

1 **Genetic characterization of extended- β -lactamase (ESBL) plasmids**
2 **captured from dairy manures**

3 **Tam Tran^{a,b}, Joe Thorne^a, Andrew Scott^a, James Robertson^c, John HE Nash^c, Catherine**
4 **Carrillo, Edward Topp^{a,b*}**

5 ^a London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St,
6 London, ON N5V 4T3

7 ^bDepartment of Biology, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7

8 ^c Public Health Agency of Canada, National Microbiology Laboratory, 110 Stone Rd. West. Guelph, ON
9 N1H 7Y7

10 *Corresponding author: Edward Topp, ed.topp@canada.ca

11 Keywords: antibiotic resistance, dairy manure, anaerobic digestion, extended spectrum β -
12 lactamases, plasmid characteristics.

13

14

15 **ABSTRACT**

16 This study was to assess the gene diversity and characterize a large set of plasmids harboring
17 extended β -lactamase (ESBL) genes from raw and digested dairy manure. A total of eighty-four
18 plasmids that were captured in this *E. coli* recipient were sequenced using Illumina MiSeq
19 sequencing technology. Twenty-four plasmids of interest were subsequently sequenced using
20 MinION technology in order that a hybrid assembly could be performed on short- and long-read
21 sequences to circularize and complete these plasmids. The size of sequenced plasmids ranged
22 between 40 and 260 kb with various incompatibility groups: IncC, IncI1, IncN, IncY,
23 IncB/O/K/Z, IncX1, IncHI2, IncHI2A, IncFIB(K), IncFII. A variety of extended β -lactamase
24 genes were identified: *bla*_{CTXM-1}, *bla*_{CTXM-14}, *bla*_{CTXM-15}, *bla*_{CTXM-27}, *bla*_{CTXM-55}, *bla*_{CTXM-61},
25 *bla*_{PER-1}, *bla*_{IMP-27}. Interestingly, the *bla*_{IMP-27} gene, a novel metallo- β -lactamase discovered in the
26 last decade, was found located on an integrated region in the host chromosome. And one plasmid
27 carrying the *bla*_{CMY-2} gene, an AmpC gene, also expressed ESBL phenotype. Four virulence
28 factors, including *cia*, *cib*, *traT* and *terC*, were detected on some of these plasmids. In addition,
29 six type-2 toxin-antitoxin systems were detected: MazF/E, PemK/I, HipA/B, YdcE/D, RelB/E
30 and HigB/A. Twenty-two out of twenty-four complete plasmids carried putative prophage
31 regions; and most of prophage hits were marked as incomplete, except that the largest plasmid
32 pT525A and the IncY plasmid pT415A had prophage hits with higher scores.

33 **IMPORTANCE**

34 The widespread of antibiotic resistant bacteria is largely due to the exchange of mobile genetic
35 elements such as plasmids. Plasmids harboring extended β -lactamase (ESBL) genes originated
36 from dairy manure potentially become entrained in manured soil, which subsequently enter the
37 human food chain. Currently there is a lack of detailed information on these plasmids in the

38 environment, specifically in dairy manure. This study unveils the abundance and diversity of
39 ESBL-carrying plasmids from both raw and digested manures which were captured in *gfp*-
40 labelled *E. coli* CV601. In addition, the study provides insightful information of plasmid
41 characteristics including incompatibility groups, ESBL genes combined with other resistance
42 genes, mobile genetic elements (transposons, insertion sequence), toxin-antitoxin systems,
43 virulence factors and prophage sequences.

44

45

46 INTRODUCTION

47 Extended- β -lactamase (ESBL) genes have been a matter of undoubtedly grave public-health
48 concern due to their ability to hydrolyze third-generation cephalosporins (e.g. cefotaxime,
49 ceftriaxone, ceftazidime, or cefepime) and monobactams (aztreonam) (1). A dramatic increase in
50 the number of multidrug-resistant Enterobacteriaceae (mostly *Escherichia coli*) that produce
51 extended-spectrum β -lactamases (ESBLs), such as the CTX-M enzymes, has been reported since
52 the 1990s (2). ESBL genes has been widely disseminated via mobile genetic elements such as
53 plasmids, insertion sequences, transposons. Plasmids carrying ESBL genes are ubiquitous in
54 environments including manure, manured soil, wastewater treatment plants and aquaculture (3-
55 8).

56 Bacterial toxin-antitoxin (TA) systems are pairs of genes encoding a toxin protein and its
57 corresponding antitoxin protein which can be found on either chromosomes or plasmids in free-
58 living bacteria (9, 10). The first TA operon was found on plasmid R1 about three decades ago,
59 and was shown to play an important role in plasmid stability by the post-segregational removal
60 of plasmid-free cells (11, 12). The ccd system on the F plasmid, the most widely studied system,
61 was even employed in DNA cloning strategies (13). Depending on the molecular structures and
62 mechanisms of action, three types of TA operon were presented: Type I, II, and III (12). The
63 type II TA system, also termed as the addiction system, consisted of at least ten current families
64 such as MazE-MazF, RelE-RelB, YefM-YoeB, and MqsR-MqsA (12, 14). Despite their ubiquity
65 in bacteria, TA systems on manure-originated plasmids are not well-understood.

66 Virulence factors mainly accounts for bacterial pathogenicity which causes diseases in hosts such
67 as plant, animals and human (15, 16). They can be found on either pathogenicity islands in the
68 genome of pathogenic bacteria or on plasmids (17, 18). Virulence-associated plasmids in *E. coli*

69 were associated with six pathotypes enterotoxigenic *E. coli* (ETEC), enteroaggregative *E. coli*
70 (EAEC), enteroinvasive *E. coli* (EIEC), enterohemorrhagic *E. coli* (EHEC), enteropathogenic *E.*
71 *coli* (EPEC), extraintestinal pathogenic *E. coli* (ExPEC) (17). Nine out of 26 plasmid
72 incompatibility groups which mostly fall into group F were known to carry virulence genes, and
73 there is no doubt this number would keep rising as novel plasmid groups continue to be
74 identified (17, 19).

75 Prophages are bacteriophage sequences that normally integrate into bacterial chromosome and
76 largely contribute to bacterial adaptation and evolution by enabling the horizontal genetic
77 exchange (20, 21). A few prophages (e.g. P1, N15, LE1, λ 20, and λ BB-1), however, are able to
78 independently replicate in the lysogen as low-copy-number plasmids (22). Prophages have an
79 average size between 29 to 78 kb, which probably constitute about 0.6 to 1.8 % of the host
80 chromosome (23). Therefore, plasmids of megasize ($> 100\text{kb}$) can easily capture prophage
81 regions via either homologous recombination or the movement of insertion sequences/
82 transposons. Recent evidences suggested that the plasmid pMCR-1-P3, an IncY plasmid, was the
83 outcome of homologous recombination event between a plasmid and a prophage region located
84 in the *E. coli* genome (24).

85 The aim of the study was to extensively and intensively analyze genetic characteristics of eighty-
86 three sequenced ESBL plasmids originated from dairy manure including a subset of twenty-five
87 plasmids reported previously (25). The study also revised the comparison of plasmids from raw
88 with those from digested manure in a larger set of data. Overall this study provide insightful
89 information of plasmid characteristics such as plasmid size, virulence factor, TA systems,
90 incompatibility groups, mobile genetic elements and antibiotic resistance genes

91 **RESULTS**

92 **Description of sequenced plasmids harboring ESBL genes from raw and digested manures**

93 In this study, a total of 83 plasmids harboring ESBL genes were grouped based on their
94 incompatibility groups, ESBL genes and other resistance genes (Table 1). A detailed information
95 of 25 plasmids was reported previously (manure paper); while the rest of them can be found in
96 supplementary material of this study (Table S1). Twenty distinct plasmid profiles carrying eight
97 ESBL genes in combination with other resistance genes were identified (Table 1). Eleven
98 transconjugants' whole genomes were further sequenced on the MinION long-read sequencing
99 platform so that hybrid assembly could be used to completely close the plasmids carried by these
100 transconjugants. Maps of these complete plasmids were presented in Fig. 1 & Fig. S1.

101 Among 83 sequenced plasmids, 35 of them were from raw manure, and 48 from digested
102 manure (Table 1). The most frequent plasmid (pT545A) carried *bla_{CTXM-15}* gene along with other
103 nine resistance genes: *aac(6')-Ib-cr*, *aph(3'')-Ib*, *aph(6)-Id*, *blaOXA-1*, *catB4*, *dfrA1*, *floR*, *lnu(G)*,
104 *sul2*. This plasmid was found in both raw and digested manures from all participating farms. The
105 second most frequent plasmid carrying *bla_{CTXM-1}* gene (pT115A) was found in both raw and
106 digested manure from four out of six participating farms.

107 Other 18 less frequent plasmids were found in either raw (four plasmids) or digested
108 manures (fourteen plasmids) (Table 1). Four plasmids from raw manure individually carried
109 following ESBL genes: *bla_{CTX-M-14}*, *bla_{CTX-M-15}*, *bla_{CTX-M-55}*, *bla_{PER-1}*. Meanwhile, thirteen out of
110 fourteen plasmids from digested manure individually carried following ESBL genes: *bla_{CTX-M-1}*,
111 *bla_{CTX-M-14}*, *bla_{CTX-M-14b}*, *bla_{CTX-M-15}*, *bla_{CTX-M-27}*, *bla_{CTX-M-55}*. Interestingly, one conjugative
112 plasmid (pT598A) from digested manure did not carry any ESBL genes. However, the *bla_{IMP-27}*
113 gene was detected on the host chromosome along with other resistance genes: *aph(6)-Id*, *strA*,
114 *sul2*, *tet(A)* in the transconjugant carrying this plasmid pT598A.

115 Sizes of hybrid assembled plasmids ranged between 40 and 260 kbs; the most frequent
116 plasmid (pT545A) had the size of 100 kbs. Incompatibility groups identified in this study were
117 IncC, IncI1, IncN, IncY, IncB/O/K/Z, IncX1, IncHI2, IncHI2A, IncFIB(K), IncFII(pHN7A8). A
118 variety of mobile genetic elements that were located in areas surrounding resistance genes were
119 identified including Tn3, Tn7, TnAs1, *tnpA*, *IntII*, *insA*, *insB*, IS*Ec63*, IS*Ec9*, IS*Ecp1*, IS*903B*,
120 IS3, IS5, IS26, IS*91*, IS*110*, IS*5075*, and IS*Vsa3*. Mobile genetic elements that were not located
121 proximal to resistance genes were also identified: IS3, IS5, IS66, IS21, IS*911*, IS*Kpn18*, IS*Ec23*.

122 **Description of plasmids with special features**

123 The plasmid pT100A was the only conjugative plasmid carrying an AmpC-type gene
124 (*bla*_{CMY-2}); however, the transconjugant carrying this plasmid expressed ESBL phenotype (Fig 1.
125 & Table S1). The plasmid with a size of 98 kbs had IncI1 incompatibility group. The plasmid did
126 not carry any other resistance genes, but it carried two conjugal transfer genes (*traC*, *traI*).
127 Unlike most of captured plasmids, mobile genetic elements on this plasmid were located far
128 apart from the resistance gene *bla*_{CMY-2}.

129 The plasmid pT413A with a size of 187 kbs carrying the *bla*_{PER-1} gene, an ESBL gene,
130 also carried mercury resistance operon (Fig. 2). The mercury resistance operon with a size of
131 approximately 3 kbs consisted of *merA*, *merP*, *merT* and *merR* genes. This operon located in the
132 79 kb region along with other resistance genes and other mobile genetic elements (integrons,
133 transposon and insertion sequences). The adjacent mobile genetic elements surrounded this
134 operon were transposon Tn7 transposition proteins (TnsB, TnsC).

135 The conjugative plasmid pT428A1 carrying the *bla*_{CTX-M-14} gene accompanied with the
136 mobilizable plasmid pT428As which did not carry any resistance genes. The pT428A1 had a size
137 of 92 kbs, and its accompanying plasmid pT428As had a size of 4kbs. This is the only case

138 where two plasmids were confirmed to co-transfer into *E. coli* recipient CV601 by hybrid
139 assembly. Using the annotation tool PROKKA, only two genes, *mobA* encoding mobilization
140 protein A and *repE* encoding replication initiation protein, were detected on the smaller plasmid
141 pT428As.

142 The plasmid pT598A was the only conjugative plasmid did not carry any resistance
143 genes. However, this plasmid carried many conjugal transfer genes: *traB*, *traC*, *traD*, *traG*, *traI*,
144 *traK*, *traJ*, *traL*, *traM*. The plasmid pT598A with a size of 42 kbs had no incompatibility group
145 identified. Hybrid assembly of transconjugant's whole genome sequence carrying this plasmid
146 showed a 865kb region integrated into the host chromosome (Fig. 3). This region carried
147 multiple resistance genes (*aph(6)-Id*, *bla_{IMP-27}*, *strA*, *sul2*, *tet(A)*) along with other mobile genetic
148 elements (TnAs1, ISVs_a3, IS3, IS26, *intA*). The integrated region was between two chromosomal
149 genes: *aspC* gene encoding aspartate aminotransferase and *asnS* gene encoding asparagine--
150 tRNA ligase.

151 **DNA variations among genotypically similar plasmids**

152 In this study, not all plasmids were sequenced on both short-read and long-read sequencing
153 platforms. Plasmids that were sequenced on both platforms were successfully completely closed
154 via hybrid assembly, hence they could be used as a reference input. Plasmids having similar
155 characteristics (sizes, resistance genes, incompatibility groups) with closed plasmids were further
156 analyzed using Snippy tool to search for SNPs or any DNA variations.

157 There were very few DNA variation detected among plasmids harboring the *bla_{CTX-M-1}*/ *bla_{CTX-M-15}*/ *bla_{CTX-M-27}* gene (Table S2, S3 and S4). However, three largest IncHI2-IncHI2A plasmids
158 (>200 kb) harboring the *bla_{CTX-M-55}* gene were quite distinct from one another (Table S5).
159 Unexpectedly, plasmid pT525A was even more different from plasmid pT594A considering they

161 both were originated from raw manure of the same farm, and they had resistance genes and
162 incompatibility groups in common.

163 **Toxin-antitoxin systems detected on completely closed plasmids**

164 Six type-2 toxin-antitoxin systems were detected: MazF/E, PemK/I, HipA/B, YdcE/D,
165 RelE/B and HigB/A (Table 2). The MazF-MazE system were the most frequent toxin-antitoxin
166 system detected in our study. It was detected on following plasmids: pT82A, pT101A, pT159A,
167 pT209A, pT267A, pT270A, pT390A, pT545A. The PemK-PemI system was found located on
168 three plasmids: pT156A, pT224A and pT257A. These three plasmids shared a majority of their
169 sequence in common (25). The YcdE-YcdD system were detected on two distinctly different
170 plasmids pT100A and pT593A. The remaining three systems found on less frequent plasmids:
171 HipA-HipB system on pT525A, RelE-RelB system on pT295A and HipA-HipB on pT525A.
172 There was no toxin-antitoxin systems detected on following plasmids: pT199A, pT247A,
173 pT115A, pT428A1, pT428As, pT455A, pT526A, pT570A.

174 **Detection of virulence factor genes on completely closed plasmids**

175 There were four virulence factors detected: *cia*, *cib*, *traT*, *terC* (Table 3). The *cia* gene
176 encoding colicin ia was found on two distinct plasmids pT247A and pT428A1, while the *cib* gene
177 encoding colicin ib was detected on one plasmid pT100A. The *traT* gene encoding complement
178 resistance protein was found on four plasmids pT156A, pT224A, pT257A and pT593A. Among
179 them, pT593A was more distinctly different than the other three plasmids (pT156A, pT224A,
180 pT257A) whose sequences shared a lot in common as shown previously (25). The *terC* gene
181 encoding tellurium ion resistance protein was detected on one plasmid pT525A. There was no
182 virulence factor detected on following plasmids: pT82A, pT100A, pT101A, pT115A, pT159A,

183 pT209A, pT267A, pT270A, pT295A, pT390A, pT413A, pT428As, pT545A, pT526A, pT570A,
184 pT593A, pT598A, There was no shiga-toxin genes was detected on any of plasmid input.

185

186 **Detection of prophage sequences on plasmids**

187 A majority of plasmids (22/26) got hits for prophage detection (Table 4): three plasmids
188 got three prophage hits (pT82A, pT390A, pT545A); seven got two prophage hits (pT100A,
189 pT101A, pT247A, pT270A, pT428Al, pT525A, pT593A); 13 got one prophage hit (pT115A,
190 pT156A, pT159A, pT199A, pT209A, pT224A, pT257A, pT267A, pT295A, pT415A, pT455A,
191 pT526A, pT570A). Three plasmids did not have any prophage sequences detected: pT428As,
192 pT598A, pT413A.

193 There were seven most common phage detected on these input plasmids.
194 PHAGE_Escher_RCS47_NC_042128 was detected in most of them (16/25) while others were
195 less common on our plasmids. PHAGE_Mycoba_Shipwreck_NC_031261 was found on five
196 plasmids. PHAGE_Enterobacteriaceae_NC_001901 and PHAGE_Salmon_NC_031129 were
197 found on four plasmids. PHAGE_Klebsi_phiKO2_NC_005857 and
198 PHAGE_Cronobacter_NC_019934 were detected on three plasmids.
199 PHAGE_Acinetobacter_vB_AbaM_ME3_NC_041884 was only detected on the plasmid pT525A.

200 All input plasmids but two got prophage hits classified as incomplete with a score ≤ 70 .
201 The PHASTER tool has its own criteria for scoring prophage regions and classifying them based
202 on their scores: intact (score > 90), questionable (score 70-90), incomplete (score < 70). Two
203 plasmids got hits with scores in a range of 70-90 (questionable), higher scores compared to other
204 plasmids (Fig. 4). These two plasmids included the largest plasmid pT525A with two hits and the

205 IncY plasmid pT415A with one hit. None of the hits had the scores within the range of the intact
206 group (>90).

207 **DISCUSSION**

208 The most prevalent plasmid found among 83 sequenced plasmids was the 104 kb plasmid
209 carrying the *bla*_{CTX-M-15} gene. This result was consistent with our previous observation using
210 restriction enzyme profiles combined with a subset of 25 sequenced plasmids (25). This plasmid
211 was abundantly present in both raw and digested manures across all participating farms;
212 however, the current bioinformatics tool was unable to identify its incompatibility group. This
213 left us wondering if the plasmid adopted some novel incompatibility group which has not been
214 recognized in the database. In a recently published study, the dominant ESBL plasmid isolated
215 from 53 dairy farms located in southwest England was 220-kb IncHI2 plasmid carrying *bla*_{CTX-M-32}
216 (26). This is interesting because only three out of 83 sequenced plasmids in our study belonged
217 to IncHI2 group and had plasmid sizes larger than 200 kb; nevertheless, they carried *bla*_{CTX-M-55}
218 gene along with other completely different resistance genes. In addition, SNP analysis on these
219 three plasmids revealed a number of nucleotide modifications including deletion, insertion and

220 Sequencing another set of plasmids, the number of which was as twice as those in our
221 previous study, allowed us to identify more plasmids that were less frequent (25). The second
222 frequent plasmid, which was found in four out of six farms, especially quite dominant in farm 7,
223 was the 43 kb plasmid of group IncN carrying the *bla*_{CTX-M-1} gene - the only resistance gene on
224 this plasmid. In addition, plasmids from digested manure were more diverse than those from raw
225 manure. Previously we showed that anaerobic digestion significantly reduced the conjugation
226 frequency of ESBL-carrying plasmids in raw manure, but did not necessarily changed plasmid
227 enzyme restriction profiles (25). The fact that a greater diversity of plasmids obtained from
228 digested manure observed in this study can be explained as following. Firstly, it could be that the
229 most frequent plasmid was overwhelming in raw manure, hence there was less chance for other

230 plasmids to be selected for further analysis. Secondly, restriction enzyme profile combined with
231 a small sequencing set did not adequately identify other less frequent plasmids. With a larger
232 sequencing set, more distinct plasmids have been revealed in this study.

233 The *bla_{CMY-2}* gene is considered as an AmpC-type β -lactamase gene, which has been
234 wide-spread around the world (27-29). This gene was mostly found on IncA/C plasmids in *E.*
235 *coli* and *Salmonella* strains (27, 30, 31). Normally this gene confers AmpC resistance phenotype
236 which hydrolyzes cephamycins as well as other third-generation cephalosporins and does not get
237 inhibited by ESBL inhibitors (i.e. clavulanic acid, sulbactam, tazobactam) (32). Previous studies
238 showed that co-location of AmpC and ESBL genes resulted in a combined ESBL/AmpC
239 phenotype (29, 33, 34). Detection of ESBL phenotype in a strain producing both AmpC and
240 ESBL enzymes could be problematic because clavulanic acid, an ESBL inhibitor used in ESBL
241 confirmatory tests, induces the high level expression of AmpC which, in turn, masks the synergy
242 effects on ESBL (28, 33). However, in our study the *bla_{CMY-2}* gene found on IncI1 plasmid
243 conferred ESBL phenotype in *E. coli* strain. Although ESBL-producing *E. coli* carrying only the
244 *bla_{CMY-2}* gene was reported previously, there was not a clear explanation for this phenomenon
245 (3). IncI1 plasmids carrying the *bla_{CMY-2}* gene were shown to widely spread among *E. coli* (35),
246 and they shared a high degree of sequence similarity when isolated from Enterobacteriaceae with
247 different epidemiological links (36). Unlike other plasmids carrying ESBL genes in this study,
248 insertion sequences were not located proximal to the *bla_{CMY-2}* gene.

249 The *bla_{IMP-27}* gene, a novel metallo- β -lactamase, was firstly isolated in *Proteus mirabilis*
250 in Ontario, Canada and presented in a conference in 2012 (37). Not until four years later, it was
251 reported in published studies, including those found in unrelated *Proteus mirabilis* clinical
252 isolates from two geographically distinct locations in the United States (38, 39). Another study

253 showed that the gene was located on conjugative plasmids that was transferable from either
254 *Proteus mirabilis* or *Providencia rettgeri* to *E. coli* (40). Not only was this gene found in clinical
255 settings, but it was also recovered from the environment of a swine farrow-to-finish operation in
256 the United States (41). The resistance phenotype to carbapenems and β -lactams conferred by this
257 gene was quite distinct and might vary among host strains (38, 40). In our study, the *bla_{IMP-27}*
258 gene, along with other resistance genes, was surprisingly found integrated into the host
259 chromosome; while the conjugative plasmid isolated from this *E. coli* host was antibiotic
260 resistance-free. We postulated that the integrated region originally got a ride on the plasmid, and
261 it was then transferred to the host chromosome via homologous recombination as soon as the
262 plasmid entered the host cell. To our best knowledge, this is the first time this gene was found in
263 environmental samples in Canada.

264 TA systems, which were first detected on plasmids and later in bacterial chromosomes,
265 play a vital role in plasmid stability as well as other positive roles in bacterial physiology,
266 pathogenicity, and evolution (12, 42, 43). All TA systems detected in this study belonged to
267 Type II TA systems which has been most extensively studied (12). TA systems were supposedly
268 associated with stress-induced environment conditions which enabled stress-responsive proteases
269 to degrade the antitoxin protein in Type II TA systems and free the toxin protein from the TA
270 complex, resulting in cell growth inhibition or cell death (12, 14). The most frequent toxin-
271 antitoxin system found in our study was the MazF-MazE system because this system was located
272 on the most prevalent plasmid. Two TA systems detected in the study, MazF-MazE and RelE-
273 RelB, belonged to super-families that were shown to be abundant and present on plasmids (42-
274 44). Several TA systems, such as HipB-HipA or RelE-RelB, also caused the generation of

275 persister cells, which went to a dormant state, in the presence of antibiotics, thus survived and
276 became immune to antibiotics (9, 45-48).

277 Virulence factors detected on plasmids in this study were mostly related to colicin-
278 producing genes (*cia*, *cib*) and the *traT* gene encoding outer membrane complement resistance
279 protein. Colicins Ia and Ib are very similar structurally and able to absorb to common receptor
280 sites on the bacterial outer membranes (49-51). Yet they do not share immunity specificity,
281 hence cells are immune to either colicin Ia or Ib depending on which colicin gene they carry
282 (49). Colicins inhibit protein and nucleic acid biosynthesis and uncouple electron transport from
283 active transport, resulting in the loss of cellular potassium and magnesium which causes cell
284 death (49). The virulence-associated non-conjugative plasmid carrying a *traT*-like gene was first
285 identified in *Salmonella typhirium*; however, the *traT* gene was also found located within the
286 transfer operon of conjugative F-like plasmids in *E. coli* (52, 53). The *traT* gene, one of two F
287 cistrons, prevents the formation of cell contacts, and thus inhibits DNA transfer within the cell
288 population (52). This gene is also needed for the resistance to serum bactericidal activity in *S.*
289 *typhirium* and *E. coli* (53, 54). The *cia*, *cib* and *traT* genes were found on less frequent plasmids
290 in this study, suggesting that these plasmids were limitedly accessible and only transferable
291 among hosts of particular genetic backgrounds.

292 Polluted environments such as manured soil, animal farming, waste water and
293 aquaculture can serve as a hot spot for co-selection of metal and antibiotic resistance (55-57).
294 Evidences for metal-driven co-selection of multiple antibiotic resistance via co-resistance and
295 cross-resistance mechanisms were well-documented (55, 56). Co-resistance mechanism occurred
296 when metal/metalloid resistance genes were co-located with antibiotic resistance genes on the
297 same plasmid (55). In this study, gene determinants for resistance to mercury (metal) and

298 tellurium (metalloid), the *merAPTR* operon and the *terC* gene, were detected on two distinct
299 conjugative multidrug resistant plasmids. The genetic linkage of mercury- and antibiotic-
300 resistance genes on conjugative plasmids was demonstrated through mating between
301 *Enterobacteriaceae* family bacteria and doubly genetically marked laboratory recipients (58).
302 IncHI2 plasmids were known to be associated with tellurite resistance determinants previously
303 (59, 60). Similarly, the *terC* gene was also detected on the largest IncHI2 plasmid in this study.
304 Cross-resistance mechanism typically involved common efflux pump systems which pumped out
305 structurally distinct agents/compounds such as metals and antibiotics (55, 56). Cheng et al.
306 showed that chromosomally encoded TetA(L) efflux pump was able to remove both tetracycline
307 and heavy metal cobalt (61). The *tet(A)* gene encoding major facilitator superfamily multidrug
308 efflux pump was detected in several unrelated plasmids in this study including IncHI2, IncN,
309 IncY, IncFIB(K) and IncI1 plasmids.

310 Prophage are normally found in bacterial chromosome, in particular within pathogenicity
311 islands in pathogens (18, 62). A mounting number of studies showed that bacteriophages
312 contributed to the widespread dissemination of antibiotic resistance genes via phage-mediated
313 transduction (63, 64). In this study, PHASTER tool was used to investigate how likely prophage
314 sequence could be detected on multi-drug resistant plasmids. Prophage regions were detected in
315 a majority of input plasmids; however, the hit scores were pretty low, suggesting these prophages
316 were unlikely to become active phages. The largest plasmid pT525A and the IncY plasmid
317 pT425A had better scores for prophage hits. There was a possibility that phage was able to insert
318 its sequences into plasmids, resulting in plasmids of larger size and more diversity as
319 exemplified by plasmid pT525A. IncY plasmids were known to be phage-like plasmids because

320 they shared a large portion of homologous segments with bacteriophage, in particular phage P1
321 (17, 19, 24, 65, 66).

322 In conclusion, this study genotypically characterized ESBL plasmids from dairy manure
323 including plasmid sizes, antibiotic resistance genes, incompatibility groups, toxin-antitoxin
324 systems, virulence factor and prophage regions. Sequencing a larger set of plasmids revealed
325 more distinct less frequent plasmids, especially in digested manure. The *bla_{IMP-27}* gene conferring
326 resistance to both carbapenem and third-generation cephalosporins was found integrated into the
327 host chromosome. The study provided some insights into the dynamics of ESBL genes and
328 plasmids carrying these genes in dairy manure.

329

330 **MATERIALS AND METHODS**

331 1. Conjugation method

332 The experiment was described in a previous study (25). Briefly, dairy manures were enriched
333 with cefotaxime (4 mg/L) and then mated with *gfp*-labelled *E. coli* CV601 overnight.
334 Transconjugants were selected on chromocult media containing rifampicin (50 mg/L),
335 kanamycin (50 mg/L) and cefotaxime (4 mg/L).

336 2. Illumina/MinION sequencing protocol

337

338 3. Annotation tools to detect antibiotic resistance genes, mobile genetic elements and toxin-
339 antitoxin systems

340 Antibiotic resistance genes were detected using starAMR tool (Galaxy Version 0.7.1+galaxy1)
341 which searched Illumina short-read assemblies against the resfinder resistance gene database.
342 Mobile genetic elements were detected by RAST (<https://rast.nmpdr.org>), and then subsequently
343 specified by blasting sequences against the NCBI non-redundant database. RAST was also used
344 to detect toxin-antitoxin systems on complete closed plasmids.

345 4. Detection of virulence factors

346 Complete closed plasmid sequences from hybrid assembly were used as input to VirulenceFinder
347 2.0, a web-tool (<https://cge.cbs.dtu.dk/services/VirulenceFinder/>), to detect virulence genes (67).

348 5. Detection of prophage sequences

349 A web-tool PHASTER (<http://phaster.ca/>) was used to identify and annotate prophage sequences
350 within complete closed plasmids (68, 69).

351 6. Other tools used to construct plasmid maps and detect SNPs

352 **R**EFERENCE

353

354 1. Canton R, Gonzalez-Alba JM, Galan JC. 2012. CTX-M Enzymes: Origin and Diffusion. *Front*
355 *Microbiol* 3:110.

356 2. Pitout JD, Laupland KB. 2008. Extended-spectrum β -lactamase-producing Enterobacteriaceae: an emerging public-health concern. *Lancet Infect Dis* 8:159-166.

357 3. Shin SW, Jung M, Won HG, Belaynehe KM, Yoon IJ, Yoo HS. 2017. Characteristics of
358 Transmissible CTX-M- and CMY-Type beta-Lactamase-Producing *Escherichia coli* Isolates
359 Collected from Pig and Chicken Farms in South Korea. *J Microbiol Biotechnol* 27:1716-1723.

360 4. Ben Said L, Jouini A, Klibi N, Dziri R, Alonso CA, Boudabous A, Ben Slama K, Torres C. 2015.
361 Detection of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in
362 vegetables, soil and water of the farm environment in Tunisia. *Int J Food Microbiol* 203:86-92.

363 5. Adelowo OO, Caucci S, Banjo OA, Nnanna OC, Awotide EO, Peters FB, Fagade OE, Berendonk TU.
364 2018. Extended Spectrum Beta-Lactamase (ESBL)-producing bacteria isolated from hospital
365 wastewaters, rivers and aquaculture sources in Nigeria. *Environ Sci Pollut Res Int* 25:2744-2755.

366 6. Jiang X, Cui X, Xu H, Liu W, Tao F, Shao T, Pan X, Zheng B. 2019. Whole Genome Sequencing of
367 Extended-Spectrum Beta-Lactamase (ESBL)-Producing *Escherichia coli* Isolated From a
368 Wastewater Treatment Plant in China. *Front Microbiol* 10:1797.

369 7. Gonggrijp MA, Santman-Berends I, Heuvelink AE, Buter GJ, van Schaik G, Hage JJ, Lam T. 2016.
370 Prevalence and risk factors for extended-spectrum beta-lactamase- and AmpC-producing
371 *Escherichia coli* in dairy farms. *J Dairy Sci* 99:9001-9013.

372 8. Valentin L, Sharp H, Hille K, Seibt U, Fischer J, Pfeifer Y, Michael GB, Nickel S, Schmiedel J,
373 Falgenhauer L, Friese A, Bauerfeind R, Roesler U, Imlzalioglu C, Chakraborty T, Helmuth R,
374 Valenza G, Werner G, Schwarz S, Guerra B, Appel B, Kreienbrock L, Kasbohrer A. 2014.
375 Subgrouping of ESBL-producing *Escherichia coli* from animal and human sources: an approach to
376 quantify the distribution of ESBL types between different reservoirs. *Int J Med Microbiol*
377 304:805-16.

378 9. Huang CY, Gonzalez-Lopez C, Henry C, Mijakovic I, Ryan KR. 2020. *hipBA* toxin-antitoxin systems
379 mediate persistence in *Caulobacter crescentus*. *Sci Rep* 10:2865.

380 10. Schureck MA, Maehigashi T, Miles SJ, Marquez J, Cho SE, Erdman R, Dunham CM. 2014.
381 Structure of the *Proteus vulgaris* *HigB*-(*HigA*)₂-*HigB* toxin-antitoxin complex. *J Biol Chem*
382 289:1060-70.

383 11. Thisted T, Sørensen NS, Wagner EG, Gerdes K. 1994. Mechanism of post-segregational killing:
384 Sok antisense RNA interacts with *Hok* mRNA via its 5'-end singlestranded leader and competes
385 with the 3'-end of *Hok* mRNA for binding to the mok translational initiation region. *The EMBO*
386 *journal* 13:1960-1968.

387 12. Yamaguchi Y, Park JH, Inouye M. 2011. Toxin-antitoxin systems in bacteria and archaea. *Annu*
388 *Rev Genet* 45:61-79.

389 13. Stieber D, Gabant P, Szpirer CY. 2008. The art of selective killing: plasmid toxin/antitoxin systems
390 and their technological applications. *BioTechniques* 45:344-346.

391 14. Van Melderen L. 2010. Toxin-antitoxin systems: why so many, what for? *Curr Opin Microbiol*
392 13:781-5.

393 15. Johnson JR, Moseley SL, Roberts PL, Stamm WE. 1998. Aerobactin and Other Virulence Factor
394 Genes among Strains of *Escherichia coli* Causing Urosepsis: Association with Patient
395 Characteristics. *Infection and immunity* 56:405-412.

396 16. Wu HJ, Wang AH, Jennings MP. 2008. Discovery of virulence factors of pathogenic bacteria. *Curr*
397 *Opin Chem Biol* 12:93-101.

398 17. Johnson TJ, Nolan LK. 2009. Pathogenomics of the virulence plasmids of *Escherichia coli*.
399 *Microbiol Mol Biol Rev* 73:750-74.

400

401 18. Schmidt H, Hensel M. 2004. Pathogenicity islands in bacterial pathogenesis. *Clin Microbiol Rev* 17:14-56.

402 19. Frost LS, Leplae R, Summers AO, Toussaint A. 2005. Mobile genetic elements: the agents of open
403 source evolution. *Nat Rev Microbiol* 3:722-32.

404 20. SONEA S. 1987. Bacterial Viruses, Prophages, and Plasmids, Reconsidered. *Annals of the New
405 York Academy of Sciences* 503:251-260.

406 21. Wang F, Wang D, Hou W, Jin Q, Feng J, Zhou D. 2019. Evolutionary Diversity of Prophage DNA in
407 *Klebsiella pneumoniae* Chromosomes. *Front Microbiol* 10:2840.

408 22. Casjens SR, Gilcrease EB, Huang WM, Bunny KL, Pedulla ML, Ford ME, Houtz JM, Hatfull GF,
409 Hendrix RW. 2004. The pKO2 linear plasmid prophage of *Klebsiella oxytoca*. *J Bacteriol*
410 186:1818-32.

411 23. Czajkowski R. 2019. May the Phage be With You? Prophage-Like Elements in the Genomes of
412 Soft Rot Pectobacteriaceae: *Pectobacterium* spp. and *Dickeya* spp. *Front Microbiol* 10:138.

413 24. Zhang C, Feng Y, Liu F, Jiang H, Qu Z, Lei M, Wang J, Zhang B, Hu Y, Ding J, Zhu B. 2017. A Phage-
414 Like IncY Plasmid Carrying the *mcr-1* Gene in *Escherichia coli* from a Pig Farm in China.
415 *Antimicrob Agents Chemother* 61.

416 25. Tran TT, Scott A, Tien YC, Murray R, Boerlin P, Pearl DL, Liu K, Robertson J, Nash JHE, Topp E.
417 2021. On-Farm Anaerobic Digestion of Dairy Manure Reduces the Abundance of Antibiotic
418 Resistance-Associated Gene Targets and the Potential for Plasmid Transfer. *Appl Environ
419 Microbiol* 87:e0298020.

420 26. Findlay J, Mounsey O, Lee WWY, Newbold N, Morley K, Schubert H, Gould VC, Cogan TA, Reyher
421 KK, Avison MB. 2021. Molecular Epidemiology of *Escherichia coli* Producing CTX-M and pAmpC
422 β -Lactamases from Dairy Farms Identifies a Dominant Plasmid Encoding CTX-M-32 but No
423 Evidence for Transmission to Humans in the Same Geographical Region. *Appl Environ Microbiol*
424 87:e01842-20.

425 27. Guo YF, Zhang WH, Ren SQ, Yang L, Lu DH, Zeng ZL, Liu YH, Jiang HX. 2014. IncA/C plasmid-
426 mediated spread of CMY-2 in multidrug-resistant *Escherichia coli* from food animals in China.
427 *PLoS One* 9:e96738.

428 28. Botelho LA, Kraychete GB, Costa e Silva JL, Regis DV, Picao RC, Moreira BM, Bonelli RR. 2015.
429 Widespread distribution of CTX-M and plasmid-mediated AmpC beta-lactamases in *Escherichia
430 coli* from Brazilian chicken meat. *Mem Inst Oswaldo Cruz* 110:249-54.

431 29. Rizi KS, Mosavat A, Youssefi M, Jamehdar SA, Ghazvini K, Safdari H, Amini Y, Farsiani H. 2020.
432 High prevalence of blaCMY AmpC beta-lactamase in ESBL co-producing *Escherichia coli* and
433 *Klebsiella* spp. clinical isolates in the northeast of Iran. *J Glob Antimicrob Resist* 22:477-482.

434 30. Carattoli A, Villa L, Poirel L, Bonnin RA, Nordmann P. 2012. Evolution of IncA/C blaCMY-(2)-
435 carrying plasmids by acquisition of the blaNDM-(1) carbapenemase gene. *Antimicrob Agents
436 Chemother* 56:783-6.

437 31. Call DR, Singer RS, Meng D, Broschat SL, Orfe LH, Anderson JM, Herndon DR, Kappmeyer LS,
438 Daniels JB, Besser TE. 2010. blaCMY-2-positive IncA/C plasmids from *Escherichia coli* and
439 *Salmonella enterica* are a distinct component of a larger lineage of plasmids. *Antimicrob Agents
440 Chemother* 54:590-6.

441 32. Hanson ND. 2003. AmpC beta-lactamases: what do we need to know for the future? *J
442 Antimicrob Chemother* 52:2-4.

443 33. Shoorashetty RM, Nagarathnamma T, Prathibha J. 2011. Comparison of the boronic acid disk
444 potentiation test and cefepime-clavulanic acid method for the detection of ESBL among AmpC-
445 producing Enterobacteriaceae. *Indian J Med Microbiol* 29:297-301.

446 34. Smet A, Martel A, Persoons D, Dewulf J, Heyndrickx M, Catry B, Herman L, Haesebrouck F,
447 Butaye P. 2008. Diversity of extended-spectrum beta-lactamases and class C beta-lactamases

448

449 among cloacal *Escherichia coli* isolates in Belgian broiler farms. *Antimicrob Agents Chemother*
450 52:1238-43.

451 35. Sidjabat HE, Seah KY, Coleman L, Sartor A, Derrington P, Heney C, Faoagali J, Nimmo GR,
452 Paterson DL. 2014. Expansive spread of *Incl1* plasmids carrying *blaCMY-2* amongst *Escherichia*
453 *coli*. *Int J Antimicrob Agents* 44:203-8.

454 36. Drijver E, Stohr J, Verweij JJ, Verhulst C, Velkers FC, Stegeman A, Bergh M, Kluytmans J, Group IS.
455 2020. Limited Genetic Diversity of *blaCMY-2*-Containing *Incl1-pST12* Plasmids from
456 Enterobacteriaceae of Human and Broiler Chicken Origin in The Netherlands. *Microorganisms* 8.

457 37. Tijet N, Lo S, Siebert H, MacNeill M, Rawte P, Farrell DJ, Low DE, Patel SN, Melano RG. 2012.
458 Detection of *IMP-27* metallo- β -lactamase in *Proteus mirabilis*, ON, Canada, abstr C2-090, Abstr
459 52nd Intersci Conf Antimicrob Agents Chemother.

460 38. Dixon N, Fowler RC, Yoshizumi A, Horiyama T, Ishii Y, Harrison L, Geyer CN, Moland ES, Thomson
461 K, Hanson ND. 2016. *IMP-27*, a Unique Metallo-beta-Lactamase Identified in Geographically
462 Distinct Isolates of *Proteus mirabilis*. *Antimicrob Agents Chemother* 60:6418-21.

463 39. Tijet N, Patel SN, Melano RG. 2016. Detection of carbapenemase activity in Enterobacteriaceae:
464 comparison of the carbapenem inactivation method versus the Carba NP test. *J Antimicrob
465 Chemother* 71:274-6.

466 40. Potter RF, Wallace MA, McMullen AR, Prusa J, Stallings CL, Burnham CAD, Dantas G. 2018.
467 *blaIMP-27* on transferable plasmids in *Proteus mirabilis* and *Providencia rettgeri*. *Clin Microbiol
468 Infect* 24:1019 e5-1019 e8.

469 41. Mollenkopf DF, Stull JW, Mathys DA, Bowman AS, Feicht SM, Grooters SV, Daniels JB, Wittum
470 TE. 2017. Carbapenemase-Producing Enterobacteriaceae Recovered from the Environment of a
471 Swine Farrow-to-Finish Operation in the United States. *Antimicrob Agents Chemother* 61.

472 42. Leplae R, Geeraerts D, Hallez R, Guglielmini J, Dreze P, Van Melderen L. 2011. Diversity of
473 bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of
474 novel families. *Nucleic Acids Res* 39:5513-25.

475 43. Gotfredsen M, Gerdes K. 1998. The *Escherichia coli* *relBE* genes belong to a new toxin-antitoxin
476 gene family. *Molecular Microbiology* 29:1065-1076.

477 44. Grønlund H, Gerdes K. 1999. Toxin-Antitoxin Systems Homologous with *relBE* of *Escherichia coli*
478 Plasmid P307 are Ubiquitous in Prokaryotes. *J Mol Biol* 285:1401-1415.

479 45. Keren I, Shah D, Spoering A, Kaldalu N, Lewis K. 2004. Specialized persister cells and the
480 mechanism of multidrug tolerance in *Escherichia coli*. *J Bacteriol* 186:8172-80.

481 46. Magnuson RD. 2007. Hypothetical functions of toxin-antitoxin systems. *J Bacteriol* 189:6089-92.

482 47. Korch SB, Henderson TA, Hill TM. 2003. Characterization of the *hipA7* allele of *Escherichia coli*
483 and evidence that high persistence is governed by (p)ppGpp synthesis. *Mol Microbiol* 50:1199-
484 213.

485 48. Kussell E, Kishony R, Balaban NQ, Leibler S. 2005. Bacterial persistence: a model of survival in
486 changing environments. *Genetics* 169:1807-14.

487 49. Mankovich JA, Hsu CH, Konisky J. 1986. DNA and amino acid sequence analysis of structural and
488 immunity genes of colicins *la* and *lb*. *Journal of bacteriology* 168:228-236.

489 50. Konisky J, Cowell BS. 1972. Interaction of Colicin *la* with Bacterial Cells. *Journal of Biological
490 Chemistry* 247:6524-6529.

491 51. Konisky J, With the technical assistance of Billie SC. 1972. Characterization of Colicin *la* and
492 Colicin *lb*. *Journal of Biological Chemistry* 247:3750-3755.

493 52. Achtman M, Kennedy N, Skurray R. 1977. Cell-cell interactions in conjugating *Escherichia coli*:
494 Role of *traT* protein in surface exclusion. *Proc Nati Acad Sci USA* 74:5104-5108.

495 53. Sukupolvi S, O'connor CD. 1990. TraT Lipoprotein, a Plasmid-Specified Mediator of Interactions
496 between Gram-Negative Bacteria and Their Environment. MICROBIOLOGICAL REVIEWS 54:331-
497 341.

498 54. Moll A, Manning PA, Timmis KN. 1980. Plasmid-Determined Resistance to Serum Bactericidal
499 Activity: a Major Outer Membrane Protein, the traT Gene Product, Is Responsible for Plasmid-
500 Specified Serum Resistance in *Escherichia coli*. INFECTION AND IMMUNITY 28:359-367.

501 55. Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV. 2006. Co-selection of antibiotic and
502 metal resistance. Trends Microbiol 14:176-82.

503 56. Imran M, Das KR, Naik MM. 2019. Co-selection of multi-antibiotic resistance in bacterial
504 pathogens in metal and microplastic contaminated environments: An emerging health threat.
505 Chemosphere 215:846-857.

506 57. Seiler C, Berendonk TU. 2012. Heavy metal driven co-selection of antibiotic resistance in soil and
507 water bodies impacted by agriculture and aquaculture. Front Microbiol 3:399.

508 58. Summers AO, Wireman J, Vimy MJ, Lorscheider FL, Marshall B, Levy SB, Bennett S, Billard L.
509 1993. Mercury released from dental "silver" fillings provokes an increase in mercury- and
510 antibiotic-resistant bacteria in oral and intestinal floras of primates. Antimicrobial Agents and
511 Chemotherapy 37:825-834.

512 59. Hill SM, Jobling MG, Lloyd BH, Strike P, Ritchie DA. 1993. Functional expression of the tellurite
513 resistance determinant from the IncHI-2 plasmid pMER610. Mol Gen Genet 241:203-12.

514 60. Whelan KF, Colleran E, Taylor DE. 1995. Phage inhibition, colicin resistance, and tellurite
515 resistance are encoded by a single cluster of genes on the IncHI2 plasmid R478. Journal of
516 Bacteriology 177:5016-5027.

517 61. Cheng J, Hicks DB, Krulwich TA. 1996. The purified *Bacillus subtilis* tetracycline efflux protein
518 TetA(L) reconstitutes both tetracycline-cobalt/H⁺ and Na⁺(K⁺)/H⁺ exchange. Proceedings of the
519 National Academy of Sciences of the United States of America 93:14446-14451.

520 62. Haaber J, Leisner JJ, Cohn MT, Catalan-Moreno A, Nielsen JB, Westh H, Penades JR, Ingmer H.
521 2016. Bacterial viruses enable their host to acquire antibiotic resistance genes from
522 neighbouring cells. Nat Commun 7:13333.

523 63. Colavecchio A, Cadieux B, Lo A, Goodridge LD. 2017. Bacteriophages Contribute to the Spread of
524 Antibiotic Resistance Genes among Foodborne Pathogens of the Enterobacteriaceae Family - A
525 Review. Front Microbiol 8:1108.

526 64. Torres-Barcelo C. 2018. The disparate effects of bacteriophages on antibiotic-resistant bacteria.
527 Emerg Microbes Infect 7:168.

528 65. Venturini C, Zingali T, Wyrsch ER, Bowring B, Iredell J, Partridge SR, Djordjevic SP. 2019. Diversity
529 of P1 phage-like elements in multidrug resistant *Escherichia coli*. Sci Rep 9:18861.

530 66. Anonymous. <Sequence Relations among the IncY Plasmid ~158, P1, and P7 Prophages.pdf>.

531 67. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM. 2014. Real-time
532 whole-genome sequencing for routine typing, surveillance, and outbreak detection of
533 verotoxigenic *Escherichia coli*. J Clin Microbiol 52:1501-10.

534 68. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. 2016. PHASTER: a better, faster
535 version of the PHAST phage search tool. Nucleic Acids Res 44:W16-21.

536 69. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. 2011. PHAST: a fast phage search tool. Nucleic
537 Acids Res 39:W347-52.

538

539

540 Table 1: Distribution of eighty-three sequenced plasmids based on their incompatibility groups, ESBL genes and other resistance
 541 genes

ESBL gene	Representative plasmid	Other resistance genes co-locating on the same plasmid	Incompatibility group	Size	Farm	Raw (n = 35)	Digested (n = 48)
<i>bla</i> _{CTX-M-1}	pT115A	None	IncN	42,592	1,2,5,7	10	8
<i>bla</i> _{CTX-M-1}	pT39A	<i>sul2, tet(A)</i>	IncI1	~75,251	3	NA	1
<i>bla</i> _{CTX-M-14}	pT428A	None	IncI1	91,905	2,3	3	NA
<i>bla</i> _{CTX-M-14}	pT593A	None	IncB/O/K/Z	~ 89,017	3	NA	1
<i>bla</i> _{CTX-M-14b}	pT59A	<i>aac(6')-Ib-cr, aph(3')-Ib, ARR-3, dfrA27, qnrS3, sul1, sul2, tet(A)</i>	IncFIB(K)	5	NA	1	
<i>bla</i> _{CTX-M-14b}	pT58A	<i>aadA16, ARR-3, bla_{TEM-1B}, qnrS1, sul1, sul2, tet(A)</i>	IncFIB(K)	5	NA	1	
<i>bla</i> _{CTX-M-15}	pT145A	None	IncI1	~ 85,051	1	2	NA
<i>bla</i> _{CTX-M-15}	pT415A	<i>aph(3')-Ib, aph(6)-Id, bla_{TEM-1B}, dfrA14, qnrS1, sul2, tet(A)</i>	IncY	~ 85,052	5	NA	1
<i>bla</i> _{CTX-M-15}	pT545A	<i>aac(6')-Ib-cr, aph(3')-Ib, aph(6)-Id, bla_{OXA-1}, catB4, dfrA1, floR, lnu(G), sul2</i>	NA	104,875	1,2,3,4,5,7	17	22
<i>bla</i> _{CTX-M-27}	pT455A	None	IncN	42,273	2	NA	1
<i>bla</i> _{CTX-M-27}	pT257A	None	IncFIIA, IncFII	66,581	2	NA	2
<i>bla</i> _{CTX-M-27}	pT570A	<i>aph(3')-Ib, aph(6)-Id, bla_{TEM-1B}, dfrA14, sul2, tet(A)</i>	IncN	53,066	2	NA	3
<i>bla</i> _{CTX-M-27}	pT295A	<i>aph(3')-Ib, aph(6)-Id, bla_{TEM-1B}, dfrA14, sul2, tet(A)</i>	IncN, IncX1	77,311	2	NA	1
<i>bla</i> _{CTX-M-55}	pT525A	<i>aac(3)-IId, aadA22, aph(3')-Ia, ARR-2, bla_{TEM-1B}, dfrA14, floR, lnu(F), mph(A), qnrS1, sul3, tet(A)</i>	IncHI2, IncHI2A	266,763	3	2	NA
<i>bla</i> _{CTX-M-55}	pT588A	<i>aac(3)-IId, aadA22, aph(3')-Ia, ARR-2, bla_{TEM-1B}, dfrA14, floR, lnu(F), mph(A), qnrS1, sul3, tet(A)</i>	IncHI2, IncHI2A, IncN	~ 227,236	7	NA	1
<i>bla</i> _{CTX-M-55}	pT476A	<i>bla_{TEM-1B}</i>	IncX1	~ 40,307	7	NA	1
<i>bla</i> _{CTX-M-55}	pT156A	<i>bla_{TEM-206}</i>	IncFII(pHN7A8)	66,894	1	NA	1
<i>bla</i> _{CTX-M-55}	pT224A	<i>bla_{TEM-206}, fosA3</i>	IncFII(pHN7A8)	~ 70,625	7	NA	2
<i>bla</i> _{PER-1}	pT413A	<i>aadA2, aph(3')-Ia, mph(E), msr(E), sul1, sul1, tet(C), tet(E), tet(X)</i>	IncC	187,012	5	1	NA
<i>bla</i> _{IMP-27}	pT598A	<i>aph(6)-Id, strA, sul2, tet(A)</i>	NA	41,847	4	NA	1

542

543

544 Table 2. List of toxin-antitoxin systems found on plasmids

Plasmid ID	Toxin	Antitoxin	Type
pT82A	MazF	MazE	2
pT101A	MazF	MazE	2
pT156A	PemK	PemI	2
pT159A	MazE	MazF	2
pT209A	MazF	MazE	2
pT224A	PemK	PemI	2
pT257A	PemK	PemI	2
pT267A	MazF	MazE	2
pT270A	MazF	MazE	2
pT100A	YdcE	YdcD	2
pT390A	MazF	MazE	2
pT525A	HigB1, HipA	HipB	2
pT545A	MazF	MazE	2
pT593A	YdcE	YdcD	2
pT295A	RelE	RelB	2
pT413A	HigB	HigA	2

545

Plasmid ID	Virulence factor	Identity	Query / Template length	Position in contig	Protein function	Accession number
pT100A	<i>cib</i>	100	1881 / 1881	6021..7901	Colicin ib	KP198616
pT428I	<i>cia</i>	100	1881 / 1881	5247..7127	Colicin ia	UDDL01000017

546 Table 3. Detection of virulence factors on plasmids

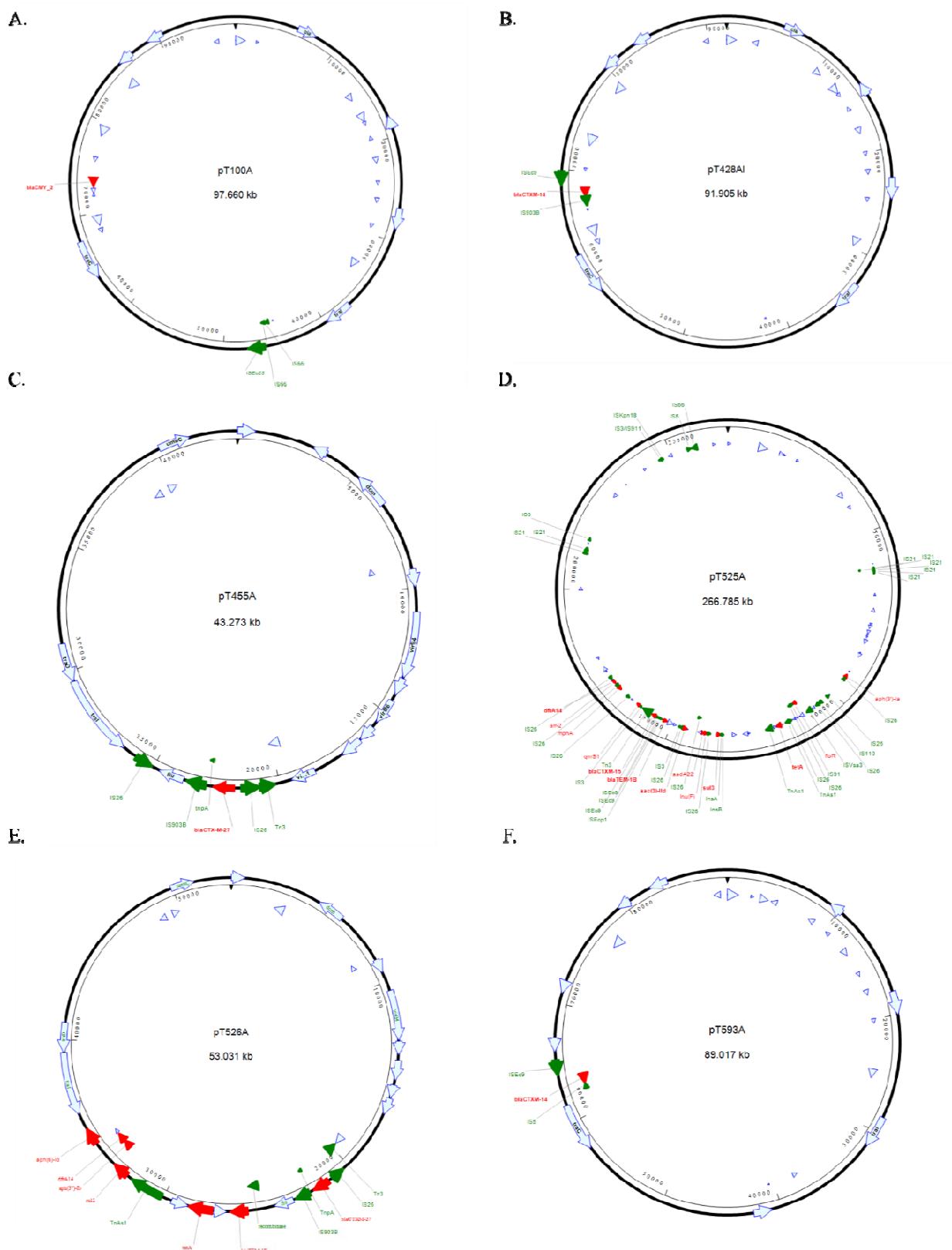
pT593A	<i>traT</i>	100	627 / 627	51274..51900	Outer membrane protein complement resistance	MF156268
pT525A	<i>terC</i>	100	1041 / 1041	78902..79942	Tellurium ion resistance protein	KU341381
pT156A	<i>traT</i>	100	732 / 732	53990..54721	Outer membrane protein complement resistance	CYCV01000028
pT224A	<i>traT</i>	100	734 / 735	56998..57732	Outer membrane protein complement resistance	NC_019073
pT257A	<i>traT</i>	100	735 / 735	52276..53010	Outer membrane protein complement resistance	NZ_CP032205
pT247A	<i>cia</i>	100	1881 / 1881	5247..7127	Colicin ia	UDDL01000017

547

548

Table 4. Identification of putative prophages on plasmids by PHASTER

Plasmid ID	Region	Region Length	Completeness	# Total Proteins	Region Position	Most Common Phage	GC %
pT82A	1	7.5Kb	incomplete	12	24841-32401	PHAGE_Cronob_ENT39118_NC_019934(2)	41.86%
	2	33.7Kb	incomplete	12	23467-57208	PHAGE_Escher_RCS47_NC_042128(3)	49.47%
	3	4.9Kb	incomplete	7	51634-56533	PHAGE_Mycoba_Shipwreck_NC_031261(1)	51.49%
pT100A	1	20.5Kb	incomplete	17	13759-34330	PHAGE_Klebsi_phiKO2_NC_005857(2)	54.96%
	2	9.1Kb	incomplete	14	26925-36113	PHAGE_Enterococcus_N15_NC_001901(2)	56.72%
pT101A	1	7Kb	incomplete	12	5797-12863	PHAGE_Escher_RCS47_NC_042128(3)	53.81%
	2	4.9Kb	incomplete	7	20935-25834	PHAGE_Mycoba_Shipwreck_NC_031261(1)	51.49%
pT115A	1	11.6Kb	incomplete	12	1-11645	PHAGE_Escher_RCS47_NC_042128(3)	51.70%
pT156A	1	15.4Kb	incomplete	12	2525-17988	PHAGE_Escher_RCS47_NC_042128(4)	50.37%
pT159A	1	15.3Kb	incomplete	26	310-15624	PHAGE_Escher_RCS47_NC_042128(3)	55.93%
pT199A	1	11.6Kb	incomplete	13	1-11638	PHAGE_Escher_RCS47_NC_042128(3)	51.70%
pT209A	1	15.3Kb	incomplete	26	266-15632	PHAGE_Escher_RCS47_NC_042128(3)	55.99%
pT224A	1	17.9Kb	incomplete	13	2525-20477	PHAGE_Escher_RCS47_NC_042128(3)	51.06%
pT247A	1	20.5Kb	incomplete	17	9428-29984	PHAGE_Klebsi_phiKO2_NC_005857(2)	55.10%
	2	9.1Kb	incomplete	14	22591-31767	PHAGE_Enterococcus_N15_NC_001901(2)	56.61%
pT257A	1	13.3Kb	incomplete	8	2525-15842	PHAGE_Escher_RCS47_NC_042128(4)	50.74%
pT267A	1	15.3Kb	incomplete	26	266-15632	PHAGE_Escher_RCS47_NC_042128(3)	55.99%
pT270A	1	7.1Kb	incomplete	12	5753-12871	PHAGE_Escher_RCS47_NC_042128(3)	53.95%
	2	4.9Kb	incomplete	7	20943-25842	PHAGE_Mycoba_Shipwreck_NC_031261(1)	51.49%
pT295A	1	27.6Kb	incomplete	21	3066-30726	PHAGE_Escher_RCS47_NC_042128(3)	48.94%
pT390A	1	7.5Kb	incomplete	13	52679-60238	PHAGE_Cronobacter_ENT39118_NC_019934(2)	41.87%
	2	33.7Kb	incomplete	12	51310-85093	PHAGE_Escher_RCS47_NC_042128(3)	49.52%
	3	4.9Kb	incomplete	7	79519-84418	PHAGE_Mycoba_Shipwreck_NC_031261(1)	51.49%

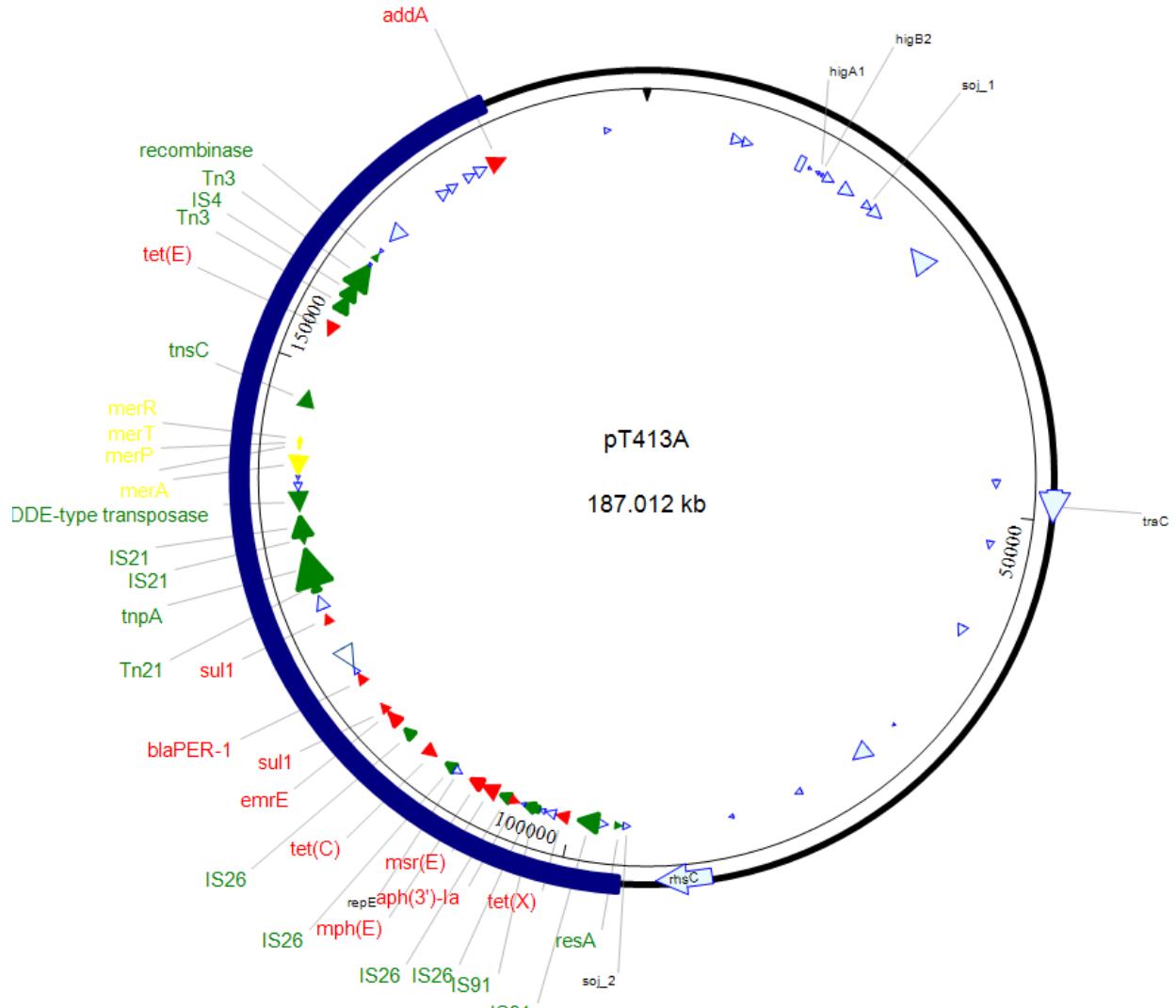

pT428A1	1	20.5Kb	incomplete	17	9428-29984	PHAGE_Klebsi_phiKO2_NC_005857(2)	55.10%
	2	9.1Kb	incomplete	14	22591-31767	PHAGE_Enterococcus_N15_NC_001901(2)	56.61%
pT415A	1	16.6Kb	questionable	20	1146-17798	PHAGE_Salmon_SJ46_NC_031129(3)	49.94%
pT455A	1	9.3Kb	incomplete	10	20175-29551	PHAGE_Salmon_SJ46_NC_031129(4)	53.36%
pT525A	1	41Kb	questionable	51	73364-114387	PHAGE_Acinetobacter_vB_AbaM_ME3_NC_041884(3)	50.45%
	2	29.9Kb	questionable	25	142809-172780	PHAGE_Escherichia_RCS47_NC_042128(3)	52.21%
pT526A	1	24.6Kb	incomplete	9	7334-31962	PHAGE_Salmon_SJ46_NC_031129(4)	53.01%
pT545A	1	7.6Kb	incomplete	12	391-7990	PHAGE_Cronobacter_ENT39118_NC_019934(2)	41.96%
	2	4.9Kb	incomplete	7	81134-86033	PHAGE_Mycobacterium_Shipwreck_NC_031261(1)	51.49%
	3	7Kb	incomplete	12	94105-101171	PHAGE_Escherichia_RCS47_NC_042128(3)	53.81%
pT570A	1	24.6Kb	incomplete	9	7371-31999	PHAGE_Salmon_SJ46_NC_031129(4)	53.01%
pT593A	1	23.2Kb	incomplete	14	1517-24805	PHAGE_Escherichia_RCS47_NC_042128(3)	53.30%
	2	6.4Kb	incomplete	13	21185-27638	PHAGE_Enterococcus_N15_NC_001901(2)	55.38%

550

551 The completeness was determined by PHASTER based on each hit score: Intact (score > 90), Questionable (score 70-90), Incomplete
552 (score < 70).

553

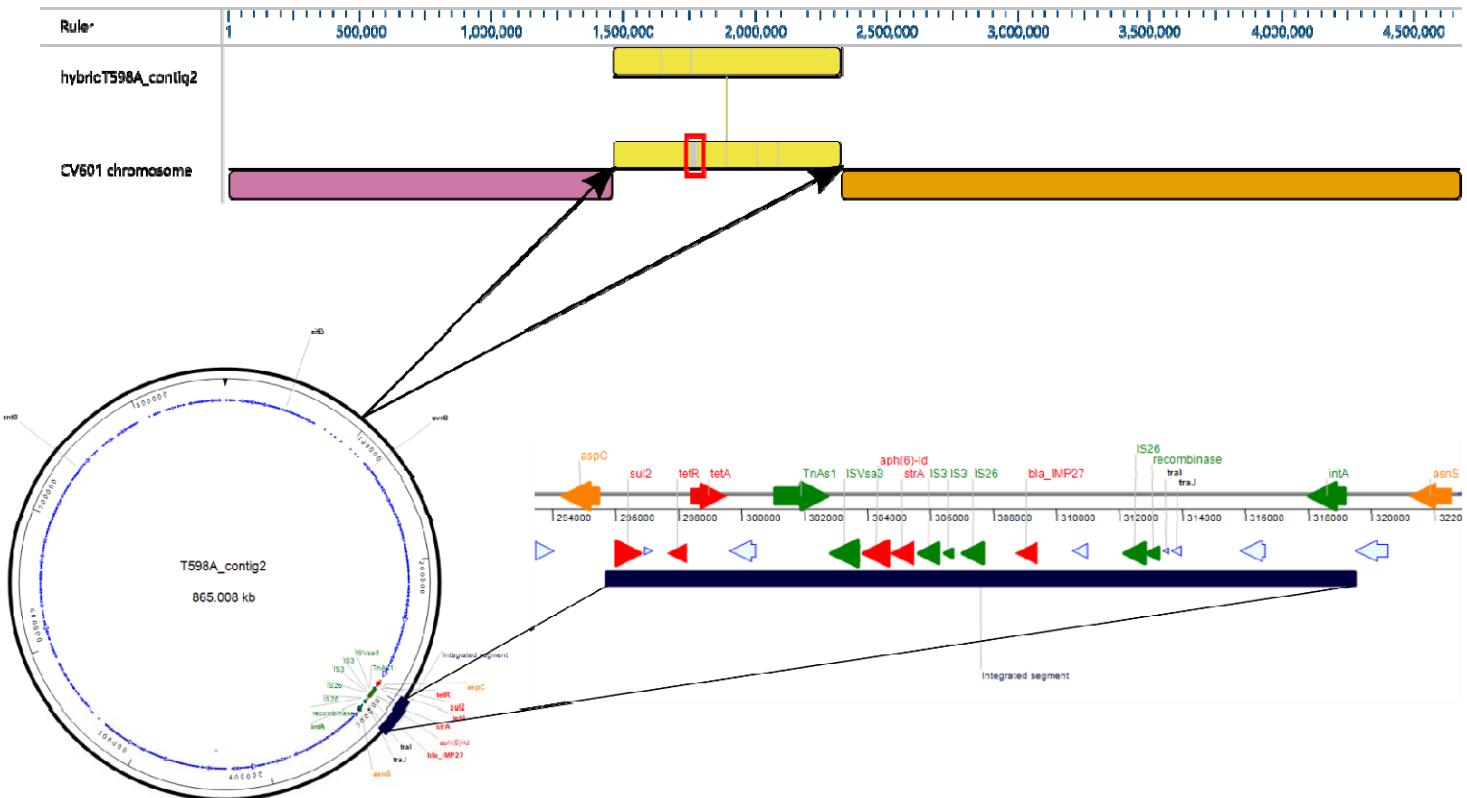
554



556 Fig. 1: Plasmid maps of six distinct plasmids harboring ESBL/AmpC genes which were
557 captured in *E. coli* CV601 strain. (A) pT100A, (B) pT428Al, (C) pT455A, (D) pT525A, (E)
558 pT526A, (F) pT593A. Red arrows are resistance genes detected by starAMR tool. Green arrows
559 are mobile genetic elements detected by RAST and BLAST tools. Dark blue arrows are other
560 functional genes which were annotated by PROKKA tool.

561

562


563

564

565

566 Fig. 2: The map of plasmid pT413A (187 kb). The blue stripe indicates the 79 kb-region
567 harboring mobile genetic elements (green arrows and labels), mercury resistance operon (yellow
568 arrows and labels) and antibiotic resistance genes (red arrows and labels).

569

570

571 Fig. 3: Map of an integrated region containing multiple mobile genetic elements and resistance genes including the metallo- β -
 572 lactamase gene *bla*_{IMP-27}. The top figure shows the alignment of the contig #2 of the isolate T598A with the host chromosome *E. coli*
 573 CV601; the red box indicates the location where this *bla*_{IMP-27}-bearing region got integrated. The bottom left figure shows the circular

574 form of contig #2 with the integrated region. The bottom right figure is the enlarged integrated region. Red labels/arrows are
575 resistance genes; green labels/arrows are mobile genetic elements (transposon, insertion sequence, integron); orange labels/arrows are
576 genes on the host chromosome adjacent to the integrated region; blue arrows are other functional genes.

577

578

580 Fig. 4: Map of putative prophage regions that were detected on plasmid pT525A (Region 1 & Region 2) and on IncY plasmid pT415A
581 by PHASTER

582