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ABSTRACT

The hub metabolite, nicotinamide adenine dinuclectide (NAD), can be used as an
initiating nucleotidein RNA transcription to result in NAD-capped RNA (NAD-RNA).
NAD-RNA that intimately connects metabolite with gene expression can be devel oped
as novel biomarkers for aging and disease. Epitranscriptome-wide profiling of
NAD-RNAs involves chemo-enzymatic labeling and affinity-based enrichment; yet
currently available computational analysis cannot adequately remove variations
associated with capture procedures. Here, we propose a spike-in-based normalization
and data-driven evaluation framework, enONE, for the omic-level analysis of
NAD-capped RNAs. We demonstrate that carefully designed spike-in RNAS, together
with modular normali zation procedures and evaluation metrics, can lead to the optimal
normalization that maximally removes unwanted variations, empowering quantitative
and comparative assessment of NAD-RNAs from different datasets. Using enONE and
ahuman aging cohort, we reveal critical features of NAD-capped RNAsthat occur with
normal age. enONE facilitates the discovery of NAD-capped RNAs that are responsive
to physiological changes, laying a critical foundation for functional investigations into
this modification.
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INTRODUCTION

NAD, an adenine nucleotide containing metabolite, can be incorporated into the RNA
5'-terminus to result in NAD-capped RNA (NAD-RNA)?, which is different from
eukaryotic canonical cap structure predominantly formed by 7-methylguanosine (m’G)
viaa’5'-to-5' -triphosphate bridge (m’G-RNA)**. It has been estimated that
NAD-capped forms make up more than 0.6% and 1.3% of the genes expressed in the
entire transcriptome from mouse liver and kidney, respectively®. To capture such
low-level capping events, the recently developed NAD-RNA identification methods
involve the use of chemo-enzymatic reaction, followed by affinity-based
enrichment®®. However, the resulting high-throughput sequencing data can be
hampered by the effect of capture procedures and other unwanted variations. Given
these limitations, current computational methods cannot be directly applied to the
omic-level assessment of NAD-capped RNAS.

Normalization is an essential step to remove unwanted variations.
N°-methyladenosine (m°A), a prevalent epitranscriptomic modification in RNA, has
been extensively characterized in virus and eukaryotic organisms’. Computational
tools for m°A-seq, e.g., RADAR'™ and m°A-express™, employ a split scaling strategy
that calculates scale factors for input and enrichment, respectively, to adjust the
variations from enrichment procedures and sequencing depth. However, these
analytical methods cannot properly account for the unwanted variation between
samples with and without enrichment, thus challenging the identification of
enrichment signals. More generally, current analyses of epitranscriptomic data are
mostly based on normalization designed for bulk RNA-seq, e.g., scaling-based
methods, such as Total Count (TC), Trimmed Mean of M values (TMM)*, and
DESeq™. The implicit assumption underlying scaling-based methods is that all the
gene-level counts are proportional to scale factors and that the between-sample
variations can be adequately adjusted by scale factors. Unfortunately, this assumption
isinevitably violated when affinity-based enrichment selectively amplifies the signal
of genes, e.g., m°A and NAD-capping, which leads to disproportional gene counts
between input and enrichment. Another regression-based method, Remove Unwanted
Variation (RUV) ™, regress gene count measurements on unwanted factors, thus
computing corrected expression values from the residuals. The implicit assumption
underlying this method is that a set of negative controls, which are not affected by
covariates of interest, is available, such as the spike-in from the External RNA
Controls Consortium (ERCC). However, the ERCC-based method suffers from
discrepancies between endogenous transcripts and spike-in, hindering its usage in
omic-level profiling. Limited by current analytical methods, nuisance variations fail to
be properly corrected for NAD-RNA sequencing data, thereby obscuring true
biological signals.

NAD-modified RNA connects metabolite with gene expression. NAD isthe hub
metabolite and redox regent for cells, involving in awide range of biologica
processes™. In rodents and humans, studies have revealed that the NAD level declines
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with agein critical tissues and organs'®. Given the dynamics of NAD and gene
expression over the course of adult lifespan, NAD-capped RNAS, poised to integrate
metabolomics and transcriptomics, may provide novel insights into physiological and
perhaps pathological situations. Thus, it is tempting to explore how NAD-modified
epitranscriptome is modulated with age. In the present study, we develop enONE
framework for NAD-capped RNA analysis by spike-in-based omic-level
normalization and evaluation. enONE integrates spike-in controls, global scaling, and
regression-based normalizations, followed by performance evaluation that selects the
local-optimal normalization method to remove unwanted variation. Using human
aging cohort, we apply enONE to the identification of NAD-RNASs from circulating
blood cells, revealing dynamics of NAD modification with age.
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RESULTS

Thewor kflow of enONE

Using exogenous spike-in RNAS, we designed a computational framework that
integrates global scaling and regression-based normali zation modules. We thereby
named our analytical method enONE, for Epitranscriptional NAD-capped RNA
analysis by spike-in-based Omic-level Normalization and Evaluation (Fig. 1).

enONE initiates with a quality control step, to remove outlier samples and
low-expressed transcripts. Second, a subset of genes from spike-in RNAs, with their
expressions presumably not being influenced by the covariates of interest (e.g.,
enrichment assay or biological condition), are used as the anchor set to estimate
unwanted variation (e.g., batch effect). A generalized linear model (GLM) isthen
applied to regress the observed read counts from anchor set on the unknown nuisance
variables to estimate factors that are subsequently used by the normalization tools for
the adjustment of unwanted variation. Third, a two-part normalization template is
employed to define an ensemble of the normalization procedures: 1) global scaling of
read counts to account for between-sample difference in sequencing depth and other
parameters of the read count distribution, and 2) regression-based adjustment for
unwanted variations. For instance, one can apply a robust scaling procedure, such as
TMM, followed by unsupervised procedures to estimate hidden unwanted variations
and regress them out of the data (e.g., RUV™). Fourth, enONE comparatively
analyzes all normalization toolsets to identify sets of top-performing procedures.
Specifically, enONE calculates ranks based on eight performance metrics that
represent the local-optimal trade-offs towards removing unwanted variation,
preserving biological variation of interest, and maintaining minimum technical
variability of global expression. Combined, enONE utilizes a data-driven approach to
determine appropriate normalization procedures for the quantitative analysis of
NAD-modified epitranscriptome.

Epitranscriptomic profiling of human PBM Cs

To gain insights of NAD-modified epitranscriptome during aging, we collected
human peripheral blood mononuclear cells (PBMCs) from an aging cohort in
community subjects comprising of young (N = 23, age: 23-32), middle (N = 20, age:
40-50), and old (N = 18, age: 54-67) individuals for epitranscriptome-wide profiling
of NAD-RNAs (Fig. 2A), according to the inclusion criteria approved by the Ethics
Committee. Clinical characteristics of the participants were evaluated and listed in
Supplementary Table 1. As an essential component of enONE, we deliberately
included three types of spike-in RNAs: 1) total RNAs from Drosophila melanogaster,
an invertebrate model organism with well-annotated genome sequence; 2) synthetic
RNAsS, consisting of 5% NAD- relative to m’G-capped forms, were used to determine
the capture sensitivity; 3) synthetic RNAs, with 100% m’G-capped forms, were used
to determine the capture specificity (Fig. 2A). Notably, spike-ins 2 and 3 were
synthesi zed with templates from different sequences. Combined, we subjected 10 ug
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total RNAs from human PBM Cs mixed with 40 pg total RNAs from Drosophila, 0.1
ng spike-in 2 RNAs, and 0.1 ng spike-in 3 RNAs to NAD-RNA sequencing, followed
by enONE computational analysis of NAD-RNA profiles.

After quality control, we obtained an average about 49.2 million high-quality and
uniquely mapped sequencing read pairs from each library (Supplementary Fig. 1A).
Assessment of datasets corroborated that sequencing saturation has been reached
(Supplementary Fig. 1B). Spike-in 2, which contained 5% NAD-capped forms, were
significantly enriched, whereas no enrichment was found for spike-in 3 made up with
100% m’G-RNA (Supplementary Fig. 1C). Above evidence highlighted the
sensitivity and specificity of the enrichment experiment, as reflected by the
enrichment of NAD, but not m’G, capped transcripts.

Thefeasibility of enONE

Since al samples were added with equal amounts of Drosophila spike-in RNAS, its
disconcordance, if present, can be used to pinpoint the nuisance technical variation in
an epitranscriptome-wide manner, and its concordance, on the other hand, can be used
to validate the effect of normalization. To capture unwanted variation, i.e., batch
effect, we use a set of genes (n = 1,000) whose expression patterns should be highly
reproducible and now become differed among batches as the anchor set (Fig. 2B). In
addition, we showed that normalization procedures were robust when the enrichment
effect accounted for a small fraction of the anchor set variance, e.g., anchor set size
ranged from 500 to 2,500 (Fig. 2C and 2D). With anchor set from Drosophila
spike-in RNAs, we implemented enONE normali zation procedures with five scaling
toolsets, including TC, UQ, TMM, DESeq and PoissonSeq™’, as well as three
regression-based procedures, namely RUVg, RUVs, and RUVse. By integrating two
normalization modules, we generated a total of 96 combinatorial procedures for the
current data (Fig. 2E). By inspecting the full space of normalization performance
metrics, we found that the top-ranked procedure involved DESeq scaling followed by
RUV g adjustment for the first 4 factors of unwanted variation (Fig. 2F and 2G).

To validate the effect of enONE normalization, we applied RUVQ (k = 4),
RADAR, and the enONE procedure on all three types of spike-in RNAs. Compared to
other procedures, enONE normalization dramatically mitigated the batch effect of
Drosophila spike-ins in both input and enrichment libraries, while preserving the
enrichment signals (Fig. 3A). In Drosophila spike-ins, linear regression between the
first six PCs cumulatively and batch effect showed that enONE removed the variation
among batches compared to other methods (Fig. 3B). Analysis of correlation between
the gene normalized counts from Drosophila spike-ins and batch variation revealed a
large proportion of genes showing strong correlations with batch effect in raw and
RADAR normalized datasets, whereas this correlation was mitigated in the enONE
normalized dataset (Fig. 3C). ANOVA was performed on Drosophila spike-ins from
different batches, demonstrating the number of genes affected by batch effect was
significantly reduced by enONE (Fig. 3D). Additionally, enONE improved the
concordance of synthetic spike-ins compared to other methods (Fig. 3E). By
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employing the top-ranked normalization procedure on the analysis of PBMCs dataset,
we noted that batch effect was mitigated while the enrichment covariates were
well-preserved asillustrated by the first two principal components of PCA
(Supplementary Fig. 1D). Together, these results demonstrated the capacity of
enONE in removing unwanted variation while retaining the covariates of interest.

Characterization of NAD-RNASs from human PBMCs

We proceeded to set 2-fold enrichment of read counts as the cutoff, which led usto
identify atotal of 782 NAD-RNAs from human PBMCs (Fig. 4A and
Supplementary Table 2-4). We then characterized these newly identified
NAD-RNAs. In human PBMCs, NAD-capping mostly occurred on protein-encoding
genes, but also extended to pseudogenes and non-coding RNAS, including lincRNA,
snRNA, snoRNA, and miscRNA (Fig. 4A). NAD-RNAs were shown to be derived
from genes localized on autosomes and X chromosomes, but not from the' Y
chromosome and the mitochondrion genome (Fig. 4B). By dividing NAD-RNASs into
5 deciles based on enrichment, we observed that shorter genes and genes with fewer
introns tended to have increased modification of NAD (Fig. 4C), a pattern consistent
with our recent study in mouse livers®. To inspect NAD modification of genes
associated with biological functions, we performed pathway enrichment analysis,
which revealed that NAD-RNAs were mainly involved in RNA metabolism,
translation, transcription, energy metabolism, and immune system (Fig. 4D and
Supplementary Table5).

Age alters NAD-modified epitranscriptome

To gain insights into how NAD-RNAs are modulated with age and its consequent
impact on the progression of aging, we analyzed NAD-RNA profiles from all age
groups. Interestingly, despite the fact that NAD decreases with age'®, we found that
the number of NAD-capping events tended to increase in aged human subjects (Fig.
5A). To dissect this observation, we grouped age-associated trajectories into three
major clusters using hierarchical clustering (Fig. 5B and Supplementary Table 6).
Increased NAD modification was found for genesin cluster 1, with their function
being involved in basic cellular events and adaptive immune response. In cluster 2,
NAD-capping was increased in early age but later became plateaued; these genes
were functionally enriched in oxidative stress and innate immune response. Genes
associated with collagen production, protein phosphorylation, and TGF- signaling
pathway, which were ascribed as cluster 3, exhibited a decreased trend in NAD
modification (Fig. 5B and Supplementary Table 7). Further analyses revealed that
genesin cluster 3, with their expression and NAD-modification, were well-correlated,
whereas genesin cluster 1 and 2 were less-correlated (Supplementary Fig. 2A and
2B).

By inspecting the correlation between NAD modification and age, we identified
aset of NAD-RNAs that highly associated with age (n = 67) (Fig. 6A). Specificaly,
select NAD-RNAS, such as thoseinvolved in protein folding (PDIA3), protein
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ubiquitination (SUMOL), and apoptosis (caspase 3 and 8), had increased capping with
age (Supplementary Table 6); but the abundance at RNA transcript levels was not
increased (Fig. 6B). In addition, NAD-capping of genes linked to mRNA decay
(UPF2), calmodulin binding (NRGN), and TGF-f signaling pathway (TGFB1) were
decreased during aging (Supplementary Table 6). The expression levels of UPF2 and
NRGN also decreased during aging, while TGFB1 was increased (Fig. 6B). Together,
our study revealed the first NAD-modified epitranscriptome from human PBMCs.
Using enONE, we were able to pinpoint epitranscriptomic alteration of NAD-capping
during the aging process.
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DISCUSSION

Incorporation of NAD, the hub metabolite and redox cofactor for cells, into RNA
represents the crosstalk between metabolite and gene expression, defining a critical
layer of epitranscriptomic regulation. The recently developed NAD-RNA sequencing
technologies have substantially facilitated the epitranscriptome-wide identification of
novel NAD-capped RNA across phyla™®. However, since these methods require
affinity-based enrichment, data normalizations borrowed from bulk RNA-seq could
not be readily applied. In this study, we devise ageneral framework for spike-in-based
epitranscriptome-wide NAD-RNA -seq data normalization and evaluation. Compared
to previous epitranscriptome profiling with ERCC spike-ins, enONE includes
Drosophila total RNA as spike-in to account for the effect of affinity-based
enrichment in an epitranscriptome-wide manner. Scaling-based approaches have been
extensively used in the analysis of epitranscriptome profiles, whereas we demonstrate
that integration of global scaling and RUV strategies can optimize normalization
performance (see Fig. 2G). Selection of the “best” normalization, however, might not
be feasible in practice due to the subjective definition of optimality. Therefore,
enONE emphasizes the choice of an appropriate strategy rather than the “best”
normalization. Together, enONE is able to efficiently remove the impact of unwanted
variations caused by affinity-based enrichment from the data. We highlight the
application that enONE, an open-source R package, can be extended into the analysis
of other types of epitranscriptomic sequencing data that involve step-wise enrichment
procedures, e.g., mPA-seq.

enONE facilitates the identification of NAD-RNASs. As asource of liquid biopsy,
peripheral blood can serve as sentinel tissue to monitor individual healthin a
non-invasive manner. ldentification of novel blood-derived features may open up new
avenues in detection of biomarkers for various physiological and pathological
conditions. Here we reveal prominent features of NAD-RNAS from human PBMCs.
Large collections of NAD-RNAs are produced by protein-encoding genes, with their
biological functions mainly involved in basic cellular events, such as translation, RNA
metabolism, and transcription. Additionally, cell-specific NAD-RNAs are discovered,
such as those involved in immune system. Thus far, yet the function of NAD-RNASs
remains elusive, their dynamic changes may provide insightsinto how individuals
respond to perturbations.

We reveal the dynamics of NAD-modified epitranscriptome during aging.
Though numerous studies have shown that NAD metabolite decreases with age™
our data demonstrate increased NA D-capping in elder population, suggesting that the
addition or removal of 5 -terminus NAD moiety might not be solely dependent on the
cellular reserve of NAD (see Fig. 5A). Notably, some of the age-associated
NAD-RNAs areinvolved in molecular pathways profoundly impinging on the
hallmarks of aging, such as ribosome biogenesis, immune system, and mitochondrial
function®, thus defining a novel mechanistic component of the aging process. Yet, we
acknowledge the limitation. Our human aging cohort is from the local community of
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Shanghai, which does not represent the general population. Intriguingly, the overall
number of NAD-RNAs from individual subjectsis not simply correlated with age (see
Fig. 5A), raising the possibility that additional age-associated factors might be linked.
Since thereis currently no gold standard measure of biological aging®, it is tempting
to exploit how NAD-capped RNAs as biological implications might signify
physiological and perhaps pathological conditions.

Taken together, we propose enONE as a flexible, modular, and general
framework for the normalization and evaluation of NAD-RNA sequencing datain a
wide spectrum of biological contexts. To the best of our knowledge, enONE is the
first computational approach for NAD-modified epitranscriptome profiles. Future
characterization of NAD-capped RNASs, empowered by enONE, can focus on how
biological processes regulate NAD modification through a quantitative lens,
especially during the aging process.
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M ethods
Ethics Statement

The project was approved by the Medical Ethics Committee of Shanghai Changzheng
Hospital (2022SL006). Informed consent was obtained from all subjectsin
accordance with the local research Ethics Committee guidelines.

Study design and participants

We conducted a cross-sectional study of natural aging in community subjects
recruited from Shanghai Changzheng Hospital. The aging cohort consists of 31
females and 30 males, aged from 23 to 67 years old. Inclusion criteria for cohort were:
1) above 20 years old; 2) independently able to provide written informed consent. For
comparative analysis of age-related subgroups, the cohort was divided into three age
groups: Young (20-35 years old), Middle (36-50 years old), and Old (51 years old and
above). Height and weight are measured by trained staff following standardized
protocols. BMI (kg/m?) is derived from the calculation and stored for further analyses.
After 5 minutes of rest in the seated position, blood pressure (mmHg) was measured
three times with an automatic sphygmomanometer and the mean of the measurements
was used for analysis. Blood samples were taken from all patients in the morning after
they had been seated for 5 minutes. All participants had blood drawn using lithium
heparin tubes (BD Vacutainer, catalog: 367884) by phlebotomists and consented to
having their de-identified survey data made publicly available.

Isolation of peripheral blood mononuclear cells (PBM Cs) from whole blood

For isolation of peripheral blood mononuclear cells (PBMCs), 5 mL whole blood was
mixed with 630 pL OptiPrep (Sigma-Aldrich, catalog: D1556) and 500 pL solution C
(0.85% (w/x) NaCl and 10 mM Tris-HCI, pH 7.4), followed by centrifugation at 4 °C
and 1,300 g for 30 min. PBMCs were collected and mixed with two volumes of solution
C, followed by centrifugation at 4 °C and 500 g for 10 min. Cell pellet was washed
twice with 1 mL PBS. The suspension was used for NAD-RNA detection.

In vitro transcription of NAD-RNA, and m’Gppp-RNA

To assess the sensitivity of enrichment procedures, spike-in NAD-RNA (500 nt;
sequence A) and m’Gppp-RNA (500 nt; sequence A) with identical sequence,
oligonucleoctide without adenine was synthesized (Genewiz) and were subjected to
polyadenylation for poly(A) tails elongation (template sequence: 5'-
TAATACGACTCACTATTATGGTGTGCTTGGGCGTGGTGCTGTTCTCCGGGG
TGGTGCCCTTCCTGGTCGTGCTGGTCGGCGTCGTTTTCGGCCTCTTGTTCTG
CGTGTCCGGCGTGGGCGTGGGCGTTGCCTCCTTCGGCTTGCTGTCCCTGTT
GTTCTTCTGCTCCTCCGGCTTGCTGCCCGTGCCCTGGCCCTCCCTCGTGTCC
TCCCTGTCCTTCGGCGTGCTGTGCTTCTGCCGCTTCCCCGTCCTCTTGTTGC
TGCTCGTCTTCTTCTTGTCCGCCTTGCCCGTTGGCTTCGTCCTGGTGCGCTC
CTTCTTCTTCTTGGTCGTCGGCTTCTTCTTGTCCCGCGCCGTGGTGTTGTTC
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GTGGGCGTCTCCCTGGTGTTCCGCTTCGTGCTGTTGGGCTTCGTCTTCTTGG
TGGTCGGCTTCTTCCTGGGGCTCTTGCTGGTGTTCTTCTTCTTCTGCCTCTT
CGTCTTTTTCTTGGCCGTCTTGCTGTTGTTCGGCTTCTTGGTGTTCTTCTT-3';
boldface | etters denote the sequence of T7 class Il promotor (12.5)) and (anti-sense:
5-
AAGAAGAACACCAAGAAGCCGAACAACAGCAAGACGGCCAAGAAAAAG
ACGAAGAGGCAGAAGAAGAAGAACACCAGCAAGAGCCCCAGGAAGAAG
CCGACCACCAAGAAGACGAAGCCCAACAGCACGAAGCGGAACACCAGGG
AGACGCCCACGAACAACACCACGGCGCGGGACAAGAAGAAGCCGACGAC
CAAGAAGAAGAAGGAGCGCACCAGGACGAAGCCAACGGGCAAGGCGGA
CAAGAAGAAGACGAGCAGCAACAAGAGGACGGGGAAGCGGCAGAAGCA
CAGCACGCCGAAGGACAGGGAGGACACGAGGGAGGGCCAGGGCACGGG
CAGCAAGCCGGAGGAGCAGAAGAACAACAGGGACAGCAAGCCGAAGGA
GGCAACGCCCACGCCCACGCCGGACACGCAGAACAAGAGGCCGAAAACG
ACGCCGACCAGCACGACCAGGAAGGGCACCACCCCGGAGAACAGCACCA
CGCCCAAGCACACCATAATAGTGAGTCGTATTA-3'). To assess the specificity of
enrichment procedures, spike-in m’Gppp-RNA (500 nt; sequence B) oligonucleotide
was synthesized (Genewiz) and were subjected to polyadenylation for poly(A) tails
elongation (template sequence: 5'-
TAATACGACTCACTATTACATGGAGGGCTCCGTGAACGGCCACGAGTTCG
AGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGC
CAAGCTGAAGGTGACCAAGGGTGGCCCCCTGCCCTTCGCCTGGGACATCC
TGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTACGTGAAGCACCCCGCCG
ACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGC
GCGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGACCCAGGACTCC
TCCCTGCAGGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCACCAA
CTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGG
CCTCCTCCGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATC
AAGCAGAGGCTGAAGCTGAAGGACGGCGGCCACTACGACGCTGAGGTCA
AGACCACCTACAAGGCCA-3; boldface letters denote the sequence of T7 class |
promotor (172.5)) and (anti-sense: 5'-
TGGCCTTGTAGGTGGTCTTGACCTCAGCGTCGTAGTGGCCGCCGTCCTTCA
GCTTCAGCCTCTGCTTGATCTCGCCCTTCAGGGCGCCGTCCTCGGGGTACA
TCCGCTCGGAGGAGGCCTCCCAGCCCATGGTCTTCTTCTGCATTACGGGGC
CGTCGGAGGGGAAGTTGGTGCCGCGCAGCTTCACCTTGTAGAT
GAACTCGCCGTCCTGCAGGGAGGAGTCCTGGGTCACGGTCACCACGCCGC
CGTCCTCGAAGTTCATCACGCGCTCCCACTTGAAGCCCTCGGGGAAGGAC
AGCTTCAAGTAGTCGGGGATGTCGGCGGGGTGCTTCACGTAGGCCTTGGA
GCCGTACATGAACTGAGGGGACAGGATGTCCCAGGCGAAGGGCAGGGGG
CCACCCTTGGTCACCTTCAGCTTGGCGGTCTGGGTGCCCTCGTAGGGGCGG
CCCTCGCCCTCGCCCTCGATCTCGAACTCGTGGCCGTTCACGGAGCCCTCC
ATGTAATAGTGAGTCGTATTA-3). For in vitro transcription, 10 uM of
double-stranded DNA (dsDNA) template in 100 pL transcription buffer (Promega,
catalog: P1300), along with 1 mM of each of GTP, CTPand UTP, with 4 mM NAD (for
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NAD-RNA) or 4 mM m’GpppA (New England Biolabs, catalog: S1406S) (for
m’G-RNA), 10 uL of T7 RNA polymerase (Promega, catalog: P1300), 5% DMSO, 5
mM DTT and 2.5-unit RNase inhibitor were added and the transcription mixture was
incubated at 37 °C for 4 h. The reaction was incubated with 11-unit DNase | (Promega,
catalog: P1300) at 37 °C for 30 min to remove the DNA template. RNA was then
extracted using acid phenol/chloroform and precipitated with isopropanol (with 0.3 M
sodium acetate, pH 5.5) at -80 °C overnight. The RNA pellet was washed twice with 75%
ethanol, air-dried, re-dissolved in DEPC-treated H,O, and stored at -80 °C.

NAD-capped RNA sequencing

Total RNAs from human PBM Cs and total RNAs from Drosophila (spike-in) were
prepared in accordance with the manufacturer’sinstruction (TakaraBio, catalog: 9108).
Total RNAS (10 ug) from human PBM Cs were mixed with 40 pug Drosophila RNA
(spike-in 1), 0.1 ng synthetic RNAs (spike-in 2: 5% NAD-RNA/95% m’G-RNA;
sequence A), and 0.1 ng synthetic RNAs (spike-in 3: 100% m’G-RNA; sequence B).
The mixture of total RNAs and spike-in RNAs was incubated with 100 mM HEEB (1
M stock in DM SO) with ADPRC (25 pg/mL) in 100 puL of ADPRC reaction buffer (50
mM Na-HEPES pH 7.0, 5 mM M(gCl,) at 37 °C for 1 h, followed by NudC-catalyzed
NAD-RNA elution. 100 uL of DEPC-treated H,O was then added and acid phenol/ether
extraction was performed to stop the reaction. RNAs were precipitated by ethanol, and
re-dissolved in 100 uL of DEPC-treated H,O. 5 uL of biotinylated RNAs were kept as
input. After HEEB reaction, biotinylated RNAs were incubated with streptavidin bead
particles (6 uL, MedChemExpress, catalog: HY-K0208) and 0.4 U/uL of RNase
Inhibitor (Takara Bio, catalog: 2313B) at 25 °C for 30 min. Beads were washed four
times with streptavidin wash buffer (50 mM Tris-HCI (pH 7.4) and 8 M ureq), and three
times with DEPC-treated H,O. To ensure complete elution, biotin-conjugated RNAs
were replaced from streptavidin beads by incubating with 1 mM biotin buffer (20 uL,
Sigma-Aldrich, catalog: B4639) at 94 °C for 8 min, followed by incubation with 500
nM NudC (New England Biolabs, catalog: M0607S) in 25 uL of NudC reaction buffer
(200 mM NaCl, 50 mM Tris-HCI pH 7.9, 10 mM MgCl,, 100 pg/ml Recombinant
Albumin) at 37 °C for 30 min. After NudC treatment, biotinylated-RNAs that are
resistant to NudC catalysis, potentially derived from contaminating m’G-RNAs, were
retained on beads by incubation with high-capacity streptavidin particle (20 pL,
Thermo Fisher Scientific, catalog: 20357) at 25 °C for 30 min. Eluted RNAsin the
supernatant were used for next step. Input (see above) and NudC-eluted RNAs were
used for NGS library construction, in accordance with the manufacturer’s instructions
(mRNA-seq Lib Prep Kit for Illumina, Abclonal, catalog: RK20302). Library quality
was assessed by Bioanalyzer 2100 (Agilent, United States), and quantification was
performed by gRT-PCR with areference to a standard library. Libraries were pooled
together in equimolar amountsto afinal 2 nM concentration and denatured with 0.1 M
NaOH (Sigma, catalog: 72068). Libraries were sequenced on the Illumina NovaSeq
6000 system (paired end; 150 bp).

High-throughput sequencing data analysis
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All sequencing reads were processed with Trim Galore (v0.6.6)% with the parameters
“--nextseq 30 --paired” to remove the adapter sequences (AGATCGGAAGAGC) from
NovaSeg-platforms, and reads longer than 20 bp were kept. Reads that passed the
quality control procedure were kept and mapped to the Homo sapiens genome
(GRCh38) and Drosophila melanogaster genome (dmel-all-chromosome-r6.36) using
STAR (v2.7.6a)* with default parameters, respectively. Uniquely mapped read pairs
were counted against annotations from Homo sapiens (Ensembl: GRCh38.94) and
Drosophila melanogaster (Flybase: dmel-all-r6.36) using featureCounts (v2.0.1)* with
parameters “-p -B -C” and summarized as gene-level counts, respectively. Sequencing
saturation was assessed by randomly subsampling the original libraries and examined
the corresponding changes in the number of genes, derived from human genome, with
more than 10 read counts.

enONE wor kflow

enONE isimplemented in R and publicly available at
https://github.com/thereallda/lenONE. enONE workflow consists of four steps: 1.
Quality control; 2. Gene set selection; 3. Normalization procedures; 4. Normalization
performance assessment. By “log” transformation, we generally refer to the logy(x+1)
function unless otherwise stated. Below, steps are shown in details.

1. Quality control

The goal of quality control was to remove problematic or noisy observations from
downstream analysis. In this study, we used sample and gene filtering to control data
quality. To assess outliers, we applied Rosner’s outlier test on principal component 1.
Principle component analysis (PCA) was performed with prcomp function on the top
20,000 genes based on atransformed counts matrix by vst function from R package
DESeq2 (v1.36.0)™. All samples were kept for subsequent analysis. To keep
well-detected genes across samples, we used filterByExpr function from the R
package edgeR (v3.38.4)% with parameter “min.count=20". All ribosomal RNA
encoded genes and TEC genes were excluded.

2. Gene set selection

enONE defined three sets of control genes for adjustment of the unwanted variations,
evaluation of the unwanted variations, and evaluation of the wanted variations,
respectively. For adjustment of the unwanted variation, we defined the 1,000 |east
significantly enriched genesin Drosophila spike-ins, ranked by FDR values, as
negative control genes. Since the effect of affinity-based enrichment was the known
covariate of interest, we used these genes, that were not affected by the enrichment
effect, to compute the unwanted variation in the subsequent RUV procedure. For
evaluation of the unwanted variation, we defined the 500 least significantly varied
genes in human, ranked by FDR values, as negative evaluation genes. We performed
differential analysistest across all covariates of interest to determine genes with
constant expression levels. Since the variation of constant genes could reflect the
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handling effects, those genes could be used to evaluate the removal of unwanted
variation in the subsegquent normalization evaluation step. For evaluation of the
wanted variation, we defined the 500 most significantly enriched genesin human,
ranked by FDR values, as positive evaluation genes. We performed differential
analysis test between enrichment and input samples in human to determine genes
affected by enrichment procedures. Those genes were used to evaluate the
preservation of wanted variation in the subsequent normalization evaluation step.

3. Normalization procedures

enONE implemented global scaling and regression-based methods for the generation of
normalization procedures. For the global scaling normalization procedures, gene-level
read counts were scaled by a sample-wise scale factor. Five different scaling procedures
were implemented, including: 1) Total Count (TC): The scale factor was defined as the
sum of the read counts across all genes. 2) Upper-Quartile (UQ): The scale factor was
defined as the upper-quartile of the gene-level count distribution. 3) TMM*% The
scale factor was based on arobust estimate of the overall expression fold change
between the sample and areference sample. TMM was performed by the
calcNormFactors function from R package edgeR with parameter: method = “TMM”.
The default behavior used here is that the selected reference sample has an upper
quartile closest to the mean upper quartile of all samples. 4) DESeq™: The scale factor
for a given sample was defined as the median fold-change between the samples and a
pseudo-reference sample whose counts were defined as the geometric means of the
counts across samples. This method was performed by the calcNormFactors function
from R package edgeR with parameter: method = “RLE”. Note that the method
discarded any gene having zero count in at least one sample. 5) PoissonSeq: The scale
factor was based on an iterative estimate of sequencing depth from a subset of genes,
defined by a Poisson goodness-of-fit statistics'’. By default, this method discarded
genes with less than 5 read counts.

For the regression-based procedures, enONE considered the following
generaized linear model (GLM), which allows adjustment for factors of unwanted
variation:

g(E[Y|IX,W,0]) =XB+Wa+0, (1)

where Y was the n x J matrix of gene-level read counts, X was an n x M design matrix
corresponding to the M covariates of interest of *‘wanted variation” (e.g., treatment)
and g its associated M x J matrix of parameters of interest, W was an n x K matrix
corresponding to unknown factors of unwanted variation and a its associated K x J
matrix of nuisance parameters, O was an n x J matrix of offsets that can either be set
to zero or estimated with other normalization procedure (such as TMM normalization),
and g was alink function.

The unwanted variation W can be estimated by singular value decomposition
(SVD) using main approaches as implemented in R package RUV Seq (v1.30.0)*. In
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this study, we used three variants of RUV, including: 1) RUVg: estimated the factors
of unwanted variation based on negative control genes, assumed to have constant
expression across all samples ($=0), as applied in RUV. 2) RUVs: estimated the
factors of unwanted variation based on negative control genes from the replicate
samples (e.g., replicates in each treatment group) for which the covariates of interest
were constant (5=0), as applied in RUV. 3) RUVse: was a modification of RUVs. It
estimated the factors of unwanted variation based on negative control genes from the
replicate samples in each assay group (i.e., enrichment and input), for which the
enrichment effect was assumed to be constant.

4. Normalization performance evaluation

To evaluate the performance of normalization, we leveraged eight normalization
performance metrics that related to different aspects of gene expression measures?.

The following four metrics evaluated normalization procedures based on how well
the samples can be clustered according to factors of wanted and unwanted variation.
Clustering by wanted factors was desirable, while clustering by unwanted factors was
undesirable. As clustering measurements, we used silhouette widths. For any
clustering of n samples, the silhouette width of sample i was defined as:

o b(i) —a(i) 2

sil(i) = max{a @), b@) € [-1,1],

where a(i) denoted the average distance (by default, Euclidean distance over the first
three PCs of expression measures) between the ith sample and all other samplesin the
cluster to which i was assigned and b(i) denoted the minimum average distance
between the ith sample and samples in other clusters. The larger the silhouette widths,
the better the clustering. Thus, the average silhouette width across all n samples
provides an overall quality measure for a given clustering. Silhouette width was
calculated with the silhouette function from R package cluster (v2.1.3). These metrics
were defined as follows: 1) BIO_SIM: Group the n samples according to the value of
a categorical covariate of interest (e.g., age group or treatment) and compute the
average silhouette width for the resulting clustering. 2) BATCH_SIM: Group the n
samples according to the batch and compute the average silhouette width for the
resulting clustering. 3) EN_SIM: Group the n samples according to the assay (e.g.,
enrichment or input) and compute the average silhouette width for the resulting
clustering. 4) PAM_SIM: Cluster the n samples using partitioning around medoids
(PAM) for arange of numbers of clusters and compute the maximum average
silhouette width for these clusters. PAM clustering was done by the pamk function
from R package fpc (v2.2-9). Large values of BIO_SIM, EN_SIM and PAM_SIM and
low values of BATCH_SIM were desirable.

The next two metrics evaluated the association of log-count principal
components (by default, the first 3 PCs) with “evaluation” principal components of
wanted or unwanted variation. 1) UV_COR: The weighted coefficient of
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determination R? for the regression of log-count principal components on factors of
unwanted variation (UV) derived from negative evaluation genes. The submatrix of
log-transformed unnormalized counts for negative evaluation genes is row-centered
and scaled and factors of unwanted variation are defined as the right-singular vectors
as computed by the svd function. 2) WV_COR: The weighted coefficient of
determination R? for the regression of log-count principal components on factors of
wanted variation (WV) derived from positive evaluation genes. The WV factors were
computed in the same way as the UV factors above, but with positive instead of
negative evaluation genes. Large values of WV_COR and low values of UV_COR
were desirable.

The weighted coefficients of determination were computed as follows. For each
type of evaluation criterion (i.e., UV, or WV), regressed each expression PC on all
supplied evaluation PCs. Denoted SSTy as the total sum of squares, SSR¢ asthe
regression sum of sgquares, and SSE, as the residual sum of squares for the regression
for the kth expression PC. The coefficient of determination was defined as:

2 _ SSRie _ _ SSEx 3)
k™ SST, SST,

and weighted average coefficient of determination as:

_ LuSSTeRE _ LSSRi _ | Lk SSEi @
T NNSST, | %uSST. | %kSSTy

D2

The next two metrics evaluated the similarity of gene expression distributions.
We defined gene-level relative log-expression (RLE) measures, as log-ratios of read
counts to median read counts across samples, for comparing distribution of gene
expression. RLE was defined as follows:

v, )

RLE:.: =1 R A
Z Median;Y;;’

for genei in samplej. For similar distributions, the RLE should be centered around
zero and have a similar distribution across samples. Thus, the metrics were defined as
follows: 1) RLE_MED: Mean squared median RLE. 2) RLE_IQR: Variance of
inter-quartile range (IQR) of RLE. Low values of RLE_MED and RLE_IQR were
desirable.

In the enONE framework, the expression measures were normalized according to
aset of methods (including raw counts) and the eight metrics above were computed
for each dataset. The performance assessment results can be visualized using biplots
and the normalization procedures were ranked based on afunction of the performance
metrics. In particular, enONE defined a performance score by orienting the metrics
(multiplying by £1) so that large values correspond to good performance, ranking
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procedures by each metric, and averaging the ranks across metrics.
Quantitative NAD-RNA-seq data analysis

To identify NAD-RNA from sequencing data, we performed differential analysis using
FindEnrichment function from enONE package. Significance of logarithmic fold
changes was determined by alikelihood ratio test to approximate P values, and genes
were adjusted for multiple testing using the Benjamini-Hochberg procedure to yield a
false discovery rate (FDR). NAD-RNAs were defined as fold change of normalized
transcript counts > 2, FDR < 0.05, and log.-CPM > 1 in enrichment samples compared
to those in input samples. The fold change of normalized counts between pairwise
enrichment and input sample was denoted as NAD modification level. Gene annotation
information, such as chromosome, gene types, and gene lengths were retrieved from
Ensembl (GRCh38.94) annotations. The violin plot, boxplot, bar plot, line chart and
scatter plot were generated by R package ggplot2 (v3.3.6)%.

Pathway enrichment analysis

Pathway enrichment analysis was performed using Metascape (v3.5)*. Pathways were
defined as the molecular pathways of Reactome, the biological process (BP) of GO, the
Kyoto Encyclopedia of Genes and Genomes (KEGG), the WikiPathways, the canonical
pathways of MSigDb, and the CORUM database. M etascape clustered enriched terms
into non-redundant groups based on similarities between terms and used the most
significant term within each cluster to represent the cluster. The resulting clusters of
pathways were manually reviewed. Enrichment was tested using the hypergeometric
test. Multiple hypothesis correction was performed with Benjamini-Hochberg
procedure, and the significance threshold was defined as a = 0.05.

Hierarchical clustering analysis

Hierarchical clustering with a Euclidean distance metric was performed for both rows
(NAD-RNASs, complete method) and columns (samples, ward’s method) on the scaled
NAD modification matrix. Clustering and corresponding heatmaps were generated by
R package Complex Heatmap (v2.12.1)%. Using cutree function with “k=3" parameter,
we identified 3 clusters of NAD-RNAs changing with age, ranging from 71 to 561
NAD-RNAs.

Trajectory analysis

To estimate NAD modification trajectories during aging, log NAD modification levels
were z-scored and LOESS regression was fitted for each gene. Similarly, log
expression levels were used to estimate the gene expression trajectories during aging.
The trgjectory of clusters was estimated using the median levels of genesin each
cluster. Pathways were queried as above to gain insights into the biological functions
of each cluster. Top five non-redundant enriched terms were shown. To identify
NAD-RNAs that correlated with age, we computed Spearman’s rank correlation
coefficients (rs) for each NAD-RNASs on the basis of NAD modification and age. The
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resulting correlation metrics was then filtered, such that only NAD-RNAs that were
significantly correlated with age (P < 0.05 and | rs | > 0.33) were considered. Similarly,
correlation between age and gene expression levels was computed.

Statistical analyses

All P values reported herein were calculated using the non-parametric Mann-Whitney
rank test unless otherwise stated.
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DATA AVAILABILITY

All high-throughput RNA sequencing data as well as transcript quantifications have
been deposited at the Gene Expression Omnibus under accession number GSE226636
(secure token for data review: mdctksagvhmndod). All source codes for data analysis
are available at GitHub (https://github.com/thereallda/lenONE-paper). enONE is
available as an R package on GitHub (https://github.com/thereallda/enONE).
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FIGURE LEGEND

Figure 1: The workflow of enONE. enONE starts with quality control to obtain
high-quality sequence reads by removing outliers and lowly-expressed genes. enONE
performs spike-in-based normalization that integrates global scaling and
regression-based procedures to generate normalization toolsets. Next, enONE uses
eight data-driven metrics to evaluate normalization performance. By exploiting the
full space of normalizations, enONE identifies the optimal procedure that maximally
removes unwanted variations, while minimally impacting the signals from
NAD-RNA-seq data.

Figure 2: Thefeasibility of enONE. (A) Aging Cohort and experiment outline. A
total of 61 participants (female/male = 31:30, age 23-67) were enrolled for
NAD-modified epitranscriptome profiling. Total RNAs from PBMCs were mixed
with Drosophila spike-in RNA, and two synthetic spike-in, of which one with 5%
NAD-capped forms and another with 100% m’G-capped forms. The mixture was
subjected to NAD-RNA-seq, followed by enONE computational analysis of
NAD-RNA profiles (highlighted in red). (B) PCA of the 1,000 least significantly
enriched genes (denoted as anchor set) from Drosophila spike-in counts. (C) Boxplot
showing the normalization performance based on anchor set of different sizes from
Drosophila spike-ins. (D) Fraction of the first two expression PCs variance explained
values (taken cumulatively) for linear regression model using enrichment variable as
the explanatory variable. PCs are computed from the variance stabilizing and
transformed matrix of spike-in counts. (E) enONE identified the top-ranked procedure
(DESeq_RUV(g_k4) from atotal of 96 procedures. Each point corresponds to a
normalization procedure and is colored by the performance score (mean of eight
scone performance metric ranks). The blue arrows correspond to the PCA loadings for
the performance metrics. The direction and length of a blue arrow can be interpreted
as ameasure of how much each metric contributed to the first two PCs. (F) Boxplot
showing performance score, stratified by scaling procedures. (G) Boxplot showing
performance score, stratified by regression-based procedures.

Figure 3: Performance assessment of different normalizations on spike-in
controls. (A) PCA of Drosophila spike-in counts from different procedures. (B) The
R of linear regression between batch effect and up to the first six PCs (taken
cumulatively). (C) Spearman correlation coefficients between the normalized counts
and batch effect. (D) The number of genes varied among bathes as inferred by
ANOVA (P < 0.01). (E) Boxplot showing the relative expression levels of synthetic
spike-ins with 5% NAD-caps and that with 100% m’G-caps from different methods.

Figure 4: enONE facilitates NAD-capped RNAs identification. (A) Barplot
showing the gene types of identified NAD-RNAs (n = 782) from human PBMCs. (B)
Circular bar plot showing the chromosomes distribution of identified NAD-RNAs. (C)
From five deciles based on enrichment, genes with short length and with fewer introns
tend to have increased modification of NAD. (D) Pathway analysis reveals the
biological processes of NAD-capped RNAs that are mainly involved in RNA
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metabolism, transcription, translation, and immune system. Grey dashed linein the
bar plot indicates the 0.05 P-value cutoff.

Figure 5: enONE reveals dynamics of NAD-capped RNAs during aging. (A)
Heatmap showing epitranscriptomic profiles from individuals across age groups (N =
61). Top bar represents the enrichment signals (Fold-Change > 2) in each sample. (B)
Unsupervised hierarchical clustering was used to group NAD-RNAs with similar
trajectory. Three major clusters were identified and the top five non-redundant
pathways were listed. The solid line and shaded region represent the smoothed
tragjectory and its 95% confidence intervals, respectively.

Figure 6: NAD-capped RNAs reflect the processes of aging. (A) Heatmap showing
aset of NAD-RNASs (n = 67) that highly associated with age. (B) Z-transformed,
smoothed trajectories of NAD-capping levels (in red) and expression levels (in black)
of selected genes were shown. The solid line and shaded region represent the
smoothed trajectory and its 95% confidence intervals, respectively.
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