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ABSTRACT  

The hub metabolite, nicotinamide adenine dinucleotide (NAD), can be used as an 
initiating nucleotide in RNA transcription to result in NAD-capped RNA (NAD-RNA). 
NAD-RNA that intimately connects metabolite with gene expression can be developed 
as novel biomarkers for aging and disease. Epitranscriptome-wide profiling of 
NAD-RNAs involves chemo-enzymatic labeling and affinity-based enrichment; yet 
currently available computational analysis cannot adequately remove variations 
associated with capture procedures. Here, we propose a spike-in-based normalization 
and data-driven evaluation framework, enONE, for the omic-level analysis of 
NAD-capped RNAs. We demonstrate that carefully designed spike-in RNAs, together 
with modular normalization procedures and evaluation metrics, can lead to the optimal 
normalization that maximally removes unwanted variations, empowering quantitative 
and comparative assessment of NAD-RNAs from different datasets. Using enONE and 
a human aging cohort, we reveal critical features of NAD-capped RNAs that occur with 
normal age. enONE facilitates the discovery of NAD-capped RNAs that are responsive 
to physiological changes, laying a critical foundation for functional investigations into 
this modification.  
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INTRODUCTION 

NAD, an adenine nucleotide containing metabolite, can be incorporated into the RNA 
5’-terminus to result in NAD-capped RNA (NAD-RNA)1,2, which is different from 
eukaryotic canonical cap structure predominantly formed by 7-methylguanosine (m7G) 
via a 5’-to-5’-triphosphate bridge (m7G-RNA)3,4. It has been estimated that 
NAD-capped forms make up more than 0.6% and 1.3% of the genes expressed in the 
entire transcriptome from mouse liver and kidney, respectively5. To capture such 
low-level capping events, the recently developed NAD-RNA identification methods 
involve the use of chemo-enzymatic reaction, followed by affinity-based 
enrichment6-8. However, the resulting high-throughput sequencing data can be 
hampered by the effect of capture procedures and other unwanted variations. Given 
these limitations, current computational methods cannot be directly applied to the 
omic-level assessment of NAD-capped RNAs.  

Normalization is an essential step to remove unwanted variations. 
N6-methyladenosine (m6A), a prevalent epitranscriptomic modification in RNA, has 
been extensively characterized in virus and eukaryotic organisms9. Computational 
tools for m6A-seq, e.g., RADAR10 and m6A-express11, employ a split scaling strategy 
that calculates scale factors for input and enrichment, respectively, to adjust the 
variations from enrichment procedures and sequencing depth. However, these 
analytical methods cannot properly account for the unwanted variation between 
samples with and without enrichment, thus challenging the identification of 
enrichment signals. More generally, current analyses of epitranscriptomic data are 
mostly based on normalization designed for bulk RNA-seq, e.g., scaling-based 
methods, such as Total Count (TC), Trimmed Mean of M values (TMM)12, and 
DESeq13. The implicit assumption underlying scaling-based methods is that all the 
gene-level counts are proportional to scale factors and that the between-sample 
variations can be adequately adjusted by scale factors. Unfortunately, this assumption 
is inevitably violated when affinity-based enrichment selectively amplifies the signal 
of genes, e.g., m6A and NAD-capping, which leads to disproportional gene counts 
between input and enrichment. Another regression-based method, Remove Unwanted 
Variation (RUV) 14, regress gene count measurements on unwanted factors, thus 
computing corrected expression values from the residuals. The implicit assumption 
underlying this method is that a set of negative controls, which are not affected by 
covariates of interest, is available, such as the spike-in from the External RNA 
Controls Consortium (ERCC). However, the ERCC-based method suffers from 
discrepancies between endogenous transcripts and spike-in, hindering its usage in 
omic-level profiling. Limited by current analytical methods, nuisance variations fail to 
be properly corrected for NAD-RNA sequencing data, thereby obscuring true 
biological signals.  

NAD-modified RNA connects metabolite with gene expression. NAD is the hub 
metabolite and redox regent for cells, involving in a wide range of biological 
processes15. In rodents and humans, studies have revealed that the NAD level declines 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.23.534034doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.23.534034
http://creativecommons.org/licenses/by-nc-nd/4.0/


with age in critical tissues and organs16. Given the dynamics of NAD and gene 
expression over the course of adult lifespan, NAD-capped RNAs, poised to integrate 
metabolomics and transcriptomics, may provide novel insights into physiological and 
perhaps pathological situations. Thus, it is tempting to explore how NAD-modified 
epitranscriptome is modulated with age. In the present study, we develop enONE 
framework for NAD-capped RNA analysis by spike-in-based omic-level 
normalization and evaluation. enONE integrates spike-in controls, global scaling, and 
regression-based normalizations, followed by performance evaluation that selects the 
local-optimal normalization method to remove unwanted variation. Using human 
aging cohort, we apply enONE to the identification of NAD-RNAs from circulating 
blood cells, revealing dynamics of NAD modification with age.  
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RESULTS 

The workflow of enONE 

Using exogenous spike-in RNAs, we designed a computational framework that 
integrates global scaling and regression-based normalization modules. We thereby 
named our analytical method enONE, for Epitranscriptional NAD-capped RNA 
analysis by spike-in-based Omic-level Normalization and Evaluation (Fig. 1).  

 enONE initiates with a quality control step, to remove outlier samples and 
low-expressed transcripts. Second, a subset of genes from spike-in RNAs, with their 
expressions presumably not being influenced by the covariates of interest (e.g., 
enrichment assay or biological condition), are used as the anchor set to estimate 
unwanted variation (e.g., batch effect). A generalized linear model (GLM) is then 
applied to regress the observed read counts from anchor set on the unknown nuisance 
variables to estimate factors that are subsequently used by the normalization tools for 
the adjustment of unwanted variation. Third, a two-part normalization template is 
employed to define an ensemble of the normalization procedures: 1) global scaling of 
read counts to account for between-sample difference in sequencing depth and other 
parameters of the read count distribution, and 2) regression-based adjustment for 
unwanted variations. For instance, one can apply a robust scaling procedure, such as 
TMM, followed by unsupervised procedures to estimate hidden unwanted variations 
and regress them out of the data (e.g., RUV14). Fourth, enONE comparatively 
analyzes all normalization toolsets to identify sets of top-performing procedures. 
Specifically, enONE calculates ranks based on eight performance metrics that 
represent the local-optimal trade-offs towards removing unwanted variation, 
preserving biological variation of interest, and maintaining minimum technical 
variability of global expression. Combined, enONE utilizes a data-driven approach to 
determine appropriate normalization procedures for the quantitative analysis of 
NAD-modified epitranscriptome.  

Epitranscriptomic profiling of human PBMCs 

To gain insights of NAD-modified epitranscriptome during aging, we collected 
human peripheral blood mononuclear cells (PBMCs) from an aging cohort in 
community subjects comprising of young (N = 23, age: 23-32), middle (N = 20, age: 
40-50), and old (N = 18, age: 54-67) individuals for epitranscriptome-wide profiling 
of NAD-RNAs (Fig. 2A), according to the inclusion criteria approved by the Ethics 
Committee. Clinical characteristics of the participants were evaluated and listed in 
Supplementary Table 1. As an essential component of enONE, we deliberately 
included three types of spike-in RNAs: 1) total RNAs from Drosophila melanogaster, 
an invertebrate model organism with well-annotated genome sequence; 2) synthetic 
RNAs, consisting of 5% NAD- relative to m7G-capped forms, were used to determine 
the capture sensitivity; 3) synthetic RNAs, with 100% m7G-capped forms, were used 
to determine the capture specificity (Fig. 2A). Notably, spike-ins 2 and 3 were 
synthesized with templates from different sequences. Combined, we subjected 10 μg 
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total RNAs from human PBMCs mixed with 40 μg total RNAs from Drosophila, 0.1 
ng spike-in 2 RNAs, and 0.1 ng spike-in 3 RNAs to NAD-RNA sequencing, followed 
by enONE computational analysis of NAD-RNA profiles.  

After quality control, we obtained an average about 49.2 million high-quality and 
uniquely mapped sequencing read pairs from each library (Supplementary Fig. 1A). 
Assessment of datasets corroborated that sequencing saturation has been reached 
(Supplementary Fig. 1B). Spike-in 2, which contained 5% NAD-capped forms, were 
significantly enriched, whereas no enrichment was found for spike-in 3 made up with 
100% m7G-RNA (Supplementary Fig. 1C). Above evidence highlighted the 
sensitivity and specificity of the enrichment experiment, as reflected by the 
enrichment of NAD, but not m7G, capped transcripts.  

The feasibility of enONE  

Since all samples were added with equal amounts of Drosophila spike-in RNAs, its 
disconcordance, if present, can be used to pinpoint the nuisance technical variation in 
an epitranscriptome-wide manner, and its concordance, on the other hand, can be used 
to validate the effect of normalization. To capture unwanted variation, i.e., batch 
effect, we use a set of genes (n = 1,000) whose expression patterns should be highly 
reproducible and now become differed among batches as the anchor set (Fig. 2B). In 
addition, we showed that normalization procedures were robust when the enrichment 
effect accounted for a small fraction of the anchor set variance, e.g., anchor set size 
ranged from 500 to 2,500 (Fig. 2C and 2D). With anchor set from Drosophila 
spike-in RNAs, we implemented enONE normalization procedures with five scaling 
toolsets, including TC, UQ, TMM, DESeq and PoissonSeq17, as well as three 
regression-based procedures, namely RUVg, RUVs, and RUVse. By integrating two 
normalization modules, we generated a total of 96 combinatorial procedures for the 
current data (Fig. 2E). By inspecting the full space of normalization performance 
metrics, we found that the top-ranked procedure involved DESeq scaling followed by 
RUVg adjustment for the first 4 factors of unwanted variation (Fig. 2F and 2G).  

To validate the effect of enONE normalization, we applied RUVg (k = 4), 
RADAR, and the enONE procedure on all three types of spike-in RNAs. Compared to 
other procedures, enONE normalization dramatically mitigated the batch effect of 
Drosophila spike-ins in both input and enrichment libraries, while preserving the 
enrichment signals (Fig. 3A). In Drosophila spike-ins, linear regression between the 
first six PCs cumulatively and batch effect showed that enONE removed the variation 
among batches compared to other methods (Fig. 3B). Analysis of correlation between 
the gene normalized counts from Drosophila spike-ins and batch variation revealed a 
large proportion of genes showing strong correlations with batch effect in raw and 
RADAR normalized datasets, whereas this correlation was mitigated in the enONE 
normalized dataset (Fig. 3C). ANOVA was performed on Drosophila spike-ins from 
different batches, demonstrating the number of genes affected by batch effect was 
significantly reduced by enONE (Fig. 3D). Additionally, enONE improved the 
concordance of synthetic spike-ins compared to other methods (Fig. 3E). By 
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employing the top-ranked normalization procedure on the analysis of PBMCs dataset, 
we noted that batch effect was mitigated while the enrichment covariates were 
well-preserved as illustrated by the first two principal components of PCA 
(Supplementary Fig. 1D). Together, these results demonstrated the capacity of 
enONE in removing unwanted variation while retaining the covariates of interest.  

Characterization of NAD-RNAs from human PBMCs 

We proceeded to set 2-fold enrichment of read counts as the cutoff, which led us to 
identify a total of 782 NAD-RNAs from human PBMCs (Fig. 4A and 
Supplementary Table 2-4). We then characterized these newly identified 
NAD-RNAs. In human PBMCs, NAD-capping mostly occurred on protein-encoding 
genes, but also extended to pseudogenes and non-coding RNAs, including lincRNA, 
snRNA, snoRNA, and miscRNA (Fig. 4A). NAD-RNAs were shown to be derived 
from genes localized on autosomes and X chromosomes, but not from the Y 
chromosome and the mitochondrion genome (Fig. 4B). By dividing NAD-RNAs into 
5 deciles based on enrichment, we observed that shorter genes and genes with fewer 
introns tended to have increased modification of NAD (Fig. 4C), a pattern consistent 
with our recent study in mouse livers8. To inspect NAD modification of genes 
associated with biological functions, we performed pathway enrichment analysis, 
which revealed that NAD-RNAs were mainly involved in RNA metabolism, 
translation, transcription, energy metabolism, and immune system (Fig. 4D and 
Supplementary Table 5).  

Age alters NAD-modified epitranscriptome  

To gain insights into how NAD-RNAs are modulated with age and its consequent 
impact on the progression of aging, we analyzed NAD-RNA profiles from all age 
groups. Interestingly, despite the fact that NAD decreases with age18, we found that 
the number of NAD-capping events tended to increase in aged human subjects (Fig. 
5A). To dissect this observation, we grouped age-associated trajectories into three 
major clusters using hierarchical clustering (Fig. 5B and Supplementary Table 6). 
Increased NAD modification was found for genes in cluster 1, with their function 
being involved in basic cellular events and adaptive immune response. In cluster 2, 
NAD-capping was increased in early age but later became plateaued; these genes 
were functionally enriched in oxidative stress and innate immune response. Genes 
associated with collagen production, protein phosphorylation, and TGF-β signaling 
pathway, which were ascribed as cluster 3, exhibited a decreased trend in NAD 
modification (Fig. 5B and Supplementary Table 7). Further analyses revealed that 
genes in cluster 3, with their expression and NAD-modification, were well-correlated, 
whereas genes in cluster 1 and 2 were less-correlated (Supplementary Fig. 2A and 
2B).  

By inspecting the correlation between NAD modification and age, we identified 
a set of NAD-RNAs that highly associated with age (n = 67) (Fig. 6A). Specifically, 
select NAD-RNAs, such as those involved in protein folding (PDIA3), protein 
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ubiquitination (SUMO1), and apoptosis (caspase 3 and 8), had increased capping with 
age (Supplementary Table 6); but the abundance at RNA transcript levels was not 
increased (Fig. 6B). In addition, NAD-capping of genes linked to mRNA decay 
(UPF2), calmodulin binding (NRGN), and TGF-β signaling pathway (TGFB1) were 
decreased during aging (Supplementary Table 6). The expression levels of UPF2 and 
NRGN also decreased during aging, while TGFB1 was increased (Fig. 6B). Together, 
our study revealed the first NAD-modified epitranscriptome from human PBMCs. 
Using enONE, we were able to pinpoint epitranscriptomic alteration of NAD-capping 
during the aging process.   
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DISCUSSION  

Incorporation of NAD, the hub metabolite and redox cofactor for cells, into RNA 
represents the crosstalk between metabolite and gene expression, defining a critical 
layer of epitranscriptomic regulation. The recently developed NAD-RNA sequencing 
technologies have substantially facilitated the epitranscriptome-wide identification of 
novel NAD-capped RNA across phyla19. However, since these methods require 
affinity-based enrichment, data normalizations borrowed from bulk RNA-seq could 
not be readily applied. In this study, we devise a general framework for spike-in-based 
epitranscriptome-wide NAD-RNA-seq data normalization and evaluation. Compared 
to previous epitranscriptome profiling with ERCC spike-ins, enONE includes 
Drosophila total RNA as spike-in to account for the effect of affinity-based 
enrichment in an epitranscriptome-wide manner. Scaling-based approaches have been 
extensively used in the analysis of epitranscriptome profiles, whereas we demonstrate 
that integration of global scaling and RUV strategies can optimize normalization 
performance (see Fig. 2G). Selection of the “best” normalization, however, might not 
be feasible in practice due to the subjective definition of optimality. Therefore, 
enONE emphasizes the choice of an appropriate strategy rather than the “best” 
normalization. Together, enONE is able to efficiently remove the impact of unwanted 
variations caused by affinity-based enrichment from the data. We highlight the 
application that enONE, an open-source R package, can be extended into the analysis 
of other types of epitranscriptomic sequencing data that involve step-wise enrichment 
procedures, e.g., m6A-seq.  

enONE facilitates the identification of NAD-RNAs. As a source of liquid biopsy, 
peripheral blood can serve as sentinel tissue to monitor individual health in a 
non-invasive manner. Identification of novel blood-derived features may open up new 
avenues in detection of biomarkers for various physiological and pathological 
conditions. Here we reveal prominent features of NAD-RNAs from human PBMCs. 
Large collections of NAD-RNAs are produced by protein-encoding genes, with their 
biological functions mainly involved in basic cellular events, such as translation, RNA 
metabolism, and transcription. Additionally, cell-specific NAD-RNAs are discovered, 
such as those involved in immune system. Thus far, yet the function of NAD-RNAs 
remains elusive, their dynamic changes may provide insights into how individuals 
respond to perturbations.  

We reveal the dynamics of NAD-modified epitranscriptome during aging. 
Though numerous studies have shown that NAD metabolite decreases with age16,18, 
our data demonstrate increased NAD-capping in elder population, suggesting that the 
addition or removal of 5’-terminus NAD moiety might not be solely dependent on the 
cellular reserve of NAD (see Fig. 5A). Notably, some of the age-associated 
NAD-RNAs are involved in molecular pathways profoundly impinging on the 
hallmarks of aging, such as ribosome biogenesis, immune system, and mitochondrial 
function20, thus defining a novel mechanistic component of the aging process. Yet, we 
acknowledge the limitation. Our human aging cohort is from the local community of 
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Shanghai, which does not represent the general population. Intriguingly, the overall 
number of NAD-RNAs from individual subjects is not simply correlated with age (see 
Fig. 5A), raising the possibility that additional age-associated factors might be linked. 
Since there is currently no gold standard measure of biological aging21, it is tempting 
to exploit how NAD-capped RNAs as biological implications might signify 
physiological and perhaps pathological conditions.  

Taken together, we propose enONE as a flexible, modular, and general 
framework for the normalization and evaluation of NAD-RNA sequencing data in a 
wide spectrum of biological contexts. To the best of our knowledge, enONE is the 
first computational approach for NAD-modified epitranscriptome profiles. Future 
characterization of NAD-capped RNAs, empowered by enONE, can focus on how 
biological processes regulate NAD modification through a quantitative lens, 
especially during the aging process.  
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Methods 

Ethics Statement 

The project was approved by the Medical Ethics Committee of Shanghai Changzheng 
Hospital (2022SL006). Informed consent was obtained from all subjects in 
accordance with the local research Ethics Committee guidelines.  

Study design and participants 

We conducted a cross-sectional study of natural aging in community subjects 
recruited from Shanghai Changzheng Hospital. The aging cohort consists of 31 
females and 30 males, aged from 23 to 67 years old. Inclusion criteria for cohort were: 
1) above 20 years old; 2) independently able to provide written informed consent. For 
comparative analysis of age-related subgroups, the cohort was divided into three age 
groups: Young (20-35 years old), Middle (36-50 years old), and Old (51 years old and 
above). Height and weight are measured by trained staff following standardized 
protocols. BMI (kg/m2) is derived from the calculation and stored for further analyses. 
After 5 minutes of rest in the seated position, blood pressure (mmHg) was measured 
three times with an automatic sphygmomanometer and the mean of the measurements 
was used for analysis. Blood samples were taken from all patients in the morning after 
they had been seated for 5 minutes. All participants had blood drawn using lithium 
heparin tubes (BD Vacutainer, catalog: 367884) by phlebotomists and consented to 
having their de-identified survey data made publicly available.  

Isolation of peripheral blood mononuclear cells (PBMCs) from whole blood  

For isolation of peripheral blood mononuclear cells (PBMCs), 5 mL whole blood was 
mixed with 630 μL OptiPrep (Sigma-Aldrich, catalog: D1556) and 500 μL solution C 
(0.85% (w/x) NaCl and 10 mM Tris-HCl, pH 7.4), followed by centrifugation at 4 °C 
and 1,300 g for 30 min. PBMCs were collected and mixed with two volumes of solution 
C, followed by centrifugation at 4 °C and 500 g for 10 min. Cell pellet was washed 
twice with 1 mL PBS. The suspension was used for NAD-RNA detection.  

In vitro transcription of NAD-RNA, and m7Gppp-RNA  

To assess the sensitivity of enrichment procedures, spike-in NAD-RNA (500 nt; 
sequence A) and m7Gppp-RNA (500 nt; sequence A) with identical sequence, 
oligonucleotide without adenine was synthesized (Genewiz) and were subjected to 
polyadenylation for poly(A) tails elongation (template sequence: 5′- 
TAATACGACTCACTATTATGGTGTGCTTGGGCGTGGTGCTGTTCTCCGGGG
TGGTGCCCTTCCTGGTCGTGCTGGTCGGCGTCGTTTTCGGCCTCTTGTTCTG
CGTGTCCGGCGTGGGCGTGGGCGTTGCCTCCTTCGGCTTGCTGTCCCTGTT
GTTCTTCTGCTCCTCCGGCTTGCTGCCCGTGCCCTGGCCCTCCCTCGTGTCC
TCCCTGTCCTTCGGCGTGCTGTGCTTCTGCCGCTTCCCCGTCCTCTTGTTGC
TGCTCGTCTTCTTCTTGTCCGCCTTGCCCGTTGGCTTCGTCCTGGTGCGCTC
CTTCTTCTTCTTGGTCGTCGGCTTCTTCTTGTCCCGCGCCGTGGTGTTGTTC
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GTGGGCGTCTCCCTGGTGTTCCGCTTCGTGCTGTTGGGCTTCGTCTTCTTGG
TGGTCGGCTTCTTCCTGGGGCTCTTGCTGGTGTTCTTCTTCTTCTGCCTCTT
CGTCTTTTTCTTGGCCGTCTTGCTGTTGTTCGGCTTCTTGGTGTTCTTCTT-3′; 
boldface letters denote the sequence of T7 class II promotor (�2.5)) and (anti-sense: 
5′- 
AAGAAGAACACCAAGAAGCCGAACAACAGCAAGACGGCCAAGAAAAAG
ACGAAGAGGCAGAAGAAGAAGAACACCAGCAAGAGCCCCAGGAAGAAG
CCGACCACCAAGAAGACGAAGCCCAACAGCACGAAGCGGAACACCAGGG
AGACGCCCACGAACAACACCACGGCGCGGGACAAGAAGAAGCCGACGAC
CAAGAAGAAGAAGGAGCGCACCAGGACGAAGCCAACGGGCAAGGCGGA
CAAGAAGAAGACGAGCAGCAACAAGAGGACGGGGAAGCGGCAGAAGCA
CAGCACGCCGAAGGACAGGGAGGACACGAGGGAGGGCCAGGGCACGGG
CAGCAAGCCGGAGGAGCAGAAGAACAACAGGGACAGCAAGCCGAAGGA
GGCAACGCCCACGCCCACGCCGGACACGCAGAACAAGAGGCCGAAAACG
ACGCCGACCAGCACGACCAGGAAGGGCACCACCCCGGAGAACAGCACCA
CGCCCAAGCACACCATAATAGTGAGTCGTATTA-3′). To assess the specificity of 
enrichment procedures, spike-in m7Gppp-RNA (500 nt; sequence B) oligonucleotide 
was synthesized (Genewiz) and were subjected to polyadenylation for poly(A) tails 
elongation (template sequence: 5′- 
TAATACGACTCACTATTACATGGAGGGCTCCGTGAACGGCCACGAGTTCG
AGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGC
CAAGCTGAAGGTGACCAAGGGTGGCCCCCTGCCCTTCGCCTGGGACATCC
TGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTACGTGAAGCACCCCGCCG
ACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGC
GCGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGACCCAGGACTCC
TCCCTGCAGGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCACCAA
CTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGG
CCTCCTCCGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATC
AAGCAGAGGCTGAAGCTGAAGGACGGCGGCCACTACGACGCTGAGGTCA
AGACCACCTACAAGGCCA-3′; boldface letters denote the sequence of T7 class II 
promotor (�2.5)) and (anti-sense: 5′- 
TGGCCTTGTAGGTGGTCTTGACCTCAGCGTCGTAGTGGCCGCCGTCCTTCA
GCTTCAGCCTCTGCTTGATCTCGCCCTTCAGGGCGCCGTCCTCGGGGTACA
TCCGCTCGGAGGAGGCCTCCCAGCCCATGGTCTTCTTCTGCATTACGGGGC
CGTCGGAGGGGAAGTTGGTGCCGCGCAGCTTCACCTTGTAGAT 
GAACTCGCCGTCCTGCAGGGAGGAGTCCTGGGTCACGGTCACCACGCCGC
CGTCCTCGAAGTTCATCACGCGCTCCCACTTGAAGCCCTCGGGGAAGGAC
AGCTTCAAGTAGTCGGGGATGTCGGCGGGGTGCTTCACGTAGGCCTTGGA
GCCGTACATGAACTGAGGGGACAGGATGTCCCAGGCGAAGGGCAGGGGG
CCACCCTTGGTCACCTTCAGCTTGGCGGTCTGGGTGCCCTCGTAGGGGCGG
CCCTCGCCCTCGCCCTCGATCTCGAACTCGTGGCCGTTCACGGAGCCCTCC
ATGTAATAGTGAGTCGTATTA-3′). For in vitro transcription, 10 μM of 
double-stranded DNA (dsDNA) template in 100 μL transcription buffer (Promega, 
catalog: P1300), along with 1 mM of each of GTP, CTP and UTP, with 4 mM NAD (for 
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NAD-RNA) or 4 mM m7GpppA (New England Biolabs, catalog: S1406S) (for 
m7G-RNA), 10 μL of T7 RNA polymerase (Promega, catalog: P1300), 5% DMSO, 5 
mM DTT and 2.5-unit RNase inhibitor were added and the transcription mixture was 
incubated at 37 °C for 4 h. The reaction was incubated with 11-unit DNase I (Promega, 
catalog: P1300) at 37 °C for 30 min to remove the DNA template. RNA was then 
extracted using acid phenol/chloroform and precipitated with isopropanol (with 0.3 M 
sodium acetate, pH 5.5) at -80 °C overnight. The RNA pellet was washed twice with 75% 
ethanol, air-dried, re-dissolved in DEPC-treated H2O, and stored at -80 °C.  

NAD-capped RNA sequencing 

Total RNAs from human PBMCs and total RNAs from Drosophila (spike-in) were 
prepared in accordance with the manufacturer’s instruction (Takara Bio, catalog: 9108). 
Total RNAs (10 μg) from human PBMCs were mixed with 40 μg Drosophila RNA 
(spike-in 1), 0.1 ng synthetic RNAs (spike-in 2: 5% NAD-RNA/95% m7G-RNA; 
sequence A), and 0.1 ng synthetic RNAs (spike-in 3: 100% m7G-RNA; sequence B). 
The mixture of total RNAs and spike-in RNAs was incubated with 100 mM HEEB (1 
M stock in DMSO) with ADPRC (25 μg/mL) in 100 μL of ADPRC reaction buffer (50 
mM Na-HEPES pH 7.0, 5 mM MgCl2) at 37 °C for 1 h, followed by NudC-catalyzed 
NAD-RNA elution. 100 μL of DEPC-treated H2O was then added and acid phenol/ether 
extraction was performed to stop the reaction. RNAs were precipitated by ethanol, and 
re-dissolved in 100 μL of DEPC-treated H2O. 5 μL of biotinylated RNAs were kept as 
input. After HEEB reaction, biotinylated RNAs were incubated with streptavidin bead 
particles (6 μL, MedChemExpress, catalog: HY-K0208) and 0.4 U/μL of RNase 
Inhibitor (Takara Bio, catalog: 2313B) at 25 °C for 30 min. Beads were washed four 
times with streptavidin wash buffer (50 mM Tris-HCl (pH 7.4) and 8 M urea), and three 
times with DEPC-treated H2O. To ensure complete elution, biotin-conjugated RNAs 
were replaced from streptavidin beads by incubating with 1 mM biotin buffer (20 μL, 
Sigma-Aldrich, catalog: B4639) at 94 °C for 8 min, followed by incubation with 500 
nM NudC (New England Biolabs, catalog: M0607S) in 25 μL of NudC reaction buffer 
(100 mM NaCl, 50 mM Tris-HCl pH 7.9, 10 mM MgCl2, 100 µg/ml Recombinant 
Albumin) at 37 °C for 30 min. After NudC treatment, biotinylated-RNAs that are 
resistant to NudC catalysis, potentially derived from contaminating m7G-RNAs, were 
retained on beads by incubation with high-capacity streptavidin particle (20 μL, 
Thermo Fisher Scientific, catalog: 20357) at 25 °C for 30 min. Eluted RNAs in the 
supernatant were used for next step. Input (see above) and NudC-eluted RNAs were 
used for NGS library construction, in accordance with the manufacturer’s instructions 
(mRNA-seq Lib Prep Kit for Illumina, Abclonal, catalog: RK20302). Library quality 
was assessed by Bioanalyzer 2100 (Agilent, United States), and quantification was 
performed by qRT-PCR with a reference to a standard library. Libraries were pooled 
together in equimolar amounts to a final 2 nM concentration and denatured with 0.1 M 
NaOH (Sigma, catalog: 72068). Libraries were sequenced on the Illumina NovaSeq 
6000 system (paired end; 150 bp).  

High-throughput sequencing data analysis 
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All sequencing reads were processed with Trim Galore (v0.6.6)22 with the parameters 
“--nextseq 30 --paired” to remove the adapter sequences (AGATCGGAAGAGC) from 
NovaSeq-platforms, and reads longer than 20 bp were kept. Reads that passed the 
quality control procedure were kept and mapped to the Homo sapiens genome 
(GRCh38) and Drosophila melanogaster genome (dmel-all-chromosome-r6.36) using 
STAR (v2.7.6a)23 with default parameters, respectively. Uniquely mapped read pairs 
were counted against annotations from Homo sapiens (Ensembl: GRCh38.94) and 
Drosophila melanogaster (Flybase: dmel-all-r6.36) using featureCounts (v2.0.1)24 with 
parameters “-p -B -C” and summarized as gene-level counts, respectively. Sequencing 
saturation was assessed by randomly subsampling the original libraries and examined 
the corresponding changes in the number of genes, derived from human genome, with 
more than 10 read counts.  

enONE workflow 

enONE is implemented in R and publicly available at 
https://github.com/thereallda/enONE. enONE workflow consists of four steps: 1. 
Quality control; 2. Gene set selection; 3. Normalization procedures; 4. Normalization 
performance assessment. By “log” transformation, we generally refer to the log2(x+1) 
function unless otherwise stated. Below, steps are shown in details.  

1. Quality control 

The goal of quality control was to remove problematic or noisy observations from 
downstream analysis. In this study, we used sample and gene filtering to control data 
quality. To assess outliers, we applied Rosner’s outlier test on principal component 1. 
Principle component analysis (PCA) was performed with prcomp function on the top 
20,000 genes based on a transformed counts matrix by vst function from R package 
DESeq2 (v1.36.0)13. All samples were kept for subsequent analysis. To keep 
well-detected genes across samples, we used filterByExpr function from the R 
package edgeR (v3.38.4)25 with parameter “min.count=20”. All ribosomal RNA 
encoded genes and TEC genes were excluded.  

2. Gene set selection  

enONE defined three sets of control genes for adjustment of the unwanted variations, 
evaluation of the unwanted variations, and evaluation of the wanted variations, 
respectively. For adjustment of the unwanted variation, we defined the 1,000 least 
significantly enriched genes in Drosophila spike-ins, ranked by FDR values, as 
negative control genes. Since the effect of affinity-based enrichment was the known 
covariate of interest, we used these genes, that were not affected by the enrichment 
effect, to compute the unwanted variation in the subsequent RUV procedure. For 
evaluation of the unwanted variation, we defined the 500 least significantly varied 
genes in human, ranked by FDR values, as negative evaluation genes. We performed 
differential analysis test across all covariates of interest to determine genes with 
constant expression levels. Since the variation of constant genes could reflect the 
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handling effects, those genes could be used to evaluate the removal of unwanted 
variation in the subsequent normalization evaluation step. For evaluation of the 
wanted variation, we defined the 500 most significantly enriched genes in human, 
ranked by FDR values, as positive evaluation genes. We performed differential 
analysis test between enrichment and input samples in human to determine genes 
affected by enrichment procedures. Those genes were used to evaluate the 
preservation of wanted variation in the subsequent normalization evaluation step.  

3. Normalization procedures 

enONE implemented global scaling and regression-based methods for the generation of 
normalization procedures. For the global scaling normalization procedures, gene-level 
read counts were scaled by a sample-wise scale factor. Five different scaling procedures 
were implemented, including: 1) Total Count (TC): The scale factor was defined as the 
sum of the read counts across all genes. 2) Upper-Quartile (UQ): The scale factor was 
defined as the upper-quartile of the gene-level count distribution. 3) TMM12: The 
scale factor was based on a robust estimate of the overall expression fold change 
between the sample and a reference sample. TMM was performed by the 
calcNormFactors function from R package edgeR with parameter: method = “TMM”. 
The default behavior used here is that the selected reference sample has an upper 
quartile closest to the mean upper quartile of all samples. 4) DESeq13: The scale factor 
for a given sample was defined as the median fold-change between the samples and a 
pseudo-reference sample whose counts were defined as the geometric means of the 
counts across samples. This method was performed by the calcNormFactors function 
from R package edgeR with parameter: method = “RLE”. Note that the method 
discarded any gene having zero count in at least one sample. 5) PoissonSeq: The scale 
factor was based on an iterative estimate of sequencing depth from a subset of genes, 
defined by a Poisson goodness-of-fit statistics17. By default, this method discarded 
genes with less than 5 read counts.  

For the regression-based procedures, enONE considered the following 
generalized linear model (GLM), which allows adjustment for factors of unwanted 
variation:  

 �����|�,	,
�� 
 �� � 	� � 
, �1� 

where Y was the n x J matrix of gene-level read counts, X was an n x M design matrix 
corresponding to the M covariates of interest of ‘‘wanted variation’’ (e.g., treatment) 
and β its associated M x J matrix of parameters of interest, W was an n x K matrix 
corresponding to unknown factors of unwanted variation and α its associated K x J 
matrix of nuisance parameters, O was an n x J matrix of offsets that can either be set 
to zero or estimated with other normalization procedure (such as TMM normalization), 
and g was a link function.  

The unwanted variation W can be estimated by singular value decomposition 
(SVD) using main approaches as implemented in R package RUVSeq (v1.30.0)14. In 
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this study, we used three variants of RUV, including: 1) RUVg: estimated the factors 
of unwanted variation based on negative control genes, assumed to have constant 
expression across all samples (β=0), as applied in RUV. 2) RUVs: estimated the 
factors of unwanted variation based on negative control genes from the replicate 
samples (e.g., replicates in each treatment group) for which the covariates of interest 
were constant (β=0), as applied in RUV. 3) RUVse: was a modification of RUVs. It 
estimated the factors of unwanted variation based on negative control genes from the 
replicate samples in each assay group (i.e., enrichment and input), for which the 
enrichment effect was assumed to be constant.  

4. Normalization performance evaluation 

To evaluate the performance of normalization, we leveraged eight normalization 
performance metrics that related to different aspects of gene expression measures26.  

  The following four metrics evaluated normalization procedures based on how well 
the samples can be clustered according to factors of wanted and unwanted variation. 
Clustering by wanted factors was desirable, while clustering by unwanted factors was 
undesirable. As clustering measurements, we used silhouette widths. For any 
clustering of n samples, the silhouette width of sample i was defined as:  

 
������ 


���� � ����

max�����, �����
� ��1,1�, 

�2� 

where a(i) denoted the average distance (by default, Euclidean distance over the first 
three PCs of expression measures) between the ith sample and all other samples in the 
cluster to which i was assigned and b(i) denoted the minimum average distance 
between the ith sample and samples in other clusters. The larger the silhouette widths, 
the better the clustering. Thus, the average silhouette width across all n samples 
provides an overall quality measure for a given clustering. Silhouette width was 
calculated with the silhouette function from R package cluster (v2.1.3). These metrics 
were defined as follows: 1) BIO_SIM: Group the n samples according to the value of 
a categorical covariate of interest (e.g., age group or treatment) and compute the 
average silhouette width for the resulting clustering. 2) BATCH_SIM: Group the n 
samples according to the batch and compute the average silhouette width for the 
resulting clustering. 3) EN_SIM: Group the n samples according to the assay (e.g., 
enrichment or input) and compute the average silhouette width for the resulting 
clustering. 4) PAM_SIM: Cluster the n samples using partitioning around medoids 
(PAM) for a range of numbers of clusters and compute the maximum average 
silhouette width for these clusters. PAM clustering was done by the pamk function 
from R package fpc (v2.2-9). Large values of BIO_SIM, EN_SIM and PAM_SIM and 
low values of BATCH_SIM were desirable.  

The next two metrics evaluated the association of log-count principal 
components (by default, the first 3 PCs) with “evaluation” principal components of 
wanted or unwanted variation. 1) UV_COR: The weighted coefficient of 
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determination � � for the regression of log-count principal components on factors of 
unwanted variation (UV) derived from negative evaluation genes. The submatrix of 
log-transformed unnormalized counts for negative evaluation genes is row-centered 
and scaled and factors of unwanted variation are defined as the right-singular vectors 
as computed by the svd function. 2) WV_COR: The weighted coefficient of 
determination � � for the regression of log-count principal components on factors of 
wanted variation (WV) derived from positive evaluation genes. The WV factors were 
computed in the same way as the UV factors above, but with positive instead of 
negative evaluation genes. Large values of WV_COR and low values of UV_COR 
were desirable.  

The weighted coefficients of determination were computed as follows. For each 
type of evaluation criterion (i.e., UV, or WV), regressed each expression PC on all 
supplied evaluation PCs. Denoted SSTk as the total sum of squares, SSRk as the 
regression sum of squares, and SSEk as the residual sum of squares for the regression 
for the kth expression PC. The coefficient of determination was defined as:  
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and weighted average coefficient of determination as:  
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The next two metrics evaluated the similarity of gene expression distributions. 
We defined gene-level relative log-expression (RLE) measures, as log-ratios of read 
counts to median read counts across samples, for comparing distribution of gene 
expression. RLE was defined as follows:  
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for gene i in sample j. For similar distributions, the RLE should be centered around 
zero and have a similar distribution across samples. Thus, the metrics were defined as 
follows: 1) RLE_MED: Mean squared median RLE. 2) RLE_IQR: Variance of 
inter-quartile range (IQR) of RLE. Low values of RLE_MED and RLE_IQR were 
desirable.  

In the enONE framework, the expression measures were normalized according to 
a set of methods (including raw counts) and the eight metrics above were computed 
for each dataset. The performance assessment results can be visualized using biplots 
and the normalization procedures were ranked based on a function of the performance 
metrics. In particular, enONE defined a performance score by orienting the metrics 
(multiplying by ±1) so that large values correspond to good performance, ranking 
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procedures by each metric, and averaging the ranks across metrics.  

Quantitative NAD-RNA-seq data analysis  

To identify NAD-RNA from sequencing data, we performed differential analysis using 
FindEnrichment function from enONE package. Significance of logarithmic fold 
changes was determined by a likelihood ratio test to approximate P values, and genes 
were adjusted for multiple testing using the Benjamini-Hochberg procedure to yield a 
false discovery rate (FDR). NAD-RNAs were defined as fold change of normalized 
transcript counts ≥ 2, FDR < 0.05, and log2-CPM ≥ 1 in enrichment samples compared 
to those in input samples. The fold change of normalized counts between pairwise 
enrichment and input sample was denoted as NAD modification level. Gene annotation 
information, such as chromosome, gene types, and gene lengths were retrieved from 
Ensembl (GRCh38.94) annotations. The violin plot, boxplot, bar plot, line chart and 
scatter plot were generated by R package ggplot2 (v3.3.6)27.  

Pathway enrichment analysis  

Pathway enrichment analysis was performed using Metascape (v3.5)28. Pathways were 
defined as the molecular pathways of Reactome, the biological process (BP) of GO, the 
Kyoto Encyclopedia of Genes and Genomes (KEGG), the WikiPathways, the canonical 
pathways of MSigDb, and the CORUM database. Metascape clustered enriched terms 
into non-redundant groups based on similarities between terms and used the most 
significant term within each cluster to represent the cluster. The resulting clusters of 
pathways were manually reviewed. Enrichment was tested using the hypergeometric 
test. Multiple hypothesis correction was performed with Benjamini-Hochberg 
procedure, and the significance threshold was defined as α = 0.05.  

Hierarchical clustering analysis  

Hierarchical clustering with a Euclidean distance metric was performed for both rows 
(NAD-RNAs, complete method) and columns (samples, ward’s method) on the scaled 
NAD modification matrix. Clustering and corresponding heatmaps were generated by 
R package Complex Heatmap (v2.12.1)29. Using cutree function with “k=3” parameter, 
we identified 3 clusters of NAD-RNAs changing with age, ranging from 71 to 561 
NAD-RNAs.  

Trajectory analysis  

To estimate NAD modification trajectories during aging, log NAD modification levels 
were z-scored and LOESS regression was fitted for each gene. Similarly, log 
expression levels were used to estimate the gene expression trajectories during aging. 
The trajectory of clusters was estimated using the median levels of genes in each 
cluster. Pathways were queried as above to gain insights into the biological functions 
of each cluster. Top five non-redundant enriched terms were shown. To identify 
NAD-RNAs that correlated with age, we computed Spearman’s rank correlation 
coefficients (rs) for each NAD-RNAs on the basis of NAD modification and age. The 
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resulting correlation metrics was then filtered, such that only NAD-RNAs that were 
significantly correlated with age (P < 0.05 and | rs | ≥ 0.33) were considered. Similarly, 
correlation between age and gene expression levels was computed.  

Statistical analyses  

All P values reported herein were calculated using the non-parametric Mann-Whitney 
rank test unless otherwise stated.  
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DATA AVAILABILITY 

All high-throughput RNA sequencing data as well as transcript quantifications have 
been deposited at the Gene Expression Omnibus under accession number GSE226636 
(secure token for data review: mdctksagvhmndod). All source codes for data analysis 
are available at GitHub (https://github.com/thereallda/enONE-paper). enONE is 
available as an R package on GitHub (https://github.com/thereallda/enONE).  
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FIGURE LEGEND 

Figure 1: The workflow of enONE. enONE starts with quality control to obtain 
high-quality sequence reads by removing outliers and lowly-expressed genes. enONE 
performs spike-in-based normalization that integrates global scaling and 
regression-based procedures to generate normalization toolsets. Next, enONE uses 
eight data-driven metrics to evaluate normalization performance. By exploiting the 
full space of normalizations, enONE identifies the optimal procedure that maximally 
removes unwanted variations, while minimally impacting the signals from 
NAD-RNA-seq data.  

Figure 2: The feasibility of enONE. (A) Aging Cohort and experiment outline. A 
total of 61 participants (female/male = 31:30, age 23-67) were enrolled for 
NAD-modified epitranscriptome profiling. Total RNAs from PBMCs were mixed 
with Drosophila spike-in RNA, and two synthetic spike-in, of which one with 5% 
NAD-capped forms and another with 100% m7G-capped forms. The mixture was 
subjected to NAD-RNA-seq, followed by enONE computational analysis of 
NAD-RNA profiles (highlighted in red). (B) PCA of the 1,000 least significantly 
enriched genes (denoted as anchor set) from Drosophila spike-in counts. (C) Boxplot 
showing the normalization performance based on anchor set of different sizes from 
Drosophila spike-ins. (D) Fraction of the first two expression PCs variance explained 
values (taken cumulatively) for linear regression model using enrichment variable as 
the explanatory variable. PCs are computed from the variance stabilizing and 
transformed matrix of spike-in counts. (E) enONE identified the top-ranked procedure 
(DESeq_RUVg_k4) from a total of 96 procedures. Each point corresponds to a 
normalization procedure and is colored by the performance score (mean of eight 
scone performance metric ranks). The blue arrows correspond to the PCA loadings for 
the performance metrics. The direction and length of a blue arrow can be interpreted 
as a measure of how much each metric contributed to the first two PCs. (F) Boxplot 
showing performance score, stratified by scaling procedures. (G) Boxplot showing 
performance score, stratified by regression-based procedures.  

Figure 3: Performance assessment of different normalizations on spike-in 
controls. (A) PCA of Drosophila spike-in counts from different procedures. (B) The 
R2 of linear regression between batch effect and up to the first six PCs (taken 
cumulatively). (C) Spearman correlation coefficients between the normalized counts 
and batch effect. (D) The number of genes varied among bathes as inferred by 
ANOVA (P < 0.01). (E) Boxplot showing the relative expression levels of synthetic 
spike-ins with 5% NAD-caps and that with 100% m7G-caps from different methods.  

Figure 4: enONE facilitates NAD-capped RNAs identification. (A) Barplot 
showing the gene types of identified NAD-RNAs (n = 782) from human PBMCs. (B) 
Circular bar plot showing the chromosomes distribution of identified NAD-RNAs. (C) 
From five deciles based on enrichment, genes with short length and with fewer introns 
tend to have increased modification of NAD. (D) Pathway analysis reveals the 
biological processes of NAD-capped RNAs that are mainly involved in RNA 
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metabolism, transcription, translation, and immune system. Grey dashed line in the 
bar plot indicates the 0.05 P-value cutoff.  

Figure 5: enONE reveals dynamics of NAD-capped RNAs during aging. (A) 
Heatmap showing epitranscriptomic profiles from individuals across age groups (N = 
61). Top bar represents the enrichment signals (Fold-Change ≥ 2) in each sample. (B) 
Unsupervised hierarchical clustering was used to group NAD-RNAs with similar 
trajectory. Three major clusters were identified and the top five non-redundant 
pathways were listed. The solid line and shaded region represent the smoothed 
trajectory and its 95% confidence intervals, respectively.  

Figure 6: NAD-capped RNAs reflect the processes of aging. (A) Heatmap showing 
a set of NAD-RNAs (n = 67) that highly associated with age. (B) Z-transformed, 
smoothed trajectories of NAD-capping levels (in red) and expression levels (in black) 
of selected genes were shown. The solid line and shaded region represent the 
smoothed trajectory and its 95% confidence intervals, respectively.  
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