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Abstract

The current state-of-the-art in hPSC culture is a bespoke and user-dependent process limiting the
scale and complexity of the experiments performed and introducing operator-to-operator and
day-to-day variation. Artificial intelligence (Al) offers the speed and flexibility to bridge the gap

between a human-dependent process and industrial-scale automation.

We evaluated an Al approach for counting exact cell numbers of undifferentiated human induced
pluripotent stem cells in brightfield images for automating hPSC culture. The neural

network generates a topological density map for accurate cell counts. We found that the image-
based Al algorithm can determine a precise number of hPSCs and is superior to fluorescence-
labeled object detection; the algorithm can ignore well edges, meniscus effects, and dust,
achieving an average error of 5.6%. We have built a prototype capable of making a go/no go
decision for stem cell passaging to perform 26,400 individual well-level counts from 422,400

images in 12 hours at low cost.
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There is an increasing demand for this technology that is labor intensive and sensitive to user
variance and genetic diversity of stem cell lines. Currently, the dynamic process of pluripotent
stem cell derivation and culture demands a highly skilled individual with years of experience.
Automated platforms for stem cell culture would accelerate access to hPSC technology for drug
development and clinical application of hPSC derivatives. We set out to identify a machine

learning algorithm to standardize stem cell cultures.

In current practice, measuring the density of cells in a dish requires the cells to be dissociated
and counted or have their nuclei stained and imaged in the dish. These methods are time-
consuming and result in loss of cells. It is also common practice to measure confluence with an
Incucyte with brightfield imaging, but that is often insufficient for measuring hPSC density given
the range of cell compaction and area. We sought to streamline this process by counting cells

directly from brightfield images of the live cells using machine learning technology.

Machine learning is a field of artificial intelligence in which computers can learn a task such as
pattern recognition, classification, and prediction from data without relying on a predetermined
equation or model. For image analysis deep learning, a subset of machine learning, the computer
learns to perform tasks directly from data. Deep learning uses convolutional neural networks
(CNNs) for learning features, representations, and tasks directly from the images. This differs
from conventional machine learning in which features for classification are manually

defined. Machine learning has been applied successfully in biologic applications to predict
fluorescent labels from images (Christiansen et al., 2018), to evaluate hPSC quality (Wakui et
al., 2017), to identify differentiated stem cells without molecular labeling (Buggenthin et al.,
2017; Kusumoto et al., 2018; Waisman et al., 2019), and to identify macrophage subsets (Rostam
et al., 2017).

Crowd counting is an application of machine learning that uses detection, regression and
density estimation-based methods to count people in images of crowds. CNN approaches have
been developed to aid crowd counting, including a new method using a cascaded convolutional
network that learns both crowd count classification and a density map estimation (Sindagi and
Patel, 2017). This new method has lower error and higher quality density maps compared to

previous methods (Sindagi and Patel, 2017).
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We hypothesized that the deep learning crowd counting model could be applied to counting cells
in images. The model makes use of CNN layers to identify key features in the images that allow
for accurate and selective cell counting and the creation of a density map. The cell count is
important for plating at specific densities for passaging and differentiations. In addition to a cell
count, the model also creates density maps that contain more information that can be used to
assess the quality of the cells. We created a proof-of-concept platform to monitor hPSC growth
and make passaging decisions with our trained model by using a Precise Automation robotic
arm, Cytomat automated incubator, Celigo Imaging Cytometer, and Overlord laboratory
automation software. The method can be used across all hPSC cultures as is or by the addition

of more data through transfer learning.

A crowd counting convolutional neural network can be trained to detect and count individual

hPSCs.

We leveraged neural networks developed to generate accurate predictions of crowd counts to
accurately predict the number of hPSCs within a colony by hypothesizing that hPSCs resemble
heads in a crowd. A CNN shown to have superior performance in crowd counting (Sindagi and
Patel, 2017) was used to generate both an accurate count and physical location of the cells by
generating a three-dimensional density map in which density is distributed along x- and y-
coordinates of the microscope. To test whether this CNN could be trained to detect hPSCs at
single cell resolution, aligned bright field and Hoechst-stained images of hPSC colonies plated in
96-well format were obtained using an automated microscope (Figure 1 A, B, C). Centroids
were identified using the Hoechst-stained images and converted to a density map using Image-
J/F1J1 to serve as ground truth for training the Al (Figure 1D). Additional example images can
be found in Supplemental Figure 1.

The image-based CNN is comprised of two parallel processes filtered through convolutional
layers (Figure 1F). One half (top) approximates counts and bins an image into a 10-way count
classifier with the intention of binning images based on the approximate number of cells within
the field. The information is used to inform the second half (bottom) to generate a density map
with local maximal densities representing individual nuclei. Through repeated training rounds

(epochs) the connections between individual layers of the CNN are either strengthened or
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weakened on the basis of similarity of the model-generated density map to the ground truth
density map. Images were run through intermediate models captured at even epochs and the
results were output as density maps to capture the CNN training process. Interestingly, the Al
underwent a trial-and-error phase from epoch 8-48 before determining the proper density
localization, including an inverted density map in which density was assigned to the empty
portions of the dish before finding the correct approximate distribution (Figure 1G). By epoch
60, gross colony morphology and positions were correctly determined and further refined
throughout iteration. This learning process coincided with a minimization of the train loss, mean
average error, and mean square error (Figure 1H). The training was halted to select the model
from epoch 680 as a minimum mean average error and mean squared error. The resulting model
was found to ignore microscopic artifacts including particulate on the bottom of the microwell
plate, well edges, bubbles, and variation in focal planes, without the need for augmentation of the
original bright field images (Supplemental Figure 1), and was used in subsequent experiments.
We are augmenting the model for the more challenging task of analyzing phase-contrast images,

which will allow historical analysis of published micrographs.

Model performance and implementation of the cell counting CNN on an automated platform.

The model we developed is data-rich; it can localize the relative positions of cells in the dish, be
sub-divided to generate counts within specific fields of view and summarize larger areas by
calculating the area under the curve. To illustrate this point, images can be sliced at given
horizontal coordinates and the gray value plotted. Comparison of the magnitude and sharpness
in features of the low-contrast original images and the density maps revealed by the Al illustrates
the information transformation performed by the trained Al model (Figure 2A). The model was
evaluated using newly imaged data as a correlation of the ground truth, provided by fluorescence
based object detection, to the model results demonstrating a R-squared value of 0.994 (Figure

2B).

We next built an automated system consisting of an automated cell incubator, robotic arm, and
the identical automated microscope used for acquiring the training data (Figure 2C). Full-well
images from 27 bar-coded 96-well tissue culture plates were recorded every 12 hours. Images

were automatically uploaded to the cloud and cell counts and heat maps were calculated to
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monitor cell growth over the time course (Figure 2D), demonstrating the in-line performance of

an automated system over the time of hPSC growth.
Add some discussion here about figure 2 E, F & G:

Split decision training was performed by classifying images of hPSCs that should be fed, split or
are considered over confluent (Figure 2E). A power analysis was also performed to see if using

a smaller area or lower resolution gave comparable results (Figure 2 F, G).

Methods for assessing quality of induced pluripotent stem cells

We asked whether the same bright field data could be used to determine culture quality,
specifically whether machine learning could detect differences in cell morphology due to
differentiation. Six additional induced pluripotent stem cell lines were generated using the same
methods. The lines, named C2 through C7, were selected for their varying degree of apparently
differentiated cells observed upon continued passaging. PluriTest (Muller et al., 2011), an
unbiased bioinformatic method for accurately determining the pluripotency of human stem cells
(Initiative, 2018) was used to establish a quality score and ranking for the individual lines. Bulk
mRNA sequencing was performed on all seven lines, resulting in a PluriTest ranking from best
to worst: LT, C7, C3, C4, CS5, C6, C2 (Table 1 and Supplemental Table 1). The percentage of
cells triple positive for pluripotency factors SSEA-3, SSEA-4, and TRA1-60 measured by flow

cytometry also correlated well with this ranking (Supplemental Figure 2).

Density maps were generated for the new hPSC lines using the same cell counting model,
demonstrating in comparison to Hoechst stained images, the accuracy and broad applicability of
the model to additional hPSC lines (Figure 3A). A normal g-q plot of the cell counts for the
hPSC lines was used determining how closely the sampling of individual fields of view fit a
normal distribution. As an example, if differentiation of cells led to confluency across all fields
of view, as is seen for C2, the result was a ‘middling effect’ in which images with median counts
are observed more frequently, seen as a concave down curve. The clones exhibit a similar rank

order by plot curvature and deviation from the normal distribution (Figure 3B).

Using this collection of clones, pre-trained networks available through MATLAB (Mathworks)

were evaluated and selected for the best accuracy in conducting three Al tasks for determining
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clone quality: distinguishing between clones, classifying images as undifferentiated or
differentiated, and semantic segmentation. We hypothesized that an Al may be able to
distinguish between clones from a single image, but may struggle with highly similar clones, and
the presence of differentiated cells could serve as one distinguishing characteristic. In support of
this hypothesis, the highest accuracy for this method amongst the four models tested was 79.36%
(Supplemental Table 2), lower than one would expect if the Al could perfectly distinguish
clones. However, the resulting confusion matrix could be used to generate a dendrogram on the
basis of distance between clones, which appears strikingly similar to the gene expression
dendrogram for the clones (Figure 3C, D), supporting the notion that simple brightfield images

contain sufficient information for evaluating hPSCs.

For image classification, the training data were generated by binning individual images for each
clone into either pluripotent or differentiated classifications until a balanced data set of similarly
sized bins was created for each of the clones. The Al was then trained to distinguish between
images that showed undifferentiated hPSCs and one that contained differentiated cell types,
achieving a 95.15% accuracy. This model was then used to evaluate and rank each clone based
on the frequency of encountering images containing differentiated cells (Table 1, Supplemental

Table 3).

Semantic segmentation is an Al method of classifying individual pixels in images such that an
Al can make predictions and report a percent likelihood that each pixel of an image falls into a
given class. Thirty-two random images were selected for each clone and pixels were user-
painted according to the three classes —undifferentiated hPSC, differentiated cell, and
background. After training, the final model had an accuracy of 95.99%. The Al results can be
visualized as either a percent likelihood for each class or a combined pixel painted image
(Figure 3E). Frequency of hPSC pixels to total pixels that contained cells were calculated to
score and rank the clones according to their pluripotency. The frequency of undifferentiated
hPSC pixels strongly correlated with the percentage of triple positive cells measured by flow
cytometry (Figure 3F), indicating that the semantic segmentation Al can successfully estimate
the cellular composition for each hPSC clone and report a quantitative score that can be used to

rank the clones (Table 1).
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Cell therapies using derivatives of human pluripotent stem cells are beginning to enter Phase 1
clinical trials (Piao et al., 2021; Takahashi, 2020), and there is a growing need for unbiased
methods for maintaining and expanding high quality hPSCs. Currently, culture of hPSCs is a
labor-intensive process requiring highly skilled operators. Human judgement is currently
required for the most fundamental tasks: counting the number of cells in a culture to optimize
timing and concentrations for passaging the cells and assessing the quality of cultures for
contamination with cellular morphologies associated with unwanted differentiation. Artificial
intelligence (Al) offers the speed and flexibility needed to bridge the gap between a human-
dependent process and industrial-scale automation. We have designed an accurate method for
hPSC visualization that ignores microscopic artifacts including particulate on the bottom of the
microwell plate, well edge fluorescence, bubbles, and variation in focal planes. Our approach
intentionally uses standard tissue culture plates and does not require augmentation of bright field

images prior to training.

We tested three Al tasks for determining clone quality: distinguishing between clones,
classifying images as undifferentiated or differentiated, and semantic segmentation. All were
able to generally rank the hPSC clones based on quality that correlates with results from classical
pluripotency assays, but we found that because spatial information is also obtained, semantic
segmentation was a superior method for conducting hPSC quality assessments. While there are
two examples of image-based classification of hPSCs to evaluate the presence of differentiated
cells (Kusumoto et al., 2018; Piotrowski et al., 2021), neither is capable of assigning

classifications at single pixel resolution, a clear strength of using Al semantic segmentation.

Machine learning is dependent on the quality of the input data and high importance is placed on
having a sufficiently balanced and representative dataset. In our study, the Al was tolerant of
image area sampled to determine the cell density, but it failed to generate accurate density maps
when the image resolution was degraded due to the lack of contrast within a field of view. We
found that preset hyperparameters generated convincing results and have not fully explored the

hyperparameters associated with each of the neural networks tested.

Besides the basic tasks of cell counting and discovery of differentiated contaminants, the Al-

generated density map contains information that would allow additional analyses. For example, it
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could be used for mapping cell positions, detecting confluency, and measuring inter-nuclear
distances. The method we tested can be easily embedded into an automated process capable of a
scale and throughput to meet the demands of automated hPSC culturing (Elanzew et al., 2020).
The cell counting, and quality assessment methods can be adapted to a variety of hPSC lines and
microscopes through training of new models or transfer learning with as little as a single 96-well
plate of hPSCs. We also envision the method being used as a means for establishing standards
when training individuals to conduct hPSC tissue culture work. With cell type- or microscopy-
specific training data sets, we expect these methodologies to be expandable to assess other cell
types, such as intermediate progenitors and differentiated derivatives of hPSCs. In that capacity,
the AI methods may provide rapid quality control assessments for cells being cultured for use as
cell replacement therapies, augmenting existing validation methods like gene expression

profiling, flow cytometry, and immunocytochemical analyses.
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Figure and Table Legends

Figure 1. Model training workflow

A) Representative image from the dataset used for developing the cell counting model. The
top row of images show the whole field of view and the second row of images are a crop
shown by the box in the first image. The first column of images are brightfield.

B) Enhanced version of the brightfield image.

C) Hoechst stained image.

D) Ground truth image derived from the Hoechst image.
E) Density map output by the model.

F) Structure of the deep learning model used.

G) The density map output from the model of an example image as training progresses.
Each image is labeled by the epoch.

H) The cross-entropy loss of the training set over the training epochs.
I) The mean average error (MAE) of the validation set over the training epochs.

J) The mean square error (MSE) of the validation set over the training epochs.

Figure 2. Integration of the AI Model into Automated System

A) Plot showing the difference in pixel intensity at the line drawn across the images for
brightfield and ground truth.

B) Correlation between ground truth determined by image object detection and the AI model
on data not used for the deep learning.

C) An automated platform was created to monitor hPSC growth by integrating a Cytomat
automated incubator (Thermo Scientific), robotic arm (Precise Automation), Celigo
imaging cytometer (Nexcelom Bioscience) and Overlord laboratory automation and
control Software (PAA). After imaging, images are automatically sent to an AWS S3
bucket where they are run through the cell counting model.

10
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D) Model output from automated runs to confluency. Plate wide heat maps and growth
curves show the change in cell density across a plate as the cells grow to confluency.

E) Split decision training was performed with data from the automated platform. Plot of
split decisions based on cell counts per unit area.

F) Plot of percent error from area down-sampling.

G) Plot of percent error from resolution down-sampling.

Figure 3. Determining hPSC Quality

A) Nuclear stained images from each hPSC clone and the corresponding density map
outputs.

B) Normal qq plots for each hPSC clone.

C) Dendrogram created from RNASeq data using top 500 genes, Euclidian distance, and
complete linkage

D) Dendrogram created from a confusion matrix generated when evaluating performance of
the deep learning model for clone identification using Euclidian distance and the single-
link agglomerative method.

E) The top row of images are hPSC pixel score maps from each hPSC clone. The second
row of images show the segmentation of pixels in images from each hPSC clone. Blue is
hPSC pixels, orange is non-hPSC pixels, and yellow is background (BG). Percentage of
hPSC pixels from the total cell pixels for each clone.

F) Correlation of flow cytometry and SSML.

Table 1. Ranking quality of hPSC lines using different methods. Standard methods for
evaluating quality including PluriTest and gene expression were used as well as new deep

learning approaches.

Materials and Methods

11
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Tissue culture

The hPSC line was obtained from Life Technologies (Thermo) and maintained between
passages 25 to 45. The cell line is an episomal reprogrammed line derived from CD34+
hematopoietic somatic cells. hPSCs were fed daily using mTeSR1, passaged using ReLeSR, and
attached to hESC-qualified Matrigel (Corning) coated 10cm and 96 well tissue culture

plates. hPSCs were evaluated for pluripotency by flow cytometry, karyotypical abnormalities,

and mycoplasma to control for quality of cultures.

The reprogrammed hPSC clones were derived from CD34+ cord blood cells (Stemcell
Technologies). The reprogramming was done using the CytoTune-iPS 2.0 Sendai
Reprogramming kit (Invitrogen) and following the instruction manual. Once reprogramming
was completed the clones were fed daily using mTeSR1, passaged using ReLeSR, and attached
to hESC-qualified Matrigel (Corning) coated 6 well tissue culture plates.

Cell plating and staining for training dataset

The hPSC line was dissociated from a 10cm dish using ReLeSR and plated at equal densities

on standard flat bottom 96 well microplates (Corning) that were coated with hESC-

qualified matrigel. Plates were fixed on subsequent days in one day intervals. All plates were
fixed with a final concentration of 3.7% formaldehyde for 20 minutes by adding an equal volume
to the media already in the well of 7.4% formaldehyde. To stain the nuclei of the cells a staining
solution was made by diluting Hoechst 33342 (Molecular Probes) to 1:5000 in

PBS and incubating in the dark for 15 minutes at room temperature. After the incubation the
staining solution was removed and the cells were washed three times with PBS and a sufficient

volume (~200 pL) of PBS was added to the wells for imaging.
Imaging and acquisition settings

Images were acquired with the Celigo Imaging Cytometer (Nexcelom Bioscience). The
illumination for brightfield is a 1 LED-based enhanced brightfield imaging channel with uniform
well illumination. There are also 4 LED-based fluorescent channels. A large chip CCD camera
along with galvanometric mirrors and an F-theta lens are used to acquire the images at a 1

uLm/pixel resolution. All images are at 10x magnification.

12
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Training plates for the cell counting and density map model were imaged in both brightfield and
blue channel. All other plates were imaged in brightfield only. Acquisition settings: Brightfield

50 ms exposure; Hoechst 250 ms exposure, excitation 377/50, emission 470/22
Cell Counting & Density Map Model Training

The model was trained using Amazon SageMaker. An ml.p3.8xlarge instance was used for
training. The custom model and training script from Sendagi, et al. (Sindagi and Patel, 2017) was
packaged into a docker image according to SageMaker specifications. All hyperparameters used
during training were kept the same as from Sendagi, et al. (Sindagi and Patel, 2017). Training

lasted approximately 4 hours.

The training dataset was assembled by randomly selecting 3000 1958x1958 images from a larger
dataset of 4608 images acquired from three 96 wells plates. Each image was then reduced in size
to 256x256 by taking a random crop from the image. The 3000 images were then manually
sorted to remove images that were out of focus or otherwise had defects preventing the nuclei
segmentation algorithm from working properly. After manually sorting through the

3000 images we were left with 2375 good images to use for training. We then took the
fluorescence channel from each image and ran it through a standard segmentation algorithm to
find the nuclei center points. Those center points were then used to create the ground truth
density map as described in (Sindagi and Patel, 2017). The training dataset was then further split
into a training and validation dataset, with 80% of the data used for training and 20% of the data

used for validation during training.
Automated prototype platform

We created an automated platform to monitor hPSC growth by integrating a robotic arm (Precise
Automation), Cytomat automated incubator (Thermo Scientific), Celigo Imaging
Cytometer (Nexcelom) and Overlord laboratory automation and control software (Peak Analysis

& Automation).

Automated Runs to Confluency

13
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The human hPSC line was dissociated from a 10cm dish using reLeSR and plated at equal
densities on 96 well microplates that were coated with hESC-qualified matrigel. After plating
the 96 well microplates were loaded into the Cytomat automated incubator in our prototype
automated system. Using Overlord automation software the plates were set to image all plates
and upload those images to an AWS S3 bucket every 12 hours. Images were run through the
model on AWS. We used the model output of cell counts, heat maps and growth curves to track

cell growth. Plates were maintained until cells grew to confluency.
Continuous Run

The hPSC line was dissociated from a 10cm dish using reLeSR and plated

at four different densities on each of the 96 well microplates that were coated with hESC-
qualified matrigel. After plating the 96 well microplates were loaded into

the Cytomat automated incubator in our prototype automated system. Using Overlord
automation software the plates were set to image all plates and upload those images to AWS
every 12 hours. We used the model output to determine when plates were ready to split and the

split ratio to be used to equilibrate cell densities across each microplate.
hPSC Quality Classification Model Training

These models were all trained using MATLAB 2020b running in an AWS EC2 p3.2xlarge
instance. To create a training set for clone identification, 1,000 random images from each clone
were selected for a total of 7,000 images. Of these, 60% were used for training, 20% were used
for validation during training, and 20% were used for testing and evaluating the trained model.
The pretrained model used for clone identification with transfer learning was densenet201. The

final model had a validation accuracy of 79.36%.

Hyperparameter Value

Solver SDGM

14
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Momentum 0.9

Initial Learning Rate 0.001
Learn Rate Schedule Piecewise
Learn Rate Drop Factor 0.1

Learn Rate Drop Period 10

L2 Regularization 1.0000e-04
Gradient Threshold Method L2norm
Gradient Threshold Inf

Max Epochs 10

Mini Batch Size 100
Verbose 1
Verbose Frequency 50
Validation Frequency 20
Validation Patience 5
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Shuffle Every epoch

Execution Environment Single GPU

To create a training set for determining clone quality, images from several hPSC clones and the
hPSC line from Life Technologies were used and separated into hPSC and non-hPSC classes.
The original images were acquired in 6 well plates and were size 1958x1958, and were tiled into
four 979x979 images to use for training. From the complete set of clone images 1200 were
selected for each class for a total of 2400 images. Of these, 60% were used for training, 20%
were used for validation during training, and 20% were used for testing and evaluating the
trained model. The pretrained model used for determining clone quality with transfer learning

was resnet101. The final model had a validation accuracy of 95.15%.

Hyperparameter Value
Solver SDGM
Momentum 0.9

Initial Learning Rate 0.001
Learn Rate Schedule Piecewise
Learn Rate Drop Factor 0.1

Learn Rate Drop Period 10
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L2 Regularization 1.0000e-04
Gradient Threshold Method L2norm
Gradient Threshold Inf

Max Epochs 10

Mini Batch Size 100
Verbose 1

Verbose Frequency 50
Validation Frequency 10
Validation Patience 5

Shuffle Every epoch
Execution Environment Single GPU

hPSC Semantic Segmentation Model Training
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These models were all trained using MATLAB 2020b running in an AWS EC2 p3.2xlarge
instance. To create a training set to segment hPSC, non-hPSC and background in images, 32
random images of each hPSC clone were selected for a total of 224 images. Of these, 60% were
used for training, 20% were used for validation during training, and 20% were used for testing
and evaluating the trained model. The pixel labels were created using MATLAB Image Labeler
to label pixels as hPSC, non-hPSC or background. The semantic segmentation network used to
train this model was Deeplabv3+ and the base pretrained network was resnet50. The final model
had a validation accuracy of 95.99%, a weighted intersection over union (IoU) score of 0.94, and
a mean boundary F1 (BF) score 0of 0.792. The IoU and BF scores are calculated on the training
dataset. The IoU is the ratio of correctly classified pixels to the total number of ground truth and
predicted pixels in that class. The BF score shows how well the predicted boundary of each class

aligns with the true boundary.

Hyperparameter Value
Solver SDGM
Momentum 0.9

Initial Learning Rate 1.0000e-05
Learn Rate Schedule Piecewise
Learn Rate Drop Factor 0.1

Learn Rate Drop Period 3

L2 Regularization 1.0000e-04
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Gradient Threshold Method L2norm
Gradient Threshold Inf

Max Epochs 7

Mini Batch Size 5

Verbose 0

Verbose Frequency 50
Validation Frequency 15
Validation Patience 5

Shuffle Every epoch
Execution Environment Single GPU

Reagent/Resource Source Identifier
Human Episomal iPSC Line Gibco by Life Technologies A18945
mTeSR1 Stemcell Technologies 85850

ReLeSR Stemcell Technologies 05873
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DMEM/F-12 Gibco 10565018

hESC-qualified Matrigel Corning 354277

Clear 96 well microplate Corning 353872

Clear 6 well microplate Corning 353846

10cm Dish Nunc 150464

Formaldehyde Sigma Aldrich 252549

DPBS Gibco by Life Technologies 14190144

Hoescht 33342 Molecular Probes by Life Technologies H3570
CytoTune-iPS 2.0 Sendai Reprogramming Kit Invitrogen A16517

Human CD34+ Cord Blood Cells Stemcell Technologies 70008
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Gene LT C2 C3 Cc4 C5 C6 Cc7 Gene Function

POUSF1 [ 10.7061 | 10.222 [ 10.5945 10.5386 | 10.6962 | 10.6946 | 10.4456 Core Pluripotency
SOX2 [8.52885|7.54122( 8.3948 | 8.17594 | 8.17496 | 8.05197 | 8.33948 Core Pluripotency

NANOG | 6.55866 [ 5.71814 | 6.07894 | 6.39012 | 6.61838 | 6.56726 | 6.4833 Core Pluripotency
SALL4 | 8.06615 [ 7.27144 | 8.05455 | 7.94685 | 7.88872 | 7.78085 | 7.82237 Core Pluripotency

GDF3 |1.998392.27523| 2.2045 | 2.61258 | 2.7364 | 2.53757 | 1.91295 Core Pluripotency
TDGF1 | 9.60021 | 8.23492 | 9.01962 | 9.29894 | 8.87338 | 8.75617 | 8.57948 Core Pluripotency

KLF4 1.8633 | 2.85215 1.28856 | 2.02459 | 1.77524 | 1.44525 | 1.49403 Core Pluripotency
MYC | 5.8732 | 7.61142 | 5.86472 | 6.63379 | 6.36193 | 6.74507 | 5.90322 Core Pluripotency

TERT | 3.8198 | 4.20945 | 4.29414 | 4.04577 [ 4.21399 | 4.14063 | 4.01193 Core Pluripotency
E2F1 [5.61463|5.66635 | 5.82904 | 5.75907 | 5.7807 |5.93913 | 5.70259 Core Pluripotency

LIN28B | 7.60583 | 7.25565 | 7.67025 | 7.61943 | 7.66574 | 7.51029 | 7.81745 Core Pluripotency
PRDM14| 6.49165 | 4.95517 | 5.99013 | 5.99036 | 5.80773 | 5.68716 | 5.73989 Core Pluripotency

FBXO15 | -1.0294 [ -0.8054 | -0.5588 | -1.1897 | -1.579 | -1.9934 | -1.9094 Naive Pluripotency

ESRRB | -1.4992 | -2.6592 | -0.5588 | -0.7318 [ -0.6428 | -1.3584 | -0.6176 Naive Pluripotency
DPPA3 | -0.9237 | 0.47437 | -0.5061 | 0.83448 | 0.91305 | 0.15338 | -1.0776 Naive Pluripotency

KLF4 1.8633 | 2.85215 [ 1.28856 | 2.02459 | 1.77524 | 1.44525 | 1.49403 | Naive Pluripotency
KLF5 |1.70747 | 1.42951 | 0.65655 | 1.47812 | 0.82523 | 0.76166 | 0.6518 Naive Pluripotency

TBX3 |-2.9839 | -3.2302 | -2.22 | -2.5957 | -2.7249 | -2.836 | -5.1101 Naive Pluripotency
ZFP42 |7.35438|7.28155| 7.7767 | 7.78641| 7.96309 | 7.66874 | 7.68815 | Naive Pluripotency

TFCP2L1| 3.24641 | 3.26315 | 2.68595 | 2.68785 [ 3.0017 | 3.27718 | 3.3465 Naive Pluripotency
NROB1 | -2.5638 | -3.2302 | -5.1101 | -2.8558 | -2.041 | -2.836 | -3.0841 Naive Pluripotency

FGF5 | -3.2572 |4.57651 -3.0292 [ 2.07251| -1.2118 | 0.25761 | -5.1101 | Primed Pluripotency
LEF1 | 0.36787[1.99532|1.25153 | 1.40565 | 0.80011 | 1.0007 | 1.29916 | Primed Pluripotency

NODAL |[2.02226|2.29777 | 1.7723 | 2.49272| 3.12467 | 3.54359 | 2.57431 | Primed Pluripotency
CD24 |11.5447(10.5187|11.3828 | 11.2772|11.2761 | 11.0286 | 11.2509 | Primed Pluripotency

GATAG6 | -2.8245 | -4.1891 | -4.0613 | -2.9229 | -4.0702 | -2.5749 | -3.502 Primitive Endoderm
PDGFRA | 0.28769 | 2.17135| 0.70315 [ -0.1598 | 0.81699 | 1.4929 | 0.20741 | Primitive Endoderm

GATA4 | -3.1073 | -1.6734 | -5.1101 | -2.0155 | -5.1101 | -3.1549 | -5.1101 | Primitive Endoderm

PAX6 | -0.0909 [ -0.8721 | 0.34124 | -0.0634 | -0.7133 | -1.7051 | 0.59628 Ectoderm
NES [9.31669 | 9.04109 | 9.05018 | 8.98498 | 8.89652 | 8.95324 | 8.83957 Ectoderm
SOX9 [3.26824|4.74856 [ 3.45737 | 3.3481 | 3.14821|3.74294 | 3.43619 Ectoderm
PROML1 [ 5.87762 | 7.0995 | 6.46216 | 6.55179 | 6.93937 | 6.91375 | 6.91817 Ectoderm
DCX [4.17831)3.27862 | 3.14044 | 2.85501 | 3.40297 | 3.35365 | 2.8492 Ectoderm
TUBB3 [ 6.39557| 7.175 [6.78631|6.86024 | 6.77845 | 6.86192 | 6.17276 Ectoderm
GFAP |0.06396 | -0.4591 | 0.02753 | 0.36128 | -0.2794 | -0.9968 | -0.0321 Ectoderm
CHRD [0.75711] -1.0156 | 0.53856 | 0.05506 | -0.1271 | 0.38581 | 0.35 Ectoderm
PAX2 | -4.6103 [ -5.1101 | -3.0375 | -5.1101 | -4.0702 | -5.1101 | -3.0841 Ectoderm
TP63 | -5.1101 | 0.19075) -5.1101 | -4.152 | -3.0507 | -3.1549 | -2.7604 Ectoderm

NODAL | 2.02226|2.29777 | 1.7723 | 2.49272 | 3.12467 | 3.54359 | 2.57431 | Mesoderm Endoderm
EOMES | -2.7713 | -2.2512 | -3.4604 | -3.1734 | -1.7172 | -1.58 -3.502 | Mesoderm Endoderm

GSC -4.6103 | -4.1891 | -5.1101 | -5.1101 | -2.7249 | -2.836 | -4.0927 | Mesoderm Endoderm
SNAI1 |3.20289 | 2.86245 | 3.37799 | 3.01945 | 2.94554 | 3.38083 | 2.70573 | Mesoderm Endoderm
SNAI2 | -1.7329 | 3.73618 | -1.8545 | 2.28106 | 0.09566 | 1.05955 | -2.273 | Mesoderm Endoderm
MIXL1 | 0.01398 | -0.8721 | -1.8545 | -0.8689 | -0.9485 | -0.1238 | -0.0321 | Mesoderm Endoderm
TBX6 |2.41829|1.31417|1.89207| 1.62579 | 1.5069 | 1.90719 | 1.56804 | Mesoderm Endoderm
FOXC1 | -2.1702 | -0.7416 | -2.22 | -3.5813 | -2.4593 | 0.53154 | -2.0798 | Mesoderm Endoderm
GATA4 | -3.1073 | -1.6734 | -5.1101 | -2.0155 | -5.1101 | -3.1549 | -5.1101 | Mesoderm Endoderm
SOX7 0.8122 | -0.1979 | 0.26897 | 0.8062 | -0.1742 | 0.10813 | 0.18494 | Mesoderm Endoderm

GSC -4.6103 | -4.1891 | -5.1101 | -5.1101 | -2.7249 | -2.836 | -4.0927 | Mesoderm Endoderm
CDX2 | -4.6103 | -5.1101 | -5.1101 | -5.1101 | -4.0702 | -2.836 | -4.0927 Extraembryonic
DAB2 |2.32123|4.78827|2.69976 | 3.86569 | 3.20193 | 3.66926 | 2.73816 Extraembryonic

FST 5.37934| 3.47265 | 5.30329 | 4.60421 | 4.53452 | 4.17431 | 5.24418 Extraembryonic
ESRRB | -1.4992 | -2.6592 | -0.5588 | -0.7318 | -0.6428 | -1.3584 | -0.6176 Extraembryonic

TACSTD2| -0.1734 | 0.12382 [ 0.11258 | -0.2381 | -0.3339 | 0.25761 | 0.0935 Extraembryonic

FGF4 |[1.09469 | 0.56332|0.71212 ] 1.66357 | 1.32518 | 0.89692 | 0.05284 Extraembryonic

EPCAM | 7.46294 | 7.27072 | 7.53837 | 7.6302 | 7.84546 | 7.57665 | 7.78445 Extraembryonic

Supplemental Table 1. Gene expression data for the iPSC lines focusing on key genes for pluripotency
and differentiation.
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Time to Complete Number of Accuracy of Trained Number of Accuracy of Trained
Pretrained Network o * Validation Accuracy Misclassified Test v Misclassified Training Model on Training
Training Model on Test Dataset

Dataset Dataset Dataset
Xception 506 min 72.50% 375 71.67% 1071 72.01%
Resnet101 322 min 69.07% 401 68.30% 1098 68.80%
Inceptionv3 328 min 73.43% 379 72.90% 1059 74.70%
Densenet201 451 min 79.36% 286 79.60% 810 80.70%

Supplemental Table 2. Pretrained networks tested for transfer learning of classification networks. To train a model
to distinguish between the different iPSC clones, Densenet201 was selected because it resulted in the highest
validation and test set accuracy.

e e EerTl A Number of Accuracy of Trained Number of Accuracy of Trained
Pretrained Network . P Validation Accuracy Misclassified Test i Misclassified Training Model on Training
Training Model on Test Dataset

Dataset Dataset Dataset
Xception 124 min 92.72% 23 94.40% 100 91.90%
Inceptionv3 83 min 92.96% 22 94.70% 45 96.40%
Densenet201 135 min 96.36% 13 96.80% 6 99.50%
Resnet101 69 min 95.87% 7 98.30% 5 99.60%

Supplemental Table 3. Pretrained networks tested for transfer learning of classification networks. To train a model
to distinguish between pluripotent and differentiated iPSC images, Resnet101 was selected because of the relatively

short training time and high accuracy.

i Global A Weighted loU " w5 f iPSC pixel Non iPSC pixel Global Accuracy | Weighted loU |Mean BF Score of| iPSC pixel Non iPSC pixel
Base N ‘ ¢ Imelto Validation f; é Zc’tjﬂradcyl Score of Trained Tear} " 1\20?:’ prediction Accuracy|prediction Accuracy|of Trained Model [ Score of Trained | Trained Model |prediction Accuracy|prediction Accuracy
ase Networl Torer.ete Accuracy ° r:nnteD to f Model on Test ra_;net B to et of Trained Model |of Trained Model on| on Training  [Model on Training| onTraining [of Trained Model on|of Trained Model on
raining on festbatase Dataset on festbatase on Test Dataset Test Dataset Dataset Dataset Dataset Training Dataset Training Dataset
Mobilenetv2 | 10 min | 94.86% 0.941 0.863 0.689 0.96 0.85 0.95 0.86 0.708 0.96 0.82
Xception 64 min | 92.71% 0.918 0.824 0.647 0.91 0.89 0.939 0.848 0.667 0.92 0.89
Resnet18 10 min | 96.05% 0.946 0.9 0.735 0.94 0.91 0.968 0.94 0.776 0.97 0.95
Resnet50 | 11 min | 95.99% 0.965 0.934 0.768 0.98 0.86 0.968 0.94 0.792 0.97 0.95

Supplemental Table 4.

Pretrained networks tested as base networks for DeeplabV3+ for transfer learning of

semantic segmentation networks. To train a model to segment individual pixels in images as iPSC, non iPSC or
background Resnet50 was selected because of the relatively short training time and high Accuracy, loU and BF1 scores.
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