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Abstract 

The current state-of-the-art in hPSC culture is a bespoke and user-dependent process limiting the 

scale and complexity of the experiments performed and introducing operator-to-operator and 

day-to-day variation.  Artificial intelligence (AI) offers the speed and flexibility to bridge the gap 

between a human-dependent process and industrial-scale automation.   

We evaluated an AI approach for counting exact cell numbers of undifferentiated human induced 

pluripotent stem cells in brightfield images for automating hPSC culture.  The neural 

network generates a topological density map for accurate cell counts.  We found that the image-

based AI algorithm can determine a precise number of hPSCs  and is superior to fluorescence-

labeled object detection; the algorithm can  ignore well edges, meniscus effects, and dust, 

achieving an average error of 5.6%.    We have built a prototype capable of making a go/no go 

decision for stem cell passaging to perform 26,400 individual well-level counts from 422,400 

images in 12 hours at low cost.    
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There is an increasing demand for this technology that is labor intensive and sensitive to user 

variance and genetic diversity of stem cell lines. Currently, the dynamic process of pluripotent 

stem cell derivation and culture demands a highly skilled individual with years of experience.  

Automated platforms for stem cell culture would accelerate access to hPSC technology for drug 

development and clinical application of hPSC derivatives. We set out to identify a machine 

learning algorithm to standardize stem cell cultures.   

In current practice, measuring the density of cells in a dish requires the cells to be dissociated 

and counted or have their nuclei stained and imaged in the dish. These methods are time-

consuming and result in loss of cells.  It is also common practice to measure confluence with an 

Incucyte with brightfield imaging, but that is often insufficient for measuring hPSC density given 

the range of cell compaction and area.  We sought to streamline this process by counting cells 

directly from brightfield images of the live cells using machine learning technology.   

Machine learning is a field of artificial intelligence in which computers can learn a task such as 

pattern recognition, classification, and prediction from data without relying on a predetermined 

equation or model. For image analysis deep learning, a subset of machine learning, the computer 

learns to perform tasks directly from data. Deep learning uses convolutional neural networks 

(CNNs) for learning features, representations, and tasks directly from the images. This differs 

from conventional machine learning in which features for classification are manually 

defined.  Machine learning has been applied successfully in biologic applications to predict 

fluorescent labels from images (Christiansen et al., 2018), to evaluate hPSC quality (Wakui et 

al., 2017), to identify differentiated stem cells without molecular labeling (Buggenthin et al., 

2017; Kusumoto et al., 2018; Waisman et al., 2019), and to identify macrophage subsets (Rostam 

et al., 2017).  

Crowd counting is an application of machine learning that uses detection, regression and 

density estimation-based methods to count people in images of crowds. CNN approaches have 

been developed to aid crowd counting, including a new method using a cascaded convolutional 

network that learns both crowd count classification and a density map estimation (Sindagi and 

Patel, 2017). This new method has lower error and higher quality density maps compared to 

previous methods (Sindagi and Patel, 2017). 
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We hypothesized that the deep learning crowd counting model could be applied to counting cells 

in images. The model makes use of CNN layers to identify key features in the images that allow 

for accurate and selective cell counting and the creation of a density map. The cell count is 

important for plating at specific densities for passaging and differentiations. In addition to a cell 

count, the model also creates density maps that contain more information that can be used to 

assess the quality of the cells. We created a proof-of-concept platform to monitor hPSC growth 

and make passaging decisions with our trained model by using a Precise Automation robotic 

arm, Cytomat automated incubator, Celigo Imaging Cytometer, and Overlord laboratory 

automation software.  The method can be used across all hPSC cultures as is or by the addition 

of more data through transfer learning. 

A crowd counting convolutional neural network can be trained to detect and count individual 

hPSCs. 

We leveraged neural networks developed to generate accurate predictions of crowd counts to 

accurately predict the number of hPSCs within a colony by hypothesizing that hPSCs resemble 

heads in a crowd. A CNN shown to have superior performance in crowd counting (Sindagi and 

Patel, 2017) was used to generate both an accurate count and physical location of the cells by 

generating a three-dimensional density map in which density is distributed along x- and y- 

coordinates of the microscope.  To test whether this CNN could be trained to detect hPSCs at 

single cell resolution, aligned bright field and Hoechst-stained images of hPSC colonies plated in 

96-well format were obtained using an automated microscope (Figure 1 A, B, C).  Centroids 

were identified using the Hoechst-stained images and converted to a density map using Image-

J/FIJI to serve as ground truth for training the AI (Figure 1D).  Additional example images can 

be found in Supplemental Figure 1.   

The image-based CNN is comprised of two parallel processes filtered through convolutional 

layers (Figure 1F). One half (top) approximates counts and bins an image into a 10-way count 

classifier with the intention of binning images based on the approximate number of cells within 

the field.  The information is used to inform the second half (bottom) to generate a density map 

with local maximal densities representing individual nuclei.  Through repeated training rounds 

(epochs) the connections between individual layers of the CNN are either strengthened or 
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weakened on the basis of similarity of the model-generated density map to the ground truth 

density map.  Images were run through intermediate models captured at even epochs and the 

results were output as density maps to capture the CNN training process.  Interestingly, the AI 

underwent a trial-and-error phase from epoch 8-48 before determining the proper density 

localization, including an inverted density map in which density was assigned to the empty 

portions of the dish before finding the correct approximate distribution (Figure 1G).  By epoch 

60, gross colony morphology and positions were correctly determined and further refined 

throughout iteration.  This learning process coincided with a minimization of the train loss, mean 

average error, and mean square error (Figure 1H).  The training was halted to select the model 

from epoch 680 as a minimum mean average error and mean squared error.  The resulting model 

was found to ignore microscopic artifacts including particulate on the bottom of the microwell 

plate, well edges, bubbles, and variation in focal planes, without the need for augmentation of the 

original bright field images (Supplemental Figure 1), and was used in subsequent experiments.  

We are augmenting the model for the more challenging task of analyzing phase-contrast images, 

which will allow historical analysis of published micrographs.  

Model performance and implementation of the cell counting CNN on an automated platform. 

The model we developed is data-rich; it can localize the relative positions of cells in the dish, be 

sub-divided to generate counts within specific fields of view and summarize larger areas by 

calculating the area under the curve.  To illustrate this point, images can be sliced at given 

horizontal coordinates and the gray value plotted.  Comparison of the magnitude and sharpness 

in features of the low-contrast original images and the density maps revealed by the AI illustrates 

the information transformation performed by the trained AI model (Figure 2A).  The model was 

evaluated using newly imaged data as a correlation of the ground truth, provided by fluorescence 

based object detection, to the model results demonstrating a R-squared value of 0.994 (Figure 

2B). 

We next built an automated system consisting of an automated cell incubator, robotic arm, and 

the identical automated microscope used for acquiring the training data (Figure 2C).  Full-well 

images from 27 bar-coded 96-well tissue culture plates were recorded every 12 hours.  Images 

were automatically uploaded to the cloud and cell counts and heat maps were calculated to 
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monitor cell growth over the time course (Figure 2D), demonstrating the in-line performance of 

an automated system over the time of hPSC growth. 

Add some discussion here about figure 2 E, F & G: 

Split decision training was performed by classifying images of hPSCs that should be fed, split or 

are considered over confluent (Figure 2E).  A power analysis was also performed to see if using 

a smaller area or lower resolution gave comparable results (Figure 2 F, G).   

Methods for assessing quality of induced pluripotent stem cells 

We asked whether the same bright field data could be used to determine culture quality, 

specifically whether machine learning could detect differences in cell morphology due to 

differentiation.  Six additional induced pluripotent stem cell lines were generated using the same 

methods.  The lines, named C2 through C7, were selected for their varying degree of apparently 

differentiated cells observed upon continued passaging.  PluriTest (Muller et al., 2011), an 

unbiased bioinformatic method for accurately determining the pluripotency of human stem cells 

(Initiative, 2018) was used to establish a quality score and ranking for the individual lines. Bulk 

mRNA sequencing was performed on all seven lines, resulting in a PluriTest ranking from best 

to worst:  LT, C7, C3, C4, C5, C6, C2 (Table 1 and Supplemental Table 1).  The percentage of 

cells triple positive for pluripotency factors SSEA-3, SSEA-4, and TRA1-60 measured by flow 

cytometry also correlated well with this ranking (Supplemental Figure 2).   

Density maps were generated for the new hPSC lines using the same cell counting model, 

demonstrating in comparison to Hoechst stained images, the accuracy and broad applicability of 

the model to additional hPSC lines (Figure 3A).  A normal q-q plot of the cell counts for the 

hPSC lines was used determining how closely the sampling of individual fields of view fit a 

normal distribution. As an example, if differentiation of cells led to confluency across all fields 

of view, as is seen for C2, the result was a ‘middling effect’ in which images with median counts 

are observed more frequently, seen as a concave down curve.  The clones exhibit a similar rank 

order by plot curvature and deviation from the normal distribution (Figure 3B).   

Using this collection of clones, pre-trained networks available through MATLAB (Mathworks) 

were evaluated and selected for the best accuracy in conducting three AI tasks for determining 
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clone quality: distinguishing between clones, classifying images as undifferentiated or 

differentiated, and semantic segmentation.  We hypothesized that an AI may be able to 

distinguish between clones from a single image, but may struggle with highly similar clones, and 

the presence of differentiated cells could serve as one distinguishing characteristic. In support of 

this hypothesis, the highest accuracy for this method amongst the four models tested was 79.36% 

(Supplemental Table 2), lower than one would expect if the AI could perfectly distinguish 

clones. However, the resulting confusion matrix could be used to generate a dendrogram on the 

basis of distance between clones, which appears strikingly similar to the gene expression 

dendrogram for the clones (Figure 3C, D), supporting the notion that simple brightfield images 

contain sufficient information for evaluating hPSCs. 

For image classification, the training data were generated by binning individual images for each 

clone into either pluripotent or differentiated classifications until a balanced data set of similarly 

sized bins was created for each of the clones. The AI was then trained to distinguish between 

images that showed undifferentiated hPSCs and one that contained differentiated cell types, 

achieving a 95.15% accuracy.  This model was then used to evaluate and rank each clone based 

on the frequency of encountering images containing differentiated cells (Table 1, Supplemental 

Table 3).  

Semantic segmentation is an AI method of classifying individual pixels in images such that an 

AI can make predictions and report a percent likelihood that each pixel of an image falls into a 

given class.  Thirty-two random images were selected for each clone and pixels were user-

painted according to the three classes –undifferentiated hPSC, differentiated cell, and 

background.  After training, the final model had an accuracy of 95.99%.  The AI results can be 

visualized as either a percent likelihood for each class or a combined pixel painted image 

(Figure 3E).  Frequency of hPSC pixels to total pixels that contained cells were calculated to 

score and rank the clones according to their pluripotency.  The frequency of undifferentiated 

hPSC pixels strongly correlated with the percentage of triple positive cells measured by flow 

cytometry (Figure 3F), indicating that the semantic segmentation AI can successfully estimate 

the cellular composition for each hPSC clone and report a quantitative score that can be used to 

rank the clones (Table 1). 
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Cell therapies using derivatives of human pluripotent stem cells are beginning to enter Phase 1 

clinical trials (Piao et al., 2021; Takahashi, 2020), and there is a growing need for unbiased 

methods for maintaining and expanding high quality hPSCs. Currently, culture of hPSCs is a 

labor-intensive process requiring highly skilled operators.  Human judgement is currently 

required for the most fundamental tasks: counting the number of cells in a culture to optimize 

timing and concentrations for passaging the cells and assessing the quality of cultures for 

contamination with cellular morphologies associated with unwanted differentiation.  Artificial 

intelligence (AI) offers the speed and flexibility needed to bridge the gap between a human-

dependent process and industrial-scale automation.  We have designed an accurate method for 

hPSC visualization that ignores microscopic artifacts including particulate on the bottom of the 

microwell plate, well edge fluorescence, bubbles, and variation in focal planes. Our approach 

intentionally uses standard tissue culture plates and does not require augmentation of bright field 

images prior to training.   

We tested three AI tasks for determining clone quality: distinguishing between clones, 

classifying images as undifferentiated or differentiated, and semantic segmentation. All were 

able to generally rank the hPSC clones based on quality that correlates with results from classical 

pluripotency assays, but we found that because spatial information is also obtained, semantic 

segmentation was a superior method for conducting hPSC quality assessments. While there are 

two examples of image-based classification of hPSCs to evaluate the presence of differentiated 

cells (Kusumoto et al., 2018; Piotrowski et al., 2021), neither is capable of assigning 

classifications at single pixel resolution, a clear strength of using AI semantic segmentation.   

Machine learning is dependent on the quality of the input data and high importance is placed on 

having a sufficiently balanced and representative dataset.  In our study, the AI was tolerant of 

image area sampled to determine the cell density, but it failed to generate accurate density maps 

when the image resolution was degraded due to the lack of contrast within a field of view. We 

found that preset hyperparameters generated convincing results and have not fully explored the 

hyperparameters associated with each of the neural networks tested. 

Besides the basic tasks of cell counting and discovery of differentiated contaminants, the AI-

generated density map contains information that would allow additional analyses. For example, it 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.20.533543doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.20.533543
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

could be used for mapping cell positions, detecting confluency, and measuring inter-nuclear 

distances.  The method we tested can be easily embedded into an automated process capable of a 

scale and throughput to meet the demands of automated hPSC culturing (Elanzew et al., 2020).  

The cell counting, and quality assessment methods can be adapted to a variety of hPSC lines and 

microscopes through training of new models or transfer learning with as little as a single 96-well 

plate of hPSCs.  We also envision the method being used as a means for establishing standards 

when training individuals to conduct hPSC tissue culture work.  With cell type- or microscopy-

specific training data sets, we expect these methodologies to be expandable to assess other cell 

types, such as intermediate progenitors and differentiated derivatives of hPSCs.  In that capacity, 

the AI methods may provide rapid quality control assessments for cells being cultured for use as 

cell replacement therapies, augmenting existing validation methods like gene expression 

profiling, flow cytometry, and immunocytochemical analyses. 
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Figure and Table Legends   

  

Figure 1. Model training workflow  

A) Representative image from the dataset used for developing the cell counting model.  The  
top row of images show the whole field of view and the second row of images are a crop 
shown by the box in the first image.  The first column of images are brightfield.   

B)  Enhanced version of the brightfield image. 

C) Hoechst stained image. 

D) Ground truth image derived from the Hoechst image. 

E) Density map output by the model. 

F) Structure of the deep learning model used.   

G) The density map output from the model of an example image as training progresses.  
Each image is labeled by the epoch. 

H) The cross-entropy loss of the training set over the training epochs.  

I) The mean average error (MAE) of the validation set over the training epochs.    

J) The mean square error (MSE) of the validation set over the training epochs.   

  

Figure 2. Integration of the AI Model into Automated System 

A) Plot showing the difference in pixel intensity at the line drawn across the images for 
brightfield and ground truth. 

B) Correlation between ground truth determined by image object detection and the AI model 
on data not used for the deep learning. 

C) An automated platform was created to monitor hPSC growth by integrating a Cytomat 
automated incubator (Thermo Scientific), robotic arm (Precise Automation), Celigo 
imaging cytometer (Nexcelom Bioscience) and Overlord laboratory automation and 
control Software (PAA).  After imaging, images are automatically sent to an AWS S3 
bucket where they are run through the cell counting model.  
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D) Model output from automated runs to confluency. Plate wide heat maps and growth 
curves show the change in cell density across a plate as the cells grow to confluency.   

E) Split decision training was performed with data from the automated platform.  Plot of 
split decisions based on cell counts per unit area. 

F) Plot of percent error from area down-sampling. 

G) Plot of percent error from resolution down-sampling. 

 

Figure 3. Determining hPSC Quality 

A) Nuclear stained images from each hPSC clone and the corresponding density map 
outputs. 

B) Normal qq plots for each hPSC clone. 

C) Dendrogram created from RNASeq data using top 500 genes, Euclidian distance, and 
complete linkage 

D) Dendrogram created from a confusion matrix generated when evaluating performance of 
the deep learning model for clone identification using Euclidian distance and the single-
link agglomerative method. 

E) The top row of images are hPSC pixel score maps from each hPSC clone. The second 
row of images show the segmentation of pixels in images from each hPSC clone.  Blue is 
hPSC pixels, orange is non-hPSC pixels, and yellow is background (BG).  Percentage of 
hPSC pixels from the total cell pixels for each clone. 

F) Correlation of flow cytometry and SSML. 

 

Table 1. Ranking quality of hPSC lines using different methods. Standard methods for 

evaluating quality including PluriTest and gene expression were used as well as new deep 

learning approaches.   

 

 

Materials and Methods 
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Tissue culture  

The hPSC line was obtained from Life Technologies (Thermo) and maintained between 

passages 25 to 45.  The cell line is an episomal reprogrammed line derived from CD34+ 

hematopoietic somatic cells.  hPSCs were fed daily using mTeSR1, passaged using ReLeSR, and 

attached to hESC-qualified Matrigel (Corning) coated 10cm and 96 well tissue culture 

plates.  hPSCs were evaluated for pluripotency by flow cytometry, karyotypical abnormalities, 

and mycoplasma to control for quality of cultures.    

The reprogrammed hPSC clones were derived from CD34+ cord blood cells (Stemcell 

Technologies).  The reprogramming was done using the CytoTune-iPS 2.0 Sendai 

Reprogramming kit (Invitrogen) and following the instruction manual.  Once reprogramming 

was completed the clones were fed daily using mTeSR1, passaged using ReLeSR, and attached 

to hESC-qualified Matrigel (Corning) coated 6 well tissue culture plates. 

Cell plating and staining for training dataset  

The hPSC line was dissociated from a 10cm dish using ReLeSR and plated at equal densities 

on standard flat bottom 96 well microplates (Corning) that were coated with hESC-

qualified matrigel.  Plates were fixed on subsequent days in one day intervals.  All plates were 

fixed with a final concentration of 3.7% formaldehyde for 20 minutes by adding an equal volume 

to the media already in the well of 7.4% formaldehyde. To stain the nuclei of the cells a staining 

solution was made by diluting Hoechst 33342 (Molecular Probes) to 1:5000 in 

PBS and incubating in the dark for 15 minutes at room temperature.  After the incubation the 

staining solution was removed and the cells were washed three times with PBS and a sufficient 

volume (~200 μL) of PBS was added to the wells for imaging.   

Imaging and acquisition settings  

Images were acquired with the Celigo Imaging Cytometer (Nexcelom Bioscience). The 

illumination for brightfield is a 1 LED-based enhanced brightfield imaging channel with uniform 

well illumination.  There are also 4 LED-based fluorescent channels.  A large chip CCD camera 

along with galvanometric mirrors and an F-theta lens are used to acquire the images at a 1 

μLm/pixel resolution.  All images are at 10x magnification.  
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Training plates for the cell counting and density map model were imaged in both brightfield and 

blue channel.  All other plates were imaged in brightfield only. Acquisition settings: Brightfield 

50 ms exposure; Hoechst 250 ms exposure, excitation 377/50, emission 470/22  

Cell Counting & Density Map Model Training 

The model was trained using Amazon SageMaker. An ml.p3.8xlarge instance was used for 

training. The custom model and training script from Sendagi, et al. (Sindagi and Patel, 2017) was 

packaged into a docker image according to SageMaker specifications. All hyperparameters used 

during training were kept the same as from Sendagi, et al. (Sindagi and Patel, 2017). Training 

lasted approximately 4 hours.   

The training dataset was assembled by randomly selecting 3000 1958x1958 images from a larger 

dataset of 4608 images acquired from three 96 wells plates. Each image was then reduced in size 

to 256x256 by taking a random crop from the image. The 3000 images were then manually 

sorted to remove images that were out of focus or otherwise had defects preventing the nuclei 

segmentation algorithm from working properly. After manually sorting through the 

3000 images we were left with 2375 good images to use for training. We then took the 

fluorescence channel from each image and ran it through a standard segmentation algorithm to 

find the nuclei center points. Those center points were then used to create the ground truth 

density map as described in (Sindagi and Patel, 2017). The training dataset was then further split 

into a training and validation dataset, with 80% of the data used for training and 20% of the data 

used for validation during training.   

Automated prototype platform  

We created an automated platform to monitor hPSC growth by integrating a robotic arm (Precise 

Automation), Cytomat automated incubator (Thermo Scientific), Celigo Imaging 

Cytometer (Nexcelom) and Overlord laboratory automation and control software (Peak Analysis 

& Automation).   

Automated Runs to Confluency  
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The human hPSC line was dissociated from a 10cm dish using reLeSR and plated at equal 

densities on 96 well microplates that were coated with hESC-qualified matrigel.  After plating 

the 96 well microplates were loaded into the Cytomat automated incubator in our prototype 

automated system.  Using Overlord automation software the plates were set to image all plates 

and upload those images to an AWS S3 bucket every 12 hours.  Images were run through the 

model on AWS.  We used the model output of cell counts, heat maps and growth curves to track 

cell growth.  Plates were maintained until cells grew to confluency. 

Continuous Run  

The hPSC line was dissociated from a 10cm dish using reLeSR and plated 

at four different densities on each of the 96 well microplates that were coated with hESC-

qualified matrigel.  After plating the 96 well microplates were loaded into 

the Cytomat automated incubator in our prototype automated system.  Using Overlord 

automation software the plates were set to image all plates and upload those images to AWS 

every 12 hours.  We used the model output to determine when plates were ready to split and the 

split ratio to be used to equilibrate cell densities across each microplate.     

hPSC Quality Classification Model Training 

These models were all trained using MATLAB 2020b running in an AWS EC2 p3.2xlarge 

instance.  To create a training set for clone identification, 1,000 random images from each clone 

were selected for a total of 7,000 images.  Of these, 60% were used for training, 20% were used 

for validation during training, and 20% were used for testing and evaluating the trained model.  

The pretrained model used for clone identification with transfer learning was densenet201.  The 

final model had a validation accuracy of 79.36%.   

Hyperparameter Value 

Solver SDGM 
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Momentum 0.9 

Initial Learning Rate 0.001 

Learn Rate Schedule Piecewise 

Learn Rate Drop Factor 0.1 

Learn Rate Drop Period 10 

L2 Regularization 1.0000e-04 

Gradient Threshold Method L2norm 

Gradient Threshold Inf 

Max Epochs 10 

Mini Batch Size 100 

Verbose 1 

Verbose Frequency 50 

Validation Frequency 20 

Validation Patience 5 
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Shuffle Every epoch 

Execution Environment Single GPU 

 

To create a training set for determining clone quality, images from several hPSC clones and the 

hPSC line from Life Technologies were used and separated into hPSC and non-hPSC classes.  

The original images were acquired in 6 well plates and were size 1958x1958, and were tiled into 

four 979x979 images to use for training.  From the complete set of clone images 1200 were 

selected for each class for a total of 2400 images.  Of these, 60% were used for training, 20% 

were used for validation during training, and 20% were used for testing and evaluating the 

trained model.  The pretrained model used for determining clone quality with transfer learning 

was resnet101.  The final model had a validation accuracy of 95.15%.   

Hyperparameter Value 

Solver SDGM 

Momentum 0.9 

Initial Learning Rate 0.001 

Learn Rate Schedule Piecewise 

Learn Rate Drop Factor 0.1 

Learn Rate Drop Period 10 
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L2 Regularization 1.0000e-04 

Gradient Threshold Method L2norm 

Gradient Threshold Inf 

Max Epochs 10 

Mini Batch Size 100 

Verbose 1 

Verbose Frequency 50 

Validation Frequency 10 

Validation Patience 5 

Shuffle Every epoch 

Execution Environment Single GPU 

 

 

 

hPSC Semantic Segmentation Model Training 
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These models were all trained using MATLAB 2020b running in an AWS EC2 p3.2xlarge 

instance.  To create a training set to segment hPSC, non-hPSC and background in images, 32 

random images of each hPSC clone were selected for a total of 224 images.  Of these, 60% were 

used for training, 20% were used for validation during training, and 20% were used for testing 

and evaluating the trained model.  The pixel labels were created using MATLAB Image Labeler 

to label pixels as hPSC, non-hPSC or background.  The semantic segmentation network used to 

train this model was Deeplabv3+ and the base pretrained network was resnet50.  The final model 

had a validation accuracy of 95.99%, a weighted intersection over union (IoU) score of 0.94, and 

a mean boundary F1 (BF) score of 0.792.  The IoU and BF scores are calculated on the training 

dataset.  The IoU is the ratio of correctly classified pixels to the total number of ground truth and 

predicted pixels in that class.  The BF score shows how well the predicted boundary of each class 

aligns with the true boundary. 

Hyperparameter Value 

Solver SDGM 

Momentum 0.9 

Initial Learning Rate 1.0000e-05 

Learn Rate Schedule Piecewise 

Learn Rate Drop Factor 0.1 

Learn Rate Drop Period 3 

L2 Regularization 1.0000e-04 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.20.533543doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.20.533543
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

Gradient Threshold Method L2norm 

Gradient Threshold Inf 

Max Epochs 7 

Mini Batch Size 5 

Verbose 0 

Verbose Frequency 50 

Validation Frequency 15 

Validation Patience 5 

Shuffle Every epoch 

Execution Environment Single GPU 

 

 

Reagent/Resource Source Identifier  

Human Episomal iPSC Line Gibco by Life Technologies A18945  

mTeSR1 Stemcell Technologies 85850   

ReLeSR Stemcell Technologies 05873   
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DMEM/F-12 Gibco 10565018 

hESC-qualified Matrigel Corning 354277  

Clear 96 well microplate Corning 353872 

Clear 6 well microplate Corning 353846 

10cm Dish Nunc 150464 

Formaldehyde Sigma Aldrich 252549 

DPBS Gibco by Life Technologies 14190144 

Hoescht 33342 Molecular Probes by Life Technologies H3570  

CytoTune-iPS 2.0 Sendai Reprogramming Kit Invitrogen A16517 

Human CD34+ Cord Blood Cells Stemcell Technologies 70008 
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Gene LT C2 C3 C4 C5 C6 C7 Gene Func�on
POU5F1 10.7061 10.222 10.5945 10.5386 10.6962 10.6946 10.4456 Core Pluripotency

SOX2 8.52885 7.54122 8.3948 8.17594 8.17496 8.05197 8.33948 Core Pluripotency
NANOG 6.55866 5.71814 6.07894 6.39012 6.61838 6.56726 6.4833 Core Pluripotency
SALL4 8.06615 7.27144 8.05455 7.94685 7.88872 7.78085 7.82237 Core Pluripotency
GDF3 1.99839 2.27523 2.2045 2.61258 2.7364 2.53757 1.91295 Core Pluripotency

TDGF1 9.60021 8.23492 9.01962 9.29894 8.87338 8.75617 8.57948 Core Pluripotency
KLF4 1.8633 2.85215 1.28856 2.02459 1.77524 1.44525 1.49403 Core Pluripotency
MYC 5.8732 7.61142 5.86472 6.63379 6.36193 6.74507 5.90322 Core Pluripotency
TERT 3.8198 4.20945 4.29414 4.04577 4.21399 4.14063 4.01193 Core Pluripotency
E2F1 5.61463 5.66635 5.82904 5.75907 5.7807 5.93913 5.70259 Core Pluripotency

LIN28B 7.60583 7.25565 7.67025 7.61943 7.66574 7.51029 7.81745 Core Pluripotency
PRDM14 6.49165 4.95517 5.99013 5.99036 5.80773 5.68716 5.73989 Core Pluripotency
FBXO15 -1.0294 -0.8054 -0.5588 -1.1897 -1.579 -1.9934 -1.9094 Naïve Pluripotency
ESRRB -1.4992 -2.6592 -0.5588 -0.7318 -0.6428 -1.3584 -0.6176 Naïve Pluripotency
DPPA3 -0.9237 0.47437 -0.5061 0.83448 0.91305 0.15338 -1.0776 Naïve Pluripotency
KLF4 1.8633 2.85215 1.28856 2.02459 1.77524 1.44525 1.49403 Naïve Pluripotency
KLF5 1.70747 1.42951 0.65655 1.47812 0.82523 0.76166 0.6518 Naïve Pluripotency
TBX3 -2.9839 -3.2302 -2.22 -2.5957 -2.7249 -2.836 -5.1101 Naïve Pluripotency
ZFP42 7.35438 7.28155 7.7767 7.78641 7.96309 7.66874 7.68815 Naïve Pluripotency

TFCP2L1 3.24641 3.26315 2.68595 2.68785 3.0017 3.27718 3.3465 Naïve Pluripotency
NR0B1 -2.5638 -3.2302 -5.1101 -2.8558 -2.041 -2.836 -3.0841 Naïve Pluripotency
FGF5 -3.2572 4.57651 -3.0292 2.07251 -1.2118 0.25761 -5.1101 Primed Pluripotency
LEF1 0.36787 1.99532 1.25153 1.40565 0.80011 1.0007 1.29916 Primed Pluripotency

NODAL 2.02226 2.29777 1.7723 2.49272 3.12467 3.54359 2.57431 Primed Pluripotency
CD24 11.5447 10.5187 11.3828 11.2772 11.2761 11.0286 11.2509 Primed Pluripotency

GATA6 -2.8245 -4.1891 -4.0613 -2.9229 -4.0702 -2.5749 -3.502 Primi�ve Endoderm
PDGFRA 0.28769 2.17135 0.70315 -0.1598 0.81699 1.4929 0.20741 Primi�ve Endoderm
GATA4 -3.1073 -1.6734 -5.1101 -2.0155 -5.1101 -3.1549 -5.1101 Primi�ve Endoderm
PAX6 -0.0909 -0.8721 0.34124 -0.0634 -0.7133 -1.7051 0.59628 Ectoderm
NES 9.31669 9.04109 9.05018 8.98498 8.89652 8.95324 8.83957 Ectoderm

SOX9 3.26824 4.74856 3.45737 3.3481 3.14821 3.74294 3.43619 Ectoderm
PROM1 5.87762 7.0995 6.46216 6.55179 6.93937 6.91375 6.91817 Ectoderm

DCX 4.17831 3.27862 3.14044 2.85501 3.40297 3.35365 2.8492 Ectoderm
TUBB3 6.39557 7.175 6.78631 6.86024 6.77845 6.86192 6.17276 Ectoderm
GFAP 0.06396 -0.4591 0.02753 0.36128 -0.2794 -0.9968 -0.0321 Ectoderm
CHRD 0.75711 -1.0156 0.53856 0.05506 -0.1271 0.38581 0.35 Ectoderm
PAX2 -4.6103 -5.1101 -3.0375 -5.1101 -4.0702 -5.1101 -3.0841 Ectoderm
TP63 -5.1101 0.19075 -5.1101 -4.152 -3.0507 -3.1549 -2.7604 Ectoderm

NODAL 2.02226 2.29777 1.7723 2.49272 3.12467 3.54359 2.57431 Mesoderm Endoderm
EOMES -2.7713 -2.2512 -3.4604 -3.1734 -1.7172 -1.58 -3.502 Mesoderm Endoderm

GSC -4.6103 -4.1891 -5.1101 -5.1101 -2.7249 -2.836 -4.0927 Mesoderm Endoderm
SNAI1 3.20289 2.86245 3.37799 3.01945 2.94554 3.38083 2.70573 Mesoderm Endoderm
SNAI2 -1.7329 3.73618 -1.8545 2.28106 0.09566 1.05955 -2.273 Mesoderm Endoderm
MIXL1 0.01398 -0.8721 -1.8545 -0.8689 -0.9485 -0.1238 -0.0321 Mesoderm Endoderm
TBX6 2.41829 1.31417 1.89207 1.62579 1.5069 1.90719 1.56804 Mesoderm Endoderm

FOXC1 -2.1702 -0.7416 -2.22 -3.5813 -2.4593 0.53154 -2.0798 Mesoderm Endoderm
GATA4 -3.1073 -1.6734 -5.1101 -2.0155 -5.1101 -3.1549 -5.1101 Mesoderm Endoderm
SOX7 0.8122 -0.1979 0.26897 0.8062 -0.1742 0.10813 0.18494 Mesoderm Endoderm
GSC -4.6103 -4.1891 -5.1101 -5.1101 -2.7249 -2.836 -4.0927 Mesoderm Endoderm

CDX2 -4.6103 -5.1101 -5.1101 -5.1101 -4.0702 -2.836 -4.0927 Extraembryonic
DAB2 2.32123 4.78827 2.69976 3.86569 3.20193 3.66926 2.73816 Extraembryonic

FST 5.37934 3.47265 5.30329 4.60421 4.53452 4.17431 5.24418 Extraembryonic
ESRRB -1.4992 -2.6592 -0.5588 -0.7318 -0.6428 -1.3584 -0.6176 Extraembryonic

TACSTD2 -0.1734 0.12382 0.11258 -0.2381 -0.3339 0.25761 0.0935 Extraembryonic
FGF4 1.09469 0.56332 0.71212 1.66357 1.32518 0.89692 0.05284 Extraembryonic

EPCAM 7.46294 7.27072 7.53837 7.6302 7.84546 7.57665 7.78445 Extraembryonic

Supplemental Table 1. Gene expression data for the iPSC lines focusing on key genes for pluripotency 
and differen�a�on.
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Pretrained Network
Time to Complete 

Training 
Valida�on Accuracy

Number of 
Misclassified Test 

Dataset

Accuracy of Trained 
Model on Test Dataset

Number of 
Misclassified Training 

Dataset

Accuracy of Trained 
Model on Training 

Dataset
Xcep�on 506 min 72.50% 375 71.67% 1071 72.01%

Resnet101 322 min 69.07% 401 68.30% 1098 68.80%
Incep�onv3 328 min 73.43% 379 72.90% 1059 74.70%

Densenet201 451 min 79.36% 286 79.60% 810 80.70%

Pretrained Network
Time to Complete 

Training 
Valida�on Accuracy

Number of 
Misclassified Test 

Dataset

Accuracy of Trained 
Model on Test Dataset

Number of 
Misclassified Training 

Dataset

Accuracy of Trained 
Model on Training 

Dataset
Xcep�on 124 min 92.72% 23 94.40% 100 91.90%

Incep�onv3 83 min 92.96% 22 94.70% 45 96.40%
Densenet201 135 min 96.36% 13 96.80% 6 99.50%

Resnet101 69 min 95.87% 7 98.30% 5 99.60%

Base Network
Time to 

Complete 
Training 

Valida�on 
Accuracy

Global Accuracy 
of Trained Model 
on Test Dataset

Weighted IoU 
Score of Trained 

Model on Test 
Dataset

Mean BF Score of 
Trained Model 
on Test Dataset

iPSC pixel 
predic�on Accuracy 

of Trained Model 
on Test Dataset

Non iPSC pixel 
predic�on Accuracy 
of Trained Model on 

Test Dataset

Global Accuracy 
of Trained Model 

on Training 
Dataset

Weighted IoU 
Score of Trained 

Model on Training 
Dataset

Mean BF Score of 
Trained Model 

on Training 
Dataset

iPSC pixel 
predic�on Accuracy 
of Trained Model on 

Training Dataset

Non iPSC pixel 
predic�on Accuracy 
of Trained Model on 

Training Dataset

Mobilenetv2 10 min 94.86% 0.941 0.863 0.689 0.96 0.85 0.95 0.86 0.708 0.96 0.82
Xcep�on 64 min 92.71% 0.918 0.824 0.647 0.91 0.89 0.939 0.848 0.667 0.92 0.89
Resnet18 10 min 96.05% 0.946 0.9 0.735 0.94 0.91 0.968 0.94 0.776 0.97 0.95
Resnet50 11 min 95.99% 0.965 0.934 0.768 0.98 0.86 0.968 0.94 0.792 0.97 0.95

Supplemental Table 2.  Pretrained networks tested for transfer learning of classifica�on networks.  To train a model 
to dis�nguish between the different iPSC clones, Densenet201 was selected because it resulted in the highest 
valida�on and test set accuracy.  

Supplemental Table 3.  Pretrained networks tested for transfer learning of classifica�on networks. To train a model 
to dis�nguish between pluripotent and differen�ated iPSC images, Resnet101 was selected because of the rela�vely 
short training �me and high accuracy.

Supplemental Table 4.  Pretrained networks tested as base networks for DeeplabV3+ for transfer learning of 
seman�c segmenta�on networks.  To train a model to segment individual pixels in images as iPSC, non iPSC or 
background Resnet50 was selected because of the rela�vely short training �me and high Accuracy, IoU and BF1 scores.
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