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Abstract

Epigenome-wide association studies (EWAS) of heterogenous blood cells have identified
CpG sites associated with chronic HIV infection, which offer limited knowledge of cell-
type specific methylation patterns associated with HIV infection. Applying a computational
deconvolution method validated by capture bisulfite DNA methylation sequencing, we
conducted a cell type-based EWAS and identified differentially methylated CpG sites
specific for chronic HIV infection among five immune cell types in blood: CD4+ T-cells,
CD8+ T-cells, B cells, Natural Killer (NK) cells, and monocytes in two independent cohorts
(Nwta=1,134). Differentially methylated CpG sites for HIV-infection were highly
concordant between the two cohorts. Cell-type level meta-EWAS revealed distinct
patterns of HIV-associated differential CpG methylation, where 67% of CpG sites were
unique to individual cell types (false discovery rate, FDR <0.05). CD4+ T-cells had the
largest number of HIV-associated CpG sites (N=1,472) compared to any other cell type.
Genes harboring statistically significant CpG sites are involved in immunity and HIV
pathogenesis (e.g. CX3CRL1 in CD4+ T-cells, CCR7 in B cells, IL12R in NK cells, LCK in
monocytes). More importantly, HIV-associated CpG sites were overrepresented for
hallmark genes involved in cancer pathology (FDR<0.05) (e.g. BCL family, PRDM16,
PDCD1LGD, ESR1, DNMT3A, NOTCH2). HIV-associated CpG sites were enriched
among genes involved in HIV pathogenesis and oncogenesis such as Kras-signaling,
interferon-a and -y, TNF-a, inflammatory, and apoptotic pathways. Our findings are novel,

uncovering cell-type specific modifications in the host epigenome for people with HIV that
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contribute to the growing body of evidence regarding pathogen-induced epigenetic

oncogenicity, specifically on HIV and its comorbidity with cancers.
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Introduction

With successful antiretroviral therapy (ART), people with HIV (PWH) have a similar
lifespan to the general population [1]. However, the healthspan of PWH remains 9 years
shorter [1] because of a high burden of comorbid chronic diseases such as cardiovascular
diseases [2], diabetes, and non-AlDS-related cancers [3]. The prevalence of non-AIDS-
related cancers among PWH is significantly higher compared to that among the people
without HIV (PWoH) [4, 5], especially in PWH who are not virally suppressed [6, 7].
Elevated cancer incidence may be due to the high prevalence of cancer risk factors such
as substance use and other co-infections [8]. It is important to characterize the underlying
mechanisms involved in HIV pathogenesis that may contribute to cancer emergence for

PWH.

Host epigenetic modifications play critical roles in HIV-1 induced cellular reprogramming
at different stages of HIV-1 pathogenesis, including viral integration, maintenance,
activation, or silencing [9]. Upon the integration of HIV-1 into the host genome, chromatin
in the infected cells undergoes profound reorganization to control the virus by affecting
proviral long terminal repeat (LTR) promoter complex formation [10]. HIV-1 proteins (e.g.

Tat) in turn change the cellular environment to facilitate virus survival and replication by
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disrupting chromatin structure and altering gene expression in the host cell. For example,
expression of histone methyltransferase (DNMT3A, DNMT3B) and histone deacetylase
(HDAC2 and HDACS3) genes are significantly upregulated in host cells infected with HIV-
1 [11]. Additionally, although some cells infected with HIV have a normal expression of
the BCL family of anti-apoptotic proteins permitting apoptosis and viral propagation, other
infected cells overexpress these proteins [12], thereby increasing the risk of cancer and
promoting persistence of latently infected cells [13], which poses a barrier to HIV
eradication. Epigenetic reprogramming in immune cells persists in chronically infected
cells. Such dynamic virus-host genomic interaction results in distinct epigenetic profiles
among different immune cell types in response to environmental changes. A common
hallmark of pathogen-induced accumulation of DNA methylation maladaptation in multiple
genes is an increase in risk for oncogenesis and cancer, which is estimated to occur for
as much as 20% of cancers [14]. One example is hepatitis B virus-induced DNA
methylation alteration of tumor-suppressor genes p16, p21, CDH1, and SOCS1 that
contributes to hepatocellular carcinoma [15]. However, the role of HIV-associated

epigenetic alterations in carcinogenesis has not been explored.

Epigenome-wide association studies (EWAS) of the host methylome have identified
numerous significant CpG sites for different stages of HIV infection. During the acute
stage of HIV infection, up to 22,697 methylation sites are altered by HIV-1 [16]. ART
initiation reverses patterns of DNA methylation in less than 1% of the altered CpG sites,
leaving the majority of CpG sites with methylation states persisting into the chronic stage
even among virally suppressed individuals [16]. Independently replicated studies have

identified several CpG sites and genes associated with HIV infection, including three
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NLRC5 promoter CpG sites that are less methylated in PWH with or without ART
compared to PWoH [17-20]. DNA methylation profiles are predictive of HIV progression,
frailty, and mortality for PWH [21-23]. These findings demonstrate the importance of

methylation mechanisms in HIV infection and HIV-related comorbidities.

While EWAS in whole blood have identified CpG sites such as NLRC5 that have been
replicated by different studies, they provide limited insight into the epigenetic
modifications of specific immune cell populations that underlie the pathogenic effects of
HIV. HIV-1-induced alterations to the epigenomes of specific immune cell types remain
unknown. Immune cells that originate from different lineages show distinct DNA
methylation patterns [24, 25]. Thus, conventional blood- or peripheral blood mononuclear
cell (PBMC)-based EWAS are likely to confound cell-type specific CpG sites for HIV-1
infection. EWAS signals identified from heterogeneous cells are likely to result from
consistent CpG methylation signals across cell types or a strong cell-type specific signal
that exceeds noise from inconsistent methylation of the same CpG in other cell types.
However, only a few studies have conducted EWAS in specific cell types to identify HIV-
1 associated CpG sites, and then only in a few cell types and in limited sample sizes. For
example, one study showed that the number of CpG sites changed by HIV-1 were
approximately 100 times greater in monocytes than CD4+ T-cells in the acute stage of
HIV infection [16]. Little is known about the impact of HIV-1 infection on the epigenome
of other cell types such as B cells, CD8+ T-cells, natural killer (NK) cells, in addition to
monocytes and CD4+ T-cells. DNA methylation in specific cell types plays an important

role in responding to, but is ultimately altered by, HIV-1 infection [26, 27].
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Cell-type specific DNA methylome profiling of large population samples is technically
challenging and cost prohibitive, especially for less abundant cell types in blood. Recently,
computational methods have been developed and applied to deconvolute cell-type
specific methylation signals from bulk PBMCs or whole blood samples [28-31]. You et al.
(2021) successfully dissected several well-known smoking-associated hypomethylation

signatures that derived from myeloid lineage immune cells [32].

In this study, we hypothesized that alterations in CpG methylation in the genome of
individuals with chronic HIV differ among immune cell types and that HIV-associated
CpGs are enriched among genes involved in HIV pathogenesis, but potentially other
comorbid conditions including cancer development and progression. We applied a tensor
composition analysis (TCA) method to computationally deconvolute cell-type specific
methylation data in PBMCs without sorting cells [33]. We first validated the TCA
deconvoluted methylomes by direct bisulfite DNA sequencing of sorted CD4+ T-cells,
CD8+ T-cells, and monocytes from the same PBMC specimen for a subset of the sample
(N=29). We then deconvoluted methylation data from whole blood or PBMCs into CD4+
T-cells, CD8+ T-cells, B cells, NK cells, and monocytes in 1,134 samples. These cell-type
specific EWAS for chronic HIV infection were conducted in two cohorts: the Veteran Aging
Cohort Study (VACS)[34] for men (N=702) and the Women’s Interagency HIV Study
(WIHS)[35] for women (N=432) (Supplemental sTable 1). To the best of our knowledge,
this is the first and largest cell-type specific EWAS for chronically infected PWH in a
predominantly African American population. A flowchart of analytical strategies is

presented in Figure 1.
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Results

Validation of deconvoluted DNA methylome data measured using capture

sequencing in CD4+ T-cells, CD8+ T-cells, and monocytes.

We first sought to validate the performance of TCA by comparing the DNA methylomes
of CD4+ T-cells, CD8+ T-cells, and monocytes isolated from PBMCs to TCA-
deconvoluted DNA methylation data collected employing capture sequencing in a subset
of WIHS samples. The methylation value of each CpG site from the bulk (PBMC)
sequencing data was deconvoluted to CpG methylation originating from CD4+ T-cells,
CD8+ T-cells, and monocytes using TCA. In tandem, a separate aliquot of the same
PBMC sample was subjected to cell sorting using magnetic beads and the CD4+ T-cells,
CD8+ T-cells, and monocytes obtained were individually subjected to methylation capture

sequencing (MC-seq) (Supplemental Material).

We compared the methylation B-value for the top 10,000 most-variable CpG sites
between the TCA-deconvoluted and the directly measured methylation B-value for CD4+
T-cells, CD8+ T-cells, and CD14+ monocytes. We found a high correlation of methylation
values between the two approaches in each cell type. Correlation coefficients for each
pair were 0.96 in CD4+ T-cells, 0.97 in CD8+ T-cells, and 0.96 in CD14+ monocytes
(Figure 2a). Distribution of CpG methylation in each cell type derived by TCA and MC-
seq methods were almost identical. Compared to directly measured methylation, a small
proportion of hypermethylated CpG sites with 3>0.95 trended slightly higher using the

TCA method (Figure 2b). These results suggest that TCA is a robust and effective
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deconvolution method. Accordingly, EWAS for HIV infection using TCA-deconvolution

was performed.

Cell type-based EWAS identified differentially methylated positions (DMPs) for HIV

infection in men with HIV: the Veteran Aging Cohort Study

In the VACS cohort, the EWAS of HIV-infection using whole blood was carried out by
applying a two-step regression model adjusting for age, self-reported race, cigarette
smoking, alcohol use, ART adherence, HIV viral load, and the top 30 principal
components (PCs) of DNA methylation. We identified 496 epigenome-wide significant
(EWS) DMPs associated with HIV infection in the bulk tissue blood DNA methylome (false
discovery rate, FDR<0.05) (Figure 3a, Supplemental Figure la, sTable 2). The
significant DMPs included those previously reported by us and other groups. Examples
include two previously replicated associations on NLRC5 (cgl6411857, t=-9.42,
FDR=3.58E-14 and cg07839457, t=-9.05, FDR=5.68E-10) [17, 18, 36]. Hypomethylation
of HCP5 that was previously linked to HIV infection also reached EWS in this study
(cg18808777, t=5.61, FDR=7.81E-04) [18]. While replication of these well-validated CpG
sites and genes is important, whether these DMPs originate from specific cell types or

sub-groups of cell types is unknown.

At the cell-type level, we identified considerably more EWS DMPs across the five cell
types than in whole blood: 2,208 in CD4+ T-cells, 106 in CD8+ T-cells, 8 in B cells, 317
in NK cells, and 21 in monocytes (Figure 3a, Supplemental Figure 1b, Supplemental
sTable 3-7). The majority of DMPs in each cell type differed among the five cell types; a

small number of DMPs were common in more than one cell type. For example, one DMP,
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LPCAT1 cg16272981, was significant in four cell types (CD4+ T-cells: FDR=1.15E-07; B
cells: FDR=0.0016; NK cells: FDR=0.005 and monocytes: FDR=3.29E-06). In total, 765

DMPs share more than one cell type in the same direction.

In CD4+ T-cells, differentially methylated CpGs were located in 1,407 genes. We found
more hypomethylated (N=1,336) than hypermethylated (N=827) CpG sites in samples
from PWH relative to uninfected controls. The HIV-associated loci previously reported in
CD4+ T-cells were replicated in this cohort. LPCAT1 cg16272981 showed the largest
effect (16.1% less methylated in samples from PWH relative to PWoH). The top 30 DMPs
were located in 15 genes (i.e. LPCAT1, SLC17A9, RUNXS, KLF7, SEPT9, PEX14,
NLRC5, SPOCK2, SPATAS, MYT1L, CAPN11, SEMA3G, BCL9, XYLT1) (FDR=8.49-
09~ 5.21E-06). Some genes harbored multiple DMPs. For example, 4 EWS DMPs were
located in RUNXS, a well-recognized tumor suppressor of gastric, colon and many other
forms of solid tumors [37]. The majority of HIV-associated DMPs in CD8+ T-cells were
hypomethylated. Six out of 8 DMPs in B cells were hypomethylated. LPCAT1
€g16272981, also significantly enriched in CD4+ T-cells, showed the strongest EWS
association in B cells (t=-5.97, FDR=0.003). Other significant DMPs were located on
TULP4, ETS1, KCNK9, STAT3, HDAC4, and GPC1. Of note, 6 out of 8 DMPs were
common between CD4+ T-cells and B cells except for ETS1 and GPC1. In NK cells, 159
DMP sites overlapped with other cell types. TULP4 cg02571055 was hypomethylated in
B cells and the strongest EWS association in NK cells (t=-6.40, FDR=0.0001). Among 21
significant CpG sites in monocytes, the most significant DMP was LPCAT1 cg16272981

(t=-6.97, FDR=3.29E-06), followed by TULP4 cg02571055 (t=-5.99, FDR= 4.94E-04),
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which was also identified in B cells and NK cells. Thirteen DMPs were only observed in

monocytes, including DMPs located in in NOTCH4 and IGSF9.

Cell-type EWAS for HIV infection in women with HIV: the Women'’s Interagency HIV

Study

The EWAS of women with HIV using PBMCs was carried out by applying the same
regression model and adjusting for the same covariates as for the EWAS in the VACS.
We identified 13 EWS DMPs associated with HIV infection (Figure 3b, Supplemental
Figure 1c, Supplemental sTable 8). Consistent with the VACS sample, NLRC5
cg07839457 was one of the most significant CpG sites (t=-5.76, p=1.85E-08). NLRC5
€g16411857 showed near epigenome-wide significance (t=-4.51, p=8.95=-06). Other
EWS DMPs were located in C120rf32, CD80, GADD45G, TXNIP, TMEM49, SGK269,

DUSP16, RAC2, TNIP3, and GLB1L2.

For the cell-type level EWAS, we identified 153 significant DMPs among the 5 cell types:
20 for CD4+ T-cells, 10 for CD8+ T-cells, 22 for B cells, 1 for NK cells, and 100 for
monocytes (all FDR<0.05) (Figure 3b, Supplemental Figure 1d, Supplemental sTable
9-13). Several DMPs are worthy of mention. Cl120rf32 ¢g12051710 displayed the
strongest association in four out of five cell types: CD4+ T-cells (t=-6.85; FDR=1.35E-05),
CD8+ T-cells (t=-7.45, FDR= 2.95E-07), B cells (t= -6.28, FDR=2.02E-04), and
monocytes (t=-6.94 p=7.43E-06). CD80 cg13458803 was hypomethylated in multiple cell
types: CD8+ T-cells (t=-5.86, FDR=0.0001), B cells (t=-6.41, FDR=0.0002), and NK cells

(t=-5.86, FDR=0.004).0f note, , NLRC5 cg07839457 was one of the top ranked DMPs in
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CD4+ T-cells in the WIHS (t=-5.78, FDR= 0.00537), consistent with the EWAS in the

VACS.

Concordance of DMPs for chronic HIV infection in the VACS and WIHS cohorts

The distinct demographic and clinical characteristics of the VACS and the WIHS may
undermine whether the HIV-associated DMPs identified in these two cohorts are
comparable and if the findings can be generalized to other studies. We conducted a
correlation analysis of effect sizes for each DMP across data from bulk samples (whole
blood, PBMC) and each cell type between the two cohorts (p<0.001). We found that
effect sizes of the same CpG site between the two cohorts were highly correlated in bulk
cells (r=0.784, p=5.86E-30) and in four out of five cell types (Figure 3c). At the cell type
level, the correlation coefficient of DMPs from the VACS and WIHS were strongest in
CDA4+ T-cells (r=0.635, p=2.14E-30), followed by CD8+ T-cells (r=0.601, p=4.13E-05), B
cells (r=0.396, p=1.89E-05), and monocytes (r=0.365, p=2.12E-06). The correlation of
effect size in NK cells between the two cohorts was suggestive, but not significant
(r=0.151, p=0.099). The directions of the correlations for the majority of DMPs (85.1%)
were concordant between the two cohorts. The correlation analysis results show that
DMPs for HIV infection in bulk and in individual cell types were largely consistent between
the two cohorts; the results also underscored the potential value of EWAS meta-analysis

of the two cohorts.

EWAS meta-analysis by cell type identified common and specific DMPs for chronic

HIV infection
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Cell-type based EWAS meta-analysis (meta-EWAS) identified EWS DMPs in each of five
cell types. Prior to performing the meta-EWAS, DMPs with significant heterogeneity

(heterogeneity p<0.05) between the two cohorts were removed.

Meta-EWAS in bulk cells revealed 453 DMPs including top significant genes NLRCS5,
LPCAT1, HCP5, and PSMB8 (Figure 4a, Supplemental sTable 14). Meta-EWAS by cell
type identified 1,472 epigenome-wide DMPs in CD4+ T-cells, no DMPs in CD8+ T-cells,
159 DMPs in B cells, 198 DMPs in NK cells, and 422 DMPs in monocytes (Figure 4b and
4c, Supplemental sTable 15-18). In CD8+ T-cells, the DMPs uniquely identified in the
VACS cohort showed opposite direction in the WIHS cohort, with the exception of the
DMP in C120rf32 and MYL3. Because the CpG sites with opposite effect were removed
from the meta-analysis and no significant DMPs in CD8+ T-cells were identified due to
high heterogeneity. Several genomic regions harbored DMPs that were common to more
than one cell type (Figure 5a). Multiple loci on chromosome 3 (ARHGEF3, DNAJBS,
CCRL1, AHSG, CD80), 5 (LPCAT1), chromosome 11 (SHANK2), chromosome 10
(RUNX2), chromosome 16 (NLRCS5), and chromosome 20 (SLC17A9) were common in
more than one cell type. Several top ranked CpG sites were located in genes encoding
for transcription factors. For example, ZNF326 (t=-5.92, FDR=0.002), ZNF714 (t=-4.83;
FDR=0.016), ZNF90 (t=-4.45, FDR=0.042), and ZNF76 (t=-4.44, FDR=0.044). Other
DMPs were located in genes relevant to cancer such as STRN3 ¢g18451035 (t=-5.56,
FDR=0.004) and genes involved in innate immunity and metabolism such as ENPP4

925606773 (t=-5.48, FDR=0.004) [38, 39].

Overall, the majority of DMPs (67%) from the meta-EWAS were unique to each cell type

(Figure 5b). Cell-type specific DMPs accounted for 67.6% of DMPs in CD4+ T-cells,
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20.8% in B cells, 42.4% in NK cells, and 39.3% in monocytes. Among lymphocytes, only
1.4% of DMPs overlapped between CD4+ T-cells and B cells, and 0.7% of DMPs between
CD4+ T-cells and NK cells. The small number of overlapping DMPs may be because
fewer DMPs were identified in B cells and NK cells. The results suggest that meta-EWAS
revealed distinct DNA methylation modifications for HIV infection between cell types.
Annotation of significant CpGs showed that the majority (40-76%) of CpG sites were
located in gene bodies in each cell type. The proportion of DMPs located in promoter
regions was greater in CD4+ T-cells (10%) than in other cell types, followed by monocytes
(8%) (Figure 6a). The proportion of DMPs in CpG islands was also greater in CD4+ T-

cells (Figure 6b).

Cell-type Specific DMPs from meta-EWAS are overrepresented in hallmark genes

for cancer

Previous studies have demonstrated that pathogen-induced epigenetic alterations
cumulatively contribute to cancer development [40]. Using hallmark genes from the
COSMIC Cancer Gene Census (databasehttps://cancer.sanger.ac.uk/census), we found
significant overrepresentation of differential methylation of hallmark genes for cancer in
CD4+ T-cells (FDR=1.01E-05), in B cells (FDR=0.008), in NK cells (FDR=0.003), and in
monocytes (FDR=0.02). Several hallmark genes were EWS for HIV infection from the

meta-EWAS in each cell type except CD8+ T-cells (Table 1).

In CD4+ T-cells, 41 hallmark genes were differentially methylated for HIV infection (e.qg.
BCL9 for B-ALL [41], GAS7 and PRDM16 for AML [42, 43], ESR1 for breast cancer [44],

and GRIN2A for colorectal, lung, and gastric carcinoma [45]) (Figure 7). Five hallmark
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genes were differentially methylated for HIV in B cells (PRDM16 and DNMT3A for AML,
PDCD1LG2 for Hodgkin’s lymphoma, LMNA for spritzed tumor, and BCL11B for T-ALL).
Three hallmark genes were differentially methylated for HIV in NK cells (BCL11B for T-
ALL, BCL10 for MALT, and MAP3KYIP for prostate cancer), and six in monocytes (LCK
and BCL11B for T-ALL, PDCD1LGD for Hodgkin's lymphoma, PRDM16 for AML,

CACNALD for prostate cancer, and EBF1 for B-ALL).

In addition to the enrichment of hallmark genes for cancer, many of the HIV-associated
DMPs in individual cell types are also reportedly involved in cancer. Some genes related
to cancer harbored multiple CpG sites that all were hypomethylated in samples from PWH
compared to PWoH Six DMPs on SLC17A9 (cg14686919, cg01817521, cg00199007,
€g04478428, cg26329715, cg00727912) were hypo-methylated in CD4+ T-cells, B cells,
NK cells, and monocytes (Table 1). Notably, SLC17A9 expression is associated with
colorectal cancer [46]. We found 4 DMP sites on RUNX3 that were hypomethylated
(cg11585280, cg07236781, cg15498134, cg00147638). RUNX3 is a tumor suppressor
frequently deleted or transcriptionally silenced in cancers that encodes for one of the
RUNX family proteins that are critical transcriptional regulators combining with
transcription factor CBF- in CD4+ T-cells [47]. Two HCP5 DMPs were hypomethylated
(cg18808777, cg25843003); HCP5 is an oncogene associated with multiple cancers.
DMPs in several genes from the BCL family were found in CD4+ T-cells, B cells, NK cells,
and monocytes [48]. We found 5 EWS DMP sites on KLF7 that were hypermethylated.
KLF7 affects cell proliferation and has been implicated in ovarian cancer progression [49].
Differential methylation of KLF7 for HIV was previously linked to pancreatic ductal

adenocarcinoma [5]. HIV-1 induced DNA methylation changes to CpGs in these genes,
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which have been reported in the literature to play a role in cancer development, may

explain the increased prevalence of cancer in PWH.

HIV-associated DMPs are enriched in gene sets for immunity and cancer biology

To better interpret the biological significance of HIV-associated DMPs in the aggregate,
we carried out a gene set enrichment analysis. Among the set of hallmark genes, we
found 20 significant pathways in CD4+ T-cells, 8 in B cells, 3 for NK cells, and 3 for
monocytes (g<0.05). Multiple pathways were identified that were involved in immune
evasion in multiple cancers (Supplemental Table 19). For example, the Kras pathway
harbors a set of one of the most common oncogenic-driven mutations and genes that are
targets of cancer therapeutics. In CD4+ T-cells, the Kras pathway contains HIV-
associated hypomethylated DMPs in IRF8, PSMBP8, PDCD1LG2, MYCN, and SNAP91
and hypermethylated DMPs in BTBD3, CSF2, and NIN. Interestingly, hypomethylation of
IRF8 was enriched in not only the Kras pathway, but also the allograft rejection pathway
and the interferon y response pathway. Multiple genes contained HIV associated DMPs
in the allograft rejection pathway, including hypomethylated DMPs in CD80, CD8A,
CRTAM, HLA-DOA, PTPRC, STAT1, STAT4, and CD96 and hypermethylated DMPs in
MBL2 and CD4. HIV-associated DMPs in STAT1, STAT4, HLA-A and TAP1 were
common to both the allograft rejection pathway and the interferon y response pathway
(Figure 8a). The allograft rejection pathway and the Kras pathway are connected by HIV-
associated DMPs located in the following hallmark genes for cancer: HIF1A, CD79A,
PDCD1LGZ2, and FLT4 (Figure 8b). The three above-mentioned pathways are involved

in cancer development and progression.
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Gene set enrichment analysis for pathways in B cells mostly overlapped that in CD4+ T-
cells. One significant pathway unique to B cells was the IL2-STAT5_SIGNALING
pathway, in which 7 of 194 genes harbored HIV-associated DMPs. Gene set enrichment
analysis for pathways in NK cells largely overlapped with those identified in B cells. One
significant pathway unique in the NK cell was the
HALLMARK_PI3K_AKT_MTOR_SIGNALING pathway, in which 7 of 104 genes harbored
HIV-associated DMPs. Monocytes had one significant pathway:
HALLMARK_PANCREAS_BETA_ CELLS. Enrichment analysis from the KEGG database
showed overall distinct patterns of significant biological pathways in each cell type
(Supplemental Figure 2). The results further underscore the striking enrichment of
genes in cell type that feature DMPs for HIV-pathogenesis that are enriched for cancer

development among PWH.

Discussion

We identified DMPs for chronic HIV infection in five major immune cell types: CD4+ T-
cells, CD8+ T-cells, B cells, NK cells, and monocytes. These include a number of
previously reported DMPs associated with HIV infection. Despite differences in
demographic and clinical characteristics between the two cohorts studied, we found a
number of overlapping and highly concordant DMPs. The majority of DMPs identified in
individual cell type meta-EWAS were unique to each cell type (67%). The occurrence of
distinct profiles of HIV-associated DMPs among immune cell types highlights the

importance of examining differences in DNA methylation profiles between individual cell
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types. Among the five cell types, the number of DMPs identified in CD4+ T-cells were
three-to-ten-fold greater than the other four cell types, suggesting that epigenetic
alteration in CD4+ T-cells plays a major role in chronic HIV-infection. More importantly,
we found that genes that harbored HIV-associated DMPs are overrepresented in cancer
biology. The identified genes were enriched among hallmark pathways of HIV
pathogenesis and cancer. The results provide new insights into the epigenetic

mechanisms of HIV that may underlie the increased risk for cancer in PWH.

As expected, we identified the largest number of HIV-associated CpG sites in CD4+ T-
cells. Several previously reported genes involved in chronic HIV infection from CD4+ T-
cells and from PBMC samples were replicated in this study. Of note, we observed
differentially methylated CpG sites harbored in the genes involved in the Thl signaling
process (e.g. RUNX3, STAT4) in CD4+ T-cells. Several TNF CpG sites were reported to
be hypermethylated in samples from PWH [50]. These CpG sites were also
hypermethylated in the present study. A noteworthy hypomethylated DMP identified in
the present study is PEX14 ¢g25310676. PEX14 is involved in the control of oxidative
stress and is targeted by HIV Env-mediated autophagy [51]. Expression of PEX14 was
decreased in HIV-infected CD4+ T-cells and contributed to CD4+ T-cell apoptosis [7].
Compared to CD4+ T-cells, a much smaller number of DMPs were identified in the other
four cell types, including monocytes. This observation is in line with previous reports
showing that different numbers of DMPs between acute and chronic HIV infection are
observed in CD4+ T-cells and monocytes. During acute HIV infection, the number of
DMPs are 10-fold greater in monocytes than in CD4+ T-cells [16]. In SIV-infected

macaques and African green monkeys, only 0.5% of DMPs overlapped in CD4+ T-cells
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between acute and chronic HIV infection stages. This evidence suggests that distinct
profiles of DNA methylation modification may occur in the different stages of HIV infection

and in different cell types.

The fact that many HIV-associated DMPs and associated genes are also involved in
cancer among the four cell types is intriguing. One possibility is that HIV-1 directly induces
maladaptive changes in epigenetic regulation of oncogenes. For example, several BCL
family genes were significantly associated with HIV infection, BCL9 in CD4+ T-cells, and
both BCL11B and BCL2L2 in CD4+ T-cells, B cells, NK cells, and monocytes. The BCL
family plays a crucial role in the development, proliferation, differentiation, and
subsequent survival of T cells and is associated with multiple cancers. BCL9 functions in
cell-cell communication in colorectal cancer [52]. BCL11B encodes for a protein that is a
transcriptional repressor and is regulated by the NURD nucleosome remodeling and
histone deacetylase complex. BCL11B is a hallmark of B-cell CLL/Lymphoma. BLC2L2
acts as an apoptotic regulator and is linked to multiple cancers including liver cancer, lung
cancer, and breast cancer [53]. On the other hand, evidence shows that chronic
inflammation is involved in pathogen-induced DNA methylation changes resulting in an
“epigenetic field defect” for oncogenesis. For example, our results show that several
proinflammatory genes (e.g. TNF, IGFBPL1) were differentially methylated in PWH
compared to PWOH. Increased inflammation is a hallmark of chronic HIV infection.
Whether chronic HIV-1 results in DNA methylation of inflammatory genes contributing to
cancer warrants further study. The overrepresentation of HIV-1 integration in cancer
genes has been reported previously [54]. In PWH on suppressive ART, a large proportion

of persisting proviruses are found in proliferating cells. One possible mechanism is to
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promote the proliferation and survival of latently HIV-infected cells, which in turn benefits
HIV-1 persistence and reservoir expansion thereby frustrating attempts to eradicate the
virus. Such interactions between HIV-1 and the host epigenome may point to underlying

mechanisms of cancer development in PWH.

Overall, we found highly concordant effect sizes among the shared DMPs in four of five
cell types between two distinct cohorts. The observation highlights the common biological
pathways in ancestrally heterogenous populations among men and women with HIV. On
the other hand, we observed a subset of DMPs that differed between the two cohorts. We
speculate that the DMPs identified that differed between the two cohorts are likely due to
different statical power and different rates of HIV viral suppression between the two
cohorts. The sample size of the VACS cohort is over twice that of the WIHS cohort. More
importantly, participants in the VACS cohort had higher HIV viral loads than participants
in the WIHS cohort. Although HIV viral load was adjusted for in each EWAS, residual
effects on DNA methylation cannot be ruled out. Another possibility is biological
differences in HIV infection between men and women. Sex differences in HIV infection
are observed in clinical settings. Women appear better able to control HIV-1 replication
compared to men, typically having lower HIV viral loads, and higher CD8+ and CD4+ T-
cell counts [55]. However, the rate of progression to AIDS between men and women are
similar, suggesting that immune and inflammatory activation are higher among women
[55]. The underlying reasons for the observed differences in CD8+ T-cell epigenome are
unclear. One study showed that an increased CD8+ T-cell count may be due to an
enhanced capacity to respond to the IL12 cytokine in women compared to men, which

leads to more effector cell differentiation [56]. Treatment naive women with HIV-1 had
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significantly higher CD8+ T-cell activation than men, which appears mediated by
interferon o in response to Toll-like receptor 7 [57]. Future studies including both sexes
and addressing confounding factors are warranted to investigate potential sex differences

in the host genome among PWH.

We acknowledge several limitations to this study. Cell type proportion was estimated
based on DNA methylation, not cell count, which could result in inaccurate deconvolution
of DNA methylation for individual cell types. While the results suggest the effect would be
modest, TCA-deconvoluted DNA methylation profiles in each cell type may differ between
the two cohorts due to differences in biospecimen collection. For the VACS cohort, cell-
type DNAmM was deconvoluted from whole blood that included granulocytes while cell-
type DNAmM from the WIHS cohort was deconvoluted from PBMCs, which excludes
granulocytes. Computationally identified significant DMPs warrant confirmation in sorted
cell types. Finally, only a small proportion of CpG sites in the methylome were investigated
in this study (i.e., 450K and EPIC commercial arrays). Future studies to expand the
number of CpG sites using a sequencing platform to comprehensively profile the

methylome for chronic HIV infection are warranted.

In summary, leveraging a computational deconvolution approach, we identified cell-type
level DPMs associated with HIV infection. The findings were enriched for genes
involved in both HIV pathogenesis and cancer pathology, which underscore the
important mechanisms of HIV persistence and comorbid cancers. The significant genes

may be therapeutic targets for HIV disease and other comorbid medical diseases.

Methods
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Sample characteristics and DNA methylation profiling

The VACS is a nationwide longitudinal veteran cohort including PWH and PWoH to study
HIV infection and disease progression. A total of 702 samples from the VACS Biomarker
Cohort, a subset of the entire VACS, were included in the analysis (Supplemental
Material). The majority (86%) of the VACS sample were of African (African
American/Black; AA) ancestry and all samples were collected from male participants.
Clinical data and specimens used in this manuscript were collected by the Women’s
Interagency HIV Study (WIHS), now the Multicenter AIDS Cohort Study (MACS)/WIHS
Combined Cohort Study (MWCCS) [58] (Supplemental Material). WIHS included 245
samples from PWH and 187 uninfected controls from diverse ancestral populations and
all samples were collected from female participants. Demographic and clinical

characteristics are presented in Supplemental sTable 1.

Methylation of bulk DNA samples extracted from whole blood in the VACS was profiled
using lllumina HumanMethylation 450K Beadchip. Methylation of bulk DNA samples
extracted from PBMCs in the WIHS was profiled using lllumina HumanMethylation EPIC
Beadchip. A total of 408,366 CpG sites were common to both the 450K and EPIC arrays,
which were used to deconvolute bulk DNA methylation data to five cell types by TCA.
More information about DNA methylation quality control and deconvolution are presented

below in the Methods and in Supplementary Material.

Capture Methylation Sequencing
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Three cell types, CD4+ T-cells, CD8+ T-cells, and monocytes, were isolated from 4 PBMC
samples using a magnetic bead-based method [59]. DNA was extracted from each
isolated cell type. Methylation sequencing target enrichment library preparation was
performed per manufacturer protocol (Agilent). Samples were sequenced using 100bp
paired-end sequencing on an lllumina HiSeq NovaSeq according to lllumina standard
protocol. Detailed quality control and data processes are presented in Supplementary
Material. CpG sites were annotated using Homer annotatePeaks.pl, including intergenic,
5'UTR, promoter, exon, intron, 3'UTR, transcription start site (TTS), and non-coding
categories. CpG island, shore, shelf, and open sea annotation was defined by locally
developed bash and R scripts based on genomic coordinates (hg19) of CpG islands from
the UCSC genome browser. CpG shore was defined as up to 2 kb from CpG islands and
CpG shelf was defined as up to 2 kb from a CpG shore. Methylation CpG sites on the X

and Y chromosomes were removed for subsequential analyses.

Deconvolution of DNA methylation from bulk cells to five cell types

To deconvolute bulk methylation of each CpG to specific cell types, TCA requires a DNA
methylation data matrix in heterogeneous cells and cell type proportions for each sample
in the cohort. We first estimated the proportion of six cell types from the methylation of
whole blood in the VACS cohort (CD4+ T-cells, CD8+ T-cells, B cells, NK cells,
monocytes, granulocytes) and from the PBMCs in the WIHS cohort (CD4+ T-cells, CD8+
T-cells, B cells, NK cells, monocytes). Because the approach to generating PBMC in the
WIHS cohort results in the near-total depletion of granulocytes, we excluded granulocytes
from the analyses to provide a consistent set of cell-type specific epigenome profiles

shared between the two cohorts. The estimated proportions of each cell type in each
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cohort were similar except for CD4+ T-cells, for which the proportion in the VACS cohort
was greater than CD4+ T-cells in the WIHS cohort (Supplemental Figure 3). We used
TCA in the R environment to estimate methylation beta values at each CpG site for each
cell type. A total of 408,366 CpG sites were deconvoluted to five cell types using either a
whole blood methylation matrix (VACS) or from PBMC methylation matrix (WIHS). Our
results showed that TCA deconvoluted methylation in individual cell types robustly

removed cell type confronting effects in (Supplemental Figure 4).

Comparison between TCA-deconvoluted and methylation capture sequencing-

based methylation beta values in three cell types

We validated the accuracy of the TCA-derived estimates of DNA methylation at each CpG
site by comparing the TCA-derived beta value with DNA methylation beta estimates
measured directly using capture sequencing. We selected the top 10,000 most variable
CpG sites among the samples for this comparison, which was performed using Pearson

correlation analysis with significance set at p<0.05.

Cell-type based epigenome-wide association analysis

We performed a cell-type based EWAS for HIV-infection using TCA-deconvoluted
methylation beta values for each cell type. In each cell type, we conducted a two-step
regression analysis using the strategy proposed by Lehne et al [60]. The first regression
model addressed global covariates that may confound the association of methylation with

HIV infection. We first estimated the residual § using regression model (1):

p value (quantile normalized, QN ) ~ age + race + smoking status + White Blood Cell (WBC)

+ 6 cell type proportions + PCs 1-30 on intensities of control probes
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We then performed a second PCA on the resulting regression residual 8 values and
regressed out the first 5 PCs to further control for unmeasured confounders in the

regression model (2).

pvalue (QN) ~ age + race + smoking status + WBC + 6 cell type proportions
+ PCs 1-30 on intensities of control probes

+ PCs 1-5 onresiduals from model (1)

Significance was set at a false discovery rate (FDR)<0.05. To further confirm the
correction of global confounders, we performed Pearson correlation analysis between the
first 30 PCs on residual methylation from model (1) and batch, demographic, clinical, and
6 cell type confounders (Supplemental Figure 4). Cutoff of correlation analysis was set

at p<0.05

Correlation analysis of HIV-associated CpG sites between the two cohorts

In each cell type, we selected CpG sites with FDR<0.05 in the VACS and with a nominal
p<0.05 in the WIHS for correlation analysis. The rationale for the significance cut off
chosen for the WIHS cohort is to treat it as a replication cohort. Pearson correlation of the
effect sizes at each resulting CpG between the two cohorts was performed. The
significance threshold was set at p<0.05. We also compared the direction of effect of each

CpG between two cohorts.

Cell type-based Meta-EWAS

We conducted an EWAS meta-analysis for each cell type by combining the data from the

VACS and WIHS samples. Effect sizes and p-values for each probe were obtained from
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analyses in the VACS and WIHS samples, respectively. We performed inverse-variance
weighted meta-analysis, with scheme parameters of sample size and standard error as
implemented in the METAL program, combining summary statistics from the two sample
sets. We investigated heterogeneity between the two samples using the 12-statistic. CpG

sites with 1>>50% and heterogeneity p<0.05 were excluded from subsequent analysis.

Enrichment of hallmark genes for cancer

We performed an enrichment analysis of HIV-associated genes among 736 cancer
hallmark genes from the Cancer Gene Census database. CpG sites with FDR<0.1 from
the cell type based meta-EWAS were mapped to the nearest gene. The set of genes that
met the above criteria were used to test whether the gene set was significantly

overrepresented among the hallmark genes for each cell type at FDR<0.05.

Gene set enrichment analysis

Genes adjacent to CpG sites with FDR<0.1 in meta-EWAS for each cell type were
selected for gene set enrichment analysis. We focused on the hallmark gene sets from
the Molecular Signature Database (https://www.gsea-msigdb.org/gsea/msigdb/).

Enrichment analysis using GO and KEGG annotations were also performed.
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Figure 1. Flowchart of analytical strategies. VACS: Veteran Aging Cohort Study; WIHS: Women’s
Interagency HIV Study; TCA: Tensor Component Analysis; EWAS: Epigenome-wide Association
Study.

Figure 2. Benchmarking TCA-deconvoluted cell-type specific DNA methylation. (a) Comparison
of methylation B-values for the top 10,000 most variable CpG sites between the deconvoluted and
the directly measured methylation. B-values for each cell type were compared between three cell
types [CD4+ T cells, CD8+ T cells, and monocytes (CD14+)]; (b) Distribution of genome-wide
DNA methylome by the TCA-deconvoluted and MC-seq methods. MC: methylation capture
sequencing; TCA: Tensor Composition Analysis.

Figure 3. Summary of cell-type level EWAS in the VACS and WIHS cohorts in five cell types
(CD4+ T, CD8+ T, B, Natural Killer, Monocyte). (a) Volcano plots for the VACS cohorts with top
common and unique hyper- and hypomethylated gene-associated sites annotated, where PBMCs
derive from whole blood samples. (b) Volcano plots for the WIHS cohort with similar annotations.
(c) Correlation of significant DMPs between VACS and WIHS cohorts among the shared DMPs
between the two cohorts. PBMC: peripheral blood mononuclear cell; EWAS: Epigenome-wide
Association Study; VACS: Veteran Aging Cohort Study; WIHS: Women’s Interagency HIV Study;
DMPs: Differential Methylation Positions. *Significant genes shared between at least two cell
types.

Figure 4. Summary of cell type level epigenome-wide meta-analysis of the combined Veteran
Aging Cohort Study (VACS) and Women'’s Interagency HIV study (WIHS) data. (a) Manhattan
plot of epigenome-wide significant CpG sites prior to computational deconvolution of data into
cell-type-specific methylation. (b) Manhattan plot of epigenome-wide significant CpG sites after
computational deconvolution into cell-type-specific signals. (c) Volcano plots of hyper- and
hypomethylated DMPs for HIV infection in each cell type following Meta-EWAS (Epigenome-wide
Association Study). DMP: Differential Methylation Position. * Significant genes shared between

at least two cell types.
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Figure 5. Common and distinct DMP profiles among cell types following cell type level meta-
EWAS. (a) Stacked Manhattan plots displaying -log10(p) for CpG sites of each cell type. (b)
Unique and common DMPs among five cell types and peripheral blood mononuclear cells.
Overlap size represents the number of shared DMPs between the designated cell types. DMP:
Differential Methylation Position.

Figure 6. Characterization of epigenome-wide significant DMP from cell-type level meta-
epigenome-wide association analysis. DMP: Differential Methylation Position.

Figure 7. Gene enrichment analysis of significant DMPs for HIV infection in CD4+ T cells with
Catalogue Of Somatic Mutations in Cancer (COSMIC) Gene Census Tier 1 database. CGC Tier
1 denotes the gene has cancer gene mutation patterns and evidence of functional impact reported
in the literature. DMP: Differential Methylation Position.

Figure 8. Gene enrichment analysis of DMPs in the genes enriched on hallmark gene pathways
in CD4+ T cells. Notably, the allograft rejection, early estrogen response, interferon alpha
response, interferon gamma response, and kras signaling pathways were significantly enriched.
(a) Circos plot showing DMPs in four pathways; (b) Relationships of four significant pathways.

DMP: Differential Methylation Position.
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Table 1 Overlap between hallmark genes for cancer and meta-EWAS identified significant genes for HIV infection

Cell Type probe Position Gene Symbol Name Chr Band Tumour Role in Cancer 2score Meta P Hat P FDR
CD4+Tcell €g11754402 1 147012719 BCL9 B-cell CLL/lymphoma 9 21.2 B-ALL oncogene, fusion 0.00486 6.788 1.14E-11 0.1161 3.42e07
€g05573412 1 3238152 PRDM16 PR domain containing 16 36.32 MDS, AML oncogene, fusion 0.00544 5.649 1.61E-08 0.9565 9.60827E-05
¢g00168240 1 3347457 0.00604 4.892 9.98E-07 0.6543 0.001835991
01062116 1 3352435 0.00567 4.281 0.00001861 0.1391 0.012478968
24900983 6 152128528 ESR1 estrogen receptor 1 25.2 breast oncogene, TSG, fusion -0.01417 -5.535 3.12E-08 0.677 0.000151436
€g23467008 6 152128537 -0.002735 -5.213 1.86E-07 0.5923 0.000557299
€g21950534 6 152128483 -0.0088855 -4.928 8.32E-07 0.176 0.001611014
€g24900983 6 152128528 -0.01417 -5.535 3.12E-08 0.677 0.000151436
12833931 17 9862893 GAS7 growth arrest-specific 7 13.1 AML* fusion 0.00629 5.067 4.04E-07 0.2609 0.000979112
cg06470804 5 180071930 FLT4 fms-related tyrosine kinase 4 353 soft tissue sarcoma oncogene 0.001158 4.866 1.14€-06 0.3619 0.001972615
€g05307957 1 27028974 ARID1A ATrich interactive domain 1A (SW/-like) 36.11 clear cell ovarian carcinoma, RCC, breast TSG, fusion 0.00448 4.666 3.08E-06 0.3885 0.004052045
g08355301 17 62009651 CD798 CD79b molecule, immunoglobulin-associated beta 233 DLBCL, WM oncogene 0.013975 4.629 3.68E-06 0.8054 0.00447258
€g21772773 1 6880294 CAMTA1L calmodulin binding transcription activator 1 36.31 epithelioid haemangioendothelioma TSG, fusion -0.005355 -4.621 3.81E-06 0.6247 0.00457825
cg07344096 1 7724122 0.007465 4.184 0.00002868 0.8856 0.016949257
¢g03051946 1 6946515 0.000540046 3.768 0.0001645 0.1644 0.047070759
guanine nucleotide binding protein (G protein), alpha stimulating activity pituitary adenoma, pancreatic intraductal papillary mucinous neoplasm,
€g10546626 20 57424521 GNAS polypeptide 1 13.32 fibrous dysplasia oncogene 0.0015175 4.499 6.84E-06 0.8962 0.006643465
g03613625 20 57408174 0.003505 3.949 0.00007835 0.06884 0.030883664
26380291 10 114787843 TCF7L2 transcription factor 7-like 2 25.3 colorectal oncogene, fusion 0.005369 4.46 8.19E-06 0.8992 0.007316706
03935060 16 10272021 GRIN2A glutamate receptor, ionotropic, N-methyl D-aspartate 2A 13.2 melanoma, colorectal carcinoma, gastric carcinoma, lung carcinoma TSG 0.025175 4.449 8.63E-06 0.2726 0.007566163
26196087 1 120530251 NOTCH2 Notch homolog 2 12 marginal zone lymphoma, DLBCL, bladder oncogene, TSG -0.006609 -4.296 0.00001735 0.5559 0.01198841
¢g07266431 7 92460113 CDK6 cyclin-dependent kinase 6 21.2 ALL oncogene, fusion -0.0288 -4.139 0.00003482 0.1561 0.019241278
g00907204 7 92461971 -0.0143 -3.923 0.00008733 0.2113 0.033421433
core-binding factor, runt domain, alpha subunit 2; translocated to, 3 (MTG-
g06982885 16 89029055 CBFA2T3 16) 243 AML TSG, fusion 0.0011815 3.813 0.0001373 0.3417 0.042156881
g01517968 12 52348879 ACVR1 activin Areceptor, type | 24.1 DIPG oncogene 0.016675 4.765 1.89E-06 0.05167 0.002830141
€g15130433 6 159240081 EZR ezrin 25.3 NSCLC fusion 0.001795 3.88 0.0001046 0.3215 0.036602471
g13859541 3 30647802 TGFBR2 transforming growth factor beta receptor Il 24.1 head and neck, colorectal TSG -4.16225E-05 -3.874 0.0001069 0.4247 0.036901374
€g25353990 5 158164199 EBF1 early B-cell factor 1 333 lipoma TSG, fusion 0.00889 3.871 0.0001083 0.4636 0.037195995
2 25498444 DNMT3A DNA ine-5-)- 3alpha 233 AML TG -0.002447 -3.823 0.0001317 0.6217 0.041370617
BCell
€g26425711 1 3251680 PRDM16 PR domain containing 16 36.32 MDS, AML oncogene, fusion 0.01325 4.281 0.00001858 0.8995 0.048768324
2.18e-08
€g00168240 1 3347457 PRDM16,PRDM16 0.00483 5.241 (6.16e-09) 0.3239 0.005427865
€g14133064 9 5530115 PDCDILG2 programmed cell death 1 ligand 2 24.1 PMBL, Hodgkin lymphoma oncogene, fusion -0.00993 -4.937 7.915€07 0.5993 0.011243238
¢cg00856404 2 25498451 DNMT3A DNA (cytosine-5-)-methyltransferase 3 alpha 233 AML TSG -0.0211 -4.731 0.000002235 0.07902 0.019841261
20669908 2 25498444 -0.016585 -4.868 0.000001126 0.1058 0.012772781
€g22820188 1 156086004 LMNA lamin A/C 22 Spitzoid tumour fusion -0.0219 -4.703 0.000002563 0.05563 0.021112522
¢g07440398 14 99712966 BCL11B Bcell CLL/lymphoma 118 (CTIP2) 32.2 T-ALL oncogene, TSG, fusion 0.019905 4.34 0.00001428 0.2027 0.043196048
Natural Killer Cell
¢cg07440398 14 99712966 BCL11B B-cell CLL/lymphoma 11B (CTIP2) 32.2 T-ALL oncogene, TSG, fusion 0.0395 4.713  0.000002438 0.3084 0.016187883
¢g01636910 1 85740751 BCL10 B-cell CLL, 10 22.3 MALT TSG, fusion -0.011200007 -4.484 0.000007312 0.07226 0.02843783
Monocyte
cg07440398 14 99712966 BCL11B B-cell CLL/lymphoma 11B (CTIP2) 322 T-ALL oncogene, TSG, fusion 0.008815 6.033 1.61E-09 0.1174 0.000329551
¢g05100282 14 99713430 2.52E-08 4.65 3.32E-06 0.9355 0.015425098
€g27229529 1 3162676 PRDM16 PR domain containing 16 36.32 MDS, AML oncogene, fusion 0.009845 4.414 0.00001017 0.3783 0.024287031
¢g00168240 1 3347457 0.0191 6.14 8.24E-10 0.104 0.000329551
€g14133064 9 5530115 PDCD1LG2 programmed cell death 1 ligand 2 24.1 PMBL, Hodgkin lymphoma oncogene, fusion -0.008485 -5.19 2.10E-07 0.135 0.00339572
¢g00625963 1 32740034 Lek lymphocyte-specific protein tyrosine kinase 35.2 T-ALL oncogene, fusion -0.00885 -4.336 0.00001453 0.1171 0.027574071
€g25353990 5 158164199 EBF1 early B-cell factor 1 33.3 lipoma TSG, fusion 0.0197 4.081 0.00004491 0.05484 0.046915091
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