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Abstract 

Epigenome-wide association studies (EWAS) of heterogenous blood cells have identified 

CpG sites associated with chronic HIV infection, which offer limited knowledge of cell-

type specific methylation patterns associated with HIV infection. Applying a computational 

deconvolution method validated by capture bisulfite DNA methylation sequencing, we 

conducted a cell type-based EWAS and identified differentially methylated CpG sites 

specific for chronic HIV infection among five immune cell types in blood: CD4+ T-cells, 

CD8+ T-cells, B cells, Natural Killer (NK) cells, and monocytes in two independent cohorts 

(Ntotal=1,134). Differentially methylated CpG sites for HIV-infection were highly 

concordant between the two cohorts. Cell-type level meta-EWAS revealed distinct 

patterns of HIV-associated differential CpG methylation, where 67% of CpG sites were 

unique to individual cell types (false discovery rate, FDR <0.05). CD4+ T-cells had the 

largest number of HIV-associated CpG sites (N=1,472) compared to any other cell type. 

Genes harboring statistically significant CpG sites are involved in immunity and HIV 

pathogenesis (e.g. CX3CR1 in CD4+ T-cells, CCR7 in B cells, IL12R in NK cells, LCK in 

monocytes). More importantly, HIV-associated CpG sites were overrepresented for 

hallmark genes involved in cancer pathology (FDR<0.05) (e.g. BCL family, PRDM16, 

PDCD1LGD, ESR1, DNMT3A, NOTCH2). HIV-associated CpG sites were enriched 

among genes involved in HIV pathogenesis and oncogenesis such as Kras-signaling, 

interferon-α and -, TNF-α, inflammatory, and apoptotic pathways. Our findings are novel, 

uncovering cell-type specific modifications in the host epigenome for people with HIV that 
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contribute to the growing body of evidence regarding pathogen-induced epigenetic 

oncogenicity, specifically on HIV and its comorbidity with cancers. 
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Introduction  

With successful antiretroviral therapy (ART), people with HIV (PWH) have a similar 

lifespan to the general population [1]. However, the healthspan of PWH remains 9 years 

shorter [1] because of a high burden of comorbid chronic diseases such as cardiovascular 

diseases [2], diabetes, and non-AIDS-related cancers [3]. The prevalence of non-AIDS-

related cancers among PWH is significantly higher compared to that among the people 

without HIV (PWoH) [4, 5], especially in PWH who are not virally suppressed [6, 7]. 

Elevated cancer incidence may be due to the high prevalence of cancer risk factors such 

as substance use and other co-infections [8]. It is important to characterize the underlying 

mechanisms involved in HIV pathogenesis that may contribute to cancer emergence for 

PWH. 

Host epigenetic modifications play critical roles in HIV-1 induced cellular reprogramming 

at different stages of HIV-1 pathogenesis, including viral integration, maintenance, 

activation, or silencing [9]. Upon the integration of HIV-1 into the host genome, chromatin 

in the infected cells undergoes profound reorganization to control the virus by affecting 

proviral long terminal repeat (LTR) promoter complex formation [10]. HIV-1 proteins (e.g. 

Tat) in turn change the cellular environment to facilitate virus survival and replication by 
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disrupting chromatin structure and altering gene expression in the host cell. For example, 

expression of histone methyltransferase (DNMT3A, DNMT3B) and histone deacetylase 

(HDAC2 and HDAC3) genes are significantly upregulated in host cells infected with HIV-

1 [11]. Additionally, although some cells infected with HIV have a normal expression of 

the BCL family of anti-apoptotic proteins permitting apoptosis and viral propagation, other 

infected cells overexpress these proteins [12], thereby increasing the risk of cancer and 

promoting persistence of latently infected cells [13], which poses a barrier to HIV 

eradication. Epigenetic reprogramming in immune cells persists in chronically infected 

cells. Such dynamic virus-host genomic interaction results in distinct epigenetic profiles 

among different immune cell types in response to environmental changes. A common 

hallmark of pathogen-induced accumulation of DNA methylation maladaptation in multiple 

genes is an increase in risk for oncogenesis and cancer, which is estimated to occur for 

as much as 20% of cancers [14]. One example is hepatitis B virus-induced DNA 

methylation alteration of tumor-suppressor genes p16, p21, CDH1, and SOCS1 that 

contributes to hepatocellular carcinoma [15]. However, the role of HIV-associated  

epigenetic alterations in carcinogenesis has not been explored. 

Epigenome-wide association studies (EWAS) of the host methylome have identified 

numerous significant CpG sites for different stages of HIV infection. During the acute 

stage of HIV infection, up to 22,697 methylation sites are altered by HIV-1 [16]. ART 

initiation reverses patterns of DNA methylation in less than 1% of the altered CpG sites, 

leaving the majority of CpG sites with methylation states persisting into the chronic stage 

even among virally suppressed individuals [16]. Independently replicated studies have 

identified several CpG sites and genes associated with HIV infection, including three 



Cell Type-based EWAS on HIV Infection Zhang et al. Nature Communications 
 

NLRC5 promoter CpG sites that are less methylated in PWH with or without ART 

compared to PWoH [17-20]. DNA methylation profiles are predictive of HIV progression, 

frailty, and mortality for PWH [21-23]. These findings demonstrate the importance of 

methylation mechanisms in HIV infection and HIV-related comorbidities.  

While EWAS in whole blood have identified CpG sites such as NLRC5 that have been 

replicated by different studies, they provide limited insight into the epigenetic 

modifications of specific immune cell populations that underlie the pathogenic effects of 

HIV. HIV-1-induced alterations to the epigenomes of specific immune cell types remain 

unknown. Immune cells that originate from different lineages show distinct DNA 

methylation patterns [24, 25]. Thus, conventional blood- or peripheral blood mononuclear 

cell (PBMC)-based EWAS are likely to confound cell-type specific CpG sites for HIV-1 

infection. EWAS signals identified from heterogeneous cells are likely to result from 

consistent CpG methylation signals across cell types or a strong cell-type specific signal 

that exceeds noise from inconsistent methylation of the same CpG in other cell types. 

However, only a few studies have conducted EWAS in specific cell types to identify HIV-

1 associated CpG sites, and then only in a few cell types and in limited sample sizes. For 

example, one study showed that the number of CpG sites changed by HIV-1 were 

approximately 100 times greater in monocytes than CD4+ T-cells in the acute stage of 

HIV infection [16]. Little is known about the impact of HIV-1 infection on the epigenome 

of other cell types such as B cells, CD8+ T-cells, natural killer (NK) cells, in addition to 

monocytes and CD4+ T-cells. DNA methylation in specific cell types plays an important 

role in responding to, but is ultimately altered by, HIV-1 infection [26, 27].  
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Cell-type specific DNA methylome profiling of large population samples is technically 

challenging and cost prohibitive, especially for less abundant cell types in blood. Recently, 

computational methods have been developed and applied to deconvolute cell-type 

specific methylation signals from bulk PBMCs or whole blood samples [28-31]. You et al. 

(2021) successfully dissected several well-known smoking-associated hypomethylation 

signatures that derived from myeloid lineage immune cells [32].  

In this study, we hypothesized that alterations in CpG methylation in the genome of 

individuals with chronic HIV differ among immune cell types and that HIV-associated 

CpGs are enriched among genes involved in HIV pathogenesis, but potentially other 

comorbid conditions including cancer development and progression. We applied a tensor 

composition analysis (TCA) method to computationally deconvolute cell-type specific 

methylation data in PBMCs without sorting cells [33]. We first validated the TCA 

deconvoluted methylomes by direct bisulfite DNA sequencing of sorted CD4+ T-cells, 

CD8+ T-cells, and monocytes from the same PBMC specimen for a subset of the sample 

(N=29). We then deconvoluted methylation data from whole blood or PBMCs into CD4+ 

T-cells, CD8+ T-cells, B cells, NK cells, and monocytes in 1,134 samples. These cell-type 

specific EWAS for chronic HIV infection were conducted in two cohorts: the Veteran Aging 

Cohort Study (VACS)[34] for men (N=702) and the Women’s Interagency HIV Study 

(WIHS)[35] for women (N=432) (Supplemental sTable 1). To the best of our knowledge, 

this is the first and largest cell-type specific EWAS for chronically infected PWH in a 

predominantly African American population. A flowchart of analytical strategies is 

presented in Figure 1. 
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Results 

Validation of deconvoluted DNA methylome data measured using capture 

sequencing in CD4+ T-cells, CD8+ T-cells, and monocytes. 

We first sought to validate the performance of TCA by comparing the DNA methylomes 

of CD4+ T-cells, CD8+ T-cells, and monocytes isolated from PBMCs to TCA-

deconvoluted DNA methylation data collected employing capture sequencing in a subset 

of WIHS samples. The methylation value of each CpG site from the bulk (PBMC) 

sequencing data was deconvoluted to CpG methylation originating from CD4+ T-cells, 

CD8+ T-cells, and monocytes using TCA. In tandem, a separate aliquot of the same 

PBMC sample was subjected to cell sorting using magnetic beads and the CD4+ T-cells, 

CD8+ T-cells, and monocytes obtained were individually subjected to methylation capture 

sequencing (MC-seq) (Supplemental Material).  

We compared the methylation β-value for the top 10,000 most-variable CpG sites 

between the TCA-deconvoluted and the directly measured methylation β-value for CD4+ 

T-cells, CD8+ T-cells, and CD14+ monocytes. We found a high correlation of methylation 

values between the two approaches in each cell type. Correlation coefficients for each 

pair were 0.96 in CD4+ T-cells, 0.97 in CD8+ T-cells, and 0.96 in CD14+ monocytes 

(Figure 2a). Distribution of CpG methylation in each cell type derived by TCA and MC-

seq methods were almost identical. Compared to directly measured methylation, a small 

proportion of hypermethylated CpG sites with β>0.95 trended slightly higher using the 

TCA method (Figure 2b). These results suggest that TCA is a robust and effective 
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deconvolution method. Accordingly, EWAS for HIV infection using TCA-deconvolution 

was performed.   

Cell type-based EWAS identified differentially methylated positions (DMPs) for HIV 

infection in men with HIV: the Veteran Aging Cohort Study 

In the VACS cohort, the EWAS of HIV-infection using whole blood was carried out by 

applying a two-step regression model adjusting for age, self-reported race, cigarette 

smoking, alcohol use, ART adherence, HIV viral load, and the top 30 principal 

components (PCs) of DNA methylation. We identified 496 epigenome-wide significant 

(EWS) DMPs associated with HIV infection in the bulk tissue blood DNA methylome (false 

discovery rate, FDR<0.05) (Figure 3a, Supplemental Figure 1a, sTable 2). The 

significant DMPs included those previously reported by us and other groups. Examples 

include two previously replicated associations on NLRC5 (cg16411857, t=-9.42, 

FDR=3.58E-14 and cg07839457, t=-9.05, FDR=5.68E-10) [17, 18, 36]. Hypomethylation 

of HCP5 that was previously linked to HIV infection also reached EWS in this study 

(cg18808777, t=5.61, FDR=7.81E-04) [18]. While replication of these well-validated CpG 

sites and genes is important, whether these DMPs originate from specific cell types or 

sub-groups of cell types is unknown. 

At the cell-type level, we identified considerably more EWS DMPs across the five cell 

types than in whole blood: 2,208 in CD4+ T-cells, 106 in CD8+ T-cells, 8 in B cells, 317 

in NK cells, and 21 in monocytes (Figure 3a, Supplemental Figure 1b, Supplemental 

sTable 3-7). The majority of DMPs in each cell type differed among the five cell types; a 

small number of DMPs were common in more than one cell type. For example, one DMP, 
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LPCAT1 cg16272981, was significant in four cell types (CD4+ T-cells: FDR=1.15E-07; B 

cells: FDR=0.0016; NK cells: FDR=0.005 and monocytes: FDR=3.29E-06). In total, 765 

DMPs share more than one cell type in the same direction.      

In CD4+ T-cells, differentially methylated CpGs were located in 1,407 genes. We found 

more hypomethylated (N=1,336) than hypermethylated (N=827) CpG sites in samples 

from PWH relative to uninfected controls. The HIV-associated loci previously reported in 

CD4+ T-cells were replicated in this cohort. LPCAT1 cg16272981 showed the largest 

effect (16.1% less methylated in samples from PWH relative to PWoH). The top 30 DMPs 

were located in 15 genes (i.e. LPCAT1, SLC17A9, RUNX3, KLF7, SEPT9, PEX14, 

NLRC5, SPOCK2, SPATAS, MYT1L, CAPN11, SEMA3G, BCL9, XYLT1) (FDR=8.49-

09~ 5.21E-06). Some genes harbored multiple DMPs. For example, 4 EWS DMPs were 

located in RUNX3, a well-recognized tumor suppressor of gastric, colon and many other 

forms of solid tumors [37]. The majority of HIV-associated DMPs in CD8+ T-cells were 

hypomethylated. Six out of 8 DMPs in B cells were hypomethylated. LPCAT1 

cg16272981, also significantly enriched in CD4+ T-cells, showed the strongest EWS 

association in B cells (t=-5.97, FDR=0.003). Other significant DMPs were located on 

TULP4, ETS1, KCNK9, STAT3, HDAC4, and GPC1. Of note, 6 out of 8 DMPs were 

common between CD4+ T-cells and B cells except for ETS1 and GPC1. In NK cells, 159 

DMP sites overlapped with other cell types. TULP4 cg02571055 was hypomethylated in 

B cells and the strongest EWS association in NK cells (t=-6.40, FDR=0.0001). Among 21 

significant CpG sites in monocytes, the most significant DMP was LPCAT1 cg16272981 

(t=-6.97, FDR=3.29E-06), followed by TULP4 cg02571055 (t=-5.99, FDR= 4.94E-04), 
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which was also identified in B cells and NK cells. Thirteen DMPs were only observed in 

monocytes, including DMPs located in in NOTCH4 and IGSF9.  

Cell-type EWAS for HIV infection in women with HIV: the Women’s Interagency HIV 

Study 

The EWAS of women with HIV using PBMCs was carried out by applying the same 

regression model and adjusting for the same covariates as for the EWAS in the VACS. 

We identified 13 EWS DMPs associated with HIV infection (Figure 3b, Supplemental 

Figure 1c, Supplemental sTable 8). Consistent with the VACS sample, NLRC5 

cg07839457 was one of the most significant CpG sites (t=-5.76, p=1.85E-08). NLRC5 

cg16411857 showed near epigenome-wide significance (t=-4.51, p=8.95=-06). Other 

EWS DMPs were located in C12orf32, CD80, GADD45G, TXNIP, TMEM49, SGK269, 

DUSP16, RAC2, TNIP3, and GLB1L2.    

For the cell-type level EWAS, we identified 153 significant DMPs among the 5 cell types: 

20 for CD4+ T-cells, 10 for CD8+ T-cells, 22 for B cells, 1 for NK cells, and 100 for 

monocytes (all FDR<0.05) (Figure 3b, Supplemental Figure 1d, Supplemental sTable 

9-13). Several DMPs are worthy of mention. C12orf32 cg12051710 displayed the 

strongest association in four out of five cell types: CD4+ T-cells (t=-6.85; FDR=1.35E-05), 

CD8+ T-cells (t=-7.45, FDR= 2.95E-07), B cells (t= -6.28, FDR=2.02E-04), and 

monocytes (t=-6.94 p= 7.43E-06). CD80 cg13458803 was hypomethylated in multiple cell 

types: CD8+ T-cells (t=-5.86, FDR=0.0001), B cells (t=-6.41, FDR=0.0002), and NK cells 

(t=-5.86, FDR=0.004).Of note, , NLRC5 cg07839457 was one of the top ranked DMPs in 
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CD4+ T-cells in the WIHS (t=-5.78, FDR= 0.00537), consistent with the EWAS in the 

VACS. 

Concordance of DMPs for chronic HIV infection in the VACS and WIHS cohorts 

The distinct demographic and clinical characteristics of the VACS and the WIHS may 

undermine whether the HIV-associated DMPs identified in these two cohorts are 

comparable and if the findings can be generalized to other studies. We conducted a 

correlation analysis of effect sizes for each DMP across data from bulk samples (whole 

blood, PBMC) and each cell type between the two cohorts (p<0.001). We found that  

effect sizes of the same CpG site between the two cohorts were highly correlated in bulk 

cells (r=0.784, p=5.86E-30) and in four out of five cell types (Figure 3c). At the cell type 

level, the correlation coefficient of DMPs from the VACS and WIHS were strongest in 

CD4+ T-cells (r=0.635, p=2.14E-30), followed by CD8+ T-cells (r=0.601, p=4.13E-05), B 

cells (r=0.396, p=1.89E-05), and monocytes (r=0.365, p=2.12E-06). The correlation of 

effect size in NK cells between the two cohorts was suggestive, but not significant 

(r=0.151, p=0.099). The directions of the correlations for the majority of DMPs (85.1%) 

were concordant between the two cohorts. The correlation analysis results show that 

DMPs for HIV infection in bulk and in individual cell types were largely consistent between 

the two cohorts; the results also underscored the potential value of EWAS meta-analysis 

of the two cohorts.      

EWAS meta-analysis by cell type identified common and specific DMPs for chronic 

HIV infection 
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Cell-type based EWAS meta-analysis (meta-EWAS) identified EWS DMPs in each of five 

cell types. Prior to performing the meta-EWAS, DMPs with significant heterogeneity 

(heterogeneity p<0.05) between the two cohorts were removed.  

Meta-EWAS in bulk cells revealed 453 DMPs including top significant genes NLRC5, 

LPCAT1, HCP5, and PSMB8 (Figure 4a, Supplemental sTable 14). Meta-EWAS by cell 

type identified 1,472 epigenome-wide DMPs in CD4+ T-cells, no DMPs in CD8+ T-cells, 

159 DMPs in B cells, 198 DMPs in NK cells, and 422 DMPs in monocytes (Figure 4b and 

4c, Supplemental sTable 15-18). In CD8+ T-cells, the DMPs uniquely identified in the 

VACS cohort showed opposite direction in the WIHS cohort, with the exception of the 

DMP in C12orf32 and MYL3. Because the CpG sites with opposite effect were removed 

from the meta-analysis and no significant DMPs in CD8+ T-cells were identified due to 

high heterogeneity. Several genomic regions harbored DMPs that were common to more 

than one cell type (Figure 5a). Multiple loci on chromosome 3 (ARHGEF3, DNAJB8, 

CCRL1, AHSG, CD80), 5 (LPCAT1), chromosome 11 (SHANK2), chromosome 10 

(RUNX2), chromosome 16 (NLRC5), and chromosome 20 (SLC17A9) were common in 

more than one cell type. Several top ranked CpG sites were located in genes encoding 

for transcription factors. For example, ZNF326 (t=-5.92, FDR=0.002), ZNF714 (t=-4.83; 

FDR=0.016), ZNF90 (t=-4.45, FDR=0.042), and ZNF76 (t=-4.44, FDR=0.044). Other 

DMPs were located in genes relevant to cancer such as STRN3 cg18451035 (t=-5.56, 

FDR=0.004) and genes involved in innate immunity and metabolism such as ENPP4 

cg25606773 (t=-5.48, FDR=0.004) [38, 39]. 

Overall, the majority of DMPs (67%) from the meta-EWAS were unique to each cell type 

(Figure 5b). Cell-type specific DMPs accounted for 67.6% of DMPs in CD4+ T-cells, 
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20.8% in B cells, 42.4% in NK cells, and 39.3% in monocytes. Among lymphocytes, only 

1.4% of DMPs overlapped between CD4+ T-cells and B cells, and 0.7% of DMPs between 

CD4+ T-cells and NK cells. The small number of overlapping DMPs may be because 

fewer DMPs were identified in B cells and NK cells. The results suggest that meta-EWAS 

revealed distinct DNA methylation modifications for HIV infection between cell types. 

Annotation of significant CpGs showed that the majority (40-76%) of CpG sites were 

located in gene bodies in each cell type. The proportion of DMPs located in promoter 

regions was greater in CD4+ T-cells (10%) than in other cell types, followed by monocytes 

(8%) (Figure 6a). The proportion of DMPs in CpG islands was also greater in CD4+ T-

cells (Figure 6b).  

Cell-type Specific DMPs from meta-EWAS are overrepresented in hallmark genes 

for cancer  

Previous studies have demonstrated that pathogen-induced epigenetic alterations 

cumulatively contribute to cancer development [40]. Using hallmark genes from the 

COSMIC Cancer Gene Census (databasehttps://cancer.sanger.ac.uk/census), we found 

significant overrepresentation of differential methylation of hallmark genes for cancer in 

CD4+ T-cells (FDR=1.01E-05), in B cells (FDR=0.008), in NK cells (FDR=0.003), and in 

monocytes (FDR=0.02). Several hallmark genes were EWS for HIV infection from the 

meta-EWAS in each cell type except CD8+ T-cells (Table 1).  

In CD4+ T-cells, 41 hallmark genes were differentially methylated for HIV infection (e.g. 

BCL9 for B-ALL [41], GAS7 and PRDM16 for AML [42, 43], ESR1 for breast cancer [44], 

and GRIN2A for colorectal, lung, and gastric carcinoma [45]) (Figure 7). Five hallmark 
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genes were differentially methylated for HIV in B cells (PRDM16 and DNMT3A for AML, 

PDCD1LG2 for Hodgkin’s lymphoma, LMNA for spritzed tumor, and BCL11B for T-ALL). 

Three hallmark genes were differentially methylated for HIV in NK cells (BCL11B for T-

ALL, BCL10 for MALT, and MAP3K7IP for prostate cancer), and six in monocytes (LCK 

and BCL11B for T-ALL, PDCD1LGD for Hodgkin’s lymphoma, PRDM16 for AML, 

CACNA1D for prostate cancer, and EBF1 for B-ALL).  

In addition to the enrichment of hallmark genes for cancer, many of the HIV-associated 

DMPs in individual cell types are also reportedly involved in cancer. Some genes related 

to cancer harbored multiple CpG sites that all were hypomethylated in samples from PWH 

compared to PWoH Six DMPs on SLC17A9 (cg14686919, cg01817521, cg00199007, 

cg04478428, cg26329715, cg00727912) were hypo-methylated in CD4+ T-cells, B cells, 

NK cells, and monocytes (Table 1). Notably, SLC17A9 expression is associated with 

colorectal cancer [46]. We found 4 DMP sites on RUNX3 that were hypomethylated 

(cg11585280, cg07236781, cg15498134, cg00147638). RUNX3 is a tumor suppressor 

frequently deleted or transcriptionally silenced in cancers that encodes for one of the 

RUNX family proteins that are critical transcriptional regulators combining with 

transcription factor CBF-β in CD4+ T-cells [47]. Two HCP5 DMPs were hypomethylated 

(cg18808777, cg25843003); HCP5 is an oncogene associated with multiple cancers. 

DMPs in several genes from the BCL family were found in CD4+ T-cells, B cells, NK cells, 

and monocytes [48]. We found 5 EWS DMP sites on KLF7 that were hypermethylated. 

KLF7 affects cell proliferation and has been implicated in ovarian cancer progression [49]. 

Differential methylation of KLF7 for HIV was previously linked to pancreatic ductal 

adenocarcinoma [5]. HIV-1 induced DNA methylation changes to CpGs in these genes, 
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which have been reported in the literature to play a role in cancer development, may 

explain the increased prevalence of cancer in PWH. 

HIV-associated DMPs are enriched in gene sets for immunity and cancer biology 

To better interpret the biological significance of HIV-associated DMPs in the aggregate, 

we carried out a gene set enrichment analysis. Among the set of hallmark genes, we 

found 20 significant pathways in CD4+ T-cells, 8 in B cells, 3 for NK cells, and 3 for 

monocytes (q<0.05). Multiple pathways were identified that were involved in immune 

evasion in multiple cancers (Supplemental Table 19). For example, the Kras pathway 

harbors a set of one of the most common oncogenic-driven mutations and genes that are 

targets of cancer therapeutics. In CD4+ T-cells, the Kras pathway contains HIV-

associated hypomethylated DMPs in IRF8, PSMBP8, PDCD1LG2, MYCN, and SNAP91 

and hypermethylated DMPs in BTBD3, CSF2, and NIN. Interestingly, hypomethylation of 

IRF8 was enriched in not only the Kras pathway, but also the allograft rejection pathway 

and the interferon  response pathway. Multiple genes contained HIV associated DMPs 

in the allograft rejection pathway, including hypomethylated DMPs in CD80, CD8A, 

CRTAM, HLA-DOA, PTPRC, STAT1, STAT4, and CD96 and hypermethylated DMPs in 

MBL2 and CD4. HIV-associated DMPs in STAT1, STAT4, HLA-A and TAP1 were 

common to both the allograft rejection pathway and the interferon  response pathway 

(Figure 8a). The allograft rejection pathway and the Kras pathway are connected by HIV-

associated DMPs located in the following hallmark genes for cancer: HIF1A, CD79A, 

PDCD1LG2, and FLT4 (Figure 8b). The three above-mentioned pathways are involved 

in cancer development and progression.   
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Gene set enrichment analysis for pathways in B cells mostly overlapped that in CD4+ T-

cells. One significant pathway unique to B cells was the IL2-STAT5_SIGNALING 

pathway, in which 7 of 194 genes harbored HIV-associated DMPs. Gene set enrichment 

analysis for pathways in NK cells largely overlapped with those identified in B cells. One 

significant pathway unique in the NK cell was the 

HALLMARK_PI3K_AKT_MTOR_SIGNALING pathway, in which 7 of 104 genes harbored 

HIV-associated DMPs. Monocytes had one significant pathway: 

HALLMARK_PANCREAS_BETA_CELLS. Enrichment analysis from the KEGG database 

showed overall distinct patterns of significant biological pathways in each cell type 

(Supplemental Figure 2). The results  further underscore the striking enrichment of 

genes in cell type that feature DMPs for HIV-pathogenesis that are enriched for cancer 

development among PWH.  

 

Discussion 

We identified DMPs for chronic HIV infection in five major immune cell types: CD4+ T-

cells, CD8+ T-cells, B cells, NK cells, and monocytes. These include a number of 

previously reported DMPs associated with HIV infection. Despite differences in 

demographic and clinical characteristics between the two cohorts studied, we found a 

number of overlapping and highly concordant DMPs. The majority of DMPs identified in 

individual cell type meta-EWAS were unique to each cell type (67%). The occurrence of 

distinct profiles of HIV-associated DMPs among immune cell types highlights the 

importance of examining differences in DNA methylation profiles between individual cell 
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types. Among the five cell types, the number of DMPs identified in CD4+ T-cells were 

three-to-ten-fold greater than the other four cell types, suggesting that epigenetic 

alteration in CD4+ T-cells plays a major role in chronic HIV-infection. More importantly, 

we found that genes that harbored HIV-associated DMPs are overrepresented in cancer 

biology. The identified genes were enriched among hallmark pathways of HIV 

pathogenesis and cancer. The results provide new insights into the epigenetic 

mechanisms of HIV that may underlie the increased risk for cancer in PWH.    

As expected, we identified  the largest number of HIV-associated CpG sites in CD4+ T-

cells. Several previously reported genes involved in chronic HIV infection from CD4+ T-

cells and from PBMC samples were replicated in this study. Of note, we observed 

differentially methylated CpG sites harbored in the genes involved in the Th1 signaling 

process (e.g. RUNX3, STAT4) in CD4+ T-cells. Several TNF CpG sites were reported to 

be hypermethylated in samples from PWH [50]. These CpG sites were also 

hypermethylated in the present study. A noteworthy hypomethylated DMP identified in 

the present study is PEX14 cg25310676. PEX14 is involved in the control of oxidative 

stress and is targeted by HIV Env-mediated autophagy [51]. Expression of PEX14 was 

decreased in HIV-infected CD4+ T-cells and contributed to CD4+ T-cell apoptosis [7]. 

Compared to CD4+ T-cells, a much smaller number of DMPs were identified in the other 

four cell types, including monocytes. This observation is in line with previous reports 

showing that different numbers of DMPs between acute and chronic HIV infection are 

observed in CD4+ T-cells and monocytes. During acute HIV infection, the number of 

DMPs are 10-fold greater in monocytes than in CD4+ T-cells [16]. In SIV-infected 

macaques and African green monkeys, only 0.5% of DMPs overlapped in CD4+ T-cells 
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between acute and chronic HIV infection stages. This evidence suggests that distinct 

profiles of DNA methylation modification may occur in the different stages of HIV infection 

and in different cell types. 

The fact that many HIV-associated DMPs and associated genes are also involved in 

cancer among the four cell types is intriguing. One possibility is that HIV-1 directly induces 

maladaptive changes in epigenetic regulation of oncogenes. For example, several BCL 

family genes were significantly associated with HIV infection, BCL9 in CD4+ T-cells, and 

both BCL11B and BCL2L2 in CD4+ T-cells, B cells, NK cells, and monocytes. The BCL 

family plays a crucial role in the development, proliferation, differentiation, and 

subsequent survival of T cells and is associated with multiple cancers. BCL9 functions in 

cell-cell communication in colorectal cancer [52]. BCL11B encodes for a protein that is a 

transcriptional repressor and is regulated by the NURD nucleosome remodeling and 

histone deacetylase complex. BCL11B is a hallmark of B-cell CLL/Lymphoma. BLC2L2 

acts as an apoptotic regulator and is linked to multiple cancers including liver cancer, lung 

cancer, and breast cancer [53]. On the other hand, evidence shows that chronic 

inflammation is involved in pathogen-induced DNA methylation changes resulting in an 

“epigenetic field defect” for oncogenesis. For example, our results show that several 

proinflammatory genes (e.g. TNF, IGFBPL1) were differentially methylated in PWH 

compared to PWoH. Increased inflammation is a hallmark of chronic HIV infection. 

Whether chronic HIV-1 results in DNA methylation of inflammatory genes contributing to 

cancer warrants further study. The overrepresentation of HIV-1 integration in cancer 

genes has been reported previously [54]. In PWH on suppressive ART, a large proportion 

of persisting proviruses are found in proliferating cells. One possible mechanism is to 
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promote the proliferation and survival of latently HIV-infected cells, which in turn benefits 

HIV-1 persistence and reservoir expansion thereby frustrating attempts to eradicate the 

virus. Such interactions between HIV-1 and the host epigenome may point to underlying 

mechanisms of cancer development in PWH. 

Overall, we found highly concordant effect sizes among the shared DMPs in four of five 

cell types between two distinct cohorts. The observation highlights the common biological 

pathways in ancestrally heterogenous populations among men and women with HIV. On 

the other hand, we observed a subset of DMPs that differed between the two cohorts. We 

speculate that the DMPs identified that differed between the two cohorts are likely due to 

different statical power and different rates of HIV viral suppression between the two 

cohorts. The sample size of the VACS cohort is over twice that of the WIHS cohort. More 

importantly, participants in the VACS cohort had higher HIV viral loads than participants 

in the WIHS cohort. Although HIV viral load was adjusted for in each EWAS, residual 

effects on DNA methylation cannot be ruled out. Another possibility is biological 

differences in HIV infection between men and women. Sex differences in HIV infection 

are observed in clinical settings. Women appear better able to control HIV-1 replication 

compared to men, typically having lower HIV viral loads, and higher CD8+ and CD4+ T-

cell counts [55]. However, the rate of progression to AIDS between men and women are 

similar, suggesting that immune and inflammatory activation are higher among women 

[55]. The underlying reasons for the observed differences in CD8+ T-cell epigenome are 

unclear. One study showed that an increased CD8+ T-cell count may be due to an 

enhanced capacity to respond to the IL12 cytokine in women compared to men, which 

leads to more effector cell differentiation [56]. Treatment naïve women with HIV-1 had 
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significantly higher CD8+ T-cell activation than men, which appears mediated by 

interferon  in response to Toll-like receptor 7 [57].  Future studies including both sexes 

and addressing confounding factors are warranted to investigate potential sex differences 

in the host genome among PWH.    

We acknowledge several limitations to this study. Cell type proportion was estimated 

based on DNA methylation, not cell count, which could result in inaccurate deconvolution 

of DNA methylation for individual cell types. While the results suggest the effect would be 

modest, TCA-deconvoluted DNA methylation profiles in each cell type may differ between 

the two cohorts due to differences in biospecimen collection. For the VACS cohort, cell-

type DNAm was deconvoluted from whole blood that included granulocytes while cell-

type DNAm from the WIHS cohort was deconvoluted from PBMCs, which excludes 

granulocytes. Computationally identified significant DMPs warrant confirmation in sorted 

cell types. Finally, only a small proportion of CpG sites in the methylome were investigated 

in this study (i.e., 450K and EPIC commercial arrays). Future studies to expand the 

number of CpG sites using a sequencing platform to comprehensively profile the 

methylome for chronic HIV infection are warranted. 

In summary, leveraging a computational deconvolution approach, we identified cell-type 

level DPMs associated with HIV infection. The findings were enriched for genes 

involved in both HIV pathogenesis and cancer pathology, which underscore the 

important mechanisms of HIV persistence and comorbid cancers. The significant genes 

may be therapeutic targets for HIV disease and other comorbid medical diseases. 

Methods 
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Sample characteristics and DNA methylation profiling 

The VACS is a nationwide longitudinal veteran cohort including PWH and PWoH  to study 

HIV infection and disease progression. A total of 702 samples from the VACS Biomarker 

Cohort, a subset of the entire VACS, were included in the analysis (Supplemental 

Material). The majority (86%) of the VACS sample were of African (African 

American/Black; AA) ancestry and all samples were collected from male participants. 

Clinical data and specimens used in this manuscript were collected by the Women’s 

Interagency HIV Study (WIHS), now the Multicenter AIDS Cohort Study (MACS)/WIHS 

Combined Cohort Study (MWCCS) [58] (Supplemental Material). WIHS included 245 

samples from PWH and 187 uninfected controls from diverse ancestral populations and 

all samples were collected from female participants. Demographic and clinical 

characteristics are presented in Supplemental sTable 1.  

 

Methylation of bulk DNA samples extracted from whole blood in the VACS was profiled 

using Illumina HumanMethylation 450K Beadchip. Methylation of bulk DNA samples 

extracted from PBMCs in the WIHS was profiled using Illumina HumanMethylation EPIC 

Beadchip. A total of 408,366 CpG sites were common to both the 450K and EPIC arrays, 

which were used to deconvolute bulk DNA methylation data to five cell types by TCA. 

More information about DNA methylation quality control and deconvolution are presented 

below in the Methods and in Supplementary Material. 

Capture Methylation Sequencing 
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Three cell types, CD4+ T-cells, CD8+ T-cells, and monocytes, were isolated from 4 PBMC 

samples using a magnetic bead-based method [59]. DNA was extracted from each 

isolated cell type. Methylation sequencing target enrichment library preparation was 

performed per manufacturer protocol (Agilent). Samples were sequenced using 100bp 

paired-end sequencing on an Illumina HiSeq NovaSeq according to Illumina standard 

protocol. Detailed quality control and data processes are presented in Supplementary 

Material. CpG sites were annotated using Homer annotatePeaks.pl, including intergenic, 

5’UTR, promoter, exon, intron, 3’UTR, transcription start site (TTS), and non-coding 

categories. CpG island, shore, shelf, and open sea annotation was defined by locally 

developed bash and R scripts based on genomic coordinates (hg19) of CpG islands from 

the UCSC genome browser. CpG shore was defined as up to 2 kb from CpG islands and 

CpG shelf was defined as up to 2 kb from a CpG shore. Methylation CpG sites on the X 

and Y chromosomes were removed for subsequential analyses.  

Deconvolution of DNA methylation from bulk cells to five cell types 

To deconvolute bulk methylation of each CpG to specific cell types, TCA requires a DNA 

methylation data matrix in heterogeneous cells and cell type proportions for each sample 

in the cohort. We first estimated the proportion of six cell types from the methylation of 

whole blood in the VACS cohort (CD4+ T-cells, CD8+ T-cells, B cells, NK cells, 

monocytes, granulocytes) and from the PBMCs in the WIHS cohort (CD4+ T-cells, CD8+ 

T-cells, B cells, NK cells, monocytes). Because the approach to generating PBMC in the 

WIHS cohort results in the near-total depletion of granulocytes, we excluded granulocytes 

from the analyses to provide a consistent set of cell-type specific epigenome profiles 

shared between the two cohorts. The estimated proportions of each cell type in each 
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cohort were similar except for CD4+ T-cells, for which the proportion in the VACS cohort 

was greater than CD4+ T-cells in the WIHS cohort (Supplemental Figure 3). We used 

TCA in the R environment to estimate methylation beta values at each CpG site for each 

cell type. A total of 408,366 CpG sites were deconvoluted to five cell types using either a 

whole blood methylation matrix (VACS) or from PBMC methylation matrix (WIHS). Our 

results showed that TCA deconvoluted methylation in individual cell types robustly 

removed cell type confronting effects in (Supplemental Figure 4).         

Comparison between TCA-deconvoluted and methylation capture sequencing-

based methylation beta values in three cell types 

We validated the accuracy of the TCA-derived estimates of DNA methylation at each CpG 

site by comparing the TCA-derived beta value with DNA methylation beta estimates 

measured directly using capture sequencing. We selected the top 10,000 most variable 

CpG sites among the samples for this comparison, which was performed using Pearson 

correlation analysis with significance set at p<0.05. 

Cell-type based epigenome-wide association analysis 

We performed a cell-type based EWAS for HIV-infection using TCA-deconvoluted 

methylation beta values for each cell type. In each cell type, we conducted a two-step 

regression analysis using the strategy proposed by Lehne et al [60]. The first regression 

model addressed global covariates that may confound the association of methylation with 

HIV infection. We first estimated the residual β using regression model (1):  

 value (𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑, 𝑄𝑁) ~ 𝑎𝑔𝑒 + 𝑟𝑎𝑐𝑒 + 𝑠𝑚𝑜𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑢𝑠 + 𝑊ℎ𝑖𝑡𝑒 𝐵𝑙𝑜𝑜𝑑 𝐶𝑒𝑙𝑙 (𝑊𝐵𝐶)

+ 6 𝑐𝑒𝑙𝑙 𝑡𝑦𝑝𝑒 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑠 + 𝑃𝐶𝑠 1-30 𝑜𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑟𝑜𝑏𝑒𝑠 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5094631/#M0001
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We then performed a second PCA on the resulting regression residual β values and 

regressed out the first 5 PCs to further control for unmeasured confounders in the 

regression model (2).  

 value (𝑄𝑁) ~ 𝑎𝑔𝑒 + 𝑟𝑎𝑐𝑒 + 𝑠𝑚𝑜𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑢𝑠 + 𝑊𝐵𝐶 + 6 𝑐𝑒𝑙𝑙 𝑡𝑦𝑝𝑒 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑠

+ 𝑃𝐶𝑠 1-30 𝑜𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑟𝑜𝑏𝑒𝑠

+ 𝑃𝐶𝑠 1-5 𝑜𝑛 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑓𝑟𝑜𝑚 𝑚𝑜𝑑𝑒𝑙 (1) 

Significance was set at a false discovery rate (FDR)<0.05. To further confirm the 

correction of global confounders, we performed Pearson correlation analysis between the 

first 30 PCs on residual methylation from model (1) and batch, demographic, clinical, and 

6 cell type confounders (Supplemental Figure 4). Cutoff of correlation analysis was set 

at p<0.05 

Correlation analysis of HIV-associated CpG sites between the two cohorts 

In each cell type, we selected CpG sites with FDR<0.05 in the VACS and with a nominal 

p<0.05 in the WIHS for correlation analysis. The rationale for the significance cut off 

chosen for the WIHS cohort is to treat it as a replication cohort. Pearson correlation of the 

effect sizes at each resulting CpG between the two cohorts was performed. The 

significance threshold was set at p<0.05. We also compared the direction of effect of each 

CpG between two cohorts.  

Cell type-based Meta-EWAS  

We conducted an EWAS meta-analysis for each cell type by combining the data from the 

VACS and WIHS samples. Effect sizes and p-values for each probe were obtained from 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5094631/#M0002
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analyses in the VACS and WIHS samples, respectively. We performed inverse-variance 

weighted meta-analysis, with scheme parameters of sample size and standard error as 

implemented in the METAL program, combining summary statistics from the two sample 

sets. We investigated heterogeneity between the two samples using the I2-statistic. CpG 

sites with I2>50% and heterogeneity p<0.05 were excluded from subsequent analysis.  

Enrichment of hallmark genes for cancer  

We performed an enrichment analysis of HIV-associated genes among 736 cancer 

hallmark genes from the Cancer Gene Census database. CpG sites with FDR<0.1 from 

the cell type based meta-EWAS were mapped to the nearest gene. The set of genes that 

met the above criteria were used to test whether the gene set was significantly 

overrepresented among the hallmark genes for each cell type at FDR<0.05.     

Gene set enrichment analysis  

Genes adjacent to CpG sites with FDR<0.1 in meta-EWAS for each cell type were 

selected for gene set enrichment analysis. We focused on the hallmark gene sets from 

the Molecular Signature Database (https://www.gsea-msigdb.org/gsea/msigdb/). 

Enrichment analysis using GO and KEGG annotations were also performed.  
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Figure 1. Flowchart of analytical strategies. VACS: Veteran Aging Cohort Study; WIHS: Women’s 

Interagency HIV Study; TCA: Tensor Component Analysis; EWAS: Epigenome-wide Association 

Study. 

Figure 2. Benchmarking TCA-deconvoluted cell-type specific DNA methylation. (a) Comparison 

of methylation β-values for the top 10,000 most variable CpG sites between the deconvoluted and 

the directly measured methylation. β-values for each cell type were compared between three cell 

types [CD4+ T cells, CD8+ T cells, and monocytes (CD14+)]; (b) Distribution of genome-wide 

DNA methylome by the TCA-deconvoluted and MC-seq methods.  MC: methylation capture 

sequencing; TCA: Tensor Composition Analysis. 

Figure 3. Summary of cell-type level EWAS in the VACS and WIHS cohorts in five cell types 

(CD4+ T, CD8+ T, B, Natural Killer, Monocyte). (a) Volcano plots for the VACS cohorts with top 

common and unique hyper- and hypomethylated gene-associated sites annotated, where PBMCs 

derive from whole blood samples. (b) Volcano plots for the WIHS cohort with similar annotations. 

(c) Correlation of significant DMPs between VACS and WIHS cohorts among the shared DMPs 

between the two cohorts. PBMC: peripheral blood mononuclear cell; EWAS: Epigenome-wide 

Association Study; VACS: Veteran Aging Cohort Study; WIHS: Women’s Interagency HIV Study; 

DMPs: Differential Methylation Positions. *Significant genes shared between at least two cell 

types.   

Figure 4. Summary of cell type level epigenome-wide meta-analysis of the combined Veteran 

Aging Cohort Study (VACS) and Women’s Interagency HIV study (WIHS) data. (a) Manhattan 

plot of epigenome-wide significant CpG sites prior to computational deconvolution of data into 

cell-type-specific methylation. (b) Manhattan plot of epigenome-wide significant CpG sites after 

computational deconvolution into cell-type-specific signals. (c) Volcano plots of hyper- and 

hypomethylated DMPs for HIV infection in each cell type following Meta-EWAS (Epigenome-wide 

Association Study). DMP: Differential Methylation Position. * Significant genes shared between 

at least two cell types. 
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Figure 5. Common and distinct DMP profiles among cell types following cell type level meta-

EWAS. (a) Stacked Manhattan plots displaying -log10(p) for CpG sites of each cell type. (b) 

Unique and common DMPs among five cell types and peripheral blood mononuclear cells. 

Overlap size represents the number of shared DMPs between the designated cell types. DMP: 

Differential Methylation Position. 

Figure 6. Characterization of epigenome-wide significant DMP from cell-type level meta-

epigenome-wide association analysis. DMP: Differential Methylation Position. 

Figure 7. Gene enrichment analysis of significant DMPs for HIV infection in CD4+ T cells with 

Catalogue Of Somatic Mutations in Cancer (COSMIC) Gene Census Tier 1 database. CGC Tier 

1 denotes the gene has cancer gene mutation patterns and evidence of functional impact reported 

in the literature. DMP: Differential Methylation Position. 

Figure 8. Gene enrichment analysis of DMPs in the genes enriched on hallmark gene pathways 

in CD4+ T cells. Notably, the allograft rejection, early estrogen response, interferon alpha 

response, interferon gamma response, and kras signaling pathways were significantly enriched. 

(a) Circos plot showing DMPs in four pathways; (b) Relationships of four significant pathways. 

DMP: Differential Methylation Position. 
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Figure 6:  Summary of epigenome-wide meta-analysis of combined Veteran Aging Cohort Study 
and Women’s Interagency HIV study data. (A) Manhattan plot of epigenome-wide significant CpG 
sites prior to computational deconvolution of data into cell-type-specific components. (B) 
Manhattan plot of epigenome-wide significant CpG sites after computational deconvolution into 
cell-type-specific signals. (C) Volcano plots of hyper- and hypomethylated DMPs for HIV infection 
in each cell type following Meta-EWAS.

C

a 

b 

c 
NLRC5* 

C12orf32* 
LPCAT1* 

MAN1A1 

NLRC5* 
SLC17A9 PEX14 

CD80* 

PLEKHG5 
NLRC5* 

LPCAT1* 

LPCAT1* 

CD80* 
NSL1 

TULP4 

PRDM16 

BCL11B 
LPCAT1* 

NLRC5* 



 
 
Figure 5 

10 2 4 6 8

10

12

14

16

18

20

22

24

2

0

2

4

6

8

10

12

14

16

18

20

22

24

3

0

2

4

6

8

10

12

14

16

18

4

0

2

4

6

8

10

12

14

16

18

5

0

2

4

6

8

10

12

14

16

18

6

0

2

4

6

8

10

12

14

16

7

0

2

4

6

8

10

12

14

8

0

2

4

6

8

101214

9

02468

10121410 0

2

4

6

8

10

12

11

0

2

4

6

8

10

12

12

0

2

4

6

8

10

12

13

0

2

4

6

8

10

14

0

2

4

6

8

10

15

0

2

4

6

8

10

16

0

2

4

6

8

17

0

2

4

6

8

18

0

2

4

6

19

0

2

4

20

0

2

4

6

21
0

2

4

22
0

2

4

X

0

2

4

6

8

10

12

14

Y

0 2 4

0

9

17.9

0

3.1

6.2

0

5

9.9

0

4.8

9.7

0

4.5

9.1

Cell types

CD4
CD8
B
NK
M

SLC17A9

NLRC5

LPCAT1

SH
AN
K2

RU
NX
2

DNAJB8

BA

1100

167

114102 93 86
58

36 33 30 22 21 19 14 13 11 10 9 6 5 5 4 4 4 4 2 1 1
0

250

500

750

1000

1250

In
te
rs

ec
tio

n 
S
iz

e

    CD4

   PBMC

      M

     NK

      B

   

050010001500
Set Size

b a 



 
 
Figure 6 

Figure 8. Distribution of EWS DMP locations between five cell types. 
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Figure 8 
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Cell Type probe Chromosome Position Gene Symbol Name Chr Band Tumour Types(Somatic) Role in Cancer MetaEffect Zscore Meta P Hat P FDR
CD4+ T cell cg11754402 1 147012719 BCL9 B-cell CLL/lymphoma 9 21.2 B-ALL oncogene, fusion 0.00486 6.788 1.14E-11 0.1161 3.42E-07

cg05573412 1 3238152 PRDM16 PR domain containing 16 36.32 MDS, AML oncogene, fusion 0.00544 5.649 1.61E-08 0.9565 9.60827E-05

cg00168240 1 3347457 0.00604 4.892 9.98E-07 0.6543 0.001835991

cg01062116 1 3352435 0.00567 4.281 0.00001861 0.1391 0.012478968

cg24900983 6 152128528 ESR1 estrogen receptor 1 25.2 breast oncogene, TSG, fusion -0.01417 -5.535 3.12E-08 0.677 0.000151436

cg23467008 6 152128537 -0.002735 -5.213 1.86E-07 0.5923 0.000557299

cg21950534 6 152128483 -0.0088855 -4.928 8.32E-07 0.176 0.001611014

cg24900983 6 152128528 -0.01417 -5.535 3.12E-08 0.677 0.000151436

cg12833931 17 9862893 GAS7 growth arrest-specific 7 13.1 AML* fusion 0.00629 5.067 4.04E-07 0.2609 0.000979112

cg06470804 5 180071930 FLT4 fms-related tyrosine kinase 4 35.3 soft tissue sarcoma oncogene 0.001158 4.866 1.14E-06 0.3619 0.001972615

cg05307957 1 27028974 ARID1A AT rich interactive domain 1A (SWI-like) 36.11 clear cell ovarian carcinoma, RCC, breast TSG, fusion 0.00448 4.666 3.08E-06 0.3885 0.004052045

cg08355301 17 62009651 CD79B CD79b molecule, immunoglobulin-associated beta 23.3 DLBCL, WM oncogene 0.013975 4.629 3.68E-06 0.8054 0.00447258

cg21772773 1 6880294 CAMTA1 calmodulin binding transcription activator 1 36.31 epithelioid haemangioendothelioma TSG, fusion -0.005355 -4.621 3.81E-06 0.6247 0.00457825

cg07344096 1 7724122 0.007465 4.184 0.00002868 0.8856 0.016949257

cg03051946 1 6946515 0.000540046 3.768 0.0001645 0.1644 0.047070759

cg10546626 20 57424521 GNAS
guanine nucleotide binding protein (G protein), alpha stimulating activity 

polypeptide 1 13.32

pituitary adenoma, pancreatic intraductal papillary mucinous neoplasm, 

fibrous dysplasia oncogene 0.0015175 4.499 6.84E-06 0.8962 0.006643465

cg03613625 20 57408174 0.003505 3.949 0.00007835 0.06884 0.030883664

cg26380291 10 114787843 TCF7L2 transcription factor 7-like 2 25.3 colorectal oncogene, fusion 0.005369 4.46 8.19E-06 0.8992 0.007316706

cg03935060 16 10272021 GRIN2A glutamate receptor, ionotropic, N-methyl D-aspartate 2A 13.2 melanoma, colorectal carcinoma, gastric carcinoma, lung carcinoma TSG 0.025175 4.449 8.63E-06 0.2726 0.007566163

cg26196087 1 120530251 NOTCH2 Notch homolog 2 12 marginal zone lymphoma, DLBCL, bladder oncogene, TSG -0.006609 -4.296 0.00001735 0.5559 0.01198841

cg07266431 7 92460113 CDK6 cyclin-dependent kinase 6 21.2 ALL oncogene, fusion -0.0288 -4.139 0.00003482 0.1561 0.019241278

cg00907204 7 92461971 -0.0143 -3.923 0.00008733 0.2113 0.033421433

cg06982885 16 89029055 CBFA2T3
core-binding factor, runt domain, alpha subunit 2; translocated to, 3 (MTG-

16) 24.3 AML TSG, fusion 0.0011815 3.813 0.0001373 0.3417 0.042156881

cg01517968 12 52348879 ACVR1 activin A receptor, type I 24.1 DIPG oncogene 0.016675 4.765 1.89E-06 0.05167 0.002830141

cg15130433 6 159240081 EZR ezrin 25.3 NSCLC fusion 0.001795 3.88 0.0001046 0.3215 0.036602471

cg13859541 3 30647802 TGFBR2 transforming growth factor beta receptor II 24.1 head and neck, colorectal TSG -4.16225E-05 -3.874 0.0001069 0.4247 0.036901374

cg25353990 5 158164199 EBF1 early B-cell factor 1 33.3 lipoma TSG, fusion 0.00889 3.871 0.0001083 0.4636 0.037195995

cg20669908 2 25498444 DNMT3A DNA (cytosine-5-)-methyltransferase 3 alpha 23.3 AML TSG -0.002447 -3.823 0.0001317 0.6217 0.041370617

B Cell
cg26425711 1 3251680 PRDM16 PR domain containing 16 36.32 MDS, AML oncogene, fusion 0.01325 4.281 0.00001858 0.8995 0.048768324

cg00168240 1 3347457 PRDM16;PRDM16 0.00483 5.241

2.18e-08 

(6.16e-09) 0.3239 0.005427865

cg14133064 9 5530115 PDCD1LG2 programmed cell death 1 ligand 2 24.1 PMBL, Hodgkin lymphoma oncogene, fusion -0.00993 -4.937 7.915E-07 0.5993 0.011243238

cg00856404 2 25498451 DNMT3A DNA (cytosine-5-)-methyltransferase 3 alpha 23.3 AML TSG -0.0211 -4.731 0.000002235 0.07902 0.019841261

cg20669908 2 25498444 -0.016585 -4.868 0.000001126 0.1058 0.012772781

cg22820188 1 156086004 LMNA lamin A/C 22 Spitzoid tumour fusion -0.0219 -4.703 0.000002563 0.05563 0.021112522

cg07440398 14 99712966 BCL11B B-cell CLL/lymphoma 11B  (CTIP2) 32.2 T-ALL oncogene, TSG, fusion 0.019905 4.34 0.00001428 0.2027 0.043196048

Natural Killer Cell
cg07440398 14 99712966 BCL11B B-cell CLL/lymphoma 11B  (CTIP2) 32.2 T-ALL oncogene, TSG, fusion 0.0395 4.713 0.000002438 0.3084 0.016187883

cg01636910 1 85740751 BCL10 B-cell CLL/lymphoma 10 22.3 MALT TSG, fusion -0.011200007 -4.484 0.000007312 0.07226 0.02843783

Monocyte
cg07440398 14 99712966 BCL11B B-cell CLL/lymphoma 11B  (CTIP2) 32.2 T-ALL oncogene, TSG, fusion 0.008815 6.033 1.61E-09 0.1174 0.000329551

cg05100282 14 99713430 2.52E-08 4.65 3.32E-06 0.9355 0.015425098

cg27229529 1 3162676 PRDM16 PR domain containing 16 36.32 MDS, AML oncogene, fusion 0.009845 4.414 0.00001017 0.3783 0.024287031

cg00168240 1 3347457 0.0191 6.14 8.24E-10 0.104 0.000329551

cg14133064 9 5530115 PDCD1LG2 programmed cell death 1 ligand 2 24.1 PMBL, Hodgkin lymphoma oncogene, fusion -0.008485 -5.19 2.10E-07 0.135 0.00339572

cg00625963 1 32740034 LCK lymphocyte-specific protein tyrosine kinase 35.2 T-ALL oncogene, fusion -0.00885 -4.336 0.00001453 0.1171 0.027574071

cg25353990 5 158164199 EBF1 early B-cell factor 1 33.3 lipoma TSG, fusion 0.0197 4.081 0.00004491 0.05484 0.046915091

Table 1 Overlap between hallmark genes for cancer and meta-EWAS identified significant genes for HIV infection 
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