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Abstract 

The hubs of the intra-grey matter (GM) network were sensitive to anatomical distance 

and susceptible to neuropathological damage. However, few studies examined the 

hubs of cross-tissue distance-dependent networks and their changes in Alzheimer’s 

disease (AD). Using resting-state fMRI data of 30 AD patients and 37 normal older 

adults (NC), we constructed the cross-tissue networks based on functional 

connectivity (FC) between GM and white matter (WM) voxels. In the full-ranged and 

distance-dependent networks (characterized by gradually increased Euclidean 

distances between GM and WM voxels), their hubs were identified with weight 

degree metrics (frWD and ddWD). We compared these WD metrics between AD and 

NC; using the resultant abnormal WDs as the seeds, we performed seed-based FC 

analysis. With increasing distance, the GM hubs of distance-dependent networks 

moved from the medial to lateral cortices, and the WM hubs spread from the 

projection fibers to longitudinal fascicles. Abnormal ddWD metrics in AD were 

primarily located in the hubs of distance-dependent networks around 20-100mm. 

Decreased ddWDs were located in the left corona radiation (CR), which had 

decreased FCs with the executive network’s GM regions in AD. Increased ddWDs 

were located in the posterior thalamic radiation (PTR) and the 

temporal-parietal-occipital junction (TPO), and their FCs were larger in AD. 

Increased ddWDs were shown in the sagittal striatum, which had larger FCs with the 

salience network’s GM regions in AD. The reconfiguration of cross-tissue 

distance-dependent networks possibly reflected the disruption in the neural circuit of 

executive function and the compensatory changes in the neural circuits of visuospatial 

and social-emotional functions in AD.  
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1. Introduction 

Evidence indicated that the blood oxygen level-dependent (BOLD) signals detected in 

the white matter (WM) were originated from neuronal activities in the grey matter 

(GM), which bring a series of biochemical and metabolic changes, including the 

exchanges of potassium and calcium ions and the production of nitric oxide, to evoke 

vascular hemodynamic responses in WM (1-4). A few studies examined the temporal 

synchronization of BOLD signals between WM bundles and GM regions, and found 

that cross-tissue functional connectivity (FC) was correlated with cognitive tasks 

performance (5-7). Recently, the cross-tissue FC has been applied in the studies of 

various diseases, including Alzheimer’s disease (AD) (8-11). One study found 

decreased cross-tissue FCs between the WM tracts and GM regions in AD patients, 

and their neuropsychological performance were significantly correlated with the FCs 

(12). The cross-tissue FCs between GM and WM were also used as classification 

features to increase the sensitivity and accuracy to differentiate AD from normal 

controls (NC) (11).  

 

Abundant studies investigated the locations of the hubs in the intra-GM network, 

using weighted degree (WD) - a measure of FCs’ strength between one region and 

other regions, to define the hubs (13-15). Evidence showed that the hubs of intra-GM 

network were particularly vulnerable to neuropathological damage of AD (16, 17). 

Moreover, evidence suggested that the hubs were structurally sensitive, as the strength 

of FC was dependent on the distance between regions (7, 18-21). The short-ranged 

FCs and long-ranged FCs differed in the metabolic costs and susceptibility to 

neurodegenerative diseases, with the long-ranged FCs possibly consuming more 

resources and more prone to Aβ deposition (22, 23). 

 

Despite the emergent applications of cross-tissue functional connections, the 

cross-tissue distance-dependent network’s topology was still less understood. Given 
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the importance of the distance-dependent hubs, there was lack of a study on their 

configuration in cross-tissue distance-dependent networks in older adult and their 

changes in AD. Our study performed three levels of analysis to shed light on these 

issues. We constructed the cross-tissue networks based on the functional connections 

between GM and WM, and demonstrated the distribution patterns of two types of 

hubs (identified by high WD values) located in either GM or WM. Notably, the 

cross-tissue networks included the full-ranged ones and a series of distance-dependent 

ones characterized by gradually increased Euclidean distances between GM and WM 

voxels. Consequently, the WD metrics of full-ranged and distance-dependent 

networks were compared between AD and NC to reveal the regions with abnormally 

high or low WD in AD patients. Finally, to understand the roles of those regions in the 

pathological mechanism of AD, two further examinations were performed to illustrate 

how those abnormal WD metrics were composed by cross-tissue FCs and correlated 

with cognitive performance.   

 

2. Materials and Methods 

2.1 ADNI database 

The present study used the open database, the Alzheimer's Disease Neuroimaging 

Initiative (24), to acquire data. ADNI was launched in 2004 to investigate AD and its 

prodromal stages (http://www.adniinfo.org). ADNI included four databases (ADNI-1, 

ADNI-2, ADNI-3, ADNI-GO). An initial five-year study, termed ADNI-1, was 

followed by two renewal five-year studies termed ADNI-2 and -3; and ADNI-GO 

enrolled early MCI participants (25). As the ADNI-1 phase did not collect 

resting-state fMRI data and the ADNI-3 phase included the longitudinal data of 

ADNI-2, we only used the data from ADNI-2, consistent with previous studies on the 

database selection for resting-state fMRI data of AD patients (26, 27). 

 

According to the standardized protocol, the ADNI data was collected from various 
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acquisition sites across Canada, and the United States, approved by the Institutional 

Review Board at each acquisition site, and written informed consent was obtained 

from each participant.  

 

2.2 Participants  

The ADNI-2 imaging data were collected at multi-sites, with different scanners and 

parameters (24). To alleviate the scanner effect, we carefully checked the scanner 

information and only used the image data acquired by a 3.0T Philips scanner with the 

same acquisition parameters (see Section 2.3 for the parameters). The inclusion 

criteria for the participants: 1) a clinician-confirmed diagnosis of AD or ‘‘normal’’ at 

the screening visit; and 2) the complete resting-state fMRI data available for the 

participants at their first scan time in the ADNI 2 database. In total, 30 AD patients 

and 37 NC were included in this study. The sample sizes of AD and NC were 

comparable with previous AD studies that used ADNI resting-state fMRI data (26, 27). 

No significant differences were found between the two groups on age and gender 

(Table 1).  

 

2.3 Image acquisition and preprocessing 

The resting-state fMRI data were obtained using an echo-planar imaging (EPI) 

sequence with the following parameters: repetition time (TR) = 3000 ms, echo time 

(TE) = 30 ms, flip angle = 80°, number of slices = 48, slice thickness = 3.313 mm, 

voxel size = 3 × 3 × 3 mm3, voxel matrix = 64 × 64, and total volume = 140. The slice 

order sequence was the same for all participants, as 1:2:47 and 2:2:48. The 

T1-weighted images were acquired using the following parameters: TR = 6.8 ms, TE 

= 3.1 ms, FA = 9°, slice thickness = 1.2 mm, number of slices = 170, voxel size = 1.1× 

1.1×1.2mm3, acquisition matrix = 244×244. 

 

Rs-fMRI images were preprocessed using the Data Processing and Analysis of Brain 
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Imaging software package (DPABI, http://rfmri.org/dpabi) and the SPM12. The 

preprocessing procedure consisted of eight steps: 1) discarding the first ten volumes; 2) 

slice-timing; 3) head motion correction (the maximum motion threshold ≤2mm or 2°); 

4) normalization and resampled to 3 × 3 × 3 mm3; 5) detrend; 6) nuisance covariates 

regression (Friston 24 for head motion, global signal, and cerebrospinal fluid signal 

regression); 7) temporal scrubbing (the scan volume with the frame-wise 

displacement (FD) >1 was removed); and 8) band-pass filter (0.01 Hz–0.15 Hz) to 

reduce low-frequency drift and high-frequency physiological noise (28, 29). One AD 

participant was removed from this study due to the maximum head motion beyond the 

threshold. Notably, we used the EPI template (provided by SPM, in standardized MNI 

space) for normalization, which generated satisfactory results. We also tried the 

normalization with T1 images using the DARTEL method, which generated poor 

quality results with parts of brain distortion, missing, or spatial mismatch. Previous 

AD studies have also used the EPI template for rs-fMRI normalization, instead of the 

T1 image, possibly due to severe structural atrophy of AD patients (4, 30-32).  

 

2.4 GM and WM hubs and their WD metrics (WD-Gw and WD-Wg) 

There were two types of hubs for each cross-tissue network constructed with the FCs 

between GM and WM regions. A GM hub was the GM region with strong FC 

connections to all WM regions; we used the metric of WD-Gw to identify them (i.e., 

the Weighted Degree of a given GM region by connecting to all WM regions). Vice 

versa, a WM hub would be the WM region with a high WD by connecting to all GM 

regions, identified by WD-Wg. 

 

We used a voxel-wise approach to parcellate the brain as the neural signals extracted 

from the fine-grained units were more homogeneous and prone to the small-world 

property (33, 34). The masks of GM and WM tissues were generated with the two 

tissue probability maps provided by SPM12, respectively. The voxels with a GM 
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probability-value >0.2 were defined as belonging to the GM mask (35) and a WM 

probability-value >0.6 as belonging to the WM mask (28, 29). Notably, 4405 voxels 

with a GM probability-value >0.2 & WM probability-value >0.6 were located in the 

boundary of two tissue masks. Given the ambiguous tissue type of these voxels, we 

excluded them from both masks. The locations of these overlapped voxels were 

shown in the supplementary materials (Fig s1). 

 

2.5 Full-ranged and distance-dependent networks  

2.5.1 Full-ranged network and WD metrics (frWD-Gw & frWD-Wg) 

We constructed the full-ranged cross-tissue networks to obtain the two WDs (i.e., 

frWD-Gw and frWD-Wg). The calculation pipeline is demonstrated in Fig 1A and Fig 

1C. For voxel-based frWD-Gw, the Pearson’s correlation coefficients (Rs, with the 

threshold of R>0.2) of any given voxel in the GM mask with all voxels in the WM 

mask were calculated, Fisher r-to-z transformed and then summed. Similarly, for 

voxel-based frWD-Wg, the Rs (R>0.2) of any given voxel in the WM mask with all 

voxels in the GM mask were calculated, Fisher r-to-z transformed, and then summed. 

The whole-brain frWD-Gw/Wg maps of each individual were then smoothed (4mm) 

and z-standardized for the following statistical analysis. 

2.5.2 Distance-dependent network and WD metrics (ddWD-Gw & ddWD-Wg) 

Previous studies divided the Euclidean distance between any two voxels as short- and 

long-ranged with an arbitrary cut-off of 75mm (36, 37), or defined it with an 

incremental distance of 10mm (38). In this study, we used an incremental unit of 

20mm to define the Euclidean distance of voxels into nine ranges, starting from 0 to 

180mm (e.g., 0-20mm, 20-40mm… 160-180mm).  

 

Consistent with previous studies on measuring the distance-dependent functional 

connectivity (38), the ddWD-Gw at each distance range was calculated as the sum of 
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Fisher z-transformed Rs (R>0.2) of any given GM voxel connecting to the WM 

voxels whose Euclidean distances to that specific GM voxel were constrained within 

that range. Similarly, the ddWD-Wg at each distance range was calculated as the sum 

of Fisher z-transformed Rs (R>0.2) of any given WM voxel connecting to the GM 

voxels whose Euclidean distances to that specific WM voxel were constrained within 

that range. These ddWD maps were also smoothed (4mm) and z-standardized for 

statistical analysis. The calculation pipeline for ddWD metrics is demonstrated in Fig 

1B and Fig 1D. 

  

2.6 Seed-based cross-tissue FC  

To illustrate the cross-tissue FCs’ composition of abnormal WD metrics in AD 

patients, we performed seed-based cross-tissue FC analysis. Firstly, we defined each 

supra-threshold cluster from the results of comparison analysis on different WD 

metrics as the seed. Secondly, the average time series of voxel-based BOLD signals 

within each seed were calculated from the pre-processed rs-fMRI images using the 

DPABI software (Data Processing & Analysis for Brain 

Imaging, http://rfmri.org/dpabi ) (39). Thirdly, the seed’s average time series were 

correlated with the time series of the targeting voxels located in the tissue mask 

different from the seed. For example, if the seed was located in the GM, the targeting 

voxels would be in the WM mask, and vice versa. Notably, when the seed was 

derived from the analysis of ddWD at a certain range, the seed-based 

distance-dependent functional connectivity (ddFC) would be obtained between the 

seed and the targeting voxels whose Euclidean distances to any voxels of the seed 

were constrained within that range. The seed-based FCs also underwent the Fisher 

r-to-z transformation and smoothed (4mm).  
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2.7 Additional analysis: intra-tissue network  

To have a comprehensive understanding of the topology of different functional 

networks in older adults and AD patients, we also established two intra-tissue 

networks within GM and WM, respectively, and obtained their full-ranged (frWD-G 

and frWD-W) and distant-dependent WD metrics (ddWD-G and ddWD-W). The 

calculation pipeline for intra-tissue network and their WDs metrics were described in 

the supplementary materials. 

 

2.8 Statistical analysis  

Our first analysis was to demonstrate the locations of cross-tissue network’s hubs in 

NC and AD groups. We obtained the mean network of each group by averaging the 

WD values across all individuals’ networks. The hubs in the mean network were 

defined as the voxels with z-standardized WD value ≥1 (calculated by subtracting the 

mean WD and then divided by the standard deviation of WDs of all voxels within the 

network), based on the previously used method of defining the hubs in functional GM 

networks (15, 23).  

 

Subsequently, we compared AD with NC on different WD metrics (including 

frWD-Gw and frWD-Wg, ddWD-Gw and ddWD-Wg at different ranges), 

implemented on SPM12. Based on the resultant supra-threshold clusters, we then 

obtained the seed-based cross-tissue FCs and compared them between AD and NC. 

The controlled covariates for every group comparison analysis were the same, 

including age, gender, and mean FD of head motion. The significance threshold was 

set at a voxel-level threshold of p<0.005 (uncorrected) combined with a cluster-level 

threshold of p<0.05 (FWE-corrected), based on the Gaussian Random Fields theory 

(GRF) to correct for multiple comparisons. Notably, when the seed-based FC analysis 

did not show significant results under the above threshold, we lowered the 

significance threshold to a voxel-level p<0.05 (uncorrected) combined with a cluster 
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size of 40 voxels. To validate the cognitive relevance of the regions with abnormal 

WD metrics, we performed the correlation analysis between MMSE and the mean 

WD metrics of the seeds controlled for age, gender, and mean FD of head motion, 

implemented on SPSS 20.0. The results are shown in the scatter plot (Fig 4). 

 

Additionally, we demonstrated the hub distribution patterns in two intra-tissue 

networks and compared AD and NC on their WD metrics, using the same covariates 

and significance threshold as those in the cross-tissue network. 

 

3. Results  

3.1 Hub location of cross-tissue networks  

For the cross-tissue full-ranged networks, the GM hubs (z-standardized frWD-Gw ≥

1) were mainly located in the lateral and medial frontal cortices, superior parietal and 

occipital cortices. For the distant-dependent networks, the spatial distributions of GM 

hubs (z-standardized ddWD-Gw ≥1) changed along with incremental distances, 

moving gradually from the medial to lateral areas. The GM hubs of ddWD-Gw 

networks at the distance of 0-60mm were located in the bilateral medial cortices 

(medial prefrontal and cingulate cortices, precuneus, and calcarine), sulci, 

temporo-parieto-occipital (TPO) junction, and subcortical regions (caudate and 

thalamus). The GM hubs at the distance of 60-120mm were distributed in the lateral 

frontal, temporal and parietal cortices. The GM hubs at the distance of 120-180mm 

were restricted to the frontal and occipital poles (Fig 2). 

 

For the cross-tissue full-ranged networks, the WM hubs (z-standardized frWD-Wg ≥

1) were mainly located in the projection fibers of posterior thalamic radiation (PTR) 

and corona radiation (CR), and commissural fibers (i.e., corpus callosum). For the 

distant-dependent networks, the WM hubs (z-standardized ddWD-Wg≥1) showed 

four distribution patterns along with the incremental distance ranges. For the 
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ddWD-Wg networks at the distance of 0-40mm, the WM hubs were mainly located in 

the two projection fibers (PTR and CR). The WM hubs at the distance of 40-80mm 

were located in the corpus callosum and PTR. The WM hubs at the distance of 

80-120mm were mainly located in the association fibers (sagittal striatum and 

longitudinal fasciculus). Finally, the WM hubs at the distance of 120~180mm were 

restricted to the PTR and CR (Fig 3). 

  

3.2 WDs of cross-tissue networks between AD and NC 

Compared on the full-ranged WD metrics (i.e., frWD-Gw and frWD-Wg), no 

significant differences were found between AD and NC.  

 

On the distance-dependent WD metrics, AD patients showed increased ddWD-Gw at 

the distance of 20-40mm, located in the left TPO junction (Table 2 and Fig 2). AD 

patients showed decreased ddWD-Wg at 40-60mm and 60-80mm, both located in the 

left CR (Table 3 and Fig 3). AD patients also showed increased ddWD-Wg at three 

distances (20-40mm, 40-60mm, 60-80mm), all located in the left PTR, and increased 

ddWD-Wg at the distance of 80-100mm, located in the right sagittal stratum.  

 

The correlation analysis with MMSE validated the comparison results between AD 

and NC, as MMSE was positively correlated with the WD metrics that were decreased  

in AD patients, and negatively correlated with the WD metrics that were increased  

in AD patients (Fig 4). 

 

3.3 Seed-based cross-tissue FC between AD and NC 

Using the resultant regions with abnormal ddWD changes as the seeds, we obtained 

the seed-based ddFCs and then compared them between two groups. For the seed in 

the left TPO junction with increased ddWD-Gw at 20-40mm in AD, the ddFCs that 

connected the seed to the left PTR were significantly larger in AD patients (Table 2 
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and Fig 2). For the seed in the right sagittal striatum with increased ddWD-Wg at 

80-100mm in AD, the ddFCs that connected the seed to the following GM regions 

were significantly larger in AD patients, including the left insula, left anterior 

cingulate cortex, right superior frontal gyrus, right medial superior frontal gyrus, and 

bilateral supplementary motor area (Table 3 and Fig 3).  

 

For five seeds, their seed-based ddFCs showed differences between AD and NC under 

a more lenient threshold (uncorrected voxel-level p<0.05 & cluster size ≥ 40 voxels). 

Of the two seeds in the left CR with decreased ddWD-Wg at 40-60mm and 60-80mm 

in AD, the ddFCs that connected the seeds to the left prefrontal cortices and inferior 

parietal gyrus were smaller in AD. Of the three seeds in the left PTR with increased 

ddWD-Wg at 20-40mm, 40-60mm, and 60-80mm in AD, the ddFCs that connected 

the seeds to the left inferior temporal gyrus, precuneus, and occipital cortices were 

larger in AD (Supplementary Table s3 and Fig 3). 

 

3.4 WDs of intra-tissue networks between AD and NC 

The distribution patterns of intra-GM and intra-WM networks’ hubs were 

demonstrated in the Supplementary Fig s2 and Fig s3. We compared AD and NC on 

the WD metrics of intra-tissue networks (including frWD-G and frWD-W, ddWD-G 

and ddWD-W); AD patients showed decreased ddWD-G at 0-20mm in the bilateral 

thalamus and decreased ddWD-W at 20-40mm in the left thalamus and subthalamic 

nucleus (Supplementary Table s1,Table s2 and Fig s4).  

 

4. Discussion 

4.1 Hub distribution of cross-tissue networks 

In older adults (including NC and AD), the GM hubs of full-ranged cross-tissue 

network (i.e. frWD-Gw) were mainly located the dorsal lateral prefrontal cortices, 
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superior and inferior parietal lobules, which were the central regions of the 

fronto-parietal network and dorsal attention network (40). The GM hubs of 

distance-dependent cross-tissue networks (ddWD-Gw) gradually moved from the 

deeper cortical areas to the surface with incremental distances. Such distribution 

patterns were similar to the hubs of distant-dependent intra-GM network, as shown in 

the study by Dai (13) and our study (see the supplementary Fig.s3). In Dai’s and our 

studies, the distance ranges were both short, 10mm and 20mm, respectively. Previous 

studies indicated that the BOLD signals detected in WM regions were possibly 

originally from their neighboring GM neuronal activities (7, 19). Hence, the FC of a 

GM region with another GM region or its adjacent WM region could be much similar, 

resulting in the observed resemblance between the GM hub’s distribution of the 

cross-tissue networks and that of the intra-GM networks. 

 

The WM hubs of full-ranged cross-tissue network (i.e. frWD-Wg) were located in the 

two projection fibers (PTR and CR) and the commissural fibers of corpus callosum. In 

ddWD-Wg networks, with increasing distance, the distribution of hubs moved from 

the projection fibers, to the commissure fibers, then to the association fibers. Such 

distribution patterns of WM hubs might be consistent with their structural and 

functional roles in the brain. The PTR and CR contained the projection fibers 

connecting the subcortical regions to their neighboring cortical regions, and are 

involved in multiple cognitive processes (41). The middle-length fibers of corpus 

callosum connect the bilateral hemispheres to allow fast communication (42, 43). The 

sagittal stratum contains the various longitudinal fascicles, connecting the extensive 

areas across the frontal, temporal, parietal, and occipital lobes, and involved in 

attention, executive control, and affective processes (44-48). 

 

4.2 Topological change of cross-tissue networks in AD patients  

Abnormally increased and decreased ddWD metrics were found in AD patients, 
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primarily located in the hub areas of cross-tissue networks, which included the TPO 

(GM hub) and the PTR, CR and sagittal striatum (WM hubs). Complemented by the 

results of seed-based FC analysis, we could demonstrate the specific regions whose 

cross-tissue FCs with the hubs contributing to AD-related changes in ddWDs. Based 

on these findings, the implications of these cross-tissue connections in the 

pathological mechanism of AD were discussed. 

 

4.2.1 Decreased ddWD-Wg in the CR  

The present study showed that the decreased ddWD-Wg of AD patients was located in 

the left CR at 40-60 mm and 60-80mm; and the ddFCs that connected the left CR to 

the left prefrontal and inferior parietal cortices were also decreased in AD. The CR 

connected the striatum and thalamus with the frontal and parietal areas (49). 

Evidences indicated that the CR’s structural integrity was associated with processing 

speed and cognitive flexibility across life (49-52). The prefrontal and inferior parietal 

cortices are the key regions of executive network and involved in cognitive control 

(53-55). Previous studies showed that the structural integrity of CR was disrupted in 

AD, evidenced by decreased fractional anisotropy (56-58). Our results regarding the 

decreased ddWD-Wg in the left CR possibly reflected the damage in the neural circuit 

of cognitive control in AD patients. 

 

4.2.2 Increased ddWD-Gw in the TPO  

Our results showed that AD patients had larger ddWD-Gw at 20-40mm in the left 

TPO junction than NC, and the ddFCs between this region and the left PTR were 

larger in AD patients than NC. As a hub region of ddWD-Gw network at 20-40mm, 

the TPO junction was located in a converging site of the temporal, parietal, and 

occipital cortices, and involved in several high-level cognitive functions, including 

visuospatial function, face and object recognition, and language (59). The 
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PTR connected the caudal thalamus with the posterior parietal and occipital cortices 

(60-62), acting as the anatomical foundation of visuospatial function. A previous 

study showed that neural activity level in the TPO areas during a clock-drawing task 

was higher in the early stage of AD and declined in the late stage of AD (63). 

According to the MMSE score, AD could be divided into mild, moderate, and severe 

stages (MMSE: 19-24, 10-18, 0-9) (64). As such, our participants were mainly in the 

early stage of AD (MMSE: 20.82±3.43). Previous studies proposed a compensation 

mechanism to account for enhanced neural activity and increased FCs observed in 

older adults, suggesting that the plastic brain could reorganize functional circuits to 

offset the age‐related neural inefficiency (65-68). Our results on the increased 

ddWD-Gw in the TPO in AD were consistent with these lines of evidence, supporting 

the compensation mechanism to offset the decline of visuospatial function in early 

AD (60, 63, 69, 70).  

 

4.2.3 Increased ddWD-Wg in the PTR 

We also found increased ddWD-Wg at 20-40mm, 40-60mm, and 60-80mm in the left 

PTR in AD; the seed-based FC analysis revealed increased ddFCs that connected the 

left PTR and the left inferior temporal gyrus, precuneus, and occipital cortices in AD. 

Enhanced FCs in the occipital cortices in AD patients were also observed in Dai’s 

study that compared the intra-GM network metrics between AD and NC (13). As 

explained in the above section, the PTR was essential in visuospatial function by 

connecting the caudal thalamus with the parietal and occipital cortices (71). The 

inferior temporal gyrus and occipital cortices played important roles in visuospatial 

function. The precuneus was also involved in visuospatial processing and episodic 

memory retrieval (72). The increased ddWD-Wg in the PTR in AD patients might 

indicate the compensated changes in the visuospatial neural circuits in our AD 

participants.  
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4.2.4 Increased ddWD-Wg in the sagittal stratum  

In our study, AD patients showed larger ddWD-Wg at 80-100mm in the right sagittal 

stratum; increased ddFC were found between this WM region and the GM regions of 

insula, anterior cingulate, supplementary motor, and medial frontal cortices, which 

were all the core regions of the salience network (73, 74). The sagittal stratum 

contains the middle and inferior longitudinal fascicles and inferior fronto-occipital 

fascicle (75). By connecting with the long-ranged regions across the frontal, temporal, 

parietal, and occipital lobes, the sagittal stratum has been involved in multiple mental 

processes, including the affective process (44, 46-48). Through the connection with 

the amygdala (76), the salience network is activated in response to emotionally 

significant internal and external stimuli (77). Emotional deregulation, a common 

symptom in MCI and AD, occurred in 35-85% of MCI individuals and up to 75% of 

AD patients. Convergent evidence demonstrated that the hyper-connectivity of the 

salience network was associated with affective disorders in AD, such as anxiety, 

irritability, aggression, and euphoria (78, 79). Our finding identified the abnormal 

increase in the cross-tissue FCs between the sagittal stratum and the salience network, 

which might be the neural substrates for the affected social-emotional processing in 

AD. 

 

4.3 Biomarkers from distant-dependent cross-tissue networks  

Abundant functional network metrics have been employed as neuroimaging 

biomarkers in clinical applications. Intriguingly, we found only the metrics of 

distance-dependent cross-tissue networks (i.e., ddWD-Gw/Wg) at 20-100mm showed 

significant difference between AD and NC, while the metrics of full-ranged 

cross-tissue networks (i.e., frWD-Gw/Wg) or the metrics of intra-tissue networks (i.e. 

frWD-G/W and ddWD-G/W) showed none or little. The sensitivity of 
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distance-dependent network metrics in capturing disease-related changes or cognitive 

relevance have been noted in previous studies (13, 14), indicating that the anatomical 

distance was a key factor to characterize FC. For example, the sagittal stratum 

contained the longitudinal fascicles that connected widespread cortical regions; hence, 

it would be easier to reveal the abnormal changes occurred in this region by using the 

long-ranged FC metrics. Regarding the difference in cross-tissue and intra-tissue 

networks, a recent study demonstrated that using the cross-tissue FC achieved a 

superior classification accuracy between AD and NC, compared to using the FCs of 

intra-GM network (11). Our findings suggested that cross-tissue metrics were more 

susceptible to AD-related changes, which could induce a network’s reconfiguration as 

evident in those reduced and enhanced functional connections (80, 81).   

 

5. Limitation  

The present study had a few limitations. Firstly, the sample size was relatively small, 

with 30 AD patients and 37 NC in the ADNI database eligible to our study. Secondly, 

the incomplete neuropsychological assessments for these participants restricted our 

correlation analyses to MMSE only. Thirdly, the ddWD metrics in this study reflected 

stable synchronization of cross-tissue BOLD signals across time. However, the 

characteristics of temporal synchronization could be dynamic between the two tissues, 

which would be of much interest for future exploration in AD patients.  

 

6. Conclusion 

The hubs of cross-tissue distance-dependent networks showed distinct distribution 

patterns in two tissues: the GM hubs moved from the medial (distance <60mm) to 

lateral cortices (distance >60mm), while the WM hubs spread from the projection 

fibers (distance <40mm), the commissure fibers (distance 40-80mm), then to the 

longitudinal fascicles (distance >40mm). The cross-tissue ddWD metrics were 
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sensitive biomarkers to capture abnormal changes in AD, with decreased and 

increased ddWD metrics located in the hubs of cross-tissue networks around 

20-100mm. Through the reconfiguration of cross-tissue networks, these hubs were 

possibly involved in the damage in executive function, and the compensatory changes 

in visuospatial and social-emotional functions of AD patients
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12. Figures and Tables 

 

Characteristic NC (mean ± SD) AD (mean ± SD) Test statistic P-value 

Number  37 30   

Age  75.84±7.09 73.14±6.51 T= -1.59 0.117a 

Sex (male/female) 13/16 14/23 χ2=0.329 0.566b 

MMSE (NC/AD n=24/22) 29.29±1.37 20.82±3.43 T=-11.18 <0.001a 

CDR (NC/AD n=24/22) 0.02±0.10 0.93±0.32 / / 

Table 1. Demographic characteristics and neuropsychological tests 

NC, normal control; AD, Alzheimer’s disease; MMSE, Mini-Mental State Examination; CDR, Clinical 

Dementia Rating Scale. 

aThe P-value was obtained by the two-sample two-tailed t-test. 
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Fig 1. The calculation pipeline for weighted degree metrics in cross-tissue networks. (A) and (B) 

presented the calculation process to obtain the weighted degree of any given GM voxel by connecting 

to all WM voxels in full-ranged networks (frWD-Gw) and in distance-dependent networks based on the 

Euclidean distance between GM and WM voxels (ddWD-Gw); the GM hubs in these networks were 

identified with high WD-Gw values. Similarly, (C) and (D) showed the calculation process to obtain 

the weighted degree of any given WM voxel by connecting to all GM voxels in full-ranged networks 

(frWD-Wg) and in distance-dependent networks (ddWD- Wg); the WM hubs were identified with high 

WD-Wg values.  
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Fig. 2. Mean maps of WD-Gw metrics in two groups and their difference between groups   

* indicated significant differences between AD patients and NC in WD-Gw metrics. 

Maps (A) and (B) showed the mean WD-Gw maps of each group in full-ranged networks and 

distance-dependent networks, respectively. The GM hubs in each mean map were defined as the GM 

voxels with z-standardized WD value ≥1. (C) Voxel-based WD-Gw metrics were compared between 

AD and NC, and the significantly increased ddWD-Gw were found at 20-40mm in AD. (D) Using the 

supra-threshold cluster from (C) as the seed, the FCs between the seed (in green) and the targeting WM 

region (in purple) were larger in AD.  
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Fig 3. Mean maps of WD-Wg metrics in two groups and their difference between groups   

* indicated significant differences between AD patients and NC in WD-Wg metrics. 

Maps (A) and (B) showed the mean WD-Wg maps of each group in full-ranged networks and 

distance-dependent networks, respectively. The WM hubs in each mean map were defined as the WM 

voxels with z-standardized WD value ≥1. Each of Fig 3(a)-(d) contained the group comparison results 

on ddWD-Wg (sagittal view in the left) and seed-based FC metrics (3D view in the right). The FCs 

between the seed (in green) and targeting GM regions (in purple) were different between AD and NC. 
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Fig 4. Correlation analysis between cross-tissue network metrics and MMSE scores 

We performed the correlation analysis between MMSE and the mean WD metrics of the seeds, which 

were showed by the scatter plot. (A) the significant linear correlation between the ddWD-Gw and 

MMSE scores in all participants. (B) the significant linear correlation between the ddWD-Wg and 

MMSE scores in all participants in all participants.  
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Comparison Metrics  Cluster  Peak Voxel 

 ddWD/FC Range 

(mm) 

 Siz

e 

PFWE  MNI Coordinates 

X    Y Z 

T- 

value 

Brain region 

AD>NC ddWD-GW 20-40  120 0.01  -56 -65 24 4.01 L middle temporal gyrus (21) 

       -39 -69 15 3.73 L middle occipital gyrus (19) 

 Seed-based 

FC 

20-40  115 <0.001  -33 -75 -3 3.81 L posterior thalamic radiation 

Table 2. Differences between AD patients and NC on ddWD-GW and the seed-based FC. 

Voxel-based ddWD-GWs at nine ranges of Euclidean distance were compared between AD patients and 

NC. Using the resultant supra-threshold cluster as the seed, the seed-based FCs were compared 

between AD patients and NC. The adjusted covariates included age, gender, mean frame-wise 

displacement for head motion. The significance threshold was set at voxel-level p<0.005 (uncorrected) 

with a cluster-level p<0.05 (FWE-corrected).  
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 Metrics   Cluster  Peak Voxel 

 ddWD/FC Range 

(mm) 

 Size PFWE  MNI  

X Y Z 

T- 

value 

Brain region (BA) 

AD<NC ddWD-WG 40-60  55 0.034  -33 -12 21 -4.13 L corona radiation 

 ddWD-WG 60-80  59 0.022  -30 -3 30 -3.68 L corona radiation 

AD>NC ddWD-WG 20-40  64 0.022  -39 -57 -3 3.73 L posterior thalamic 

radiation 

 ddWD-WG 40-60  75 0.008  -39 -57 -3 3.66 L posterior thalamic 

radiation 

 ddWD-WG 60-80  49 0.047  -36 -63 9 3.94 L posterior thalamic 

radiation 

 ddWD-WG 80-100   55  0.029  36 -39 3 3.87 R sagittal stratum 

AD>NC Seed-based FC 80-100   64 0.038  -39 -3 9 3.61 L insula  

    569 <0.001  21 42 36 4.60 R superior frontal 

gyrus (9) 

       12 30 57 4.37 R superior medial 

frontal gyrus (8) 

       -1 39 24 4.34 L anterior cingulate 

cortex (32) 

    76 0.018  -6 -6 60 4.45 L supplementary 

motor area (6) 

       12 -15 69 3.51 R supplementary 

motor area (6) 

    64 0.038  27 12 57 3.83 R superior frontal 

gyrus (8) 

Table 3. Difference between AD patients and NC on ddWD-WG and the seed-based FC. 

Voxel-based ddWD-WGs at nine ranges of Euclidean distance were compared between AD patients and 

NC. Using the resultant supra-threshold clusters as the seed, the seed-based functional connectivity (FC) 

was compared between AD patients and NC. The adjusted covariates included age, gender, mean 

frame-wise displacement for head motion. The significance threshold was set at voxel-level p<0.005 

(uncorrected) with a cluster-level p<0.05 (FWE-corrected). 
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