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Abstract  

Deciphering the striatal interneuron diversity is key to understanding the basal 
ganglia circuit and to untangle the complex neurological and psychiatric diseases 
affecting this brain structure. We performed single-nucleus RNA-sequencing 
(snRNA-seq) of postmortem human caudate nucleus (CN) and putamen (Pu) 
samples to elucidate the diversity and abundance of interneuron populations and 
their transcriptional structure in the human dorsal striatum. We propose a new 
taxonomy of striatal interneurons with eight main classes. We provide specific 
markers for all subclasses and validated some of them with quantitative in situ 
fluorescence hybridization, such as a novel PTHLH-expressing population that 
exhibits different abundance and gene expression between CN and Pu. For the 
most abundant interneuron populations in human striatum, PTHLH and TAC3, we 
found matching known mouse interneuron populations based on key functional 
genes such as ion channels and synaptic receptors. Remarkably, human TAC3 and 
mouse Th populations share important similarities including the expression of the 
neuropeptide tachykinin 3. Finally, we were able to integrate our dataset with 
several prior smaller human striatal snRNA-seq studies, thus supporting the 
generalizability of this new harmonized taxonomy. 
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Introduction 

The dorsal striatum is a subcortical brain structure that in human consists of caudate nucleus 
(CN) and putamen (Pu), separated by the internal capsule. Together with the ventral striatum 
(nucleus accumbens and olfactory tubercle), the globus pallidus, the subthalamic nucleus, and 
the substantia nigra, it makes up the basal ganglia nuclei1. The striatum carries out functions 
related to motor control, action learning, reward-related behavior, and cognition with certain 
regional preferences. The CN is mainly responsible for eye movement and cognitive functions, 
the Pu for motor control, learning and auditory responses, and the ventral striatum is related to 
limbic functions such as reward and motivation. Dysfunction of the striatum is a key feature of 
neurodegenerative disorders such as Parkinson's and Huntington’s diseases2,3,4,5 as well as of 
psychiatric conditions such as obsessive-compulsive disorder and schizophrenia6,7,8. 

The dorsal striatum is the main input area of the basal ganglia and exhibits a high level of activity-
dependent synaptic plasticity9, representing a critical hub for the process and selection of 
information sent to the other basal ganglia nuclei. This information is relayed through the 
projecting neurons, known as medium spiny neurons (MSNs) because of their morphological 
features10. MSNs, which are characterized by their inhibitory signaling via gamma-aminobutyric 
acid (GABA), constitute the majority of the striatal neuronal population. However, their function 
depends on a diverse group of locally-projecting neurons known as interneurons. 

Striatal interneurons integrate incoming information from different brain areas and act on MSNs 
activity to modulate the output information. This filtering process is also regulated by incoming 
dopaminergic and serotonergic projections from the midbrain and the dorsal raphe nucleus, 
respectively11,12. The aspiny striatal interneurons have been classically differentiated into two 
main groups: a small group of cholinergic giant neurons and a diverse population of GABAergic 
medium size neurons, based on a variety of specific markers and electrophysiological 
profiles13,14,15. Because the striatal interneurons have received little attention compared to the 
MSNs, consensus regarding the populations comprising these neuronal groups and how to 
identify them is lacking. However, recent advances such as new transgenic reporter mice that 
target to the complete striatal and cortical interneuron repertoire15,16, and single cell/nucleus RNA-
sequencing (sc/nRNA-seq) have enabled large-scale approaches to investigate cell diversity 
based on the individual cell transcriptome17,18,19 in different mouse brain areas including the 
striatum 20,21,22. Using these methods, a recent study identified seven interneuron populations in 
the mouse striatum based on their molecular and electrophysiological profile: Npy/Sst, Npy/Mia, 
Cck/Vip, Cck, Chat, Th, and Pthlh 20. The Pthlh-expressing interneurons represent a novel class 
on striatal interneurons that is characterized by a variable Pvalb expression level and a broad 
continuum of intrinsic electrophysiological properties, which correlates with Pvalb levels20. This 
continuum seems to follow a regional gradient pattern within the mouse dorsal striatum 
suggesting that the different types of striatal cells receive inputs from different brain cortical areas 
23. 

However, interneuron diversity in the human CN and Pu in terms of abundance and molecular 
identity remains unsolved. Most of the studies are limited by the technical approach because they 
have relied on the classical markers to identify interneuron populations and focused primarily on 
the cholinergic cells, expressing choline acetyltransferase (ChAT)24,25,26. Prior snRNA-seq studies 
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on the human and non-human primate striatum have highlighted different aspects, such as broad 
differences across species and brain areas27,28 or in health vs. disease29, but lack sufficient 
interneuron sampling to characterize striatal interneuron diversity. In the present study, we have 
used snRNA-seq to investigate the diversity of interneurons on the human dorsal striatum (CN 
and Pu) from a total of 28 donors comprising nearly half a million nuclei overall, by far the largest 
study of this kind to date. We have leveraged this large dataset to establish the major and minor 
divisions between the interneuron classes and types in both regions and provide specific markers 
for each. We have validated part of our classification in tissue sections, confirming novel 
populations and markers (such as PTHLH, PVALB, and DACH1), identified differences between 
CN and Pu, and demonstrated an internal gradient structure within cell subclasses. Moreover, we 
have discovered key synapse-related genes in our taxonomy and described the consistency link 
between mouse and human PTHLH and TAC3 classes. Our taxonomy resisted the test of a 
comparison with prior human striatal snRNA-seq datasets, supporting efforts toward a new 
consensus classification of striatal interneurons. 

 

Results 

Interneuron heterogeneity in the human dorsal striatum 

With the objective to further decode the diversity of interneurons in the human dorsal striatum, we 
isolated and sequenced single nuclei from fresh frozen CN (N = 25) and Pu (N = 28) samples of 
28 neurotypical donors (Supplementary table 1). Samples were processed using an established 
snRNA-seq workflow, which allowed the enrichment of neuronal population by applying 
fluorescent-activated nuclei sorting. A subset of six Pu samples was additionally utilized in high-
sensitivity fluorescent in situ hybridization (FISH) experiments to validate RNA expression 
patterns in tissue sections (Figure 1A). 

The sequencing yielded 455,886 nuclei, out of which we discarded 29.4% after a quality control 
pipeline (Supplementary figure 1). From the remaining nuclei, we selected the interneurons 
through an iterative classification process in which we discarded glial cells, MSNs, and excitatory 
neurons based on bona-fide markers—astrocytes (AQP4, ADGRV1), microglia (CSF1R, FYB1), 
oligodendrocytes (MBP, MOG, MAG), oligodendrocyte precursor cells (PTPRZ1, PDGFRA, 
VCAN), vascular cells (EBF1, ABCB1, ABCA9), MSNs (PPP1R1B, DRD1, DRD2), and excitatory 
neurons (SLC17A7)—and selected positively for nuclei expressing GAD1 and/or GAD2. This 
classification process resulted in 19,339 nuclei labeled as interneurons, representing the largest 
dataset of the human dorsal striatal interneurons available to date. The interneuron populations 
represented 10.67 % of the total neuronal cells. 

After clustering the data, we identified eight main interneuron classes: CCK/VIP (ADARB2+, 
CCK+, and VIP+), CCK (ADARB2+ and CCK+), PVALB (PVALB+), SST/GRIK3 (SST+ and 
GRIK3+), SST/NPY (SST+ and NPY+), PTHLH (PTHLH+ and OPN3+), CHAT (CHAT+ and 
SLC5A7+) and TAC3 (TAC3+ and PTPRK+) (Figure 1B), which could be divided into fourteen 
different subclasses identified by unique transcriptomic patterns (Figure 1C, D). The complete 
results of a differential expression analysis at class and subclass levels are provided in 
Supplementary table 2. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2023. ; https://doi.org/10.1101/2023.03.22.533839doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.22.533839
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

In our dataset, PTHLH and TAC3 constitute the largest interneuron classes, accounting for 28% 
and 28.6% of all detected interneurons, respectively. Both PTHLH and TAC3 contained small 
subclasses, distinguishable from the main type by the expression of MOXD1 and SEMA3A, 
respectively. The ADARB2+ population (CCK and CCK/VIP classes) was equally abundant 
(28.1% of all interneurons), but exhibited a higher heterogeneity, with four subclasses clearly 
differentiated by specific marker genes. Although we followed the classical division between CCK 
and CCK/VIP, we observed that the ADARB2+ neurons could also be divided by the expression 
of the chemokine ligand CXCL14 and the cadherin CDH10 (Supplementary figure 2). We also 
found a great diversity of transcriptomic profiles among the neurons expressing PVALB and SST, 
as these two classes could be divided into five different subclasses based on the expression 
levels of two novel marker genes: GRIK3, which encodes the Glutamate Ionotropic Receptor 
Subunit 3, and DACH1, which encodes the Dachshund Family Transcription Factor 1. These five 
subclasses together represent 15% from the total of interneurons. 

Interestingly, we also found a smattering of TAC3 expression in the CCK and CCK/VIP 
populations, therefore the TAC3 population is best defined by its high expression level of PTPRK 
(protein tyrosine phosphatase receptor type K). Similarly, we also noted low levels of OPN3 
(Opsin3)—one of the marker genes of the PTHLH cells—in the CCK and CCK/VIP populations. 

  

Validation of interneuron taxonomy with fluorescent in situ hybridization  

The magnitude of the snRNA-seq dataset produced in the present study allowed us to detect 
novel interneuron populations with distinct transcriptomic profiles (Figure 1C, D). Therefore, we 
sought to validate some of these subclasses through quantitative multiplex FISH using up to three 
marker genes. Using probes against SST, NPY and DACH1, we were able to detect cells double-
positive for SST and NPY in the Pu of all six donors assayed; the same applied to cells triple-
positive for SST, NPY, and DACH1 (Figure 2B-D). This is in line with our sequencing data (Figure 
2A) and supports our decision to split the main class of SST/NPY interneurons into the SST/NPY 
and SST/NPY/DACH1 subclasses. In addition, in this FISH we identified a group of cells that were 
only positive for SST and most likely correspond to the subclass SST/GRIK3. The most 
conspicuous group of cells in this FISH was only positive for DACH1, which cannot be explained 
by the low DACH1 expression found in CCK/VIP and PVALB/GRIK3 subclasses alone (Figure 
2A); however, an extended search for DACH1 expression in our dataset revealed that MSNs as 
well as some astrocytes, endothelial cells, and pericytes are positive for this marker (data not 
shown). 

PVALB-expressing interneuron subclasses are of particular interest because PVALB has 
traditionally been used to identify a class of striatal interneurons. In contrast to the mouse striatum, 
in which Pvalb+ interneurons have been described to be contained within the Pthlh+ cells20 (i.e., 
all Pvalb+ interneurons are Pthlh+), our snRNA-seq data from human CN and Pu indicates the 
presence of a distinct PVALB positive but PTHLH negative subclass of interneurons. FISH using 
PTHLH and PVALB probes revealed PTHLH single-positive cells as well as PTHLH and PVALB 
double-positive cells in all six donors analyzed while PVALB single-positive cells were found in 
five of the six donors (Figure 2E). For both single-positive groups, the number of detected cells 
was highly variable across donors, while double-positive cells occurred in low numbers in all of 
them. Thus, while this experiment proves that PTHLH and PVALB double-positive cells exist in 
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both human and mouse dorsal striatum, we provide evidence of a group of PVALB interneurons 
expressing minimal or no PTHLH at all in the human Pu and CN (Figure 2A and 2G). 

 

Interneuron populations exhibit region-based differences within the striatum 

While we found all the interneuron classes identified in our snRNA-seq data in both the CN and 
the Pu (Figure 3A), we did note slight differences in abundance between both regions: CN was 
significantly richer in PTHLH interneurons (35.6% vs. 20.3%, p-value=0.001), whereas the CCK, 
SST/GRIK3 and PVALB classes were significantly more abundant in the Pu (12.1% vs. 7.1%, 
3.5% vs. 2.4%, and 5.5% vs. 2.7%, respectively, with the belonging p-values in the same order 
0.008, 0.027 and 0.015; Figure 3C). Several interneuron classes also exhibited distinct region-
dependent transcriptomic signatures. Most notably, we found that the PTHLH class had significant 
differences in the expression of 276 genes by region (i.e.,126 upregulated and 150 downregulated 
in CN vs. Pu). SST/NPY, CHAT, TAC3 and CCK/VIP classes also showed expression differences 
in CN vs. Pu, but of smaller magnitude (Figure 3B, Supplementary table 3). 

To contextualize the changes in expression of the PTHLH class neurons across the two striatal 
regions, we conducted a gene-set enrichment analysis using the genes significantly upregulated 
in either region (Figure 3D). The 126 genes upregulated in the CN were enriched in GO-terms 
associated with secretory vesicles and their transport, whereas the 150 genes with significantly 
higher expression in the Pu were enriched in GO-terms associated with receptor complexes, ion 
channel complexes, plasma membrane components, and G-protein-coupled receptor activity 
(GPCR). This signal transduction via GPCRs relies upon the production of cAMP and other 
signaling cascades30. KEGG pathways showed that the differentially upregulated genes in Pu are 
related to the cAMP signaling pathway, including genes such as ADCY8 (GPCR), CRHR1, 
GRIA3, GRIN3A, PDE4B, PLCE1, and RYR2. Thus, these data suggest that there is an over-
expression of AMPA and NMDA receptor subunits (related to Ca2+ and Na+ flux) in Pu compared 
to CN via cAMP/GPCRs activation, which could lead to enhanced long-term potentiation and  
higher synaptic plasticity in Pu vs. CN and explain why CN and Pu inputs and functionalities are 
not equivalent 31.  

 

PTHLH and TAC3 subclasses exhibit changes along continuous transcriptomic profiles 

Our initial cluster analysis allowed us to detect fourteen different interneuron subclasses, each 
characterized by the expression of a unique combination of marker genes. However, previous 
studies have shown that striatal interneurons display gene expression gradients20,21,22 and, 
therefore, their diversity may not be captured by oversimplistic binary classifications. To 
investigate if this phenomenon was observable in our dataset, we conducted a factor analysis 
within the largest subclasses (PTHLH and TAC3) on each striatal region. In both subclasses and 
regions, the factor analysis revealed coordinated gradual changes of sets of genes (Figure 4A to 
D, left and middle panels). The genes with the largest weights on the factor describing the 
differences within each population were different across regions (Figure 4A to D, right panel, 
Supplementary table 4), although there were some commonalities; for example, large changes in 
SLIT1, CNTN5, and TAFA2 expression were observed in the PTHLH neurons in both Pu and CN. 
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Similarly, KCNIP4, ASIC2, and MARCH1 were responsible for some of the largest variations 
across the TAC3 neurons in both striatal regions. Notably, some of the genes with the largest 
contributions to the intra-subclass variance (KCNIP4, ASIC2, RYR2) are ion channel subunits, 
suggesting the possible existence of different electrophysiological phenotypes within the same 
transcriptomic subclass. To gain a better understanding of the differences revealed by the factor 
analysis, we conducted a gene set enrichment analysis on the genes with the largest contributions 
to the factor on each case (Supplementary Figures 3 and 4). 

TAC3 genes associated with the gradient driven by KCNIP4 and ASIC2 expression levels showed 
similar enriched terms in both CN and Pu (Supplementary Figure 4). Relevant terms were mostly 
related to the regulation of synapse formation or activity and cell adhesion. PTHLH genes related 
to the gradient driven by GULP1, ZNF385D, and RYR2 expression levels in the CN (CDH8, 
PDE4B, and FRAS1 in Pu) displayed terms linked to cell adhesion and channel complexes, 
specifically Ca2+ channels (Supplementary Figure 3). However, results for genes from the Pu 
gradient defined by CNTN5, TAFA2, and SLIT1 showed biological specificity: GO-term 
enrichment analysis uncovered functionalities in synapse organization and ion transporter activity 
via ion channels that appear to be specific to the Pu. 

 

Interneuron taxonomy is maintained across functionally relevant genes 

To understand the potential functional implications of our taxonomy, we investigated the 
differences existing between the established subclasses across two separate sets of genes highly 
relevant to neuronal function. First, we restricted our dataset to the genes corresponding to 
dopamine, GABA, acetylcholine, and glutamate receptors. The UMAP projection of our data on 
this set of genes shows a clear separation between the different subclasses (Figure 5A, left) and 
the differential expression analysis revealed unique neurotransmitter-receptor expression 
patterns (Supplementary Figure 5, Supplementary table 5). Markers fitting this pattern noteworthy 
were: GRIN3A and GRM5 in CCK interneuron class; GRM7, CHRM3, GABRA1, and CHRNA2 in 
CCK/VIP; GRIN2C in PVALB; GRIK3, GRIK1, GRM1, and GRIK1 in SST/GRIK3; GRIP1 and 
GRIA4 in PTHLH; TRPC3 in CHAT; and GRM8, GRID1, CHRM2, and CHRNA7 in TAC3 
interneurons.  

We conducted a similar analysis using all the genes under the GO-term “ion channel activity” 
(GO:0005216). The UMAP projection of the data using only ion channels retained the separation 
between subclasses (Figure 5A, right), whereas the differential expression analysis rendered 
unique transcriptomic patterns. Relevant markers related to these patterns were: KCNIP1, 
CACNA2D1, and KCNH5 in CCK; GLRA2 and KCNT2 in CCK/VIP; KCNMB4 and RYR1 in 
PVALB; GRID2 in SST/GRIK3; KCNMA1, GLRA3, and ITPR2 in PTHLH; TRPC3 and KCNG3 in 
CHAT; and GRID1, SCN7A, and CACNA2D3 in TAC3 interneurons (Supplementary Figure 5, 
Supplementary table 5). 

A closer inspection of this functional analysis revealed a strong parallelism in key feature genes 
between the TAC3 population, recently described as a primate-specific class27 and that we have 
thoroughly characterized in the present work, and the mouse interneuron Th cell class20,14. 
Indeed, we found notable expression similarities when comparing the TAC3 human class 
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presented here with the Th mouse class from dataset A in Ref.20. Both classes share the 
expression of the Tachykinin precursor—TAC3 in human and the homologous gene Tac2 in 
mouse—and the TRH (Thyrotropin Releasing Hormone)—recently described as a marker for the 
mouse Th population20. Additionally, they share the cholinergic nicotinic receptor subunits 
CHRNA3/Chrna3 and CHRNB4/Chrnb4, the GDNF receptor GFRA2/Gfra2, and the prolactin 
receptor PRLR/Prlr. Interestingly, they also match in their negative expression patterns such as 
the absence of expression of both Synaptotagmin 1 SYT1/Syt1 and the glutamatergic receptor 
GRIK1/Grik1, which are remarkably highly expressed in the rest of interneuron populations in both 
human and mouse (Figure 5B). Of note, in agreement with another study in the human striatum27, 
we hardly detect TH expression in the human interneuron populations, but we found it in MSNs 
(data not shown). 

To determine the drive of the expression of ion channels in these interneuron subclasses, we 
focused on the typical genes of a Fast Spiking (FS) profile characteristic of high PVALB-
expressing cells (Figure 5C). This analysis showed significant expression of FS genes32,33–35 such 
as KCNAB1 (Kvb1.3), KCNC2 (Kv3.2), KCNA2 (Kv1.2), KCNC1 (Kv3.1), HCN1, and SCN1A 
(Nav1.1) in PTHLH and PVALB cells, with a substantial overexpression in the latter (Figure 5C). 
In the mouse Pthlh population, the FS profile was found to correlate positively with the Pvalb 
expression level following a continuous gradient pattern Ref20. Interestingly, in the human striatum 
we also found a defined PVALB class of interneurons with high expression of the genes involved 
in FS profile.   
 

Interneuron taxonomy is consistent across published human striatal snRNAseq datasets 

To further validate our findings and our classification of interneuron subclasses in the human 
striatum, we integrated our labeled data with four other datasets from three sources 27–29 using 
scVI36. These datasets included CN27,29, Pu29, and Nucleus Accumbens28 human samples 
(Supplementary table 6). We filtered and normalized the raw counts from these four datasets and 
selected the interneuron nuclei based on the same markers as in our own dataset (see Methods). 
This resulted in a total of 8,090 additional interneuron nuclei added to our 19,339. We reduced 
the ensemble of the 5 datasets to the 12,986 overlapping genes, of which we selected the top 
1,200 most variable to build an integrated model using scVI36.  

Remarkably, the UMAP projection of the integrated data revealed extensive overlap between 
nuclei from different datasets, indicating that the the scVI model compensated possible batch-
specific differences (Figure 6A). Clustering the integrated data resulted in 16 groups (Figure 6B), 
of which 15 had a clear correspondence to our original interneuron subclass labels (Figure 6C). 
Only cluster #12 contained less than 1% of nuclei from our dataset and could not be readily 
matched to any of the described subclasses. This cluster consisted of 550 nuclei (2% of the total), 
83.6% of which belonged to the DropSeq dataset from Krienen et al.’s study27. To ensure that 
cells clustering together actually shared the same transcriptomic profile, we examined the 
expression of the subclass marker genes on each of the public datasets (Figure 6D, 
Supplementary figure 6). As the figure shows, cells within the same cluster have similar 
expression patterns, which in turn correspond to one of the subclasses established in our 
taxonomy. In the case of cluster #12, we observed that it did express the markers corresponding 
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to our TAC3 subclass. Although there was a strong bias by dataset in some of the clusters, all of 
them contained nuclei from at least two different datasets, supporting generalizability (Figure 6E). 

 

Discussion 

The neuronal communication in the striatum, a hub for motor and cognitive information, is 
modulated by the interneurons. Characterizing the diversity and abundance of these locally-
projecting neurons is key to understand the proper functionality of this brain structure and here 
we produced the largest snRNA-seq dataset in number of both nuclei isolated and human 
samples analyzed to date in order to profile the interneuron diversity of the human dorsal striatum 
(CN and Pu). We leveraged this dataset to perform a deep molecular characterization of the 
fourteen interneuron subclasses identified, provide a full set of marker genes for each one, and 
delineate functional aspects such as synapses-related machinery for different classes, 
differences between CN and Pu, inner gradient structure of gene expression levels, and relevant 
pathways related to the main genetic differences. 

Interneuron diversity in the human striatum is higher than expected 

The interneuron diversity of the mammalian striatum has received little attention until recently, 
especially if we compared it with other brain regions such as the cortex where numerous 
investigations have been carried out 37. Classically, striatal interneurons have been identified 
according to five main markers: calretinin (CR or CALB2), Tyrosine Hydroxylase (TH), 
Parvalbumin (PVALB), Choline acetyltransferase (CHAT), and Neuropeptide Y (NPY) 38,39,24,40.  

With the development of snRNA-seq, many studies have contributed to elucidate the cellular 
composition of different brain areas including the striatum, especially in the mouse brain. This 
technology offers a full genetic delineation to characterize molecular cell identities. Only a few 
published snRNA-seq datasets contain information regarding the human striatum, but they 
included low number of interneurons and/or focused on other cell types, thus precluding the 
establishment of a comprehensive taxonomy, as suggested by their lack of agreement27–29. In this 
work, we have sampled nearly half a million CN and Pu nuclei, obtaining almost 20,000 high 
quality interneuron nuclei after a strict quality control and classification process, a number than 
enabled us to establish a new taxonomy of human striatal interneurons.  

We found eight main classes that we named after one or two of their main molecular markers. 
Two of these eight main classes express CCK and represent almost one third of the total 
interneuron population. These two CCK+ populations were split into two subclasses: CCK/VIP 
and CCK/VIP/CXCL14 for the ones expressing VIP and CCK, and CCK and CCK/CHST9 for the 
ones that do not, respectively. Of note, they all share the expression of ADARB2, which separates 
them from the rest of interneurons and is a marker used to designate development origin from the 
caudal ganglionic eminence (CGE) of cortical interneurons41. Pertinent investigations would be 
needed to confirm whether this is also the case in striatum, since cortex and striatum seem to 
present differences in the combinatorial markers of developmental origin42,43. CCK and CCK/VIP 
populations were first reported as striatal interneuron cell class in a scRNA-seq study of the 
mouse striatum enriched for interneurons20. Adarb2/Cck and Adarb2/Vip expressing interneurons 
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have also been described in the striatum of the marmoset and the mouse in a cross-species 
study27. Remarkably, we find an important increase of CCK-expressing cells in human vs. mouse 
dorsal striatum, which might indicate its greater involvement in highly complex computational 
processes for motor and cognitive functions in the human. Little is known about the role of CCK-
expressing cells in the central nervous system44, although CCK is widely used as an interneuron 
marker in cortical areas. Further investigations would be needed to decipher the role of one of the 
most abundant interneuron classes in the human striatum. 

The hierarchical clustering of subclasses in our taxonomy places the CCK-expressing cells in the 
same main branch as a group of cells expressing the glutamatergic receptor subunit GRIK3. 
These can be divided in three main classes: PVALB, SST/GRIK3, and SST/NPY. The PVALB 
class further splits into a small population that does not express GRIK3 (the only ones) and a 
larger PVALB/GRIK3 population, which represents most cells with a high expression of PVALB. 
Intriguingly, SST/GRIK3 cells are transcriptomically more similar to the PVALB+ populations than 
to the other SST expressing cells, which also express NPY. The SST/NPY interneurons, one of 
the classical groups, can be divided by the presence or absence of DACH1, which is highly 
relevant during human neurodevelopment. In the striatum DACH1 has been described as co-
expressed with SST as well as several MSN markers45.  Accordingly, we also observed DACH1 
expression in human striatal MSNs in adulthood (data not shown). 

In the other branch of our classification, we find the two populations representing the most 
abundant interneuron classes: PTHLH and TAC3, together with the well-described and scarce 
cholinergic cells (CHAT), which have already been thoroughly characterized in the literature 
3,25,46,47. Both PTHLH and TAC3 populations further split into two subclasses of unequal 
proportions: PTHLH and PTHLH/MOXD1, and TAC3 and TAC3/SEMA3A, respectively. 

A PTHLH+ population was first described in the mouse striatum20, where it was characterized as 
a group of cells that expressed Pvalb in a gradient manner that correlated with their 
electrophysiological properties, spatial distribution, morphology, and long-range inputs 23. In the 
human striatum this population is characterized by the expression of OPN3, IL1RAPL2, and 
THSD4, and shows a higher abundance in the CN than in the Pu. A PTHLH subclass shows 
specific expression for MOXD1—a monooxygenase predicted to be involved in the dopamine 
catabolic process—suggesting dopaminergic modulation by these cells. Similarly, to the mouse 
striatum, we find PVALB expression in the PTHLH population. This PTHLH+/PVALB+ population 
has also been confirmed by others in human striatum and other species such as the marmoset 
and the mouse amygdala27, https://www.biorxiv.org/content/10.1101/2022.10.25.513733v1. 
Interestingly, we have found a specific and less abundant class that expresses PVALB (at a 
significantly higher level than the PTHLH/PALB cells) but not PTHLH. This finding was validated 
with FISH and differs from the mouse striatum, where all Pvalb-expressing cells were also Pthlh+. 
These two classes, PTHLH and PVALB, do not appear close in their molecular identities in the 
human striatum when applying hierarchical analysis; however, when we performed a hypothesis-
driven analysis of our data, restricted to relevant genes for neuronal functions such as 
neurotransmitter receptors or ion channels, these two classes showed a very strong correlation. 
This suggests that even though their overall molecular identities are far apart, these two classes 
might share functional roles in the striatal circuit. This observation brings up the recurrent debate 
on what constitutes a class48–51 and, more importantly, indicates that examining specific aspects 
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of cell identity will deliver different pieces of information, such as what other cell(s) they 
communicate with and what kind of electrical activity they present. With that framework in mind, 
we also analyzed the most relevant genes for Fast Spiking activity, characteristic of high Pvalb-
expressing cells in the mouse striatum. Our data showed that in the human striatum all the Fast 
Spiking relevant genes were differentially upregulated in both PTHLH and PVALB classes, but 
substantially higher in the latter. 

TAC3 was recently described as a primate-specific striatal population27. We did define a 
population of interneurons with high TAC3 expression as the TAC3 class. However, this class 
was best defined by the expression of PTPRK, TMEM163, and GFRA2, since TAC3 is also 
expressed by the CCK/VIP class, a co-expression that was also reported by Krienen et al.27. 
Through our functional gene analysis, we observed that TAC3 is characterized by synaptic 
receptors for glutamate (GRM8) and acetylcholine muscarinic (CHRM2) and nicotinic (CHRNA7, 
CHRNB4) receptors. Among the genes with ion channel activity, we found GRID1 (glutamate 
ionotropic receptor), SCN7A (sodium voltage-gated channel), and CACNA2D3 (Calcium Voltage-
gated channel). Interestingly, when comparing functional genes in human vs. mouse striatum20, 
we found that the mouse interneuron Th cell class had been previously described to express 
nicotinic receptors, including those responding to a3b4 (a specific subtype)47,52,53. This mouse Th 
population is characterized by the expression of Tac2 (homologous of the human TAC3 gene 
coding for a tachykinin precursor) and also by the expression of Trh, which is one of the best 
markers for Th cells in mouse. Remarkably, both populations share a specific pattern expression 
for PRLR (prolactin receptor), GFRA2 (GDNF receptor), SYT1 (synaptotagmin), and GRIK1 
(Glutamate ionotropic receptor subunit). For the last two genes (SYT1 and GRIK1), both involved 
in synaptic function, TH and TAC3 populations present a negative pattern, being the absence of 
SYT1 and GRIK1 what differentiate them in a remarkably manner from the other interneuron 
populations in the striatum. Although integration of human and mouse datasets was not 
technically possible, even despite applying recent tools as LIGER54, the aforementioned genes 
showed a strong parallelism between the mouse Th and the human TAC3 populations. 
Importantly, in agreement with others 27, we hardly found TH-expressing interneurons, although 
we did find TH expression in MSNs as shown elsewhere32,55,56. This observation points out that 
TH expression in striatum probably cannot be used as marker for this cell class, at least in 
humans, and suggests that, from the evolutionary perspective, the absence of TH in the TAC3 
population might just indicate a refinement in the circuitry or a loss of unnecessary machinery. 
Noteworthy, since TH is the limiting enzyme in the synthesis of dopamine and noradrenaline, we 
also examined our data for genes related to dopamine metabolism and found none (data not 
shown).   

Inner gradient structure is conserved in the human striatum 

Because the discrete partitions of the data might not reveal the entire actual biologically relevant 
diversity of the striatal interneuron populations49, we examined the PTHLH and TAC3 subclasses 
using factor analysis. With this approach, we did find that there is diversity within the subclasses, 
as indicated by differences in expression patterns along a continuum rather than by discrete 
changes in the expression of a set of marker genes. The gradients within each subtype were 
driven by the same set of genes in both the CN and the Pu. We also studied the gradient structure 
in the human striatum as previously shown in the mouse striatum for both interneuron and MSNs 
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20–22. We found an inner gradient structure for the most abundant classes, TAC3 and PTHLH, 
which is shared in both CN and Pu, indicating similarities in structure, as it was shown for Pthlh 
in the mouse striatum Ref20. This gradient structure seems to be characteristic of subcortical 
structures such as the striatum and may reflect the need of a highly specialized organization to 
receive input from many different and distant brain areas. 

Differences across regions 

The main differences identified between CN and Pu in our study are related to the PTHLH class. 
Our results indicate that this cell class in the Pu might be involved in long-term potentiation 
mechanisms, a form of synaptic plasticity that plays a critical role for the proper functionality in 
the striatum 9,57. This difference may underscore a potential different vulnerability of Pu vs CN to 
basal ganglia-related diseases, as already suggested by others 58–60, which could be used in the 
design of cell type-targeted therapeutic approaches.     

Robustness of striatal interneuron taxonomy. 

Besides performing in situ tissue validations of the interneuron classes and subclasses, we 
validated our taxonomy by integrating our data with previously published sn/cRNA-seq datasets. 
An unbiased clustering of the integrated data resulted in groups of interneurons which could be 
readily overlapped or at least related to each of the subclasses we describe here and, more 
relevant, the expression profile of marker genes within each group was consistent across 
datasets, even in the non-integrated raw data. This indicates that our taxonomy is robust, as even 
the rarest cell subclasses could be observed in other datasets. Most notably, the classification we 
introduce was highly compatible with the samples from the nucleus accumbens (ventral striatum) 
from Tran et al28, suggesting that the inhibitory neurons in both ventral and dorsal striatum share 
a similar diversity spectrum. However, a broader sampling of ventral striatum would be useful to 
reinforce this observation and to determine if this classification can be extended also to other 
regions in the basal ganglia. 

 

Material and Methods 

Human tissue: 

Postmortem human Pu (N = 28) and CN (N = 25) fresh frozen tissue samples from 28 control donors aged 
25 to over 90 years were obtained from three sources, the NIH Neuro Bio Bank (Human Brain and Spinal 
Fluid Resource Center Los Angeles, CA, USA), the Parkinson’s UK Brain Bank (London, UK) and the 
Massachusetts Alzheimer Disease Research Center (Charlestown, MA, USA). Sample information can be 
found in supplementary table 1. 

Tissue dissociation: 

Isolation of nuclei from fresh frozen tissue was performed as described by the Allen Institute for Brain 
Science (https://www.protocols.io/view/isolation-of-nuclei-from-adult-human-brain-tissue-eq2lyd1nqlx9/v2) 
with the following specifications, all steps were performed at 4°C. 100 – 150 mg of tissue was thawed on 
ice and homogenized in 2 ml of chilled, nuclease-free homogenization buffer (10 mM Tris (pH 8), 250 mM 
Sucrose, 25 mM KCl, 5 mM MgCl2, 0.1 mM DTT, 1x Protease inhibitor cocktail (50x in 100% Ethanol, 
G6521, Promega), 0.2 U/µl RNasin Plus (N2615, Promega), 0.1% Triton X-100) using a Dounce tissue 
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grinder with loose and tight pestle (20 strokes each, 357538, Wheaton). The nuclei solution was filtered 
through 70 µm and 30 µm strainers successively, tubes and strainers were washed with an additional 
homogenisation buffer (final volume 6 ml) before centrifugation for 10 min at 900 rcf. Supernatant was 
removed leaving 50 µL above the pellet and resuspended in 200 µl homogenization buffer (final volume 
250 µL). Then, the suspension was carefully mixed 1:1 with 50% Iodixanol (OptiPrep Density Gradient 
Medium (D1556, Sigma) in 60 mM Tris (pH 8), 250 mM Sucrose, 150 mM KCl, 30 mM MgCl2) and layered 
carefully on top of 500 µL 29% Iodixanol in a 1.5 ml tube. Samples were spun 20 min at 13,500 rcf and 
supernatant was removed as much as possible without disrupting the pellet. Pellet was resuspended in 50 
µL chilled, nuclease-free blocking buffer (1x PBS, 1 % BSA, 0.2 U/µL RNasin Plus), transferred to a fresh 
tube and filled up to 500 µL. To enable enrichment of neurons during fluorescent activated cell sorting, 1µl 
NeuN antibody (1:500, Millimark mouse anti-NeuN PE conjugated, FCMAB317PE, Merck) was added and 
samples were incubated for 30 min on ice in the dark. After spinning 5 min at 400 rcf, the supernatant was 
removed leaving ~50 µL of buffer above the pellets and 500 µL of blocking buffer was added to resuspend 
before filtering through a 20 µm filter into FACS tubes and adding 1 µL of DAPI (0.1 mg/mL, D3571, 
Invitrogen). 

Fluorescent-activated nuclei sorting: 

Nuclei suspension was protected from light and sorted in a flow cytometer (DB FACSAria Fusion or BD 
FACSAria III) at 4°C. Gating was performed based on DAPI and phycoerythrin signal into two tubes 
containing 50 µL blocking buffer (NeuN+ and NeuN- population) until 200,000 nuclei per population were 
reached. Sorted populations were centrifuged 4 min at 400 rcf and supernatant was removed, leaving 
approximately 30 µL to resuspend the pellet, samples were kept on ice. 

single-nucleus RNA sequencing library preparation: 

Library preparation from sorted nuclei suspension was done using the Chromium Next GEM Single Cell 3’ 
Reagent Kit v3.1 (PN-1000268, 10x Genomics). Each nuclei population was counted manually, and the 
concentration was adjusted to a range between 200 and 1,700 nuclei/µL. Following the manufacturer's 
protocol (CG000204 Rev D, 10x Genomics), RT mix was added to the nuclei suspension and samples were 
either loaded for each population on separate lanes (target nucleus recovery 5,000) or population were 
mixed (70% NeuN+ and 30% NeuN, target nucleus recovery 5,000 or 7,000) before loading on one lane of 
the Chromium Next GEM Chip G (PN-1000120, 10x Genomics). Downstream cDNA synthesis and library 
preparation followed the manufacturer’s instructions using the Single Index Kit T Set A (PN-1000213, 10x 
Genomics). Required quality control steps and quantification measurements within this protocol were 
performed using the Agilent High Sensitivity DNA Kit (5067-4626, Agilent Technologies) and the KAPA 
Library Quantification Kit (2700098952, Roche). 

Illumina sequencing: 

Pools were prepared by combining up to 19 (target nucleus recovery 5,000) or 16 (target nucleus recovery 
7,000) samples and sequencing was performed on a NovaSeq S6000 using a S4-200 (v1.5) flowcells with 
8 lanes and a 28-8-0-91 read set up. The sequencing was performed at the National Genomics 
Infrastructure (Stockholm, Sweden). 

Tissue preparation for histology: 

Human tissue blocks (N = 6) were stored at -80 °C and transferred to the cryostat (CryoStar NX70, Thermo 
Scientific) on dry ice. Samples were mounted on the specimen holder using Tissue Tek O.C.T. Compound 
(4583, Sakura) and acclimated to -20°C in the cryostat chamber for 5 minutes. 10 µm sections were cut 
and captured on Super-Frost Plus microscope slides (631-0108, VWR) at room temperature. Slides were 
air dried at room temperature for a few minutes and stored for 1h at -20°C before transferring them back to 
-80°C for long term storage.  
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RNAscope high sensitivity in-situ hybridization: 

High sensitivity in situ hybridization using the RNAscope Multiplex Fluorescent Reagent Kit v2 (323110, 
Advanced Cell Diagnostics) was performed on putamen sections of six subjects to detect single mRNA 
molecules. Experiments were performed according to the RNAscope Multiplex Fluorescent Reagent Kit v2 
protocol (UM 323100, Advanced Cell Diagnostics) for the following genes: DACH1 (412041), NPY (416671-
C2), PTHLH (452931), PVALB (422181-C2), SST (310591-C3). In brief, slides were dried at room 
temperature (RT) for 5–10 min before incubation in 4% PFA for 25 min at 4°C. Slides were washed twice in 
1x PBS and dehydrated in 50%, 70% and 2x 100% ethanol for 5 min each at RT. After drying the slides for 
5 min, a hydrophobic barrier was drawn around each section prior to incubation in hydrogen peroxide for 
10 min at RT. For antigen accessibility, slides were treated with Protease IV for 20 min at RT after a brief 
wash in 1x PBS. Slides were washed twice for 3 min again, before probes were incubated. C2 and C3 
probes were diluted in C1 probes at a 1:50 ratio and incubated on the slides for 2h at 40°C. Slides were 
then incubated with amplification mix 1-3 followed by a combination of HRP reagent, fluorescent dye and 
HRP blocker specific for each probe channel in accordance to the manufacturer's recommendations. 
Probes were detected with Opal 520 (FP1487001, Akoya Biosciences), Opal 570 (FP1488001, Akoya 
Biosciences) and Opal 650 (FP1496001, Akoya Biosciences). Next, slides were incubated with TrueBlack 
(23007, Biotium) after a wash in 70% ethanol for 30 sec at RT to quench the autofluorescence due to the 
accumulation of lipofuscin or other protein aggregates. Prior to mounting with Fluoromount-G (0100-01, 
SouthernBiotech) the slices, DAPI was added to label the nuclei. A one-day protocol has been used in all 
experiments to preserve the quality of the slices. 

Image acquisition:  

Confocal imaging was performed on a Zeiss LSM800-Airy with Zen software (2.6). 2-3 non-overlapping 
areas with a size of 8 x 8 tiles were selected per tissue section and images were acquired using a 20x 
air/dry objective. Final images were stitched using the according feature of the Zen software.  

Image analysis: 

Quantitative image analysis was performed using the QuPath software (version 0.3.2)61 with the following 
workflow: (1) Definition of region of interest (ROI) on each image across all visible nuclei (using DAPI stain) 
but excluding artifacts and high fluorescent vessels, based on size and intensity of the signal. (2) Cell and 
subcellular detection tools of QuPath were adjusted for each staining (supplementary table 7) and applied 
within each ROI. (3) An object classifier was trained for each marker and subject individually by manual 
labeling of positive cells. Cells were considered positive when either a clear fluorescent signal was visible 
throughout the approximated cell body (NPY, SST) or a distinct puncta signal was evident with no 
overlapping signal in other fluorescent channels (DACH1, PTHLH, PVALB). The purpose of using object 
classifiers instead of counting subcellular spots directly was to improve the distinction between truly positive 
cells and cells with autofluorescent signal due to lipofuscin. (4) All relevant object classifiers for a specific 
staining and subject were combined to a composite classifier and applied to all ROI of the respective 
subject. (5) The resulting list of cells and their assigned markers per ROI were exported and evaluated for 
each subject within a staining. Among the group of positive cells minimum cut off values concerning the 
number of subcellular spots were defined for each marker (supplementary table 7) and applied manually. 
Additionally, unexpected marker combinations or numbers of spots were checked manually on the image 
and corrected if necessary. 

snRNA-seq data pre-processing 

The raw data was processed into count matrices by using CellRanger (v.3.0.0) (10X genomics) to align the 
sequencing data to the hg38 genome (GRCh38.p5 (NCBI:GCA_000001405.20), accounting for both 
intronic and exonic sequences.  
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To detect possible doublets, we applied Scrublet62 to each individual sample 100 times with automated 
threshold value detection and default parameters. Nuclei labeled as doublets more than 10 times were 
discarded.  

Based on the distribution of UMIs and unique genes detected per nucleus, cells with less than 500 UMIs or 
1,200 genes were discarded. Cells with more than 250,000 UMIs, over 15,000 genes or more than 10% 
mitochondrial content were also excluded. 

Using the nuclei which passed the initial QC thresholds, we modeled the relationship between number of 
unique genes and UMIs in the logarithmic scale as a second-degree polynomial function. Nuclei with 
extreme deviations from the polynomial fit (a difference over 2,000 between log (n genes) and the value 
predicted by the fit for a given UMI count) were considered outliers and excluded from the rest of the 
analysis.  

Cells expressing high levels of marker genes for multiple cell types simultaneously were also discarded. To 
do so, we computed a cell-type score for each cell subtype (Oligodendrocytes, Microglia, OPCs, Neurons, 
Astrocytes, Vascular cells) for each nucleus. This score was the mean expression of the canonical markers 
for each type. Then, we computed the distribution of the scores on the whole dataset, observing bimodal 
distributions in all cases. We modeled the distributions as mixtures of two Gaussians and set a threshold 
on the mean of the lowest distribution plus four times its standard deviation. Nuclei with a score above the 
threshold were considered of a given cell type. Nuclei with scores above the threshold for more than one 
type were considered doublets and excluded from the rest of the analysis.  

To remove possible contamination from the claustrum or the amygdala, we removed cells expressing 
regional markers obtained from the Allen Brain atlas63: NEUROD2, TMEM155, CARTPT, SLC17A7. 

The number of nuclei excluded at each step of this process is detailed in Supplementary figure 1. 

 

Interneuron detection 

The count matrices were analyzed using Scanpy64 to cluster and label them in order to select for 
interneurons. Briefly, we performed principal component analysis and computed the neighborhood graph 
on the first 30 principal components (PCs). The data was then clustered using the Louvain algorithm65 with 
a resolution of 0.2 and the clusters were labeled as either glia or neurons based on the expression of 
canonical markers: 

Astrocytes – AQP4, ADGRV1  

Microglia – CSF1R, FYB1 

Oligodendrocytes – MBP, MOG, MAG 

Oligodendrocyte precursor cells – PTPRZ1, PDGFRA, VCAN 

Vascular cells – EBF1, ABCB1, ABCA9 

Neurons – MEG3 

The neurons were filtered again based on their distribution of UMIs and genes. Nuclei labeled as neurons 
with less than 5,000 UMIs, less than 3,000 genes or more than 12,000 genes were discarded, resulting in 
a total of 181,434 high quality neuronal nuclei.  
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The neurons were re-clustered after removing sex-linked mitochondrial and riboprotein genes, projecting 
them onto their first 30 PCs computed on their 1,500 most variable genes. The clusters expressing the 
inhibitory markers GAD1 and/or GAD2 and not expressing MSN (PPP1R1B, DRD1, DRD2, MEIS2) or 
excitatory markers (RORB) were labeled as interneurons. 

Interneuron classification 

Nuclei labeled as interneurons were projected onto the first 20 PCs calculated on their 1500 most variable 
genes and re-clustered using the louvain algorithm. The function rank_genes_groups from Scanpy64 was 
used to perform a differential expression analysis between the clusters through a Wilcoxon rank-sum test. 
Marker genes were selected manually from the top ranked genes to characterize and name each of the 
interneuron clusters as a different interneuron subclass. 

The interneuron subtypes were merged into broader classes based on their correlation. All subtypes with a 
mean Pearson correlation coefficient higher than 0.49 to each other were joined into a broader class defined 
by common marker genes. 

The dendrograms were computed using the average Pearson correlation coefficient between groups across 
all genes. 

Compositional analysis 

The differences in composition between the CN and the Pu were examined through the centered-log ratio 
(CLR) values for each interneuron class on each of the regions. This measure is defined as 

𝐶𝐿𝑅! = 𝑙𝑜𝑔	(
𝑟!
𝑔) 

Where rx is the fraction of interneurons of a given class and g is the geometric mean of the fractions of each 
of the classes.  

The distribution of CLRs for the same interneuron class were compared across regions using a non-
parametric Wilcoxon test. 

Differential expression analysis (DEA) 

Regional changes in gene expression were studied using a pseudo-bulk approach in which the nuclei were 
aggregated by region and sample. The Libra python library66 was used to perform the data aggregation and 
the differential expression analysis, which was done using the edgeR-LRT method 67.  

In all the other cases, differential gene expression was studied at the cell level using the 
rank_genes_groups function from the Scanpy library using a Wilcoxon rank-sum test.  

Over-Representation Analysis (ORA) 

Differentially Expressed Genes (DEGs) derived from DEA were used as input into the enrichGO and 
enrichKEGG functions from the R package clusterProfiler. DEGs with a logFC > 0.5 and p-adjusted value 
< 0.05 were selected. The first function generates functional Gene Ontology terms related to biological 
processes, molecular function, and cellular components. The second function analyzes the enriched terms 
in our gene list based on the KEGG database (DB). This DB is a collection of manually drawn pathway 
maps representing our knowledge of the molecular interaction, reaction, and relation networks for 
Metabolism, Genetic Information Processing, Environmental Information Processing, Cellular Processes, 
Organismal Systems, Human Diseases, and Drug Development. Terms with a p-value < 0.1 were selected 
and plotted using the GOplot package. 
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Factor analysis 

The heterogeneity within the PTHLH and TAC3 subclasses was studied using a factor analysis. For each 
interneuron subclass on each of the two striatal regions, we removed the sex-linked, mitochondrial and 
riboprotein genes, and then restricted the data to the 1,200 most variable genes. We then applied the 
FactorAnalysis function from the scikit-learn Python library68 with a single latent factor to perform a matrix 
decomposition. 

Data projection on functional gene subsets 

To restrict the data to neurostransmitter-receptor genes, we selected genes based on their prefixes: DRD- 
(dopamine); GABR- (GABA); CHRN-, CHRM- (acetylcholine); GRIA-, GRIN-, GRIK-, GRM-, GRID-, GRIP- 
(glutamine). We added three additional glutamine receptors whose naming did not follow the same pattern: 
PEPL1, POLR2M, GCOM1. This selection resulted in 93 genes. 

To study the genes with ion channel receptors, we restricted our data to the genes listed under the GO-
term GO:0005216. This list contained 481 genes names, out of which 431 were found in our data. 

In both cases, we obtained the UMAP projection from the neighborhood graph computed on the first 30 
PCs and then performed a differential expression analysis using a Wilcoxon rank-sum test. 

Public datasets collection and pre-processing 

We collected two single-nuclei RNA-seq datasets of the human striatum from the GEO database69, with 
accession numbers GSE15176127 and GSE152058 29. A third dataset was obtained from a public repository 
setup by the authors28 (https://github.com/LieberInstitute/10xPilot_snRNAseq-human). On Krienen et al.’s 
data, we analyzed separately the 10X and Drop-Seq datasets. On Lee et al.’s data we used only the nuclei 
belonging to control subjects (8 samples). We normalized all the datasets using scran normalization70 and 
applied individual QC filters to remove bad quality nuclei. We then clustered the data and selected the 
interneuronal populations using the same approach and criteria that we applied to our own data. Notably, 
on Lee et al.’s dataset our selection included a cluster originally labeled as secretory ependymal cells, 
which expressed both pan-neuronal and interneuronal markers, and we identified as TAC3 interneurons. 
The total number of cells filtered and selected are detailed in supplementary table 6. 

The mouse data from Muñoz-Manchado et al.20 was obtained from the GEO database (accession number 
GSE97478). The raw counts were normalized using the normalize total function from Scanpy, with a target 
sum of 10000 per cell. The original labels were retained, and the data was not transformed further. 

Data integration 

snRNA-seq dataset from multiple sources were integrated using scVI36. First, the data was merged and 
restricted to the 12986 genes common across datasets. Then the 1200 most variable genes were selected 
and used to build and train an autoencoder with 1 hidden layer of 128 nodes and a latent space of 
dimensionality 12 which was trained for 292 epochs. The low-dimensional latent state representation was 
used to build a neighborhood graph and then cluster the data in the same way as on the PC-projected data 
from our novel dataset.  
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Figure 1 | Interneuron heterogeneity of the human striatum determined by single-nucleus RNA 
sequencing. A. Schematic overview of the experimental design. B. Number of interneuron nuclei 
sequenced in the present study (labeled as AMM) vs. two other previous works. C. Number of human 
samples included in this study (AMM) vs. two previous works.  D. UMAP projection of the snRNA-seq 
data of the nuclei labeled as interneurons, colored by interneuron class. The barplot next to the UMAP 
indicates the fraction of all interneuron nuclei represented by each class. E. UMAP projection of the 
interneuron nuclei colored by subclass. The barplot indicates the fraction of each subclass over all 
interneuron nuclei. F. Heatmap showing the expression of selected marker genes for each of the 
fourteen interneuron subclasses identified. The expression of each gene is normalized by its maximum 
value across all nuclei. The dendrogram above the heatmap indicates the proximity across subclasses 
based on the average Pearson correlation coefficient across all genes between each pair of subclasses. 
* Note that here only samples from control donors from Lee’s study are shown. CN, caudate nucleus; 
IN, interneuron; Pu, putamen. 
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Figure 2 

Figure 2 | Validation using quantitative fluorescence in-situ hybridization confirms the existence 
of novel interneuron subclasses in the putamen. A. Tracks plot depicting raw UMI counts per 
nucleus for SST, NPY, DACH1, PTHLH, and PVALB in caudate and putamen. B. Proportion of cells 
positive for SST, SST and NPY or SST, NPY, and DACH1 based on the total number of cells 
identified per donor (N = 6, putamen). C. Proportion of SST and NPY double-positive cells negative or 
positive for DACH1 (N = 6, putamen). D. Representative images for (left) single-, (middle) double- and 
(right) triple-positive cells from the same donor, scale bar 10 µm. E. Proportion of positive cells for 
PTHLH, PVALB, or PTHLH and PVALB based on the total number of cells identified per donor (N = 6, 
putamen). F. Proportion of PTHLH positive cells negative or positive for PVALB (N = 6, putamen). G. 
Representative images for (left and middle) single- or (right) double-positive cells from the same 
donor. White arrows indicate spot signal for PTHLH, asterisks mark autofluorescence due to 
lipofuscin, scale bar 10 µm. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2023. ; https://doi.org/10.1101/2023.03.22.533839doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.22.533839
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3 

Figure 3 | Striatal interneuron classes exhibit region-specific differences. A. Barplot illustrating 
the different proportions of interneuron subclasses in caudate and putamen. B. (left) Volcano plot 
showing differentially expressed genes (DEGs) for each subclass. DEGs with an adjusted p-value < 
0.05 and an average logFC greater than 0.5 were selected. (right) Number of significantly upregulated 
genes per interneuron class on each region. C. Scatter dot plot representing the compositional analysis 
estimated by centered log-ratio method with significant compositional differences between caudate and 
putamen in CCK, PTHLH, PVALB, and SST/GRIK3 interneurons. D. GO-term enrichment analysis of 
up-regulated genes in PTHLH subpopulation in caudate and putamen. GO circle plot illustrating 
enriched terms (adjusted p-value < 0.05) with their respective enriched genes along with the logFC of 
these genes. * P < 0.05. 
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Figure 4 | Factor analysis within interneuron subtypes. A. (left) UMAP projection of the PTHLH 
subclass from the CN, colored by the value of the factor obtained by running factor analysis. (middle) 
Factor weights associated with each gene. (right) UMAP projection of the PTHLH subclass interneurons 
colored by the expression level of (top row) the genes with the top three (bottom row) and bottom three 
weights on the factor. B, C and D. (left) Factor values, (middle) weights distributions and (right) 
expression of genes with largest contributions to the factor obtained for the PTHLH subclass from the 
Pu, the TAC3 subclass from the CN, and the TAC3 subclass from the Pu, respectively. 
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Figure 5 

 

Figure 5 | Comparison of striatal interneuron subclasses between mouse and human. A. (left) 
UMAP projection of the interneuron nuclei using expression data restricted to neurotransmitter receptor 
genes. (right) UMAP projection of the same data restricted to the genes annotated with the molecular 
function “ion channel activity” (GO:0005216). Colored based on the interneuron classification 
established before. B. (top) Expression values of genes suggesting parallelisms between the TAC3 
subclass in the present human dataset and (bottom) the Th interneurons in the mouse striatum 
described by Muñoz-Manchado et al.2. C. (top) Expression values of genes related to the fast-spiking 
phenotype in this human striatal dataset vs. (bottom) the striatal mouse dataset from Muñoz-Manchado 
et al.2  
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Figure 6 
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Figure 6 | Interneuron taxonomy is consistent across multiple human striatal snRNA-seq 
datasets. A. (left) UMAP projection of interneuron nuclei from five different datasets before and (middle) 
after integration with scVI. (right) Barplot indicating the total number of nuclei from each dataset. B. 
UMAP projection of the integrated data colored by cluster. C. Shankey diagram relating the labels of 
the nuclei in the AMM dataset to the clusters obtained on the integrated data. Only assignments with 
more than 1% of the cells of each subclass are shown. D. Normalized expression of interneuron 
subclass marker genes on the integrated public datasets (excluding our own). E. In each dataset (x 
axis), each bar represents the percentage of all interneuron nuclei detected in that dataset (y axis) that 
belongs to a specific cluster color-coded as in C. 
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