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ABSTRACT 15 

This study was to assess the gene diversity and characterize a large set of plasmids harboring 16 

extended β-lactamase (ESBL) genes from raw and digested dairy manure. A total of eighty-four 17 

plasmids that were captured in this E. coli recipient were sequenced using Illumina MiSeq 18 

sequencing technology. Twenty-four plasmids of interest were subsequently sequenced using 19 

MinION technology in order that a hybrid assembly could be performed on short- and long-read 20 

sequences to circularize and complete these plasmids. The size of sequenced plasmids ranged 21 

between 40 and 260 kb with various incompatibility groups: IncC, IncI1, IncN, IncY, 22 

IncB/O/K/Z, IncX1, IncHI2, IncHI2A, IncFIB(K), IncFII. A variety of extended β-lactamase 23 

genes were identified: blaCTXM -1, blaCTXM -14, blaCTXM -15, blaCTXM-27, blaCTXM-55, blaCTXM-61, 24 

blaPER-1, blaIMP-27. Interestingly, the blaIMP-27 gene, a novel metallo-β-lactamase discovered in the 25 

last decade, was found located on an integrated region in the host chromosome. And one plasmid 26 

carrying the blaCMY-2 gene, an AmpC gene, also expressed ESBL phenotype. Four virulence 27 

factors, including cia, cib, traT and terC, were detected on some of these plasmids. In addition, 28 

six type-2 toxin-antitoxin systems were detected: MazF/E, PemK/I, HipA/B, YdcE/D, RelB/E 29 

and HigB/A. Twenty-two out of twenty-four complete plasmids carried putative prophage 30 

regions; and most of prophage hits were marked as incomplete, except that the largest plasmid 31 

pT525A and the IncY plasmid pT415A had prophage hits with higher scores. 32 

IMPORTANCE 33 

The widespread of antibiotic resistant bacteria is largely due to the exchange of mobile genetic 34 

elements such as plasmids. Plasmids harboring extended β-lactamase (ESBL) genes originated 35 

from dairy manure potentially become entrained in manured soil, which subsequently enter the 36 

human food chain. Currently there is a lack of detailed information on these plasmids in the 37 
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environment, specifically in dairy manure. This study unveils the abundance and diversity of 38 

ESBL-carrying plasmids from both raw and digested manures which were captured in gfp-39 

labelled E. coli CV601. In addition, the study provides insightful information of plasmid 40 

characteristics including incompatibility groups, ESBL genes combined with other resistance 41 

genes, mobile genetic elements (transposons, insertion sequence), toxin-antitoxin systems, 42 

virulence factors and prophage sequences. 43 

 44 
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INTRODUCTION 46 

Extended-β-lactamase (ESBL) genes have been a matter of undoubtedly grave public-health 47 

concern due to their ability to hydrolyze third-generation cephalosporins (e.g. cefotaxime, 48 

ceftriaxone, ceftazidime, or cefepime) and monobactams (aztreonam) (1). A dramatic increase in 49 

the number of multidrug-resistant Enterobacteriaceae (mostly Escherichia coli) that produce 50 

extended-spectrum β-lactamases (ESBLs), such as the CTX-M enzymes, has been reported since 51 

the 1990s (2). ESBL genes has been widely disseminated via mobile genetic elements such as 52 

plasmids, insertion sequences, transposons. Plasmids carrying ESBL genes are ubiquitous in 53 

environments including manure, manured soil, wastewater treatment plants and aquaculture (3-54 

8). 55 

Bacterial toxin-antitoxin (TA) systems are pairs of genes encoding a toxin protein and its 56 

corresponding antitoxin protein which can be found on either chromosomes or plasmids in free-57 

living bacteria (9, 10). The first TA operon was found on plasmid R1 about three decades ago, 58 

and was shown to play an important role in plasmid stability by the post-segregational removal 59 

of plasmid-free cells (11, 12). The ccd system on the F plasmid, the most widely studied system, 60 

was even employed in DNA cloning strategies (13). Depending on the molecular structures and 61 

mechanisms of action, three types of TA operon were presented: Type I, II, and III (12). The 62 

type II TA system, also termed as the addiction system, consisted of at least ten current families 63 

such as MazE-MazF, RelE-RelB, YefM-YoeB, and MqsR-MqsA (12, 14). Despite their ubiquity 64 

in bacteria, TA systems on manure-originated plasmids are not well-understood.  65 

Virulence factors mainly accounts for bacterial pathogenicity which causes diseases in hosts such 66 

as plant, animals and human (15, 16). They can be found on either pathogenicity islands in the 67 

genome of pathogenic bacteria or on plasmids (17, 18). Virulence-associated plasmids in E. coli 68 
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were associated with six pathotypes enterotoxigenic E. coli (ETEC), enteroaggregative E. coli 69 

(EAEC), enteroinvasive E. coli (EIEC), enterohemorrhagic E. coli (EHEC), enteropathogenic E. 70 

coli (EPEC), extraintestinal pathogenic E. coli (ExPEC) (17). Nine out of 26 plasmid 71 

incompatibility groups which mostly fall into group F were known to carry virulence genes, and 72 

there is no doubt this number would keep rising as novel plasmid groups continue to be 73 

identified (17, 19). 74 

Prophages are bacteriophage sequences that normally integrate into bacterial chromosome and 75 

largely contribute to bacterial adaptation and evolution by enabling the horizontal genetic 76 

exchange (20, 21). A few prophages (e.g. P1, N15, LE1, �20, and �BB-1), however, are able to 77 

independently replicate in the lysogen as low-copy-number plasmids (22). Prophages have an 78 

average size between 29 to 78 kb, which probably constitute about 0.6 to 1.8 % of the host 79 

chromosome (23). Therefore, plasmids of megasize (> 100kb) can easily capture prophage 80 

regions via either homologous recombination or the movement of insertion sequences/ 81 

transposons. Recent evidences suggested that the plasmid pMCR-1-P3, an IncY plasmid, was the 82 

outcome of  homologous recombination event between a plasmid and a prophage region located 83 

in the E. coli genome (24). 84 

The aim of the study was to extensively and intensively analyze genetic characteristics of eighty-85 

three sequenced ESBL plasmids originated from dairy manure including a subset of twenty-five 86 

plasmids reported previously (25). The study also revised the comparison of plasmids from raw 87 

with those from digested manure in a larger set of data. Overall this study provide insightful 88 

information of plasmid characteristics such as plasmid size, virulence factor, TA systems, 89 

incompatibility groups, mobile genetic elements and antibiotic resistance genes  90 

RESULTS  91 
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Description of sequenced plasmids harboring ESBL genes from raw and digested manures 92 

In this study, a total of 83 plasmids harboring ESBL genes were grouped based on their 93 

incompatibility groups, ESBL genes and other resistance genes (Table 1). A detailed information 94 

of 25 plasmids was reported previously (manure paper); while the rest of them can be found in 95 

supplementary material of this study (Table S1). Twenty distinct plasmid profiles carrying eight 96 

ESBL genes in combination with other resistance genes were identified (Table 1). Eleven 97 

transconjugants’ whole genomes were further sequenced on the MinION long-read sequencing 98 

platform so that hybrid assembly could be used to completely close the plasmids carried by these 99 

transconjugants. Maps of these complete plasmids were presented in Fig. 1 & Fig. S1. 100 

Among 83 sequenced plasmids, 35 of them were from raw manure, and 48 from digested 101 

manure (Table 1). The most frequent plasmid (pT545A) carried blaCTXM-15 gene along with other 102 

nine resistance genes: aac(6')-Ib-cr, aph(3'')-Ib, aph(6)-Id, blaOXA-1, catB4, dfrA1, floR, lnu(G), 103 

sul2. This plasmid was found in both raw and digested manures from all participating farms. The 104 

second most frequent plasmid carrying blaCTXM-1 gene (pT115A) was found in both raw and 105 

digested manure from four out of six participating farms.  106 

Other 18 less frequent plasmids were found in either raw (four plasmids) or digested 107 

manures (fourteen plasmids) (Table 1). Four plasmids from raw manure individually carried 108 

following ESBL genes: blaCTX-M-14, blaCTX-M-15, blaCTX-M-55, blaPER-1. Meanwhile, thirteen out of 109 

fourteen plasmids from digested manure individually carried following ESBL genes: blaCTX-M-1, 110 

blaCTX-M-14, blaCTX-M-14b, blaCTX-M-15, blaCTX-M-27, blaCTX-M-55. Interestingly, one conjugative 111 

plasmid (pT598A) from digested manure did not carry any ESBL genes. However, the blaIMP-27 112 

gene was detected on the host chromosome along with other resistance genes: aph(6)-Id, strA, 113 

sul2, tet(A) in the transconjugant carrying this plasmid pT598A. 114 
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Sizes of hybrid assembled plasmids ranged between 40 and 260 kbs; the most frequent 115 

plasmid (pT545A) had the size of 100 kbs. Incompatibility groups identified in this study were 116 

IncC, IncI1, IncN, IncY, IncB/O/K/Z, IncX1, IncHI2, IncHI2A, IncFIB(K), IncFII(pHN7A8). A 117 

variety of mobile genetic elements that were located in areas surrounding resistance genes were 118 

identified including Tn3, Tn7, TnAs1, tnpA, IntI1, insA, insB, ISEc63, ISEc9, ISEcp1, IS903B, 119 

IS3, IS5, IS26, IS91, IS110, IS5075, and ISVsa3. Mobile genetic elements that were not located 120 

proximal to resistance genes were also identified: IS3, IS5, IS66, IS21, IS911, ISKpn18, ISEc23. 121 

Description of plasmids with special features 122 

 The plasmid pT100A was the only conjugative plasmid carrying an AmpC-type gene 123 

(blaCMY-2); however, the transconjugant carrying this plasmid expressed ESBL phenotype (Fig 1. 124 

& Table S1). The plasmid with a size of 98 kbs had IncI1 incompatibility group. The plasmid did 125 

not carry any other resistance genes, but it carried two conjugal transfer genes (traC, traI). 126 

Unlike most of captured plasmids, mobile genetic elements on this plasmid were located far 127 

apart from the resistance gene blaCMY-2. 128 

The plasmid pT413A with a size of 187 kbs carrying the blaPER-1 gene, an ESBL gene, 129 

also carried mercury resistance operon (Fig. 2). The mercury resistance operon with a size of 130 

approximately 3 kbs consisted of merA, merP, merT and merR genes. This operon located in the 131 

79 kb region along with other resistance genes and other mobile genetic elements (integrons, 132 

transposon and insertion sequences). The adjacent mobile genetic elements surrounded this 133 

operon were transposon Tn7 transposition proteins (TnsB, TnsC). 134 

The conjugative plasmid pT428Al carrying the blaCTX-M-14 gene accompanied with the 135 

mobilizable plasmid pT428As which did not carry any resistance genes. The pT428Al had a size 136 

of 92 kbs, and its accompanying plasmid pT428As had a size of 4kbs. This is the only case 137 
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where two plasmids were confirmed to co-transfer into E. coli recipient CV601 by hybrid 138 

assembly. Using the annotation tool PROKKA, only two genes, mobA encoding mobilization 139 

protein A and repE encoding replication initiation protein, were detected on the smaller plasmid 140 

pT428As. 141 

The plasmid pT598A was the only conjugative plasmid did not carry any resistance 142 

genes. However, this plasmid carried many conjugal transfer genes: traB, traC, traD, traG, traI, 143 

traK, traJ, traL, traM. The plasmid pT598A with a size of 42 kbs had no incompatibility group 144 

identified. Hybrid assembly of transconjugant’s whole genome sequence carrying this plasmid 145 

showed a 865kb region integrated into the host chromosome (Fig. 3). This region carried 146 

multiple resistance genes (aph(6)-Id, blaIMP-27, strA, sul2, tet(A)) along with other mobile genetic 147 

elements (TnAs1, ISVsa3, IS3, IS26, intA). The integrated region was between two chromosomal 148 

genes: aspC gene encoding aspartate aminotransferase and asnS gene encoding asparagine--149 

tRNA ligase. 150 

DNA variations among genotypically similar plasmids 151 

In this study, not all plasmids were sequenced on both short-read and long-read sequencing 152 

platforms. Plasmids that were sequenced on both platforms were successfully completely closed 153 

via hybrid assembly, hence they could be used as a reference input. Plasmids having similar 154 

characteristics (sizes, resistance genes, incompatibility groups) with closed plasmids were further 155 

analyzed using Snippy tool to search for SNPs or any DNA variations.  156 

There were very few DNA variation detected among plasmids harboring the blaCTX-M-1/ blaCTX-M-157 

15/ blaCTX-M-27 gene (Table S2, S3 and S4). However, three largest IncHI2-IncHI2A plasmids 158 

(>200 kb) harboring the blaCTX-M-55 gene were quite distinct from one another (Table S5). 159 

Unexpectedly, plasmid pT525A was even more different from plasmid pT594A considering they 160 
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both were originated from raw manure of the same farm, and they had resistance genes and 161 

incompatibility groups in common.  162 

Toxin-antitoxin systems detected on completely closed plasmids 163 

Six type-2 toxin-antitoxin systems were detected: MazF/E, PemK/I, HipA/B, YdcE/D, 164 

RelE/B and HigB/A (Table 2). The MazF-MazE system were the most frequent toxin-antitoxin 165 

system detected in our study. It was detected on following plasmids: pT82A, pT101A, pT159A, 166 

pT209A, pT267A, pT270A, pT390A, pT545A. The PemK-PemI system was found located on 167 

three plasmids: pT156A, pT224A and pT257A. These three plasmids shared a majority of their 168 

sequence in common (25). The YcdE-YcdD system were detected on two distinctly different 169 

plasmids pT100A and pT593A. The remaining three systems found on less frequent plasmids: 170 

HipA-HipB system on pT525A, RelE-RelB system on pT295A and HipA-HipB on pT525A. 171 

There was no toxin-antitoxin systems detected on following plasmids: pT199A, pT247A, 172 

pT115A, pT428Al, pT428As, pT455A, pT526A, pT570A. 173 

Detection of  virulence factor genes on completely closed plasmids 174 

There were four virulence factors detected: cia, cib, traT, terC (Table 3). The cia gene 175 

encoding colicin ia was found on two distinct plasmids pT247A and pT428Al, while the cib gene 176 

encoding colicin ib was detected on one plasmid pT100A. The traT gene encoding complement 177 

resistance protein was found on four plasmids pT156A, pT224A, pT257A and pT593A. Among 178 

them, pT593A was more distinctly different than the other three plasmids (pT156A, pT224A, 179 

pT257A) whose sequences shared a lot in common as shown previously (25). The terC gene 180 

encoding tellurium ion resistance protein was detected on one plasmid pT525A. There was no 181 

virulence factor detected on following plasmids: pT82A, pT100A, pT101A, pT115A, pT159A, 182 
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pT209A, pT267A, pT270A, pT295A, pT390A, pT413A, pT428As, pT545A, pT526A, pT570A, 183 

pT593A, pT598A,  There was no shiga-toxin genes was detected on any of plasmid input. 184 

 185 

Detection of prophage sequences on plasmids  186 

A majority of plasmids (22/26) got hits for prophage detection (Table 4): three plasmids 187 

got three prophage hits (pT82A, pT390A, pT545A); seven got two prophage hits (pT100A, 188 

pT101A, pT247A, pT270A, pT428Al, pT525A, pT593A); 13 got one prophage hit (pT115A, 189 

pT156A, pT159A, pT199A, pT209A, pT224A, pT257A, pT267A, pT295A, pT415A, pT455A, 190 

pT526A, pT570A). Three plasmids did not have any prophage sequences detected: pT428As, 191 

pT598A, pT413A.  192 

There were seven most common phage detected on these input plasmids. 193 

PHAGE_Escher_RCS47_NC_042128 was detected in most of them (16/25) while others were 194 

less common on our plasmids. PHAGE_Mycoba_Shipwreck_NC_031261 was found on five 195 

plasmids. PHAGE_Entero_N15_NC_001901 and PHAGE_Salmon_SJ46_NC_031129 were 196 

found on four plasmids. PHAGE_Klebsi_phiKO2_NC_005857 and 197 

PHAGE_Cronob_ENT39118_NC_019934 were detected on three plasmids. 198 

PHAGE_Acinet_vB_AbaM_ME3_NC_041884 was only detected on the plasmid pT525A. 199 

All input plasmids but two got prophage hits classified as incomplete with a score ≤ 70. 200 

The PHASTER tool has its own criteria for scoring prophage regions and classifying them based 201 

on their scores: intact (score > 90), questionable  (score 70-90), incomplete (score < 70). Two 202 

plasmids got hits with scores in a range of 70-90 (questionable), higher scores compared to other 203 

plasmids (Fig. 4). These two plasmids included the largest plasmid pT525A with two hits and the 204 
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IncY plasmid pT415A with one hit. None of the hits had the scores within the range of the intact 205 

group (>90).  206 
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DISCUSSION 207 

The most prevalent plasmid found among 83 sequenced plasmids was the 104 kb plasmid 208 

carrying the blaCTXM-15 gene. This result was consistent with our previous observation using 209 

restriction enzyme profiles combined with a subset of 25 sequenced plasmids (25). This plasmid 210 

was abundantly present in both raw and digested manures across all participating farms; 211 

however, the current bioinformatics tool was unable to identify its incompatibility group. This 212 

left us wondering if the plasmid adopted some novel incompatibility group which has not been 213 

recognized in the database. In a recently published study, the dominant ESBL plasmid isolated 214 

from 53 dairy farms located in southwest England was 220-kb IncHI2 plasmid carrying blaCTX-M-215 

32 (26). This is interesting because only three out of 83 sequenced plasmids in our study belonged 216 

to IncHI2 group and had plasmid sizes larger than 200 kb; nevertheless, they carried blaCTX-M-55 217 

gene along with other completely different resistance genes. In addition, SNP analysis on these 218 

three plasmids revealed a number of  nucleotide modifications including deletion, insertion and 219 

Sequencing another set of plasmids, the number of which was as twice as those in our 220 

previous study, allowed us to identify more plasmids that were less frequent (25). The second 221 

frequent plasmid, which was found in four out of six farms, especially quite dominant in farm 7, 222 

was the 43 kb plasmid of group IncN carrying the blaCTX-M-1 gene - the only resistance gene on 223 

this plasmid. In addition, plasmids from digested manure were more diverse than those from raw 224 

manure. Previously we showed that anaerobic digestion significantly reduced the conjugation 225 

frequency of ESBL-carrying plasmids in raw manure, but did not necessarily changed plasmid 226 

enzyme restriction profiles (25). The fact that a greater diversity of plasmids obtained from 227 

digested manure observed in this study can be explained as following. Firstly, it could be that the 228 

most frequent plasmid was overwhelming in raw manure, hence there was less chance for other 229 
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plasmids to be selected for further analysis. Secondly, restriction enzyme profile combined with 230 

a small sequencing set did not adequately identify other less frequent plasmids. With a larger 231 

sequencing set, more distinct plasmids have been revealed in this study. 232 

The blaCMY-2 gene is considered as an AmpC-type β-lactamase gene, which has been 233 

wide-spread around the world (27-29). This gene was mostly found on IncA/C plasmids in E. 234 

coli and Salmonella strains (27, 30, 31). Normally this gene confers AmpC resistance phenotype 235 

which hydrolyzes cephamycins as well as other third-generation cephalosporins and does not get 236 

inhibited by ESBL inhibitors (i.e. clavulanic acid, sulbactam, tazobactam) (32).  Previous studies 237 

showed that co-location of AmpC and ESBL genes resulted in a combined ESBL/AmpC 238 

phenotype (29, 33, 34).  Detection of ESBL phenotype in a strain producing both AmpC and 239 

ESBL enzymes could be problematic because clavulanic acid, an ESBL inhibitor used in ESBL 240 

confirmatory tests, induces the high level expression of AmpC which, in turn, masks the synergy 241 

effects on ESBL (28, 33). However, in our study the blaCMY-2 gene found on IncI1 plasmid 242 

conferred ESBL phenotype in E. coli strain. Although ESBL-producing E. coli carrying only the 243 

blaCMY-2 gene was reported previously, there was not a clear explanation for this phenomenon 244 

(3). IncI1 plasmids carrying the blaCMY-2 gene were shown to widely spread among E. coli (35), 245 

and they shared a high degree of sequence similarity when isolated from Enterobacteriaceae with 246 

different epidemiological links (36). Unlike other plasmids carrying ESBL genes in this study, 247 

insertion sequences were not located proximal to the blaCMY-2 gene. 248 

The blaIMP-27 gene, a novel metallo-β-lactamase, was firstly isolated in Proteus mirabilis 249 

in Ontario, Canada and presented in a conference in 2012 (37). Not until four years later, it was 250 

reported in published studies, including those found in unrelated Proteus mirabilis clinical 251 

isolates from two geographically distinct locations in the United States (38, 39). Another study 252 
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showed that the gene was located on conjugative plasmids that was transferable from either 253 

Proteus mirabilis or Providencia rettgeri to E. coli (40). Not only was this gene found in clinical 254 

settings, but it was also recovered from the environment of a swine farrow-to-finish operation in 255 

the United States (41). The resistance phenotype to carbapenems and β-lactams conferred by this 256 

gene was quite distinct and might vary among host strains (38, 40). In our study, the blaIMP-27 257 

gene, along with other resistance genes, was surprisingly found integrated into the host 258 

chromosome; while the conjugative plasmid isolated from this E. coli host was antibiotic 259 

resistance-free. We postulated that the integrated region originally got a ride on the plasmid, and 260 

it was then transferred to the host chromosome via homologous recombination as soon as the 261 

plasmid entered the host cell. To our best knowledge, this is the first time this gene was found in 262 

environmental samples in Canada.  263 

TA systems, which were first detected on plasmids and later in bacterial chromosomes, 264 

play a vital role in plasmid stability as well as other positive roles in bacterial physiology, 265 

pathogenicity, and evolution (12, 42, 43). All TA systems detected in this study belonged to 266 

Type II TA systems which has been most extensively studied (12). TA systems were supposedly 267 

associated with stress-induced environment conditions which enabled stress-responsive proteases 268 

to degrade the antitoxin protein in Type II TA systems and free the toxin protein from the TA 269 

complex, resulting in cell growth inhibition or cell death (12, 14). The most frequent toxin-270 

antitoxin system found in our study was the MazF-MazE system because this system was located 271 

on the most prevalent plasmid. Two TA systems detected in the study, MazF-MazE and RelE-272 

RelB, belonged to super-families that were shown to be abundant and present on plasmids (42-273 

44). Several TA systems, such as HipB-HipA or RelE-RelB, also caused the generation of 274 
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persister cells, which went to a dormant state, in the presence of antibiotics, thus survived and 275 

became immune to antibiotics (9, 45-48). 276 

Virulence factors detected on plasmids in this study were mostly related to colicin-277 

producing genes (cia, cib) and the traT gene encoding outer membrane complement resistance 278 

protein. Colicins Ia and Ib are very similar structurally and able to absorb to common receptor 279 

sites on the bacterial outer membranes (49-51). Yet they do not share immunity specificity, 280 

hence cells are immune to either colicin Ia or Ib depending on which colicin gene they carry 281 

(49). Colicins inhibit protein and nucleic acid biosynthesis and uncouple electron transport from 282 

active transport, resulting in the loss of cellular potassium and magnesium which causes cell 283 

death (49). The virulence-associated non-conjugative plasmid carrying a traT-like gene was first 284 

identified in Salmonella typhirium; however, the traT gene was also found located within the 285 

transfer operon of conjugative F-like plasmids in E. coli (52, 53). The traT gene, one of two F 286 

cistrons, prevents the formation of cell contacts, and thus inhibits DNA transfer within the cell 287 

population (52). This gene is also needed for the resistance to serum bactericidal activity in S. 288 

typhirium and E. coli (53, 54). The cia, cib and traT genes were found on less frequent plasmids 289 

in this study, suggesting that these plasmids were limitedly accessible and only transferable 290 

among hosts of particular genetic backgrounds. 291 

Polluted environments such as manured soil, animal farming, waste water and 292 

aquaculture can serve as a hot spot for co-selection of metal and antibiotic resistance (55-57). 293 

Evidences for metal-driven co-selection of multiple antibiotic resistance via co-resistance and 294 

cross-resistance mechanisms were well-documented (55, 56). Co-resistance mechanism occurred 295 

when metal/metalloid resistance genes were co-located with antibiotic resistance genes on the 296 

same plasmid (55). In this study, gene determinants for resistance to mercury (metal) and 297 
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tellurium (metalloid), the merAPTR operon and the terC gene, were detected on two distinct 298 

conjugative multidrug resistant plasmids. The genetic linkage of mercury- and antibiotic-299 

resistance genes on conjugative plasmids was demonstrated through mating between 300 

Enterobacteriaceae family bacteria and doubly genetically marked laboratory recipients (58). 301 

IncHI2 plasmids were known to be associated with tellurite resistance determinants previously 302 

(59, 60). Similarly, the terC gene was also detected on the largest IncHI2 plasmid in this study. 303 

Cross-resistance mechanism typically involved common efflux pump systems which pumped out 304 

structurally distinct agents/compounds such as metals and antibiotics (55, 56). Cheng et al. 305 

showed that chromosomally encoded TetA(L) efflux pump was able to remove both tetracycline 306 

and heavy metal cobalt (61). The tet(A) gene encoding major facilitator superfamily multidrug 307 

efflux pump was detected in several unrelated plasmids in this study including IncHI2, IncN, 308 

IncY, IncFIB(K) and IncI1 plasmids. 309 

Prophage are normally found in bacterial chromosome, in particular within pathogenicity 310 

islands in pathogens (18, 62). A mounting number of studies showed that bacteriophages 311 

contributed to the widespread dissemination of antibiotic resistance genes via phage-mediated 312 

transduction (63, 64). In this study, PHASTER tool was used to investigate how likely prophage 313 

sequence could be detected on multi-drug resistant plasmids. Prophage regions were detected in 314 

a majority of input plasmids; however, the hit scores were pretty low, suggesting these prophages 315 

were unlikely to become active phages. The largest plasmid pT525A and the IncY plasmid 316 

pT425A had better scores for prophage hits. There was a possibility that phage was able to insert 317 

its sequences into plasmids, resulting in plasmids of larger size and more diversity as 318 

exemplified by plasmid pT525A. IncY plasmids were known to be phage-like plasmids because 319 
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they shared a large portion of homologous segments with bacteriophage, in particular phage P1 320 

(17, 19, 24, 65, 66). 321 

In conclusion, this study genotypically characterized ESBL plasmids from dairy manure 322 

including plasmid sizes, antibiotic resistance genes, incompatibility groups, toxin-antitoxin 323 

systems, virulence factor and prophage regions. Sequencing a larger set of plasmids revealed 324 

more distinct less frequent plasmids, especially in digested manure. The blaIMP-27 gene conferring 325 

resistance to both carbapenem and third-generation cephalosporis was found integrated into the 326 

host chromosome. The study provided some insights into the dynamics of ESBL genes and 327 

plasmids carrying these genes in dairy manure. 328 

  329 
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MATERIALS AND METHODS 330 

1. Conjugation method 331 

The experiment was described in a previous study (25). Briefly, dairy manures were enriched 332 

with cefotaxime (4 mg/L) and then mated with gfp-labelled E. coli CV601 overnight. 333 

Transconjugants were selected on chromocult media containing rifampicin (50 mg/L), 334 

kanamycin (50 mg/L) and cefotaxime (4 mg/L). 335 

2. Illumina/MinION sequencing protocol 336 

 337 

3. Annotation tools to detect antibiotic resistance genes, mobile genetic elements and toxin-338 

antitoxin systems 339 

Antibiotic resistance genes were detected using starAMR tool (Galaxy Version 0.7.1+galaxy1) 340 

which searched Illumina short-read assemblies against the resfinder resistance gene database. 341 

Mobile genetic elements were detected by RAST (https://rast.nmpdr.org), and then subsequently 342 

specified by blasting sequences against the NCBI non-redundant database. RAST was also used 343 

to detect toxin-antitoxin systems on complete closed plasmids. 344 

4. Detection of virulence factors 345 

Complete closed plasmid sequences from hybrid assembly were used as input to VirulenceFinder 346 

2.0, a web-tool (https://cge.cbs.dtu.dk/services/VirulenceFinder/), to detect virulence genes (67). 347 

5. Detection of prophage sequences 348 

A web-tool PHASTER (http://phaster.ca/) was used to identify and annotate  prophage sequences 349 

within complete closed plasmids (68, 69). 350 

6. Other tools used to construct plasmid maps and detect SNPs 351 
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Table 1: Distribution of eighty-three sequenced plasmids based on their incompatibility groups, ESBL genes and other resistance 540 

genes 541 

ESBL gene Representative 
plasmid Other resistance genes co-locating on the same plasmid Incompatibility 

group Size Farm Raw 
(n = 35) 

Digested 
(n = 48) 

blaCTX-M-1 pT115A None IncN 42,592 1,2,5,7 10 8 
blaCTX-M-1 pT39A sul2, tet(A) IncI1 ~75,251 3 NA 1 
blaCTX-M-14 pT428A None IncI1 91,905 2,3 3 NA 
blaCTX-M-14 pT593A None IncB/O/K/Z ~ 89,017 3 NA 1 
blaCTX-M-14b pT59A aac(6')-Ib-cr, aph(3'')-Ib, ARR-3,dfrA27, qnrS3, sul1, sul2, tet(A) IncFIB(K)  5 NA 1 
blaCTX-M-14b pT58A aadA16, ARR-3, blaTEM-1B, qnrS1, sul1, sul2, tet(A) IncFIB(K)  5 NA 1 
blaCTX-M-15 pT145A None IncI1 ~ 85,051 1 2 NA 
blaCTX-M-15 pT415A aph(3'')-Ib, aph(6)-Id, blaTEM-1B, dfrA14, qnrS1, sul2, tet(A) IncY ~ 85,052 5 NA 1 
blaCTX-M-15 pT545A aac(6')-Ib-cr, aph(3'')-Ib, aph(6)-Id, blaOXA-1, catB4, dfrA1, floR, 

lnu(G), sul2 
NA 104,875 1,2,3,4,5,7 17 22 

blaCTX-M-27 pT455A None IncN 42,273 2 NA 1 
blaCTX-M-27 pT257A None IncFIIA,IncFII 66,581 2 NA 2 
blaCTX-M-27 pT570A aph(3'')-Ib, aph(6)-Id, blaTEM-1B, dfrA14, sul2, tet(A) IncN 53,066 2 NA 3 

blaCTX-M-27 pT295A aph(3'')-Ib, aph(6)-Id, blaTEM-1B, dfrA14, sul2, tet(A) IncN, IncX1 77,311 2 NA 1 
blaCTX-M-55 pT525A aac(3)-IId, aadA22, aph(3')-Ia, ARR-2, blaTEM-1B, dfrA14, floR, 

lnu(F), mph(A), qnrS1, sul3, tet(A) 
IncHI2, 
IncHI2A 

266,763 3 2 NA 

blaCTX-M-55 pT588A aac(3)-IId, aadA22, aph(3')-Ia, ARR-2, blaTEM-1B, dfrA14, floR, 
lnu(F), mph(A), qnrS1, sul3, tet(A) 

IncHI2, 
IncHI2A, IncN 

~ 227,236 7 NA 1 

blaCTX-M-55 pT476A blaTEM-1B IncX1 ~ 40,307 7 NA 1 
blaCTX-M-55 pT156A blaTEM-206 IncFII(pHN7A8) 66,894 1 NA 1 
blaCTX-M-55 pT224A bla TEM-206, fosA3 IncFII(pHN7A8) ~ 70,625 7 NA 2 
blaPER-1 pT413A aadA2, aph(3')-Ia, mph(E), msr(E), sul1, sul1, tet(C), tet(E), tet(X) IncC 187,012 5 1 NA 
blaIMP-27 pT598A aph(6)-Id, strA, sul2, tet(A) NA 41,847 4 NA 1 

 542 
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Table 2. List of toxin-antitoxin systems found on plasmids 544 

Plasmid ID Toxin Antitoxin Type 

pT82A MazF MazE 2 

pT101A MazF MazE 2 

pT156A PemK PemI 2 

pT159A MazE MazF 2 

pT209A MazF MazE 2 

pT224A PemK PemI 2 

pT257A PemK PemI 2 

pT267A MazF MazE 2 

pT270A MazF MazE 2 

pT100A YdcE YdcD 2 

pT390A MazF MazE 2 

pT525A HigB1, HipA HipB 2 

pT545A MazF MazE 2 

pT593A YdcE YdcD 2 

pT295A RelE RelB 2 

pT413A HigB HigA 2 
545 
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Table 3. Detection of virulence factors on plasmids 546 

Plasmid ID 
Virulence 

factor Identity 
Query / 

Template 
length 

Position in 
contig Protein function Accession number 

pT100A cib 100 1881 / 1881 6021..7901 Colicin ib KP198616 

pT428l cia 100 1881 / 1881 5247..7127 Colicin ia UDDL01000017 
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 547 

  548 

pT593A traT 100 627 / 627 51274..51900 
Outer membrane protein 
complement resistance 

MF156268 

pT525A terC 100 1041 / 1041 78902..79942 Tellurium ion resistance protein KU341381 

pT156A traT 100 732 / 732 53990..54721 
Outer membrane protein 
complement resistance 

CYCV01000028 

pT224A traT 100 734 / 735 56998..57732 
Outer membrane protein 
complement resistance 

NC_019073 

pT257A traT 100 735 / 735 52276..53010 
Outer membrane protein 
complement resistance 

NZ_CP032205 

pT247A cia 100 1881 / 1881 5247..7127 Colicin ia UDDL01000017 
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Table 4. Identification of putative prophages on plasmids by PHASTER 549 

Plasmid 
ID Region Region 

Length Completeness # Total 
Proteins 

Region 
Position Most Common Phage GC % 

pT82A 
1 7.5Kb incomplete 12 24841-32401 PHAGE_Cronob_ENT39118_NC_019934(2) 41.86% 
2 33.7Kb incomplete 12 23467-57208 PHAGE_Escher_RCS47_NC_042128(3) 49.47% 

3 4.9Kb incomplete 7 51634-56533 PHAGE_Mycoba_Shipwreck_NC_031261(1) 51.49% 

pT100A 
1 20.5Kb incomplete 17 13759-34330 PHAGE_Klebsi_phiKO2_NC_005857(2) 54.96% 
2 9.1Kb incomplete 14 26925-36113 PHAGE_Entero_N15_NC_001901(2) 56.72% 

pT101A 
1 7Kb incomplete 12 5797-12863 PHAGE_Escher_RCS47_NC_042128(3) 53.81% 
2 4.9Kb incomplete 7 20935-25834 PHAGE_Mycoba_Shipwreck_NC_031261(1) 51.49% 

pT115A 1 11.6Kb incomplete 12 1-11645 PHAGE_Escher_RCS47_NC_042128(3) 51.70% 

pT156A 1 15.4Kb incomplete 12 2525-17988 PHAGE_Escher_RCS47_NC_042128(4) 50.37% 

pT159A 1 15.3Kb incomplete 26 310-15624 PHAGE_Escher_RCS47_NC_042128(3) 55.93% 

pT199A 1 11.6Kb incomplete 13 1-11638 PHAGE_Escher_RCS47_NC_042128(3) 51.70% 

pT209A 1 15.3Kb incomplete 26 266-15632 PHAGE_Escher_RCS47_NC_042128(3) 55.99% 

pT224A 1 17.9Kb incomplete 13 2525-20477 PHAGE_Escher_RCS47_NC_042128(3) 51.06% 

pT247A 
1 20.5Kb incomplete 17 9428-29984 PHAGE_Klebsi_phiKO2_NC_005857(2) 55.10% 

2 9.1Kb incomplete 14 22591-31767 PHAGE_Entero_N15_NC_001901(2) 56.61% 

pT257A 1 13.3Kb incomplete 8 2525-15842 PHAGE_Escher_RCS47_NC_042128(4) 50.74% 

pT267A 1 15.3Kb incomplete 26 266-15632 PHAGE_Escher_RCS47_NC_042128(3) 55.99% 

pT270A 
1 7.1Kb incomplete 12 5753-12871 PHAGE_Escher_RCS47_NC_042128(3) 53.95% 

2 4.9Kb incomplete 7 20943-25842 PHAGE_Mycoba_Shipwreck_NC_031261(1) 51.49% 

pT295A 1 27.6Kb incomplete 21 3066-30726 PHAGE_Escher_RCS47_NC_042128(3) 48.94% 

pT390A 

1 7.5Kb incomplete 13 52679-60238 PHAGE_Cronob_ENT39118_NC_019934(2) 41.87% 

2 33.7Kb incomplete 12 51310-85093 PHAGE_Escher_RCS47_NC_042128(3) 49.52% 

3 4.9Kb incomplete 7 79519-84418 PHAGE_Mycoba_Shipwreck_NC_031261(1) 51.49% 

.
C

C
-B

Y
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted M
arch 20, 2023. 

; 
https://doi.org/10.1101/2023.03.20.533445

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/2023.03.20.533445
http://creativecommons.org/licenses/by/4.0/


 

28 

 

pT428Al 
1 20.5Kb incomplete 17 9428-29984 PHAGE_Klebsi_phiKO2_NC_005857(2) 55.10% 

2 9.1Kb incomplete 14 22591-31767 PHAGE_Entero_N15_NC_001901(2) 56.61% 

pT415A 1 16.6Kb questionable 20 1146-17798 PHAGE_Salmon_SJ46_NC_031129(3) 49.94% 

pT455A 1 9.3Kb incomplete 10 20175-29551 PHAGE_Salmon_SJ46_NC_031129(4) 53.36% 

pT525A 
1 41Kb questionable 51 

73364-
114387 

PHAGE_Acinet_vB_AbaM_ME3_NC_041884(3) 50.45% 

2 29.9Kb questionable 25 
142809-
172780 

PHAGE_Escher_RCS47_NC_042128(3) 52.21% 

pT526A 1 24.6Kb incomplete 9 7334-31962 PHAGE_Salmon_SJ46_NC_031129(4) 53.01% 

pT545A 

1 7.6Kb incomplete 12 391-7990 PHAGE_Cronob_ENT39118_NC_019934(2) 41.96% 

2 4.9Kb incomplete 7 81134-86033 PHAGE_Mycoba_Shipwreck_NC_031261(1) 51.49% 

3 7Kb incomplete 12 
94105-
101171 

PHAGE_Escher_RCS47_NC_042128(3) 53.81% 

pT570A 1 24.6Kb incomplete 9 7371-31999 PHAGE_Salmon_SJ46_NC_031129(4) 53.01% 

pT593A 
1 23.2Kb incomplete 14 1517-24805 PHAGE_Escher_RCS47_NC_042128(3) 53.30% 

2 6.4Kb incomplete 13 21185-27638 PHAGE_Entero_N15_NC_001901(2) 55.38% 

 550 

The completeness was determined by PHASTER based on each hit score: Intact (score > 90), Questionable (score 70-90), Incomplete 551 

(score < 70). 552 

 553 
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Fig. 1: Plasmid  maps of six distinct plasmids harboring ESBL/AmpC genes which were 556 

captured in E. coli CV601 strain. (A) pT100A, (B) pT428Al, (C) pT455A, (D) pT525A, (E) 557 

pT526A, (F) pT593A. Red arrows are resistance genes detected by starAMR tool. Green arrows 558 

are mobile genetic elements detected by RAST and BLAST tools. Dark blue arrows are other 559 

functional genes which were annotated by PROKKA tool. 560 
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Fig. 2: The map of plasmid pT413A (187 kb). The blue stripe indicates the 79 kb-region 566 

harboring mobile genetic elements (green arrows and labels), mercury resistance operon (yellow 567 

arrows and labels) and antibiotic resistance genes (red arrows and labels).568 
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 569 

 570 

Fig. 3: Map of an integrated region containing multiple mobile genetic elements and resistance genes including the metallo-β571 

lactamase gene blaIMP-27. The top figure shows the alignment of the contig #2 of the isolate T598A with the host chromosome E. coli572 

CV601; the red box indicates the location where this blaIMP-27-bearing region got integrated. The bottom left figure shows the circular573 
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form of  contig #2 with the integrated region. The bottom right figure is the enlarged integrated region. Red labels/arrows are  574 

resistance genes; green labels/arrows are mobile genetic elements (transposon, insertion sequence, integron); orange labels/arrows are 575 

genes on the host chromosome adjacent to the integrated region; blue arrows are other functional genes. 576 

 577 
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Fig. 4: Map of putative prophage regions that were detected on plasmid pT525A (Region 1 & Region 2) and on IncY plasmid pT415A 580 

by PHASTER 581 
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