areal extent of countries does not generally account for variation in
398 GMC. Only by excluding Turkey as an outlier do we observe a positive relationship between
399 country area and GMC. Turkey produces population genetic research but is not a member of the
400 EU. The reporting requirements of the EU Habitat and Birds Directives may successfully
401 promote the use of Category II genetic monitoring. In contrast, and in line with our expectations,
402 countries with relatively low per capita GDP generally had lower GMC. However, it appears that
403 countries with intermediate GDP have on average the highest GMC. Countries with high GDP
404 are in many cases relatively small (Fig. 3), and many factors conceivably influence the
405 establishment of monitoring programs, regardless of country size or per capita GDP. Extensive
406 exploration of country characteristics that influence the establishment of PGD and other
407 monitoring programs is beyond the scope of this paper, but could be explored in future research.

408

409 Our data collection on genetic monitoring projects was designed to capture reports in the
410 scientific literature as well as unpublished and unreleased technical documents. Our results likely
411 represent the distribution of such monitoring programs and GMC in Europe, up until the end of
412 2021. Still, a small number of projects may have been missed, as when the criteria for Category
413 II monitoring were met by December 2021, but reports or papers were not emitted until late in
414 2022. Our estimate of GMC is also lower than it would have been had we not held rigorously to
415 the requirements for Category II monitoring. For example, we do not include or analyze
416 Category I monitoring projects, which address the detection or identification of individuals,
417 populations and species, and do not monitor PGD³². Further, our standards of documentation,
418 such as not including studies based only on personal communications, likely excludes a few
419 monitoring efforts. The absence of publicly available documentation with sufficient project
420 description would essentially mean that programs are unannounced, or confidential, and not
421 evaluable by third parties. For example, we exclude some unpublished efforts to develop and test
422 genomic markers prior to the establishment of actual monitoring of populations. Finally, some
423 published genetic assessments present sufficient data to serve as genetic baselines (see³³), but
424 without a clear declaration of the establishment of a monitoring program, would not be included
425 in our tally.

426

427 The monitoring programs we report here generally focus on detecting changes in population
428 diversity of neutral nuclear marker loci and of mitochondrial DNA (haplotypes). These loci are
429 not likely directly involved with adaptation to climate. The studies minimally report allelic or
430 haplotype diversity and none are specifically designed to detect genetic response to climate

431 change or deteriorating environment per se. Nonetheless, climate change can affect both species
432 distributions and PGD^{34,35} and, thus, needs to be accounted for in the design of monitoring
433 projects. Genetic characteristics of populations at environmental niche margins could make them
434 critical resources for managing the impacts of climate change, such as through translocation
435 programs^{36,37}(but see³⁸). However, monitoring neutral genetic markers and indicators of effective
436 population size alone is unlikely to provide representative data on the ability of populations to
437 adapt to changing environments, such as caused by ongoing climate change, because of weak
438 correlation between population genetic marker loci and specific genetic variants affecting
439 functional traits that confer adaptation to environment³⁹⁻⁴¹. Nonetheless, GMC and genetic
440 monitoring using marker loci is suggestive of the future capacity of countries to conduct
441 monitoring of genetic diversity related to predicted or observed climate change response of
442 species. The technological capacity and financial resources relevant to PGD monitoring are
443 likely highly relevant to efforts to monitor populations at functional loci. Diversity at functional
444 loci, combined with neutral loci and demographic information, may provide improved empirical
445 indicators of potential for resilient adaptive responses to changing climate^{39,42,43}. Finally,
446 substantial national activity in additional types of population genetic and evolutionary research
447 may also reflect potential national responses to international initiatives for expanded genetic
448 monitoring¹⁰.
449

450 The geography of monitoring efforts to date does not align well with the distribution of
451 decreasing environmental suitability due to changing climate niche marginality. The geographic
452 distribution of GMC suggests that monitoring capacity is not adequately distributed to detect
453 effects of climate change on genetic diversity, degree of adaptation, or developing vulnerability
454 to climate change effects. In particular, efforts to increase capacity for genetic monitoring could
455 emphasize eastern and southeastern COST countries, where the number of species in areas at
456 their climatic niche margins is relatively high currently and expected to remain so in the future
457 (Fig. 5, Extended Data Fig. 4), and GMC for terrestrial species is sparse (Extended Data Fig. 1).
458 Baseline genetic assessments are needed in geographic areas, such as the Iberian Peninsula for
459 amphibians and southeastern Europe for forest trees (Extended Data Fig. 4, Appendix S3, S6,
460 Supplementary Materials), where multiple species will experience environmental deterioration
461 due to rapidly changing climate. These geographic areas differ substantially depending on the
462 taxonomic group under consideration (Fig. 5). Future efforts to monitor genetic diversity of all
463 kinds need greater political and financial support in order to focus on areas where species will
464 increasingly experience niche margin for climate and other environmental conditions, where
465 adaptive genetic variation needs to be maintained, and loss of diversity due to low effective
466 population size needs to be avoided. These efforts will complement approaches that predict
467 climate change effects relative to the distribution of adaptive genetic variation²⁹.
468

469 To address the importance of environmental gradients to the conservation of genetic diversity,
470 we distinguish here between populations that are geographically peripheral with regard to a
471 range centroid and populations that are environmentally marginal, occurring towards the edge of
472 their realized environmental niche. Relative geographic position can present little relationship to
473 variation at functional loci, while relative environmental niche marginality of populations can
474 predict the amount of variation at these loci⁴¹. Establishment, adaptation, and persistence of
475 populations at environmental niche margins may depend on the steepness of environmental
476 gradients, rates of gene flow from non-marginal populations, and stochastic processes^{20,44}.
477 Monitoring studies that employ both neutral and functional loci, and are designed to span

478 environmental gradients to include populations from both core and marginal niche situations,
479 will help elucidate generalities in how genetic diversity and adaptive potential vary across
480 species ranges. Our results here based on a joint niche marginality approach indicate that for
481 various groups of species, the Iberian Peninsula, the eastern Adriatic coast, central Turkey, and
482 the Carpathian Mountains can serve as foci for international, cooperative monitoring programs
483 that anticipate the effects of climate change by establishing genetic baselines that include
484 populations in these areas. Monitoring multiple species with populations in areas of high joint
485 niche marginality may help to identify similar genetic responses to environmental decline among
486 species, much as exists for life history traits⁴⁵, with the potential to develop genetic indicator
487 species.

488
489 Our results indicate that the number of species with climatic conditions at niche margins will
490 likely decrease in some southern European countries, for example trees in Italy and France (Fig.
491 5). This counter-intuitive pattern is the result of both methodological and biological factors.
492 First, we account for all types of climatic niche marginality, not just for warm edge marginality.
493 Countries in southern Europe have species with cold marginal conditions at upper elevation
494 limits, and these areas face rapid warming, loss of cold marginal conditions, and substantial
495 predicted changes in species distributions⁴⁶. Tallies of marginal populations may decrease when
496 climate change causes leading edge populations to newly experience core climatic conditions, or
497 causes trailing edge populations to experience conditions outside of the species niche. Second,
498 our approach also only reports changes in niche marginality within current species ranges in
499 Europe. Species for which the distribution of populations at climatic niche margins in Europe
500 changes little may experience substantial changes elsewhere. We leave examination of these
501 patterns for future studies that take focal-species approaches. Further, range expansion with
502 climate change will result in the influx of species into areas with newly suitable climate on
503 leading range edges¹⁶. Future studies can refine predictions for climatic conditions and niche
504 marginality in the context of specific goals for genetic monitoring and population management.
505

506 Populations at environmental niche margins, although often substantially locally adapted, have
507 been found repeatedly less fully locally adapted than those in more central situations within the
508 niche^{21,41}. Additionally, populations towards species warm niche margins (i.e., trailing edges)
509 may be relatively isolated from one another¹⁶. For these reasons, populations at niche margins
510 can together present valuable genetic diversity at loci associated with local adaptation to climate
511 that is not present or rare in populations more centrally located within the niche⁴¹. The
512 relationship of this variability to the efficacy of adaptation to changing climate is complex (see
513 Appendix 7 Extended Discussion, Supplementary Materials). Nonetheless, detecting any loss of
514 genetic diversity in niche margin populations should be a priority, and if detected should likely
515 trigger management response. To inform management in this way, monitoring projects need to
516 span entire environmental gradients as occupied by species, in order to sample relevant genetic
517 variation in niche marginal populations. Genetic samples from such prospective monitoring
518 designs will be well suited for evaluating PGD and adaptive capacity of populations, and
519 designing appropriate management strategies⁴⁷. The present study suggests that populations
520 towards the warm/dry, retreating niche margins are geographically clustered in Europe, which
521 indicates the need to promote and develop monitoring capacity in countries with low GMC and
522 high joint niche marginality (Figs. 4-6; Extended Data Fig. 5).

523 **Online Methods**

524 We compare data on genetic monitoring capacity (GMC) and climatic niche marginality to
525 address whether historical effort and experience in PGD monitoring at a national scale
526 correspond to the anticipated impacts of climate change on environmental suitability for
527 ensembles of wild species. We call this approach a ‘joint species niche marginality framework’,
528 to express how areas of marginal conditions within the niches of multiple species coincide
529 geographically, and we use it to propose taxonomic and geographic foci for future programs of
530 genetic monitoring. Generally, we anticipate that larger, high-GDP countries will have conducted
531 a greater number of monitoring programs than smaller and less wealthy ones. To address our
532 four guiding questions, we report results from a comprehensive survey of the scientific literature,
533 as represented in the Web of Science Core Collection of journals, with use of a simple, inclusive
534 search string of relevant terms. We also collect references and documentation of unpublished
535 monitoring programs by using professional networks to comprehensively access the gray
536 literature, including governmental and non-governmental reports and web pages in national
537 languages. We focus our analysis exclusively on monitoring programs that report repeated
538 measures of PGD indicators (Category II programs³²), and we exclude genetic assessments,
539 which lack temporal replication, from consideration. We compile and summarize these data by
540 country to address the geographic and taxonomic distribution of monitoring projects as an
541 indicator of GMC. We then assemble groups of species of current or potential conservation
542 interest based on taxonomic and functional characteristics and predict changes in their
543 environmental niche marginality within their current range by using the range-wide occurrence
544 of species, range polygons, and digital layers that express current climate and projected
545 changes³¹.

546
547 *Distribution of genetic monitoring capacity in Europe*
548 The gray literature: Beginning in October 2019 we began to solicit submission of published and
549 unpublished (grey literature) materials documenting genetic monitoring programs, projects, and
550 activities (forward, ‘projects’). We used social media and e-mail to contact the extended network
551 of relationships centered on participants in the COST Action ‘Genomic Biodiversity Knowledge
552 for Resilient Ecosystems (G-BiKE, <https://www.cost.eu/actions/CA18134/>), a Europe-wide
553 effort to improve and promote the use of genetic and genomic methods for supporting delivery of
554 ecosystem services. We directly contacted colleagues, government officials and non-
555 governmental agency (NGO) representatives in their home countries to identify and solicit
556 information on past and on-going projects. Submission of information was open to this broad
557 community of scientists, policy makers and stakeholders, and was structured by variables
558 describing each project, organized in an on-line spreadsheet (Appendix S8, Supplementary
559 Materials). We labored to follow leads and make direct contacts in order to obtain internal
560 documents and unreleased private reports. We collected all available documentation in the form
561 of web documents and their URLs, white papers, internal and released reports, and published
562 papers that were associated with, and substantiated, each submitted project. Solicitation and
563 submission of information continued until 31 December 2021. We focused our data collection
564 efforts exclusively on COST Full Member countries (here forward, COST countries) except for
565 Ukraine, due to its inclusion in the COST program after the start of data collection. Submitted
566 projects that did not sample populations in at least one COST country were excluded from
567 subsequent data aggregation and analyses.

568

569 Project submissions required independent evaluation because no consistently applied definition
570 of ‘genetic monitoring’ was evident upon inspection of the submissions. We developed
571 standardized criteria for judging the validity of projects to monitor population genetic diversity
572 by following a published definition of genetic monitoring³² and by defining a decision tree
573 (Online Methods Fig. 1). Each submitted project was assigned using computer-generated
574 pseudo-random numbers to two of 14 evaluators, who sought additional information in national
575 languages as needed through web search and personal inquiries. Pairs of evaluators examined
576 projects independently from one another. When the evaluators disagreed on project validity, the
577 evaluators attempted to reach consensus. Persistent disagreements were mediated by two co-
578 authors (PBP and MB). Written documentation, broadly defined, was required for positive
579 decision on project validity, thereby excluding projects only reported by personal
580 communication, e-mail, or lacking documentation (Online Methods Fig. 1). Valid monitoring
581 projects included those that acquired and analyzed genotype data from the same populations or
582 identical locations, at two or more time points at least one year or one generation apart,
583 whichever was longer. Additionally, candidate projects needed to explicitly declare the goal of
584 informing management and/or conservation policy and activities (Online Methods Fig. 1).
585 Genetic assessments, i.e., projects lacking temporal replication, also known as ‘snapshot’
586 studies³², were excluded, as were projects with no clearly stated motivation to inform
587 management, conservation policy or activity. This excluded studies on pathogens and disease
588 vectors, as well as studies focused on questions clearly restricted to the field of population
589 biology and without explicit conservation motivation. Several criteria permitted inclusion of
590 monitoring projects that had not yet collected initial data (Online Methods Fig. 1).
591

592 A second round of evaluation classified valid monitoring projects into two groups. We
593 distinguished between Category I projects that collected genotype or haplotype data for species
594 and individual identification, and Category II projects that reported at least one index of
595 population genetic diversity, such as number of alleles, observed or expected heterozygosity, etc.
596³². The use of genetic data from archived samples or collections to establish an initial temporal
597 reference for focal populations was acceptable, as long as the populations were strictly identical.
598 Certain problems were presented by projects that evaluated changes in genetic diversity in re-
599 introduced populations and those receiving introduced individuals to support levels of population
600 genetic diversity (i.e., genetic support or assisted gene flow)³⁶. For validity of these studies as
601 Category II monitoring, a baseline sample was needed from the population of individuals
602 initially chosen for re-introduction, or repeat temporal samples from the focal, reintroduced or
603 supported population itself. We excluded projects comparing genetic diversity in contemporary
604 samples to that from the original or putative source populations when these were only sampled
605 after (re-) introductions, due to the potential for sampling bias. As in the initial evaluation of
606 validity, both evaluators needed to express a consensus concerning the type of monitoring
607 (Category I or II) that was conducted.
608

609 The scientific literature: We also conducted a separate survey of the peer-reviewed scientific
610 literature to identify projects monitoring genetic diversity. On 1 December 2021, one co-author
611 (PBP) conducted a search of all Web of Science (WoS) collections with the search string “Topic:
612 ‘genetic population diversity monitoring’ NOT ‘cell’ NOT ‘virus’ NOT ‘medical’”. Citations
613 were then filtered to come only from the following journal categories: Agriculture, Agronomy,
614 Dairy Animal Science, Biodiversity Conservation, Marine Freshwater Biology, Ecology,
615 Entomology, Environmental Sciences, Evolutionary Biology, Fisheries, Forestry, Genetics and

616 Heredity, Horticulture, Multidisciplinary, Multidisciplinary Sciences, Ornithology, Plant
617 Sciences, and Zoology. Other strategies, such as additionally restricting the search to COST
618 countries, resulted in the omission of studies that qualified as Category II monitoring in Europe.
619 One co-author (PBP) scored all collected citations for being conducted in COST countries and
620 either Category I or II monitoring. Each of these candidate studies was re-examined
621 independently by one of four additional co-authors (DR, EB, AK, FEZ), to both evaluate the
622 initial assessment and to identify redundancy within the original list of validated projects.
623 Confirmed, non-redundant cases were then added to the list of monitoring projects. Ad hoc
624 repetition of the WoS search to identify additional studies published in late 2021 and efforts to
625 obtain documentation of specific unpublished projects, produced before the end of 2021,
626 continued during the first four months of 2022.
627

628 We focused on Category II monitoring studies because of their relevance to mandates to
629 conserve genetic diversity, and we carefully tallied these studies by country, and by taxonomic
630 and additional groupings (Appendix 8, Supplementary Materials). We considered submitted
631 projects that monitored particular single species in a country as distinct projects when different
632 populations were studied by different research groups, institutes, or organizations. We also
633 considered projects conducted by a single research group but having more than one focal species
634 as distinct. Projects addressing different focal populations of a single species, analyzed as
635 exclusive, distinct sets of populations by a single research group, were also counted as distinct
636 projects. Nonetheless, publications that presented analyses of repeated samples from a single set
637 of populations, and were extensions of original studies, and used the original published data in
638 establishing temporal trajectories of genetic diversity, were not counted as separate projects
639 regardless of author identity. Analyses of samples by contract laboratories, in a separate country
640 from that of the study population(s), research group or monitoring organization, did not qualify
641 the project to count toward the tally of projects for that separate country, unless of course at least
642 one sampled population came from that country. In multi-country projects generally, samples for
643 genetic analysis needed to be physically collected within a country for a project to count towards
644 the tally of projects in that country. This meant that potentially a project was assigned (tallied)
645 only to a subset of participating countries that were the sources of genetic samples. Projects
646 reporting a temporal trajectory of genetic diversity in captive or domestic populations needed to
647 employ genetic analysis of repeated samples and not rely exclusively on estimates of genetic
648 diversity or change thereof that were obtained from pedigree analysis of breeding records.
649 Because some projects sampled populations in more than one country, we defined the ‘genetic
650 monitoring capacity’ of a country, GMC, as the tally of Category II monitoring projects
651 obtaining genetic data from within the country. We determined the geographic distribution of
652 GMC for focal taxonomic and functional species groups by mapping GMC for each group in
653 each COST country and examining the frequency distribution of GMC among countries. We
654 focus our analyses exclusively on Category II monitoring studies and will address Category I
655 studies in a future publication.
656

657 *Climate niche marginality in Europe*

658 Focal species-- We defined four divergent groups of species for examination of current and
659 future geographical patterns of climatic conditions. Our objective was to construct groups with
660 membership that exceeded the scope of current genetic monitoring efforts and which, because of
661 taxon identity or life history traits, are either currently of conservation interest or could
662 conceivably become of interest as climate change proceeds. Thus, while many of the species may

663 be on national Red Lists in European countries, this was not a requirement for inclusion. We also
664 did not attempt to comprehensively include species of conservation interest. We explicitly
665 disregarded membership on Red Lists and European Union (EU) Directives as criteria because of
666 the varying completeness, taxonomic resolution, and criteria for species inclusion of national
667 Red Lists across Europe made it impossible to implement a single standard. Additionally, COST
668 countries could not be assumed to place uniform emphasis on Red Lists as a foundation for
669 conservation, management, or future development of monitoring programs. Further, not all
670 COST countries are members of the EU and subject to the Directives. We developed lists of
671 focal taxa to include: (1) most native European Amphibia (44 Anura, 26 Caudata), because of
672 their recognized sensitivity to climate change. We excluded cave dwelling amphibians because
673 of their limited exposure to terrestrial climate; (2) sixteen species of large birds, representing the
674 Accipitridae, Anatidae, Gallidae, and Otididae, because size is related to extinction probability in
675 birds globally⁴⁸; (3) a set of eight relatively large carnivores because of their general economic,
676 ecological and cultural importance, and (4) a set of 91 species of forest trees (64 Magnoliopsida,
677 27 Pinopsida), because of the general economic and cultural importance of trees (Extended Data
678 Table 1). Global range maps for each focal species were retrieved as polygons from the data
679 portal of the International Union for the Conservation of Nature (IUCN)⁴⁹, and species
680 occurrence data from the Global Biodiversity Information Facility⁵⁰⁻⁵³. We then defined species
681 distributions as the pixels occupied by the species according to the IUCN range maps. We further
682 refined species distributions within range polygons by filtering out pixels that corresponded to
683 the CORINE Land Cover 2018 habitats classes⁵⁴ that were not intersected at least once by
684 occurrences of the corresponding species in question. This removed urban areas and other
685 habitat/land cover types for which we found no evidence of occupation by species in the
686 occurrence data.

687
688 Marginality calculations-- We used the worldwide 19 bioclimatic variables from the Chelsa
689 database of global climate values at 30 arcsec resolution (<http://chelsa-climate.org>⁵⁵) to calibrate
690 principal component scores (PCA). We defined a working environmental space consisting of the
691 first two PCA axes. This space summarized the main climatic gradients present on Earth (75.7%
692 of variation explained). We rasterized IUCN species range maps at 30 arcsec resolution,
693 extracted bioclimatic values for every occupied pixel (after filtering with CORINE 2018), and
694 projected these values to the global climate space to generate species scores⁵⁶. Using these
695 species scores, we delineated the niche margins of each species by kernel density estimation (i.e.
696 the 0.99 quantile)^{31,56}. These niche margins delineated the boundaries of the climatic conditions
697 currently occupied by the species throughout their global ranges. Finally, we calculated a
698 standardized metric of climate marginality for each pixel of each species distribution, based on
699 the multivariate distance to the niche margins, using the approach of Broennimann et al.³¹. The
700 marginality metric for each species varies from 0 to 1, with values of 0 indicating that the
701 climatic conditions in the pixel are at the center of the niche, and values of 1 indicating that
702 conditions are at the niche margin. In order to provide synthetic niche marginality maps for each
703 species, we considered that pixels with the 25 percent most marginal conditions for a species,
704 determined globally, constituted climatically marginal areas for the species, while the rest of
705 pixels within the species niche constituted the core of the species environmental distribution.
706 Notably, niche marginal situations could occur in geographically central or peripheral areas of
707 the species range.

708

709 To map the future distribution of marginality of the climate niches of species, we updated the
710 climatic values of pixels corresponding to the species distributions in the study area using a
711 Shared Socioeconomic Pathway scenario, SSP5-8.5, for a 30-year future time period, 2041-2070.
712 which we extracted from the Chelsa database Vers. 2.1⁵⁷. We recalculated the marginality metric
713 for each species in each pixel, and produced maps of species future niche marginality. This
714 entails the assumption that the climate niches of species do not change substantially over this
715 time frame (i.e., exhibit niche stability^{58,59}). Multispecies marginality maps were produced for
716 each species group by stacking the species maps and calculating maps of the number of species
717 in marginal conditions of their climate niche for each pixel, at present and in the future. We
718 compared maps of current and future niche marginality to identify pixels in which we estimated
719 populations of species will shift into climatically marginal niche conditions in the future.
720

721 To facilitate comparison of GMC to the predicted effects of climate change on species niche
722 situations at the country level, we converted species maps of niche marginality to country tallies
723 of species with marginal niche conditions and tallied change over time. For each COST country,
724 we obtained a shapefile of country boundaries at 10 m resolution from the Natural Earth website
725 (www.naturalearthdata.com). We excluded overseas territories and regions of European
726 countries, i.e. islands and areas outside of a rectangular bounding box defined by -25° W, 57° W,
727 29.1° N, 73° N. This excluded, for example, the Canary Islands (Spain), Svalbard (Norway), and
728 French Guiana (France). We implemented a threshold for counting a species as having
729 climatically marginal niche conditions in a country by requiring that at least 5% of the number of
730 niche margin pixels in COST countries be within the country. This prevented countries from
731 accruing species at niche margins because of just a few marginal pixels. We used the R package
732 “tmap”⁶⁰ to map the number of PGD monitoring projects in each country, the number of
733 marginal species in each focal taxonomic group currently and in the future, and the predicted
734 number of species that newly experience niche margin conditions within a country as an index of
735 the change in niche marginality. We plotted future joint niche marginality against country tallies
736 of PGD monitoring programs to visualize the relationship between national capacity for PGD
737 monitoring and geographic foci of future climatic niche margin conditions.
738

739 *Statistical analyses*

740 We compared GMC among countries by modeling the number of Category II monitoring
741 projects as a function of two broadly applicable indicators. We used country area as an example
742 indicator of the physical aspects of countries, and we estimated land area of COST countries in
743 continental Europe, the Mediterranean and Baltic islands, and in Asia using the R package ‘sf’⁶¹.
744 While many more physical aspects could be explored, a comprehensive study of physical aspects
745 of COST countries is beyond the scope of the present paper. We also chose per capita Gross
746 Domestic Product (GDP) as an example indicator of economic activity and available resources,
747 one which is available for all COST countries. Data on GDP in 2020 U. S. Dollars were obtained
748 from an authoritative on-line source⁶², the most recent year for which data from all COST
749 countries was available. The relationship of monitoring capacity with many other social and
750 economic indicators could be explored, but we leave this as well for future analyses. Based on
751 inspection of scatter plots, country area entered models as a first order effect while GDP entered
752 as a second order orthogonal polynomial.
753

754 We used a Generalized Linear Model (GLM) framework to analyze country counts of PGD
755 monitoring projects. Models were fit with functions from the R packages ‘stats’, ‘MASS’ and
756 ‘hermite’^{63,64}. Outlier and influential data points were identified with leverage statistics and by
757 inspection. We quantified model explanatory capacity with the Veall-Zimmermann pseudo-R²⁶⁵
758 calculated on deviance residuals, and used model likelihoods and χ^2 statistics to compare models
759 during model development. We modeled the data with Poisson, negative binomial and Hermite
760 regressions and based statistical decisions on negative binomial models because of a significant
761 reduction in over-dispersion of residuals in comparison with the Poisson model, and no
762 additional improvement provided by the Hermite model (Appendix 2, Supplementary Materials).
763 We examined negative-binomial GLM model residuals for small-scale spatial autocorrelation
764 (SAC) using a randomization test of the significance of Moran’s I ($H_0: I=0$), at successive
765 intervals of 300 km between country centroids, using the ‘correlog’ function in the R package
766 ‘ncf’⁶⁶. We did not address large scale spatial structure (>1500 km). Because SAC can bias tests
767 of significance of model effects when analyzing spatial data, we removed SAC from GLM
768 residuals by first constructing spatial eigenvectors (Moran’s Eigenvector Maps) with function
769 ‘mem’ from the R package ‘adespatial’⁶⁷ and a regional distance network among country
770 centroids constructed with functions ‘dnearest’ and ‘nb2listw’ in the R package ‘spdep’⁶⁸
771 (Appendix 2, Supplementary Materials). Eigenvectors with positive eigenvalues were included
772 as additional linear terms (regardless of statistical significance) in GLM models. We added
773 eigenvectors until p-values of the randomization test of Moran’s I, calculated on model residuals
774 at intervals to 1500 km, equaled or exceeded 0.05 after rounding. Although significance levels
775 were reduced by the addition of spatial eigenvectors, decisions concerning statistical significance
776 of model terms were not affected.
777

778 **Acknowledgements**

779 This article/publication is based upon work from COST Action GBiKE, CA 18134, supported by
780 COST (European Cooperation in Science and Technology), www.cost.eu.

781 IP-V is supported by the U.S. Geological Survey Powell Center for Synthesis and Analysis. BR
782 was supported by INTER-EXCELLENCE – INTER-COST (LTC20021). DP and LL were
783 supported by grants to LL from the Swedish Research Council Formas (grant 2020-01290) and
784 the Swedish Research Council (grant 2019-05503).

785 **Conflicting Interests Statement**

786 All authors declare no conflicting interests.
787

788 **Author Contributions:**

789 MB and PBP conceived of the study. PBP conducted a search of published literature, organized
790 and mapped monitoring project data, and conducted the statistical analyses. OB conducted the
791 niche marginality analysis and mapping with support from AG. PBP, PCA, LDB, AB, EB, VCC,
792 JAG, CH, PK, MKK, AK, CN, DP, BR, DR, ST, CV, and MB evaluated submitted monitoring
793 projects. PBP wrote the first draft and all co-authors participated in discussions and contributed
794 to the writing.
795

796 **Data Availability**

797 The raw data on submitted candidate monitoring projects and a variable indicating their validity
798 as Category II monitoring are available for download at this link:
799 raw data withheld pending publication
800

801 **Literature Cited**

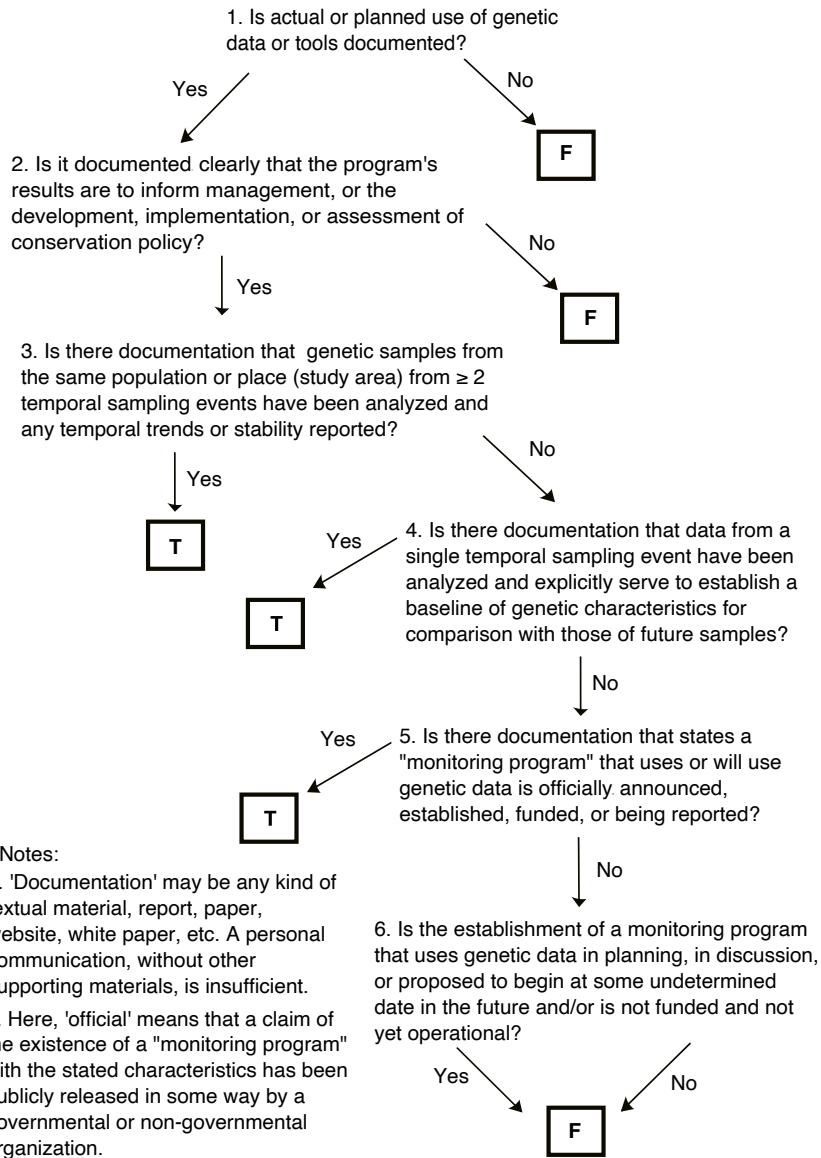
- 802
- 803 1 McOwen, C. J. *et al.* Sufficiency and Suitability of Global Biodiversity Indicators for
804 Monitoring Progress to 2020 Targets. *Conservation Letters* **9**, 489-494 (2016).
805 <https://doi.org/10.1111/conl.12329>
- 806 2 Laikre, L. *et al.* Post-2020 goals overlook genetic diversity. *Science* **367**, 1083 (2020).
807 <https://doi.org/10.1126/science.abb2748>
- 808 3 Hoban, S. *et al.* Genetic diversity goals and targets have improved, but remain
809 insufficient for clear implementation of the post-2020 global biodiversity framework.
810 *Conservation genetics (Print)*, 1-11 (2023). <https://doi.org/10.1007/s10592-022-01492-0>
- 811 4 Convention on Biodiversity. Decision adopted by the Conference of the Parties to the
812 Convention on Biological Diversity. Decision XV/4. Kunming-Montreal Global
813 Biodiversity Framework., (2022).
- 814 5 Ette, J.-S. & Geburek, T. Why European biodiversity reporting is not reliable. *Ambio* **50**,
815 929-941 (2021). <https://doi.org/10.1007/s13280-020-01415-8>
- 816 6 O'Brien, D. *et al.* Bringing together approaches to reporting on within species genetic
817 diversity. *Journal of Applied Ecology* **59**, 2227-2233 (2022).
818 <https://doi.org/10.1111/1365-2664.14225>
- 819 7 Hoban, S. *et al.* Comparative evaluation of potential indicators and temporal sampling
820 protocols for monitoring genetic erosion. *Evolutionary Applications* **7**, 984-998 (2014).
821 <https://doi.org/10.1111/eva.12197>
- 822 8 Hoban, S. *et al.* Genetic diversity targets and indicators in the CBD post-2020 Global
823 Biodiversity Framework must be improved. *Biological Conservation* **248** (2020).
824 <https://doi.org/10.1016/j.biocon.2020.108654>
- 825 9 Pereira, H. M. *et al.* Essential Biodiversity Variables. *Science* **339**, 277-278 (2013).
826 <https://doi.org/10.1126/science.1229931>
- 827 10 Convention on Biodiversity. Monitoring framework for the Kunming-Montreal Global
828 Biodiversity Framework. Decision XV/5. Kunming-Montreal Global Biodiversity
829 Framework. (2022).
- 830 11 Leigh, D. M., Hendry, A. P., Vazquez-Dominguez, E. & Friesen, V. L. Estimated six per
831 cent loss of genetic variation in wild populations since the industrial revolution.
832 *Evolutionary Applications* **12**, 1505-1512 (2019). <https://doi.org/10.1111/eva.12810>
- 833 12 Miraldo, A. *et al.* An Anthropocene map of genetic diversity. *Science* **353**, 1532-1535
834 (2016). <https://doi.org/10.1126/science.aaf4381>
- 835 13 Exposito-Alonso, M. *et al.* Genetic diversity loss in the Anthropocene. *Science* **377**,
836 1431-1435 (2022). <https://doi.org/10.1126/science.abn5642>
- 837 14 Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the
838 problem and the evidence. *Evolutionary Applications* **7**, 1-14 (2014).
839 <https://doi.org/10.1111/eva.12137>
- 840 15 Purvis, A. M., Obura, D.; Ichii, K.; Willis, K.; Chettri, N.; Dulloo, E.; Hendry, A.;
841 Gabrielyan, B.; Gutt, J.; Jacob, U.; Keskin, E.; Niamir, A.; Öztürk, B.; Salimov, R;
842 Jaureguiberry, P. in *Global Assessment Report of the Intergovernmental Science-Policy*
843 *Platform on Biodiversity and Ecosystem Services* (ed E. S.; Settele Brondízio, J.; Díaz,
844 S.; Ngo, H. T.) Ch. Chapter 2.2, (IPBES Secretariat, 2019).
- 845 16 Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: the rear edge
846 matters. *Ecology Letters* **8**, 461-467 (2005). <https://doi.org/10.1111/j.1461-0248.2005.00739.x>

- 848 17 Carvalho, S. B., Torres, J., Tarroso, P. & Velo-Anton, G. Genes on the edge: A
849 framework to detect genetic diversity imperiled by climate change. *Global Change
850 Biology* **25**, 4034-4047 (2019). <https://doi.org/10.1111/gcb.14740>
- 851 18 Razgour, O. *et al.* Considering adaptive genetic variation in climate change vulnerability
852 assessment reduces species range loss projections. *Proceedings of the National Academy
853 of Sciences of the United States of America* **116**, 10418-10423 (2019).
854 <https://doi.org/10.1073/pnas.1820663116>
- 855 19 Bridle, J. R. & Vines, T. H. Limits to evolution at range margins: when and why does
856 adaptation fail? *Trends in Ecology & Evolution* **22**, 140-147 (2007).
857 <https://doi.org/10.1016/j.tree.2006.11.002>
- 858 20 Kawecki, T. J. Adaptation to Marginal Habitats. *Annual Review of Ecology Evolution and
859 Systematics* **39**, 321-342 (2008).
860 <https://doi.org/10.1146/annurev.ecolsys.38.091206.095622>
- 861 21 Rehfeldt, G. E., Ying, C. C., Spittlehouse, D. L. & Hamilton, D. A. Genetic responses to
862 climate in *Pinus contorta*: Niche breadth, climate change, and reforestation. *Ecological
863 Monographs* **69**, 375-407 (1999). [https://doi.org/10.1890/0012-9615\(1999\)069\[0375:grtcip\]2.0.co;2](https://doi.org/10.1890/0012-9615(1999)069[0375:grtcip]2.0.co;2)
- 864 22 Bontrager, M. *et al.* Adaptation across geographic ranges is consistent with strong
865 selection in marginal climates and legacies of range expansion. *Evolution* **75**, 1316-1333
866 (2021). <https://doi.org/10.1111/evo.14231>
- 867 23 Carnaval, A. C., Hickerson, M. J., Haddad, C. F. B., Rodrigues, M. T. & Moritz, C.
868 Stability Predicts Genetic Diversity in the Brazilian Atlantic Forest Hotspot. *Science* **323**,
869 785-789 (2009). <https://doi.org/10.1126/science.1166955>
- 870 24 Hewitt, G. M. Genetic consequences of climatic oscillations in the Quaternary.
871 *Philosophical Transactions of the Royal Society B-Biological Sciences* **359**, 183-195
872 (2004). <https://doi.org/10.1098/rstb.2003.1388>
- 873 25 Nadeau, C. P. & Urban, M. C. Eco-evolution on the edge during climate change.
874 *Ecography* **42**, 1280-1297 (2019). <https://doi.org/10.1111/ecog.04404>
- 875 26 Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T. L. & Curtis-McLane, S. Adaptation,
876 migration or extirpation: climate change outcomes for tree populations. *Evolutionary
877 Applications* **1**, 95-111 (2008). <https://doi.org/10.1111/j.1752-4571.2007.00013.x>
- 878 27 Holliday, J. A., Suren, H. & Aitken, S. N. Divergent selection and heterogeneous
879 migration rates across the range of Sitka spruce (*Picea sitchensis*). *Proceedings of the
880 Royal Society B-Biological Sciences* **279**, 1675-1683 (2012).
881 <https://doi.org/10.1098/rspb.2011.1805>
- 882 28 Wessely, J. *et al.* Climate warming may increase the frequency of cold-adapted
883 haplotypes in alpine plants. *Nature Climate Change* **12**, 77-+ (2022).
884 <https://doi.org/10.1038/s41558-021-01255-8>
- 885 29 Flanagan, S. P., Forester, B. R., Latch, E. K., Aitken, S. N. & Hoban, S. Guidelines for
886 planning genomic assessment and monitoring of locally adaptive variation to inform
887 species conservation. *Evolutionary Applications* **11**, 1035-1052 (2018).
888 <https://doi.org/10.1111/eva.12569>
- 889 30 COST. <<https://www.cost.eu/about/members/>> (2023).
- 890 31 Broennimann, O. *et al.* Distance to native climatic niche margins explains establishment
891 success of alien mammals. *Nature Communications* **12** (2021).
892 <https://doi.org/10.1038/s41467-021-22693-0>
- 893

- 894 32 Schwartz, M. K., Luikart, G. & Waples, R. S. Genetic monitoring as a promising tool for
895 conservation and management. *Trends in Ecology & Evolution* **22**, 25-33 (2007).
896 <https://doi.org/10.1016/j.tree.2006.08.009>
- 897 33 Menguellueoglu, D., Fickel, J., Hofer, H. & Foerster, D. W. Non-invasive faecal
898 sampling reveals spatial organization and improves measures of genetic diversity for the
899 conservation assessment of territorial species: Caucasian lynx as a case species. *Plos One*
900 **14** (2019). <https://doi.org/10.1371/journal.pone.0216549>
- 901 34 Rubidge, E. M. *et al.* Climate-induced range contraction drives genetic erosion in an
902 alpine mammal. *Nature Climate Change* **2**, 285-288 (2012).
903 <https://doi.org/10.1038/nclimate1415>
- 904 35 Yang, D. S., Conroy, C. J. & Moritz, C. Contrasting responses of *Peromyscus* mice of
905 Yosemite National Park to recent climate change. *Global Change Biology* **17**, 2559-2566
906 (2011). <https://doi.org/10.1111/j.1365-2486.2011.02394.x>
- 907 36 Aitken, S. N. & Whitlock, M. C. in *Annual Review of Ecology, Evolution, and
908 Systematics*, Vol 44 Vol. 44 *Annual Review of Ecology Evolution and Systematics* (ed D.
909 J. Futuyma) 367-388 (2013).
- 910 37 Hoegh-Guldberg, O. *et al.* Assisted colonization and rapid climate change. *Science* **321**,
911 345-346 (2008). <https://doi.org/10.1126/science.1157897>
- 912 38 Van Daele, F., Honnay, O. & De Kort, H. Genomic analyses point to a low evolutionary
913 potential of prospective source populations for assisted migration in a forest herb.
914 *Evolutionary Applications* **15**, 1859-1874 (2022). <https://doi.org/10.1111/eva.13485>
- 915 39 Bonin, A., Nicole, F., Pompanon, F., Miaud, C. & Taberlet, P. Population adaptive index:
916 a new method to help measure intraspecific genetic diversity and prioritize populations
917 for conservation. *Conservation Biology* **21**, 697-708 (2007).
918 <https://doi.org/10.1111/j.1523-1739.2007.00685.x>
- 919 40 Willi, Y., Van Buskirk, J. & Hoffmann, A. A. Limits to the adaptive potential of small
920 populations. *Annual Review of Ecology Evolution and Systematics* **37**, 433-458 (2006).
921 <https://doi.org/10.1146/annurev.ecolsys.37.091305.110145>
- 922 41 Dauphin, B. *et al.* Disentangling the effects of geographic peripherality and habitat
923 suitability on neutral and adaptive genetic variation in Swiss stone pine. *Molecular
924 Ecology* **29**, 1972-1989 (2020). <https://doi.org/10.1111/mec.15467>
- 925 42 Hoffmann, A. A. & Sgro, C. M. Climate change and evolutionary adaptation. *Nature* **470**,
926 479-485 (2011). <https://doi.org/10.1038/nature09670>
- 927 43 Hansen, M. M., Olivieri, I., Waller, D. M., Nielsen, E. E. & Ge, M. W. G. Monitoring
928 adaptive genetic responses to environmental change. *Molecular Ecology* **21**, 1311-1329
929 (2012). <https://doi.org/10.1111/j.1365-294X.2011.05463.x>
- 930 44 Bridle, J. R., Polechova, J., Kawata, M. & Butlin, R. K. Why is adaptation prevented at
931 ecological margins? New insights from individual-based simulations. *Ecology Letters* **13**,
932 485-494 (2010). <https://doi.org/10.1111/j.1461-0248.2010.01442.x>
- 933 45 Ellegren, H. & Galtier, N. Determinants of genetic diversity. *Nature Reviews Genetics*
934 **17**, 422-433 (2016). <https://doi.org/10.1038/nrg.2016.58>
- 935 46 Engler, R. *et al.* 21st century climate change threatens mountain flora unequally across
936 Europe. *Global Change Biology* **17**, 2330-2341 (2011). [https://doi.org/10.1111/j.1365-2486.2010.02393.x](https://doi.org/10.1111/j.1365-
937 2486.2010.02393.x)

- 938 47 Thurman, L. L. *et al.* Persist in place or shift in space? Evaluating the adaptive capacity
939 of species to climate change. *Frontiers in Ecology and the Environment* **18**, 520-528
940 (2020). <https://doi.org/10.1002/fee.2253>
- 941 48 Hughes, E. C., Edwards, D. P. & Thomas, G. H. The homogenization of avian
942 morphological and phylogenetic diversity under the global extinction crisis. *Current
943 Biology* **32**, 3830-3837 (2022). <https://doi.org/10.1016/j.cub.2022.06.018>
944 49 IUCN. (2022).
- 945 50 GBIF.org. *GBIF Occurrence Download* <https://doi.org/10.15468/dl.8skxjd>, 2021).
- 946 51 GBIF.org. *GBIF Occurrence Download* <https://doi.org/10.15468/dl.guf53c>, 2021).
- 947 52 GBIF.org. *GBIF Occurrence Download* <https://doi.org/10.15468/dl.z88kj8>, 2021).
- 948 53 GBIF.org. *GBIF Occurrence Download* <https://doi.org/10.15468/dl.zyhtqq>, 2021).
- 949 54 Copernicus Land Monitoring Service. (European Environment Agency, 2018).
- 950 55 Karger, D. N. *et al.* Climatologies at high resolution for the Earth land surface areas.
951 *Scientific Data* **4**, 170122 (2017).
- 952 56 Broennimann, O. *et al.* Measuring ecological niche overlap from occurrence and spatial
953 environmental data. *Global Ecology and Biogeography* **21**, 481-497 (2012).
954 <https://doi.org/10.1111/j.1466-8238.2011.00698.x>
- 955 57 Karger, D. N. *et al.* Data Descriptor: Climatologies at high resolution for the earth's land
956 surface areas. *Scientific Data* **4** (2017). <https://doi.org/10.1038/sdata.2017.122>
- 957 58 Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. Unifying niche
958 shift studies: insights from biological invasions. *Trends in Ecology & Evolution* **29**, 260-
959 269 (2014). <https://doi.org/10.1016/j.tree.2014.02.009>
- 960 59 Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space
961 and time. *Trends in Ecology & Evolution* **23**, 149-158 (2008).
962 <https://doi.org/10.1016/j.tree.2007.11.005>
- 963 60 Tennekes, M. tmap: Thematic Maps in R. *Journal of Statistical Software* **84**, 1-39 (2018).
964 <https://doi.org/10.18637/jss.v084.i06>
- 965 61 Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. *The R
966 Journal* **10**, 439-446 (2018).
- 967 62 The World Bank. *DataBank. World Development Indicators*,
968 <<https://data.worldbank.org/indicator/NY.GDP.PCAP.CD>> (2022).
- 969 63 Morriña, D., Higueras, M., Puig, P. & Oliveira, M. hermite: Generalized Hermite
970 Distribution. R package version 1.1.2. *R Journal* **7**, 263-274 (2018).
- 971 64 Venables, W. N. & Ripley, B. D. *Modern Applied Statistics with S. Fourth Edition*.
972 (Springer, 2002).
- 973 65 Veall, M. R. & Zimmermann, K. F. Evaluating pseudo-R²s for binary probit models. .
974 *Quality & Quantity* **28**, 151-164 (1994). <https://doi.org/10.1007/bf01102759>
- 975 66 Bjornstad, O. N. ncf: Spatial Covariance Functions. v. 1.3-2. (2022).
- 976 67 Dray, S. *et al.* adespatial: Multivariate Multiscale Spatial Analysis. v. 0.3-16. (2022).
- 977 68 Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. *Applied spatial data analysis with R,
978 Second edition*. (Springer, 2013).
979

980 **Tables**

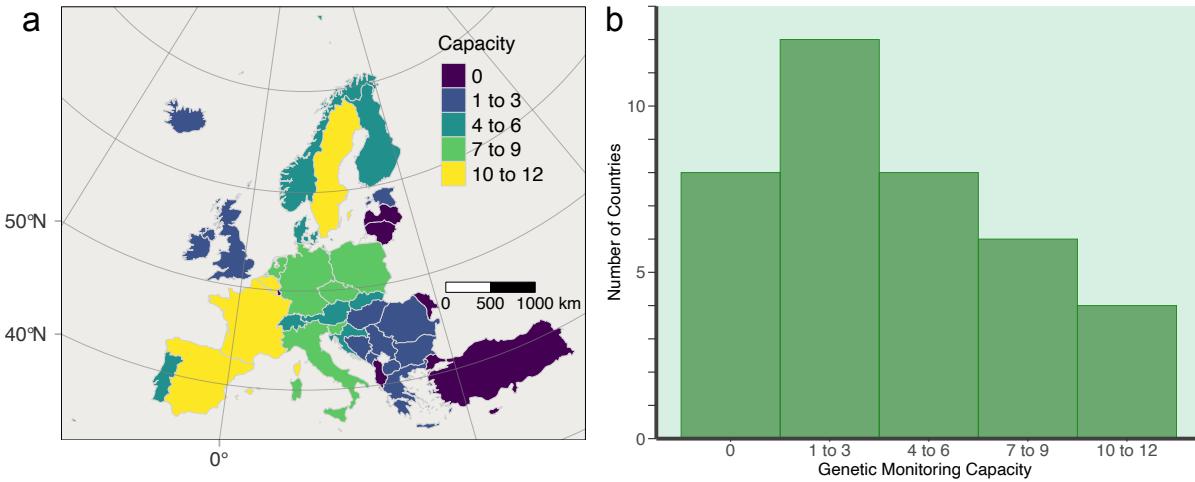

981 Table 1. Requested information to characterize submitted monitoring projects/programs.

982 <u>Variable</u>	982 <u>Values</u>
983 Contributor	First and last name(s)
984	
985 Description of project	Text description provided by contributor
986	
987 Program/project name	Text name, not available
988	
989 Barcoding study	True/False
990	
991 Within-species diversity	True/False
992	
993 Temporal category	‘Snapshot’, ‘Horizontal’
994	
995 Frequency (annual?)	True/False
996	
997 Country	One or more countries
998	
999 Political extent	Regional, National, Multi-national
1000	
1001 Marker type	Organelle sequence, other autosomal, SNP, microsatellite, sex chromosome, multi-marker
1002	
1003	
1004 Strict/relaxed	‘Strict’ indicates study was a priori designed as a monitoring study; ‘relaxed’ if data used post-hoc for monitoring
1005	
1006	
1007	
1008 Focal groups (True/False)	Carnivora, Bear, Wolf, Lynx, Other mammal, Aves, Insecta, Fish, Marine, Plant, Forest trees, Amphibians, Other, Domesticated/captive.
1009	
1010	
1011	
1012 Name(s) of focal taxon/taxa	Common names (English), scientific names
1013	
1014 European Union Directive and Annex	Values
1015	
1016 Documentation/Document type	Project report in national language, project report in English, Government report in national language, other report in national language, scientific publication, not available
1017	
1018	
1019	
1020	
1021 Document format	pdf, link, paper copy, not available
1022	
1023 Document locator	DOI if available
1024	
1025 Document title or reference	Complete citation when available
1026	

1027	Project or report webpage	URL listed when available
1028		
1029	Notes	Unrestricted text
1030		
1031		
1032		
1033		
1034		

1035
1036 Online Methods Figures.
1037
1038 Figure 1.
1039
1040

Genetic Monitoring Validity


1078 Online Methods Figure 1. A flow chart for guiding decisions on the validity of projects as constituting genetic
1079 monitoring, given a wide range of potential documentation, originating in government reports, web documents,
1080 and the peer-reviewed literature.
1081

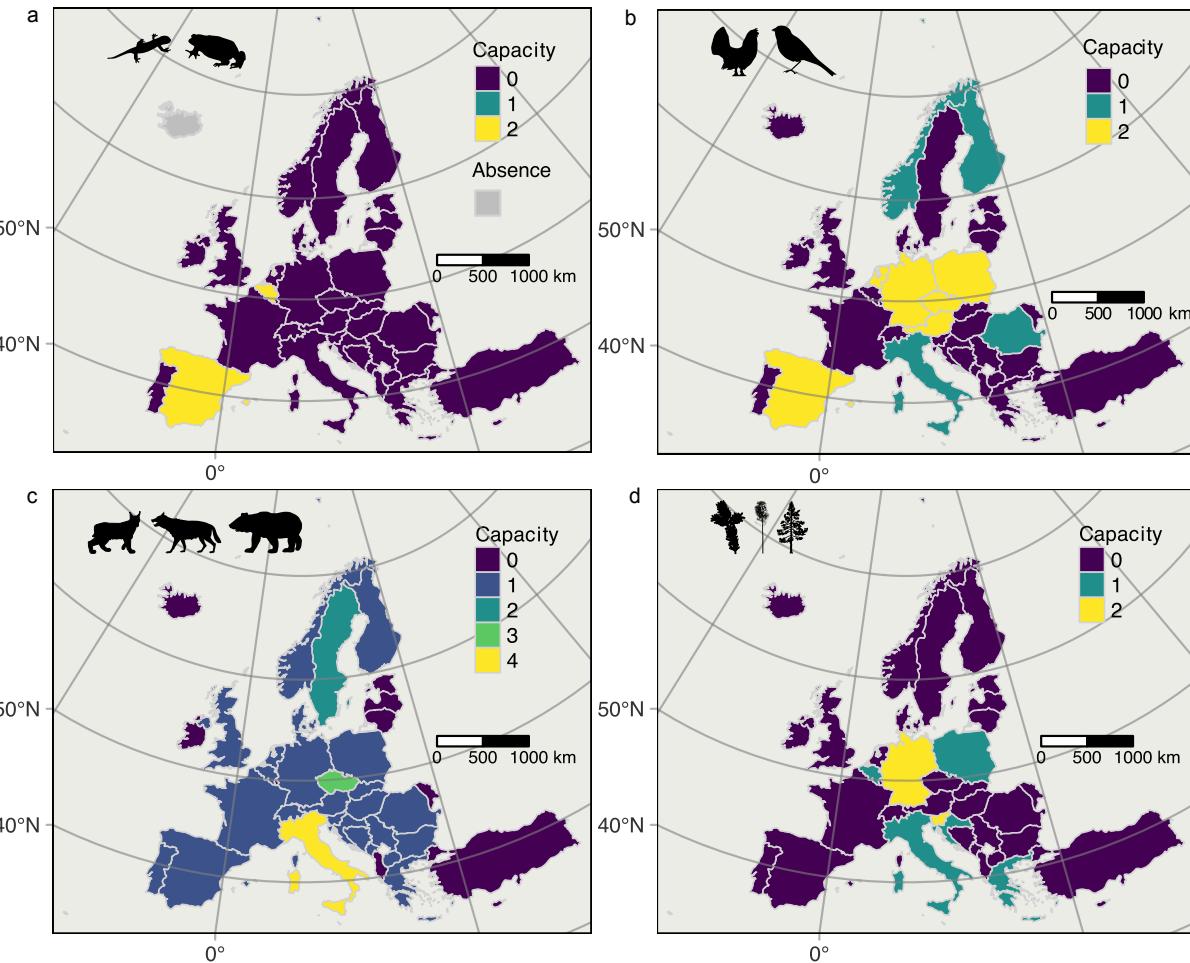
1082 **Figures**

1083

1084 Figure 1.

1085

1086

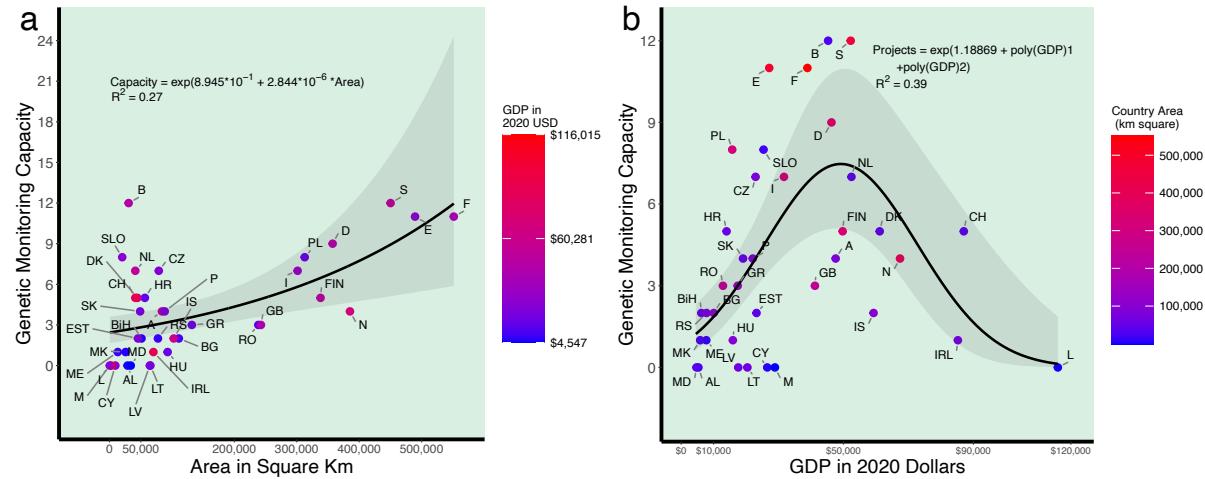

1087

1088

1089

1090 Figure 1. Documented programs to monitor population genetic diversity for conservation and management in
1091 COST member countries, as an indicator of genetic monitoring capacity, up to 31.12.2021. The geographic
1092 distribution of monitoring capacity to countries, as a tally across all domestic and wild terrestrial and marine
1093 species (a) indicates that countries with relatively high capacity for monitoring are found in both northern and
1094 southern Europe. COST countries in southeastern Europe present generally low genetic monitoring capacity.
1095 The distribution of programs to countries (b) shows that most countries have established six or fewer
1096 monitoring programs.
1097
1098

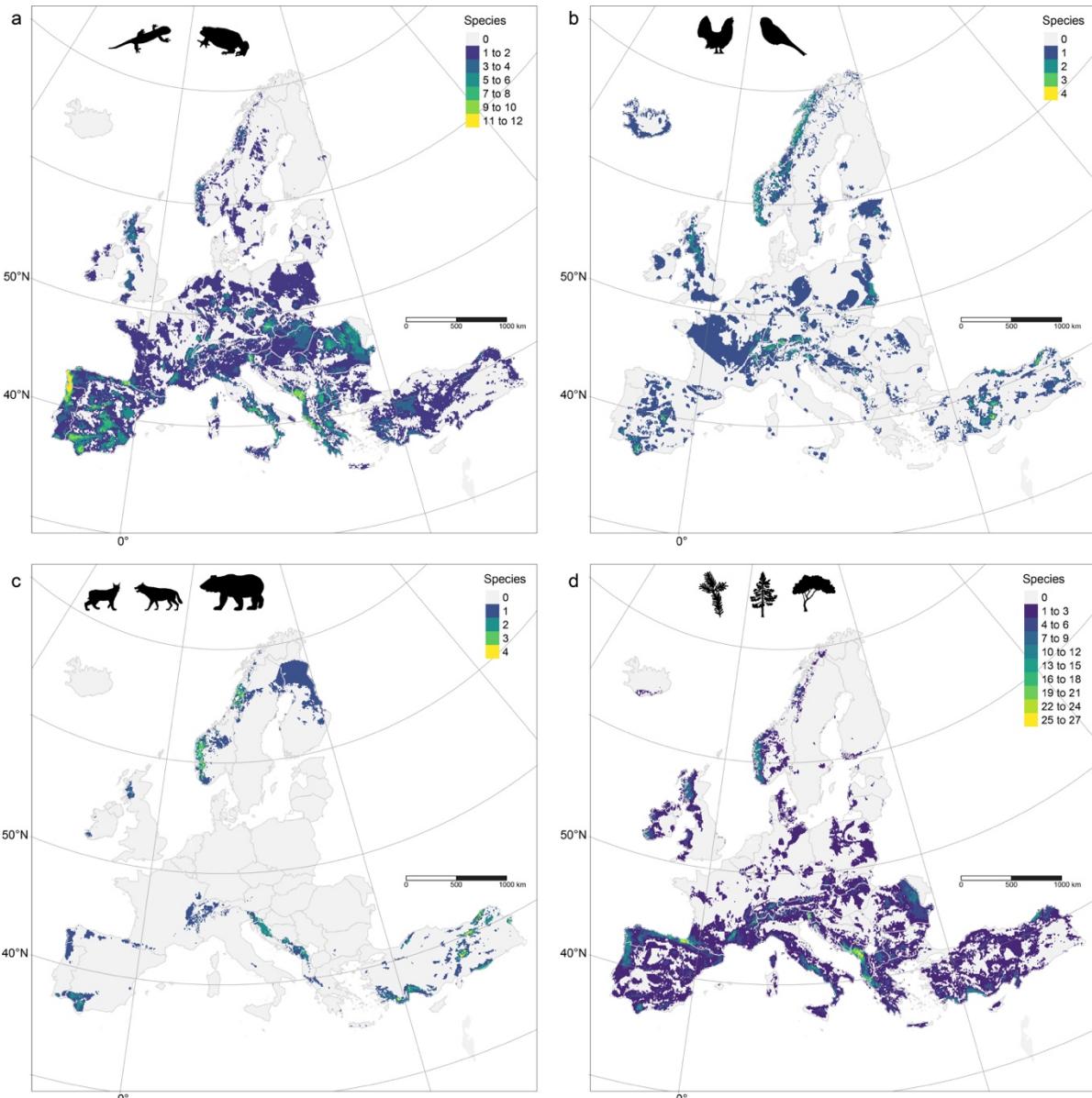
1099 Figure 2.
1100



1101
1102
1103
1104
1105 Figure 2.
1106
1107
1108
1109
1110
1111
1112
1113
1114

Geographic distribution of genetic monitoring capacity for population genetic diversity, for purposes of conservation or management, among COST full-member countries, showing the tally of programs for amphibians (a), birds (b), carnivorans (c), and forest trees (d). Programs included here are consistent with requirements for Category II monitoring, and they offer documentation of multiple estimates over time of at least one index of genetic diversity. Few countries have genetic monitoring capacity for amphibians, while most countries have established at least one program for a carnivoran species.

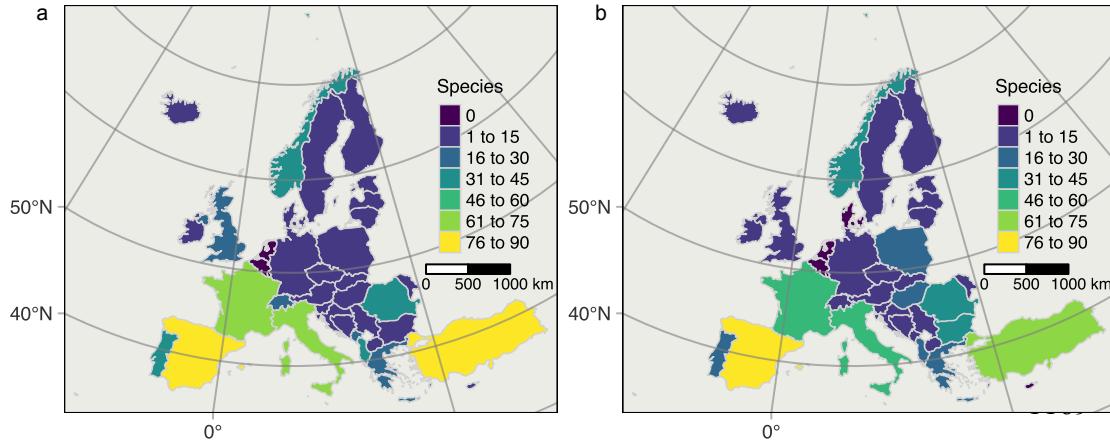
1115
1116
1117


Figure 3.

1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134

Figure 3. Generalized linear models for the genetic monitoring capacity of COST full-member countries, represented by international postal codes, as a function of (a) area extent and (b) average per capita gross domestic product (GDP). Equations of the lines are shown, along with 95% confidence intervals in shading. Models were fit as negative binomial distribution with the log link function. Model fit is given as Veall-Zimmermann R^2 . Turkey is of substantially greater geographic extent than the displayed countries, yet has no documented genetic monitoring capacity and is omitted as an outlier and influential observation. Both the linear area term and the quadratic GDP term are significant in the multiple generalized model (area: $P < 0.018$; GDP quadratic: $P < 0.002$; see online Methods for details). A significant quadratic term remains upon omission of any one of the three high-GDP countries.

1135 Figure 4.
1136


1137
1138
1139
1140
1141
1142

1143 Figure 4. Current joint marginality of four groups of species. The colored areas represent the tally of species
1144 that have marginal climatic conditions in each pixel, for (a) amphibians, (b) a collection of relatively large
1145 birds, (c) large European carnivorans and (d) a set of forest tree species. Pixels with marginal niche conditions
1146 are among the 25% most climatically marginal across the global range of each species. Pixels are aggregated to
1147 100 km² to improve visualization, and the highest value within this area is displayed.

1148
1149
1150
1151

1152
1153
1154
1155
1156

Figure 5.

1170
1171 Figure 5. The number of species with marginal niche situations currently (a) and predicted on the basis of
1172 climate averaged over the interval 2041-2070 (b). A species is included in the tally for marginal species in a
1173 country whenever the country has at least five percent of the total niche marginal pixels for the species across
1174 all COST countries. This tally includes selected species of amphibians, large birds, large carnivorans and forest
1175 trees. As presented here, forest trees drive the differences among countries because this is the largest group,
1176 with 91 species.
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193

1194 Figure 6

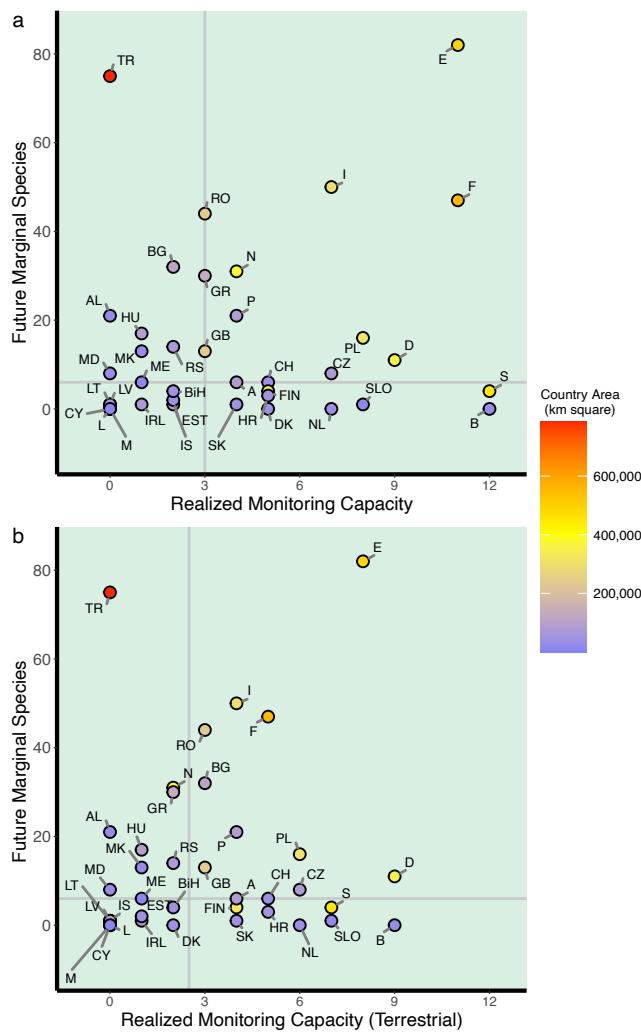


Figure 6. The relationship between genetic monitoring capacity and the number of species with marginal climatic niche conditions as of the years 2041-2070, showing data for all Category II monitoring as an indicator of genetic monitoring capacity at the national level (a) and programs monitoring amphibian, avian, carnivoran, and plant species only (b). Countries are indicated by postal codes. Marginal species include all species chosen for calculation of marginality, including non-troglobite amphibians, a collection of large birds, selected large carnivorans, and a set of forest trees. No general linear trends exist, although there is substantial variation both in numbers of species in marginal niche situations and in genetic monitoring capacity of countries.