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Abstract 

Dysfunction in learning and motivational systems are thought to contribute to addictive 

behaviours. Previous models have suggested that dopaminergic roles in learning and motivation 

could produce addictive behaviours through pharmacological manipulations that provide excess 

dopaminergic signalling towards these learning and motivational systems. Redish 2004 suggested 

a role based on dopaminergic signals of value prediction error, while Zhang et al. 2009 suggested 

a role based on dopaminergic signals of motivation. Both these models present significant 

limitations. They do not explain the reduced sensitivity to drug-related costs/negative 

consequences, the increased impulsivity generally found in people with a substance use disorder, 

craving behaviours, and non-pharmacological dependence, all of which are key hallmarks of 

addictive behaviours. Here, we propose a novel mathematical definition of salience, that combines 

aspects of dopamine’s role in both, learning and motivation, within the reinforcement learning 

framework. Using a single parameter regime, we simulated addictive behaviours that the Zhang et 

al. 2009 and Redish 2004 models also produce but we went further in simulating the 

downweighting of drug-related negative prediction-errors, steeper delay discounting of drug 

rewards, craving behaviours and aspects of behavioural/non-pharmacological addictions. The 

current salience model builds on our recently proposed conceptual theory that salience modulates 

internal representation updating and may contribute to addictive behaviours by producing 

misaligned internal representations (Kalhan et al., 2021). Critically, our current mathematical 

model of salience argues that the seemingly disparate learning and motivational aspects of 

dopaminergic functioning may interact through a salience mechanism that modulates internal 

representation updating.   
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Introduction 

The ability to adapt behavior in response to the ever-changing environmental contingencies is a 

central component of successful decision-making. Intelligent behavior entails selecting the best 

actions given the information available and the biological constraints on computation in the brain. 

In a world with an abundance of sensory information, animals learn from and use information 

based on a number of key factors, including how well that information predicts the future. The 

Rescorla-Wagner (RW) model of learning is one way this type of cue-outcome associative learning 

can be computed (Rescorla & Wagner, 1972). The central component of the RW model is that 

learning only occurs when there is a prediction-error generated, which occurs when expectations 

of reward (or lack thereof) are violated. The RW model is a simple, yet powerful, way of explaining 

several aspects of learning. However, it has limitations. One limitation is that it cannot explain 

second or higher order conditioning, which is where an associative relationship is formed between 

the second order cue that predicts the first order cue which predicts the outcome. Given that many 

real life forms of learning involve second or higher orders of conditioning (e.g., money is a second 

order predictor of many outcomes like food and shelter), this is an important limitation to 

overcome. Another limitation in the RW model is that each trial is treated as a discrete temporal 

object. In reality, a trial is one part of a continuous sequence of events, including the temporal 

relationship between the cue and the outcome, which is one major determinant of learning. 

Temporal difference reinforcement learning (TDRL) models extend the RW model and overcome 

these two limitations.     
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The TDRL model proposed that agents (animal, robots, or simulations) select actions to 

maximize future reward and minimize future costs (Sutton & Barto, 1998). These models usually 

learn a value function over a finite Markovian decision process (MDP) where certain observations 

are expected to occur in a specific state. These observations could be a cue, a reward, or a cost 

(negative reward). In these models, value is defined as the discounted, expected future reward and 

a value is associated with each state. Based on its observations which predict the state the agent is 

in, agents can select actions that lead to the states with the highest values (high reward, low cost). 

In these models, agents learn and select actions that increase the likelihood of entering states with 

high value while also avoiding entering states with low values. Computing these distinct states and 

values through MDPs allows a simple, yet powerful, way of understanding decision-making 

processes as well as how and why they may go awry (i.e., when animals choose states that do not 

appear to have high values for them and are maladaptive). We specifically define an internal 

representation here as a state-space model within the TDRL framework that the agent can use to 

select actions based on value computations.   

The value of a given state, at time t, can be denoted as 𝑉(𝑆𝑡) and is defined as the sum of 

expected future rewards, discounted by the delay (0 < γ < 1) to the reward: 

𝑉(𝑆𝑡) = 𝐸[𝑟𝑡 +  𝛾1𝑟𝑡+1 +  𝛾2𝑟𝑡+2 +  … |𝑆𝑡] = 𝐸[∑ 𝛾𝑛−𝑡𝑟𝑛
∞
𝑛=𝑡 | 𝑆𝑡]   (1) 

According to this value definition, the further in time the rewards are, the more their values are 

discounted. Importantly, from this definition it directly follows that the value of a given state at 

time t is equal to the immediate reward received in that state plus the discounted value of the next 

state, at time t+1: 
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𝑉(𝑆𝑡) = [𝑟𝑡|𝑆𝑡] +  𝛾𝑉(𝑆𝑡+1)      (2) 

If the two sides of the above equation are not equal, a prediction-error (δ) is generated, which is 

the difference between the two sides of the equation, where the outcome ([𝑟𝑡|𝑆𝑡] +  𝛾𝑉(𝑆𝑡+1)) is 

different from the expected value, (𝑉(𝑆𝑡)). Therefore, the 𝑉(𝑆𝑡) needs to be updated/learnt to better 

reflect the outcome. Hence, equation 2 is simply rearranged to the following, capturing the 

prediction-error: 

𝛿𝑡 =  [𝑟𝑡|𝑆𝑡] +  𝛾𝑉(𝑆𝑡+1) −  𝑉(𝑆𝑡)     (3) 

This prediction-error is used to learn and update the expectation, where the old expectation 

(𝑉(𝑆𝑡)𝑜𝑙𝑑) is updated to the new expectation  (𝑉(𝑆𝑡)𝑛𝑒𝑤) as below: 

𝑉(𝑆𝑡)𝑛𝑒𝑤 = 𝑉(𝑆𝑡)𝑜𝑙𝑑 +  𝛼𝛿𝑡      (4) 

where α is the learning rate, a number between 0 and 1. Importantly, within this framework, if the 

prediction-error is 0, there is no learning/updating of the state value and the new value is identical 

to the old value. However, if there is a positive prediction-error (i.e., the outcome was better than 

expected), the value of the state is increased. Therefore, actions that lead to that high value state 

will be reinforced. But, if the prediction-error is negative, that is, the outcome is worse than 

expected, then the actions leading to this low value state are downregulated. In this way, 

prediction-errors can be useful ways of constantly learning and updating cue-outcome 

relationships, by reinforcing actions that lead to states with high values. The main point here is 

that positive prediction-errors reinforce actions through value increase, but negative prediction-

errors downregulate actions through value decrease.    

Since learning in these models depends entirely on prediction-error, both the RW and the 

TDRL models, cannot account for the concept of latent inhibition. This is where pre-exposure to 
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cue A (with no outcome) in phase 1, delays the later learning of the relationship where cue A 

predicts outcome in phase 2 (Lubow & Moore, 1959). The RW model incorrectly predicts that pre-

exposure to cue A should not impact learning in phase 2. Latent learning (i.e., learning without an 

explicit outcome) is a key component in optimizing behavior (Tolman, 1948), and that the RW 

model cannot explain this, is a significant limitation. To address this limitation, the concept of cue 

salience was added to the RW model (Mackintosh, 1975; Pearce & Hall, 1980). The cue salience 

models argued that the pre-exposure reduced the salience of the cue because it had no value in 

predicting the outcome in phase 1, and so it should take longer to learn as the salience needs to be 

increased after the repeated pairings of cue A and outcome in phase 2. At its core, the cue salience 

models suggested an attentional weighting mechanism for cues depending on the salience, which 

one could expect to also influence learning/updating rather than just the expectation of the 

outcome. The larger the salience, the greater updating of the internal representation, i.e., learning. 

We recently proposed a conceptual theory suggesting that aberrations in these cue 

salience/attention weighting mechanisms could play a role in explaining some learning and 

decision-making aspects in addictive-like behaviors (Kalhan et al., 2021). We proposed that a 

consequence of drug cues gaining a high salience is asymmetric learning, where a misaligned 

internal representation is formed, and this misaligned internal representation is then used to 

produce maladaptive drug-related behaviors. Using this concept, the primary aim of the present 

paper is to add a cue salience weighting mechanism to the TDRL model, conceptually similar to 

how a salience factor was added to the RW model (Mackintosh, 1975; Pearce & Hall, 1980), such that 

learning is also influenced by the cue itself and not only the outcome. In so doing, we propose a 

neural computation that produces key aspects of addictive behaviors.  
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The Redish (2004) model attributed addictive behaviors to reinforcement learning 

computations gone awry. It combined two key concepts. The first concept was built on the 

hypothesis that the prediction-error term is encoded within dopaminergic cell firing in the ventral 

tegmental area (Schultz et al., 1997). The second key concept was that many drugs of abuse release 

dopamine, either directly or indirectly (Nutt et al., 2015; Ritz et al., 1987). Therefore, Redish 

(2004) proposed that actions that lead to drug-receiving states produce a positive prediction-error 

on drug receipt due to an increase in dopaminergic activity from the drug, which cannot be 

compensated for, under normal reinforcement learning processes. As a result, the value of these 

drug states continues to increase, reinforcing both drug-seeking and drug-taking actions. Redish 

(2004) proposed a modified prediction-error equation based on the drug’s non-compensable 

dopamine release (ncDA): 

𝛿𝑡 = max {[𝑟𝑡|𝑆𝑡] +  𝛾𝑉(𝑆𝑡+1) −  𝑉(𝑆𝑡) +  𝑛𝑐𝐷𝐴(𝑆𝑡+1), 𝑛𝑐𝐷𝐴(𝑆𝑡+1)}   (5) 

Using this prediction-error equation, Redish (2004) demonstrated via simulations that agents built 

based on this equation are less likely to choose a non-drug option over a drug option of the same 

reward magnitude to reduce drug-seeking actions, the non-drug rewards need to be of greater 

magnitude than the drug rewards. In this model, the more times the agent took the drug action, the 

greater the alternative non-drug reward needed to be to decrease drug-seeking actions. 

Additionally, agents demonstrated inelasticity in that they increasingly became less sensitive to 

costs the more drug actions they took. Overall, these simulations suggested that the non-

compensable dopamine release by drugs, causing constant positive prediction-errors, may be one 

possible way in which drug-seeking actions are continually reinforced in some people with 

substance use disorders. 
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 Another influential account of dopamine’s involvement in addiction is the incentive 

salience account (Robinson & Berridge, 1993). According to that account, dopamine is a driver of 

addictive behaviors through its role in triggering motivational ‘wanting’, and less so due to its role 

in learning. The key idea here is that repeated exposure to drugs causes dopaminergic circuits that 

attribute salience towards drug predictive cues to become hypersensitized (Robinson & Kolb, 2004; 

Singer et al., 2009; Steketee & Kalivas, 2011). As a result, drug predictive cues have a high salience 

value when encountered, triggering a strong motivational ‘wanting’ of drugs and increasing the 

persistence in drug-seeking actions. More recently, (Zhang, Berridge, Tindell, Smith, & Aldridge, 2009) 

proposed a neurocomputational account for this theory. The authors proposed that when a drug 

cue with high salience is paired with a given reward, the high salience makes that reward more 

reinforcing than it normally would. Mathematically, the authors proposed the following equation: 

𝑉(𝑆𝑡) =κ[𝑟𝑡|𝑆𝑡] +  𝛾𝑉(𝑆𝑡+1)      (6) 

where, κ is a salience factor that can dynamically modulate the value computation of a given state. 

Here, a higher salience would mean a greater value increase towards that state, and in this way, 

agents persist in drug-seeking behaviours.  

Critically, both the Redish (2004) and the Zhang et al., (2009) models suggest that drug 

states have higher values that lead to the persistence in drug-seeking behaviours. The Redish 

(2004) model suggests that the value increase is incremental, through prediction-error induced 

learning. The Zhang et al., (2009) model has an added salience factor which can be dynamically 

modulated through physiological changes, and can thus account for fast, dynamic fluctuations in 

behaviour, without incremental relearning.  
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   Both models present limitations. Critically, the Zhang et al., (2009) model does not 

mathematically define the salience factor, and how it may be generated within the model itself. 

Therefore, the agents simply behave as if reward is increased multiplicatively. For example, if the 

salience is 2, and reward is 5, the agent will act identically to if the reward was 10. However, 

addictive drugs are not necessarily more ‘rewarding’. In fact, they come with great negative 

consequences (i.e., poor health). Second, the model does not account for negative prediction-errors 

or drug related costs. For example, if the drug cue, which has a high salience, is followed by an 

unexpected cost (negative reward prediction-error), it would make the cost greater than it is. This 

should greatly decrease the value of drug states, and the agent should be much less likely to persist 

in drug-related behaviours compared to any other behaviour with a lower salience. Of course, 

people with substance use disorders often find drug-seeking actions difficult to decrease, and many 

are compulsive in their behaviours, where drug states are less sensitive to devaluation (Everitt & 

Robbins, 2005, 2013; Lüscher et al., 2020).  

A limitation of the Redish (2004) model is that it cannot account for the cue-triggered 

dynamic fluctuations in behaviour, because any changes would have to be from the incremental 

relearning of value. Furthermore, equation (5) as written does not allow delta to be negative, even 

for non-drug rewards – if ncDA=0 then the minimum delta would be 0.  Later studies by that 

laboratory proposed that extinction (lack of delivered reward) occurs via a different process 

(Redish et al 2007), but dopamine does decrease in real paradigms (Abraham et al., 2014; Schultz 

et al., 1997), so processes need to be in place for fluctuations in dopamine in both positive and 

negative prediction-errors, which will thus require a modification of equation (5). Further, neither 

model has addressed the increased impulsivity, seen as a specifically steeper delay discounting of 

drug rewards.  This steeper delay discounting is a hallmark deficit consistently found in people 
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with substance use disorders and is even used as a biomarker for addictive behaviours (Bickel et al., 

2014; Madden & Bickel, 2010). Additionally, the two models do not account for craving behaviours, 

which is also not commonly accounted for in many models of addiction (but see a recent review 

by Mollick & Kober (2020)).      

 To address these limitations, we propose a new neurocomputational model for addictive-

like behaviours, which is a partial combination of the two models, with a novel mathematical 

definition of salience. Specifically, we aimed to produce a model where 1) salience is 

mathematically defined within the reinforcement learning framework, 2) the salience factor can 

account for sudden cue-triggered fluctuations in behaviours, 3) negative prediction-errors are also 

accounted for within the model, 4) the hallmark deficit of steeper delay discounting for drug 

rewards is accounted for, and 5) the model can also explain some craving behaviours, all of which 

can be induced to the agents mathematically within a single parameter regime.  
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METHODS 

We start from a modification to the Redish (2004) model when calculating the prediction-error, 

where if the agent received a non-drug reward (ncDA = 0), the normal TDRL formula would be 

used: 

𝛿𝑡 =  {
max {[𝑟𝑡|𝑆𝑡] +  𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡) +  𝑛𝑐𝐷𝐴(𝑆𝑡+1), 𝑛𝑐𝐷𝐴(𝑆𝑡+1)} if 𝑛𝑐𝐷𝐴 >  0 (drug delivery)

[𝑟𝑡|𝑆𝑡] +  𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡) if 𝑛𝑐𝐷𝐴 =  0 (non-drug)
  (7) 

Because of this modification, less-rewarding-than-expected non-drug rewards can now provide 

negative prediction-errors, which was not possible under the original Redish (2004) formula.  

We then mathematically define salience, κ, as:  

κ𝑡 = 1 + log [(𝛿𝑡 + 𝛿𝑡̅) 2 + 1] +  1 𝐷(1+ 𝛿̅𝑡)2
⁄      (8) 

where, D is the delay to the reward. In the first component of the equation (log [(𝛿𝑡 + 𝛿𝑡̅) 2 + 1]), 

a high average prediction-error (𝛿̅) state will place more salience on the positive prediction-errors, 

and at the same time a lower salience on negative prediction-errors. The second component 

(1 𝐷(1+ 𝛿̅𝑡)2
⁄ ) models the role of delay discounting in salience as salience being inversely 

proportional to time/delay. Additionally, the greater the average prediction-error (𝛿̅), the lower the 

salience placed on the delay. We then use this salience factor to update the internal representation 

multiplicatively: 
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𝑉(𝑆𝑡)𝑛𝑒𝑤 = 𝑉(𝑆𝑡)𝑜𝑙𝑑 +  𝛼𝛿𝑡κ𝑡      (9) 

Here, value updates are proportional to the salience, and importantly, salience is a modulator of 

these internal representation updates, hence, if the prediction-error is 0, there is no effect of 

salience.   

World states were implemented as Markovian processes wherein an agent transitions from 

one state to the next at time t+1, with a given transition probability matrix (Sutton & Barto, 1998). 

Importantly, in all simulations, state 1 is an inter-trial interval state (ITI) which is made up of many 

different states that the agent can go back to (at random) after having completed a trial. Because 

all simulations used a micro-agent model (Kurth-Nelson & Redish, 2009; Redish, 2004) where one 

agent (macro-agent) consisted of 100 micro-agents that differ in their discounting factor (γi), 

prediction error is distributed across that ITI, slowing down cyclical learning (Kurth-Nelson & 

Redish, 2009; Redish, 2004). Discounting factors γi were randomly assigned to each micro-agent 

from a uniform distribution with factors between 0 and 1. Each micro-agent computed its own 

prediction-errors and state value updates based on their discounting factor, with the decisions made 

by the macro-agent based on these individual value updates (benefit; B, eq 10) using the softmax 

function (eq 11): 

𝐵𝑖(𝑎, 𝑡) = 𝑟(𝑡) + 𝑉(𝑠𝑡+1)      (10) 

Where, 𝐵𝑖(𝑎, 𝑡) is the benefit of taking action a at time t, for micro-agent i, 𝑟(𝑡) is reward at time t 

and 𝑉(𝑠𝑡+1) is the value of the next state (the state reached at time t+1), given action a is taken. 

Each micro-agent performs this benefit calculation individually, which are then averaged across 

all the micro-agents, and this average is taken as the averaged benefit of taking action a by the 
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macro-agent, 𝐵̅(𝑎). Decisions were made by the macro-agent. The probability of taking each 

action is computed using the softmax action selection function:  

  𝑝(𝑎, 𝑡) =  
𝑒𝐵̅(𝑎,𝑡)∗𝛽

∑ 𝑒𝐵̅(𝑎,𝑡)∗𝛽
𝑎𝜖𝐴

      (11) 

Where, 𝑝(𝑎, 𝑡) is the probability of taking action a at time t, and 𝛽 is the inverse temperature 

(where 𝛽 = 0 provides random responding and 𝛽 = 1 always takes the action with the greatest 

benefit).  

Finally, we repeated each simulation 10 times, each with a different set of 100 micro-agents 

to capture any variability due to differences in the average discounting factor. The parameters of 

the learning rate (α) used was 0.05 and inverse temperature (β) was 0.5, in all simulations, unless 

stated otherwise. All simulations were done using MATLAB-2017b, with figures generated using 

RStudio (version 4.1.2). See supplementary materials for additional details of each simulation.  

 

Justification of modelling choices 

Modelling asymmetrical learning from positive and negative prediction-errors 

The definition of salience proposed here, particularly the first component (log [(𝛿𝑡 +  𝛿𝑡̅) 2 + 1]), 

builds on the findings of Frank et al., (2004) showing that when people with Parkinson’s disease 

were on dopaminergic medication (i.e., they were in a high dopamine state), they learned more 

from positive feedback than from negative feedback. This phenomenon is very similar to the 

learning behaviours generally observed in people with substance use disorders being more 

sensitive to the positive outcomes and less sensitive to negative outcomes. Given that most drugs 
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of abuse release dopamine (Nutt et al., 2015), a consequence of drug taking may be to drive the 

agent into a high dopaminergic state (high 𝛿̅). Linking this with the Redish (2004) model, a 

consequence of the ncDA release from drugs is a constant positive prediction-error. Therefore, we 

added a factor which is calculated based on the prediction-error, and that is the average prediction 

error (𝛿̅). The higher the average prediction-error, the higher the dopaminergic state that the agent 

is in, caused by the ncDA release from the drug. Therefore, a high average prediction-error, 

encoding a high dopamine state, will also attribute increased salience to positive prediction-errors 

and at the same time, attribute less salience to negative prediction-errors, as in equation (8). As a 

result of this asymmetric salience attribution, there will be less learning/updating from negative 

prediction-errors, but more so from positive prediction-errors. Therefore, using our salience 

formula, we can mathematically capture the phenomenon observed by Frank et al., (2004) where 

there is asymmetric learning from positive and negative feedback depending on the dopaminergic 

state.   

 

Modelling steeper discounting for drug rewards  

The next aim was to account for the steeper delay discounting for drug rewards found in people 

with substance use disorder, which speaks to the second component of equation 8 (1 𝐷(1+ 𝛿̅𝑡)2
⁄ ). 

The temporal construal theory by Trope et al., (2003) suggested that things further in time are 

discounted because they have a reduced concreteness, where the future has a higher level construal 

and is represented more abstractly. The future also has increased uncertainty. Accounting for these 

factors produces increased discounting of reward values as time to reward increases (Madden & 

Bickel, 2010). Equation 7 accounts for this phenomenon through the discounting factor (γ), which 
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reduces the value of rewards that are further away in time. Interestingly, when the future is made 

more precise and is concretely represented via episodic future thinking, by reminding participants 

what they will be doing that day in the future, discounting is less steep (Peters & Büchel, 2010). 

Koffarnus et al., (2013) suggested that this may occur due to an increased salience in the future 

event representation. Therefore, one interpretation of why future rewards are discounted more is 

that the future has less salience than the present, suggesting that salience is inversely proportional 

to the delay (D), which we thus added as a component in our salience formula. However, we 

wanted to link this with addiction and the increased dopamine state caused by the high average 

prediction error (𝛿̅). Pine et al., (2010) found that when human participants were given L-dopa, 

which increases dopaminergic levels, they discounted faster compared to when they were given a 

placebo drug. The Niv et al., (2007) theory of opportunity costs suggested via simulations that the 

greater the average reward rate for the animal (which is when there is a high average prediction 

error and dopaminergic state), the greater the vigor with which the animal responds to 

opportunities. This idea has since been demonstrated experimentally in humans (Beierholm et al., 

2013). The reasoning for this positive correlation between reward rate and vigor was suggested to 

arise because the cost of not acting (or of acting slowly, i.e., with less vigor) is higher in a reward-

rich environment. This suggests that discounting may also be steeper for delayed rewards when 

the animal is in a rich environment. Further, Ballard et al., (2015) found that in people with a 

methamphetamine dependence, the lower the dopamine receptor D2/3 availability, the steeper the 

rate of discounting. Overall, these accounts suggested that the higher the dopamine levels, the 

steeper the discounting, and therefore the high average prediction-error produced steeper 

discounting in our model, through modulating the salience placed on the delay. The higher the 

average prediction-error, the less the salience is placed on the delay, and the steeper the 
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discounting. Importantly, this steeper discounting effect for drug rewards was a consequence of 

the model as opposed to being built into the model, as we did not directly manipulate the 

discounting factor (γ) to produce this effect.   

 

Modelling hyperbolic instead of exponential delay discounting of drug and non-drug rewards  

The primary motivation for using the model with micro-agents instead of a more traditional 

reinforcement learning model (with one agent) was to produce hyperbolic delay discounting of 

rewards (instead of exponential) which is closer to how biological agents discount delayed rewards 

(Madden & Bickel, 2010). The basic reinforcement learning equation (Eq. 7) discounts delayed 

rewards exponentially, however, a distribution of these exponentially discounting agents produces 

hyperbolic discounting (Kurth-Nelson & Redish, 2009). Moreover, a distribution of differentially 

weighted prediction-errors are likely encoded in a distribution of dopaminergic neurons that 

encode a reward prediction-error (Dabney et al., 2020), with a distribution of discounting factors 

possibly encoded in a gradient-like manner within the striatum (Onoda et al., 2011; Tanaka et al., 

2004; W. Wei et al., 2021).  

 

Methods Summary 

In the results section, we will compare how the Redish 2004 model, the Zhang et al. 2009 model, 

and our current model react to various state space contingencies under drug and non-drug rewards.  

We will refer to our current model as a Salience Misattribution Model for Addiction (SMMA). 

Table 1 shows the equations used for each model. 
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Redish 2004 Prediction-error (δ): 

𝛿𝑡 = max {[𝑟𝑡|𝑆𝑡] +  𝛾𝑉(𝑆𝑡+1) −  𝑉(𝑆𝑡) +  𝑛𝑐𝐷𝐴(𝑆𝑡+1), 𝑛𝑐𝐷𝐴(𝑆𝑡+1)},  

where ncDA = 0 if non-drug reward delivery and ncDA > 0 if drug reward delivery  

Value update: 

𝑉(𝑆𝑡)𝑛𝑒𝑤 = 𝑉(𝑆𝑡)𝑜𝑙𝑑 +  𝛼𝛿𝑡 

Zhang et al. 

2009 

Prediction-error (δ): 

𝛿𝑡 =  [𝑟𝑡|𝑆𝑡] ∗ 𝜅 +  𝛾𝑉(𝑆
𝑡+1

) −  𝑉(𝑆
𝑡
),  

where κ = 1 if non-drug reward delivery and κ > 1 if drug reward delivery  

Value update: 

𝑉(𝑆𝑡)𝑛𝑒𝑤 = 𝑉(𝑆𝑡)𝑜𝑙𝑑 +  𝛼𝛿𝑡 

SMMA Prediction-error (δ): 

𝛿𝑡 =  {
max {[𝑟𝑡|𝑆𝑡] +  𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡) +  𝑛𝑐𝐷𝐴(𝑆𝑡+1), 𝑛𝑐𝐷𝐴(𝑆𝑡+1)} if 𝑛𝑐𝐷𝐴 >  0 (drug delivery)

[𝑟𝑡|𝑆𝑡] +  𝛾𝑉(𝑆𝑡+1) −  𝑉(𝑆𝑡) if 𝑛𝑐𝐷𝐴 =  0 (non-drug)
 

Salience (κ): 

κ𝑡 = 1 + log [(𝛿𝑡 +  𝛿𝑡̅) 2 + 1] +  1 𝐷(1+ 𝛿̅𝑡)2
⁄  

Value update: 

𝑉(𝑆𝑡)𝑛𝑒𝑤 = 𝑉(𝑆𝑡)𝑜𝑙𝑑 +  𝛼𝛿𝑡κ𝑡 

Abbreviations:  𝛿𝑡 = prediction error at time t, 𝑟𝑡 = reward at time t, 𝑆𝑡 = state at time t, 𝛾 = discounting factor, V = value, ncDA 

= non-compensable dopamine, κ𝑡 = salience a time t, 𝛼 = learning rate. 

 

RESULTS 

Increased salience on drug cues 

Owing to a higher salience, drug cues generally show larger reinforcing effects on behaviour than 

cues leading to non-drug rewards (Adinoff, 2004; Carter & Tiffany, 1999; Lubman et al., 2000, 2007, 

2008, 2009). In reinforcement learning models, these effects are hypothesized to arise from the 

differences in their effects on value updates and prediction-errors. The Redish 2004 model does 

not have a salience factor. However, it produces unbounded value increase towards drug states 
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(Figure 1e) due to the non-compensable positive prediction-errors that drugs create (Figure 1f). 

The Zhang et al. 2009 model does have a salience factor, and, increasing salience, without 

changing the delta equation, accelerates learning – but does not change the value plateauing or 

prediction-error reaching zero (Figure 1h and 1i). The SMMA model, however, includes both of 

these effects: accelerated learning as the salience increases, and an always-positive prediction-

error, which causes the value update to increase without bound (Figure 1k-o). In the SMMA model, 

these effects interact - the salience accelerates the unbounded value update, due to being multiplied 

by the prediction-error and causing a greater value update, with a greater salience. 
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Figure 1. Drug and non-drug reward value and prediction-errors based on the Redish 2004, Zhang et al. 2009 and 

the SMMA models. a) The state space for the Redish 2004 model, for non-drug rewards where ncDA = 0 and r = 5 at 

state 3 (S3). The value and delta from the cue state, state 2 (S2), is plotted using this model. b) value (y-axis) and the 

number of trials (x-axis) for non-drug rewards using the Redish 2004 model. c) the non-drug reward prediction-error 

(y-axis) and the number of trials (x-axis). d) the state space for the Redish 2004 model, for drug rewards where ncDA 

= 0.5 and r = 5 at S3. e) unbounded value increase from drug rewards due to ncDA > 0, caused by the f) constant 

positive prediction-errors from drug rewards. g) The state space for the Zhang et al. 2009 model, with cue salience 

from S2 multiplied by the reward at S3. h) as the salience increases, so does the magnitude of the prediction-errors, 

but it eventually reaches 0. i) as the salience increases, the value also increases, but plateaus (e.g., if r = 5, and salience 

= 2, value will plateau at 10). j) The state space used for the SMMA model, for non-drug rewards where ncDA = 0 

and r = 5 at S3. The value and delta from the cue state, state 2 (S2), is plotted using this model. k) as salience increases 

value increase accelerates and l) prediction-errors reduces faster, but both plateau at the same point, irrespective of 

the salience. m) the state space for the SMMA model, for drug rewards where ncDA = 0.5 and r = 5 at S3. n) value 

increases without bound for drug rewards, and increasing salience accelerates this value increase. o) the increase in 

salience accelerates prediction-error learning but plateaus at the same point (above 0), irrespective of salience.                   

 

Lever presses for drug rewards  

Reward predicting cues, including drug cues, generally have high salience, and as a result reinforce 

behaviours that lead to them (e.g., lever presses for a reward following the presentation of a reward 

predicting cue) (Domjan, 2014; Flagel et al., 2009; Uslaner et al., 2006). Here we simulated this 

effect of cue salience on pressing a lever for a drug or a non-drug reward using the Zhang et al. 

2009 model, Redish 2004 model, and the current SMMA model (Figure 2). A key component of 

the Zhang et al. 2009 model was that as salience increases for drug cues, so does the proportion of 

drug actions, and that this is dynamic, without any further learning. The Redish 2004 model does 

not have a salience factor, and any increases in drug behaviours using this model is through the 

incremental unbounded value increase by changing the delta equation, not through any changes in 

salience, which is why there is a flat line produced when simulating the effect of changing salience 

using the Redish 2004 model (Figure 2; red line). However, the SMMA model is able to simulate 

the increased lever presses for drugs through changes in the salience factor itself, just as is the case 

in the Zhang et al. 2009 model. In both simulations, using the Zhang et al. 2009 and the SMMA 

model, all parameters, except the salience factor, remained the same. Therefore, the increase in 
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lever presses is caused by the dynamic salience factor itself, and not changes in reward value for 

the drug.  

However, the Zhang et al. 2009 and the SMMA models produce this salience-related effect 

in different ways. The Zhang et al. 2009 model produces this through salience being multiplied by 

the reward, so the agent acts as if the reward itself is increased and therefore presses the lever more 

as salience is increased. The SMMA model produces this result through salience being multiplied 

by the constant positive prediction-errors due to the drug reward (the ncDA factor). Therefore, as 

salience is increased in the SMMA model, the weight placed on positive prediction-error is greater 

and that causes a greater value update and increases in lever presses for the drug reward. A critical 

conceptual difference between the two models is that the SMMA model predicts that increases in 

drug behaviours are due to the salience modulating the prediction-errors, but the Zhang et al. 2009 

predicts that this is instead due to the salience increasing the magnitude of drug rewards.    
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Figure 2. The effect of salience on lever presses for drug rewards. Agents choose between action a1 which led to a 

non-drug reward, delivered in state 4 (S4) or action a2 which led to a drug reward, delivered in S5.  a) the state space 

used for the SMMA model simulation, where the salience is applied at the cue state (S3), prior to the drug reward (S5) 

which is r = 5 and the ncDA = 0.5. The non-drug reward is on S4, where r = 5 and ncDA = 0. b) the state space used 

for the Zhang et al. 2009 model, salience (k = 2) is applied to the reward state (S5), representing the drug reward and 

k = 1 for non-drug reward. The Redish 2004 model does not have a salience factor, and therefore, has no change in 

behaviour with increasing salience. Both the Zhang et al. 2009 and the SMMA models produced increase in lever 

presses for the drug rewards (increase in action a2), as the salience was increased.   

 

 

 Modelling probability of taking drug actions given contrasting non-drug rewards  

A key component of the Redish 2004 model is that the more drug actions the agent takes, the 

greater the contrasting non-drug reward needs to be in order to reduce the number of drug actions 

(i.e., the later the stage of addiction, the more difficult it is to choose to abstain through contrasting 
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non-drug rewards). This arises in the Redish 2004 model (Figure 3b) because the value increase is 

unbounded due to the non-compensable dopamine. This effect does not arise in the Zhang et al. 

2009 model because the value plateaus and the prediction-error reaches zero (Figure 3d). However, 

the SMMA model does produce this effect, due to the inclusion of the non-compensable dopamine 

component (Figure 3f). In the SMMA model, however, the salience factor interacts with the non-

compensable dopamine signal and produces a sharper sigmoid shape (larger beta), and a larger 

mean of the sigmoid, indicating that a higher contrasting non-drug reward is required to decrease 

the probability of taking the drug action. Importantly, this interaction between the salience and the 

ncDA factor accelerates the transition towards the later stages of addiction, where an increasingly 

greater non-drug reward is required to reduce the probability of taking the drug action. The SMMA 

model therefore predicts that the progression towards addictive behaviours may be accelerated 

through this interaction between the high salience for drug cues and the drug dopamine-related 

positive prediction-errors.   

 

Figure 3. Modelling probability of taking drug actions given contrasting non-drug rewards. In all models, action a2 

lead to a non-drug reward, delivered at state 5 (S5) and action a1 lead to the drug reward, delivered in S4. a) The state 

space used for the Redish 2004 model, where drug reward is represented as r = 5 and ncDA = 0.5, and non-drug reward 

has ncDA = 0. b) as the contrasting non-drug reward was increased, the probability of drug actions (action a1) also 

decreased. As the number of drug actions taken increases, the contrasting non-drug reward also needs to be increased 

to reduce the probability of taking the drug action. c) The state space used for the Zhang et al. 2009 model, where drug 

reward is represented as r = 5 and salience (k) = 2, and non-drug reward with salience = 1. d) as the non-drug 
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contrasting reward is increased, the probability of drug actions decreases, however, the number of drug actions taken 

do not influence the amount of contrasting non-drug rewards needed to reduce the probability of drug actions. e) The 

state space used for the SMMA model, where drug reward is represented as r = 5 and ncDA = 0.5, and non-drug 

reward has ncDA = 0. f) similar to the Redish 2004 model, as the contrasting non-drug reward increases, the 

probability of drug actions (action a1) decreases under the SMMA model. Additionally, ss the number of drug actions 

taken increases; the contrasting non-drug reward needed to reduce the probability of taking the drug action increases. 

In the SMMA model, the salience and the ncDA factors interact to accelerate this effect.  

 

Developing inelasticity over time  

One of the hallmarks of drug addiction is that people become inelastic to costs over time (Madden 

& Bickel, 2010). Importantly, while they become more willing to pay high costs for drugs, people 

with substance use disorders do remain sensitive to those costs, choosing the lower cost options 

when available (Carroll, 1993). This increased inelasticity to costs over time is captured in the 

Redish (2004) model due to the unbounded value increase from the ncDA factor (Figure 4b). 

Increased inelasticity over time is not captured in the Zhang et al. (2009) model due to the value 

plateauing and prediction-error reaching zero (Figure 4d). However, the SMMA model does 

produce this developing inelasticity effect over time (Figure 4f). Interestingly, the two effects of 

salience and the ncDA factor, synergize in the SMMA model to create an even less steep elasticity, 

because the salience factor accelerates the increase in value for drug rewards, requiring a larger 

cost to reduce drug actions. The SMMA model therefore predicts that a greater salience towards 

drug cues could interact with drug dopamine to accelerate the development of inelasticity towards 

drug-related costs, and as a result there is a persistence in drug behaviours, even when presented 

with large costs.      
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Figure 4. Simulating the development of inelasticity to costs overtime. In all model simulations, the state space was 

such that action a2 would lead to a given cost in state 3 (S3) but also the drug reward is S5. Action a1 would avoid 

this cost but would also forgo the drug reward. a) The state space for the Redish 2004 model, drug reward is given in 

S5 where r = 5 and ncDA = 0.5. b) the Redish 2004 shows that agents are sensitive to costs, as greater costs reduces 

the probability of taking the drug actions, and overtime, as the agents takes more drug actions, they become less 

sensitive to these costs (develop inelasticity). c) the state space using the Zhang et al. 2009 model where drug reward 

is given in S5 where r = 5 and salience (k) = 2. d) the Zhang et al. 2009 model simulates that as the costs increases, 

the probability of drug actions reduces, however this is not influenced by the number of drug actions taken, and the 

development of inelasticity overtime effect is not produced using this model. e) the state space model for the SMMA 

model, where drug reward is given in S5, where r = 5 and ncDA = 0.5. f) The SMMA model also shows that agents 

are sensitive to costs and become increasingly less sensitive as the number of drug actions they take increases. This is 

similar to the Redish 2004 model, however in the SMMA model the ncDA and the salience factors interact to 

accelerate this inelasticity effect.                

 

Salience attribution on negative and positive prediction-errors using the current SMMA model 

People with substance use disorders often continue using drugs despite extreme negative 

outcomes. This is often a large component in defining substance use dependence (Diagnostic and 

Statistical Manual of Mental Disorders (5th Ed.), 2013). In the SMMA model, negative prediction 

errors have a reduced salience prior to reaching drug states, especially when compared to before 

reaching non-drug states (Figure 5g). The opposite is true for positive prediction-errors, which are 

weighted with more salience compared to the positive prediction-errors prior to reaching non-drug 

reward states (Figure 5i). Therefore, if the agent is in a high dopamine state, the cost that occurs 

before reaching the drug state is downweighted, and the reward is overweighted. These effects 

makes the agent more likely to take actions leading to the drug state. This asymmetric learning 
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effect cannot be produced using the Zhang et al. (2009) model as negative and positive rewards 

are weighted equally in salience (Figure 5c and 5e). It also cannot be produced using the Redish 

(2004) model as there is no salience factor and the model cannot produce a negative prediction-

error, for either drug and non-drug rewards (Figure 5b and 5d).   

In the SMMA model, this asymmetric internal representation updating effect arises from 

the average prediction-error being greater for drug-related rewards than for non-drug related 

rewards. An increased average prediction-error is driven by the continual positive prediction-errors 

caused by the ncDA factor. With a greater average prediction-error, the salience on the negative 

prediction-error is downweighted and overweighted on the positive prediction-error.  

Another factor influencing salience weights is that the negative prediction-error is slightly 

lower for the drug-related negative prediction-error (Figure 5f) but greater for the positive 

prediction-error (Figure 5h). This is also caused by the ncDA factor, where the drug states have a 

constant positive prediction-error and so any prediction-error is using this positive-prediction error 

as the starting point and causes the negative prediction-error to be less negative and positive 

prediction-errors more positive for drug rewards because it starts at a prediction-error already 

above 0. Overall, the positive ncDA for drugs has two consequences; 1) it produces a greater 

average prediction-error for drug-states, and this causes the different weights placed on the 

salience of negative and positive prediction-errors under our salience formula and 2) it produces a 

positive baseline prediction-error for drug states, causing different magnitudes in the prediction-

errors. Together, these factors explain a reduced salience and updating from any negative 

prediction-errors in drug states but at the same time, an increased salience on any positive 

prediction-errors in drug related states. Importantly, this produces a misaligned internal 
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representation where the agent learns/updates more from positives, but downweights the negatives 

prior to receiving the drug reward.  

 Going further, we simulated whether the average prediction-error factor alone could 

influence the salience placed on positive and negative prediction-errors, without any influence of 

ncDA. Figure 6 shows the salience placed on a prediction error of +5 and -5. As modelled using 

our mathematical definition of salience (equation 8), positive prediction-error has more salience 

as the average prediction-error increases. And the opposite is true for the negative prediction-error, 

which has less salience, as the average prediction-error increases. Therefore, the SMMA model, 

with its mathematical salience definition, is not dependent on the ncDA factor alone to produce 

these misaligned internal representations, but any factor that increases the average prediction-

errors. The ncDA factor is one possible way in which drugs can increase the average prediction-

error and cause this salience misattribution effect, but not the only possible factor. 
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Figure 5. Weighting positive and negative reward prediction-errors from drug-related and non-drug rewards. a)  the 

state space used for all three models used for the simulation. The agent gets a cue in state 2 (S2) and then a non-drug 

reward or cost in S3, which is where the positive or negative prediction-error is generated, and all plots are from this 

state. S4 is another cue state, and in state 5 agents either receive the drug or the non-drug reward. b) the drug-related 

and non-drug negative prediction-error using the Redish 2004 model. Because the minimum prediction-error allowed 

under the Redish 2004 model is 0, there is no negative prediction-error produced here for both drug-related and non-

drug related rewards. c) the drug-related and non-drug negative prediction-error under the Zhang et al. 2009 model. 

Due to the drug-related reward having a greater salience, negative prediction-errors here are more negative for drug-

related rewards than for non-drug rewards. d) and e) the positive prediction-errors from both drug-related reward and 

non-drug reward using the Redish 2004 and the Zhang et al. 2009 model, respectively. Both models have higher 

positive prediction-errors for drug-related rewards than for the non-drug reward. f) drug-related and non-drug negative 

prediction-errors using the SMMA model. Non-drug negative prediction-error is more negative for than for drug-

related reward. g) the salience placed on the drug-related negative prediction-error is lower than the salience placed 

on the non-drug negative prediction-error. h) drug-related and non-drug positive prediction-errors using the SMMA 

model. Drug-related positive prediction-error is more positive than non-drug. i) the salience placed on drug-related 

positive prediction-errors are greater than the salience placed on the non-drug positive prediction-errors.  

 

 

 

 

Figure 6. The effect of increasing average prediction-error on the salience placed on positive and negative prediction-

errors. The salience placed on negative and positive prediction-errors as the average prediction-error increases. The 

greater the average prediction-error, the more salience on the positive, and less on negative. Therefore, as an agent is 

in an increasingly high dopamine state (high positive prediction-error rate), positives are used more to update the 

internal representations and the negatives are used less to update the internal representation. PE = prediction-error. 
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Reversal learning with drug and non-drug rewards 

Aberrations in reversal learning tasks are generally found in people with substance use disorder 

(Verdejo-Garcia et al., 2018). Here, we tested all three models in a reversal learning simulation, 

with the non-drug cost/reward given prior to the drug reward or another non-drug reward. The 

state-space model (Figure 7a-b) here was designed to simulate a situation where prior to receiving 

the drug-reward, the agent would either get a cost or a reward, which is reversed after several trials, 

but the drug reward itself would not be reversed (i.e., the model changes the pre-signal for drug-

seeking where if you now get punished instead of rewarded for taking the drug actions, do you 

switch your behaviour towards the non-drug action?). Negative consequences of drug-seeking are 

generally more prominent in later stages of addiction (Brand et al., 2016, 2019; Robinson & Berridge, 

1993), and as a result we started this simulation with drug-seeking being rewarded (e.g., the initial 

social reward), and then reversed to now being preceded with a cost.   

All three models demonstrated a higher probability of getting a reward and repeating this 

rewarding action (win-stay) if that reward was followed by a drug reward, compared to if it was 

followed by another non-drug reward (Figures 7f-h). This is due to the drug states having a higher 

value in all three models, compared to the non-drug states. The SMMA model has the highest win-

stay probability for drug states, compared to the other models for two reasons, 1) the reward prior 

to the drug reward is overweighted in salience and therefore has a greater positive prediction-error 

and value update, and 2) the ncDA and the salience factors interact to accelerate the value increase 

of the drug state. In the Zhang et al. 2009 model, only the drug reward is increased in salience, and 

the reward preceding this is not changed in magnitude. The Redish 2004 model also treats the 

reward prior to the drug reward to be unchanged in magnitude, even as the drug state increases in 

value, due to the ncDA factor. Therefore, a critical difference between the models is that the 
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SMMA model overweights the reward for drug-seeking in addition to increasing the value for the 

drug state, whereas the Redish 2004 and the Zhang et al. 2009 models only overweight the value 

of the drug state.                

All three models also demonstrated that the agent becomes less likely to shift strategy after 

receiving a cost (lose-shift) if the drug reward is received after this cost, compared to if a non-drug 

reward is received after the cost. Therefore, in all three models, agent appear less sensitive to costs 

if that cost is followed by a drug reward, due to this lower lose-shift probability (Figure 7c-e). 

However, we see this effect in the Redish 2004 model and the Zhang et al. 2009 model primarily 

due to the value of the drug state being much greater than the value of the non-drug state, and not 

because the cost prior to the drug states is downweighted in magnitude. In the SMMA model, 

however, this effect occurs for two reasons: 1) the negative prediction-error generated due to the 

cost prior to the drug reward is downweighted in salience and therefore the value of the drug-

seeking state is less negative, and 2) the drug state has a greater value due to the ncDA and the 

salience factor interacting to accelerate the value increase. Therefore, the ncDA and the salience 

factors in the SMMA model synergise and produce a very low lose-shift probability for drug 

actions, by both, reducing the salience placed on the cost for drug-seeking and by accelerating the 

increase in the value update of the drug state itself. In sum, the SMMA model predicts that the 

costs for drug-seeking is downweighted, and the value of the drug state is overweighted. This is in 

sharp contrast to the Zhang et al. 2009 model and Redish 2004 model, which do not downweight 

any costs for drug-seeking, but only overweight the value for the drug state.    
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Figure 7. Reversal learning from drug and non-drug related costs and rewards. a) the state-space model used for the 

drug-related costs and reward simulation. Here, action a1 leads to a reward (r = 1) in state S2, followed by a drug 

reward in S6. In the SMMA and the Redish 2004 model, drug reward is represented by r = 5 and ncDA = 0.5. In the 

Zhang et al. 2009 model, drug is represented as salience (k) = 5, and non-drug with salience = 1. If the agent chooses 

action s2, it will receive a cost in S3 (r = -1), followed by a non-drug reward in S7. When there is a reversal (after 

every 100 trials), action a1 now leads to a cost in S2, but the agent will still receive the drug-reward in S6. b) the state 

space used for the non-drug simulation. Here if the agent took action a1, it would get a reward (r = 1) in S2 and another 

reward (r = 5) in S6. If the agent chose action a2, it would get a cost (r = -1) in S3 and a reward (r = 5) in S7. There is 

a reversal after every 100 trials, where the cost is now in S2 and reward in S3, all else remains the same. In both, drug 

and non-drug simulations, taking the action that leads to the cost is defined as a loss, and win as the state opposite to 

this. c) the probability of lose shift (p(lose-shift)) using the Zhang et al. 2009 model. Agents had a lower mean lose-

shift probability for the drug simulation (0.37) compared to the non-drug simulation (0.64). d) the Redish 2004 

followed the same trend with mean p(lose-shift) for the drug simulation (0.52) being less than the non-drug simulation 

(0.62). e) the SMMA model also had a lower mean p(lose-shift) for the drug simulation (0.19) than the non-drug 

simulation (0.69). f) the probability of win stay (p(win-stay)) using the Zhang et al. 2009 model. Agents had a high 

mean win-stay probability for the drug simulation (0.73) compared to the non-drug simulation (0.67). g) the Redish 
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2004 followed the same trend with mean p(win-stay) for the drug simulation (0.65) being more than the non-drug 

simulation (0.63). h) the SMMA model also had a higher mean p(win-stay) for the drug simulation (0.84) than the 

non-drug simulation (0.71). The inverse temperature parameter used here was 0.25 instead of 0.5, this to avoid ceiling 

effects. 

 

Reversal learning with non-drug rewards and variable average prediction-errors; the link with 

behavioral addictions  

Behavioural or non-pharmacological addictions such as gambling, social media, and video/online 

gaming show similar behavioural deficits to drug addictions (Brand et al., 2019; Chamberlain et 

al., 2016; Ognibene et al., 2019; L. Wei et al., 2017). In the SMMA model, a change in average 

prediction-error can produce reduced sensitivity to learning from negative prediction-errors and 

increased sensitivity to learning from positive prediction-errors without any influence from the 

ncDA factor (see Figure 6). We tested how the asymmetric learning effects could produce 

problematic behaviours, even without a ncDA drug factor.  

In the reversal learning simulation here, win-stay captures sensitivity to positive prediction-

errors and lose-shift captures sensitivity to negative prediction-errors. In Figure 8b, as the average 

prediction-error is increasing, there is initially a dip in the likelihood of staying after a win. This 

dip is a consequence of using the log scale in the salience formula, where the salience on the 

negative prediction-error decreases faster than the salience on the positive prediction-error 

increases (see Figure 8d). After the average prediction-error increases above 2, there is a continual 

increase in the probability of win-stay with increasing average prediction-error as the net salience 

and value update of the win state is high enough and the value of the lose state is low enough for 

the agent to win and stay in the win state.   
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Next, the simulation demonstrated a decrease in the probability of leaving after a loss as 

the average prediction-error increased (Figure 8c). This effect arises from the reduced salience on 

the negative prediction-errors as the average prediction-error increases – causing the value on the 

lose state to be less negative and therefore making the agent less likely to change strategy (lose-

shift). However, this drop only lasts as long as the negative prediction error is equal to or less than 

the average prediction-error (i.e., when the absolute ratio of average prediction-error and the 

negative prediction error is 1 or less). This is because in the current salience formula, the salience 

is lowest when the prediction-error plus the average prediction error is close to 0 (e.g., a prediction-

error of -2.5 will have the lowest salience when the average prediction-error is 2.5, where the 

absolute ratio is equal to 1 and the sum of the two is 0). When the absolute ratio becomes greater 

than one (i.e., where |−𝛿| < 𝛿̅ ), the salience on the negative prediction-error starts to increase 

(Figure 8d), and so does the probability of leaving after a loss – as now the lose state becomes 

increasingly negative in the value, making shifting more favourable. The greater the average 

prediction-error, the less reliable the internal representation (i.e., the model is making a lot of 

inaccurate predictions and is therefore getting a large number of prediction-errors). When the 

average prediction-error is so large relative to the instantaneous negative prediction-error, to the 

point that the absolute ratio between the two is greater than one (|𝛿̅ /−𝛿|) > 1), the salience is no 

longer downweighted on these negative prediction-errors. Therefore, the effect of downweighting 

salience on the negative prediction-error is bounded by |𝛿̅ /−𝛿| being less than 1.        

In sum, as the average prediction-error increases, the model shows an increase in win-stay 

behaviours, indicating a greater sensitivity to reinforcement (albeit after the initial decline due to 

the log scale). There is also a decrease in lose-shift behaviours as the average prediction-error 

increases, indicating a reduced sensitivity to aversion. However, this decrease in lose-shift 
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behaviours is bounded by the absolute ratio of 1 or less between the average prediction-error and 

the negative prediction-error. This asymmetric learning effects arises from the mathematical 

definition of salience under the current SMMA model; neither the Zhang et al. 2009 nor the Redish 

(2004) model produce this effect (see Figure 5). These results overall suggest that a high average 

prediction-error rate may be one possible predictor or contributor to the development of 

behavioural addictions, where there is a strong persistence in the behaviour despite negative 

consequences.  
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Figure 8. The influence of average prediction-errors on reversal learning, without the ncDA factor. a) the state space 

used, where there is a reversal in cost/reward in S4 and S5.  b) as the average prediction-error increases, the probability 

of win stay does too, after the initial decline caused by using the log scale where positives increase less than the 

negatives decrease. c) The probability of lose-shift decreases as the average prediction-error increases, with an upper 

bound, in which case it increases. d) the salience placed on the positive prediction-error increases as the average 

prediction-error increases, and the salience on negative prediction-error decreases, but at a faster rate than the positive 

increases (due to the log scale). After the absolute ratio of the average prediction-error : prediction-error reaches 1, 

the upper bound limit is reached and the salience on negative prediction-error increases. The salience on the positive 

prediction-error increases without a bound.  Abs = absolute.  
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Delay discounting simulations 

People with a substance use disorder generally discount drug rewards faster than non-drug rewards 

(Bickel & Marsch, 2001). Neither the Zhang et al. 2009, nor the Redish 2004 model can adequately 

produce this effect, with only a very slight steeper discounting effect for drug rewards in the Redish 

2004 model, and none at all with the Zhang et al. 2009 model (Figure 9b and 9d). However, the 

SMMA model did produce this effect where drug rewards were discounted much faster than non-

drug rewards (Figure 9f). The mathematically defined salience factor form the SMMA model was 

necessary to produce steeper discounting for drug rewards, the ncDA factor alone cannot produce 

this.  

High dopamine levels contribute to steeper delay discounting (Ballard et al., 2015; Pine et 

al., 2010). We simulated delay discounting with a variable average prediction-error for drug 

rewards, representing different dopamine levels, to further investigate how the ncDA and the 

salience factor interact to produce discounting behaviours. As the average prediction-error 

increased (higher dopamine states), the model showed steeper discounting for drug rewards 

(Figure 10), however, this effect was not produced for non-drug rewards (without the ncDA 

factor). Therefore, the two simulations suggest that, both the ncDA and the salience factors are 

necessary to produce the steeper delay discounting effect. The ncDA factor causes an unbounded 

value increase for drug rewards, which the salience factor then modulates by placing less salience 

on the delay as the average prediction-error increases, and thereby reducing the value of drug 

rewards as time to the drug reward increases. The SMMA model thereby predicts that the reduced 

salience placed on time, as the agent is in a higher dopamine state, is one contributor to the steeper 

discounting of drug rewards found in people with a substance use dependence.    
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Figure 9. Delay discounting curve for drug and non-drug rewards using all 3 models. In all simulations, agents had 

a variable delay in state 2 (S2), with the drug or non-drug reward delivered in state 3 (S3). a) the state space used for 

the Redish 2004 model where drug reward was r = 5 and ncDA = 0.5 and non-drug reward was r = 5. b) the drug 

rewards are only very slightly discounted steeper than non-drug rewards under the Redish 2004 model. c) the state 

space used for the Zhang et al. 2009 model where drug reward was r = 5 and salience (k) = 2, and non-drug reward 

was r = 5. d) the drug and non-drug rewards are discounted identically under the Zhang et al. 2009 model. e) the state 

space used for the SMMA model where drug reward was r = 5 and ncDA = 0.5 and non-drug reward was r = 5. f) the 

drug rewards are discounted much faster compared to non-drug rewards under the SMMA model.      

 

 

Figure 10. The effect of average prediction-error on delay discounting of drug rewards using the SMMA model. As 

the average prediction-error increases for drug rewards, there is a steeper discounting of the drug reward. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.19.533364doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.19.533364
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Induced craving, bingeing, and salience simulations 

Craving influences value multiplicatively, and not additively or exponentially (Konova et al., 

2018). Here, we operationalised craving as a state where the average prediction-error is negative. 

This means that it can influence the salience placed on prediction-errors, and as a result it also 

influences valuation multiplicatively under our model, using equation 9 to update values, 

consistent with the data from Konova et al., (2018). We induced a craving state in our agents 

through two steps. The first step involved generating the expectation of receiving the drug reward 

(by allowing the agent to get the drug for 30 trials). Following this, the drug reward was no longer 

given, causing negative prediction-errors to the point where the mean prediction-error became 

negative (by trial 75; 45 trials after drugs were removed). At this point (when mean prediction-

error was negative), either a non-drug negative or a non-drug positive prediction-error (of 1.75) 

was given, and the salience placed on these negative and positive-prediction errors were plotted. 

We are therefore simulating how an agent weights non-drug positive and negative prediction-

errors, while in a craving state. When the agent is in an induced craving state, where the average 

prediction-error is negative, it down-weights salience on a non-drug positive prediction-error 

(Figure 11a) but overweights salience on a non-drug reward negative prediction-error (Figure 11b). 

Therefore, the model predicts that a craving state may lead to downweighting any positives, but 

overweighting any negatives, which is a component of depressive-like symptoms (Rouhani & Niv, 

2019).  
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People with a substance use disorder also show steeper delay discounting when in a craving 

state (Ashare & Hawk, 2012; Giordano et al., 2002). To simulate this effect in the SMMA model, 

craving was operationalised as a state where the current average prediction-error is negative (i.e., 

the agent is expecting drugs but does not receive it, eliciting negative prediction-errors to the point 

where the average prediction error is negative). A negative prediction-error state could be achieved 

through learning, where there are constant negative prediction-errors, as is the case in the above 

simulation. However, dopamine depletion, developed tolerance or dopamine antagonists also 

contribute to a low dopamine state (Jackson-Lewis & Przedborski, 2007; Volkow et al., 1997; Volkow & 

Li, 2004; Woolverton & Virus, 1989) and therefore may also cause a negative prediction-error state, 

without any re-learning. At this negative average prediction-error craving state, in the model, there 

is steeper discounting for drug rewards, compared to when the average prediction-error is 0 (Figure 

12). Importantly, this only happens for drug rewards (which comes with a positive ncDA), not the 

non-drug rewards. Therefore, to produce the steeper delay discounting effect here, the model is 

depended on the interaction between the salience and the ncDA factors. The negative average 

prediction-error causes a reduced salience to be placed on time, which in turn reduces the 

unbounded value updates (caused by the ncDA factor) as the delay is increased. Overall, the 

SMMA model predicts that there is steeper discounting for drug rewards in a craving state due to 

a negative average prediction-error state, which causes a lower salience to be placed on the delay 

to the drug reward, and therefore downweights value as the delay to the drug reward increases.     
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Figure 11. The salience placed on negative and positive prediction-errors under induced craving and bingeing states. 

Under the induced caving state, a) the agent places less salience on positive prediction-errors and b) more salience on 

negative prediction-errors. 

 

Figure 12. Delay discounting for drug rewards under craving and non-craving states. There is steeper discounting 

for drug rewards under a craving state, which is when the average prediction-error is a negative, relative to when the 

average prediction error is 0. 
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DISCUSSION 

The Redish 2004 model was built on the reward-prediction error theory of dopamine by adding a 

non-compensable dopamine factor to the delta equation (Redish, 2004). The non-compensable 

dopamine factor caused constant positive prediction-errors due to drug taking and reinforced 

addictive behaviours as a result. The Zhang et al. 2009 model was built on the incentive salience 

theory for addiction by adding a salience factor multiplying the reward term in the delta equation 

(Berridge & Robinson, 2016; Robinson & Berridge, 1993; Zhang et al., 2009b). The greater salience here 

represented the higher motivational salience value of drugs, and reinforced drug actions as a result. 

Both models, though conceptually very different, reinforce drug behaviours through value 

increases of the drug states. Both models present limitations. They do not explain the reduced 

sensitivity to drug-related costs/negative consequences, the increased impulsivity generally found 

in people with a substance use disorder, and craving behaviours – all of which are key hallmarks 

of addictive behaviours. We addressed these limitations by proposing a new model, which we refer 

to here as a salience misattribution model for addiction (SMMA, see also Kalhan et al., (2021)). 

The SMMA model is a combination of the Redish 2004 and the Zhang et al. 2009 models, with a 

novel mathematical definition of salience. Under our model, drug-related negative prediction-

errors are downweighted in salience, but at the same time, salience on drug-related positive 

prediction-errors are overweighted. In SMMA, drug rewards are also discounted faster than non-

drug rewards, owing to a lower salience placed on the delay to drug rewards. The SMMA model 

produces asymmetric learning due to this salience misattribution effect and consequently, a 

misaligned internal representation is formed. Within this misaligned internal representation, the 

positives of drugs are misattributed with a greater salience than the negatives, causing 

reinforcement of drug actions. Using a single parameter regime, we simulated addictive behaviours 
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that the Zhang et al. 2009 and Redish 2004 models also produce but we went further in simulating:  

1) downweighting of drug-related negative prediction-errors, 2) steeper delay discounting of drug 

rewards, 3) craving behaviours and 4) aspects of behavioural/non-pharmacological addictions. 

This builds on the conceptual framework that salience modulates internal representation updating 

and may contribute to addictive behaviours by producing misaligned internal representations 

(Kalhan et al., 2021). 

 

Does salience-related dopamine modulate learning or motivation?                       

A key question that arises from the proposed model is whether the salience factor modulates 

motivational processes where a change in behavior is produced without any relearning 

(performance), as the Zhang et al. 2009 model suggests. Alternatively, salience may play a role in 

modulating learning, which is an incremental process, consistent with the Redish 2004 model. The 

answer is not straightforward, as it likely involves both processes. The SMMA model provides an 

explanation for cue-triggered fluctuations in behaviors, where a drug cue releases dopamine such 

that the average prediction error is suddenly increased, and drug behaviors are reinforced through 

the increased value of drug states. This interpretation is consistent with recent work, where 

dopamine is viewed as enhancing performance/motivation through increasing the value of the 

current action (Berke, 2018; Hamid et al., 2015). However, the SMMA model also treats salience 

as a modulator of learning and internal representation updating, where the lower salience of 

negative prediction-errors decreases learning, and the higher salience of positive prediction-errors 

increases learning. The theoretical layout of the SMMA model aligns more closely with the 

concept of salience modulating learning, by weighting the reward prediction-error 

learning/updating signals (Keiflin & Janak, 2015; Schultz et al., 1997; Steinberg et al., 2013). This 
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learning interpretation fits well with data suggesting that dopamine modulates neural plasticity by 

facilitating late long-term potentiation and may increase addictive behaviors through these long 

term learning and memory mechanisms (Berke & Hyman, 2000; Hyman, 2005; Li et al., 2003; Lisman et 

al., 2011; Mockett et al., 2004; Sajikumar & Frey, 2004). However, there is a strong possibility that the 

salience factor in the current model is also playing a role in motivation/performance. 

Traditionally, the dissociable roles of dopamine in learning and motivation were thought 

to be based on the slow ‘tonic’ and fast ‘phasic’ dopaminergic function. The slower tonic 

dopaminergic tone was thought encode motivation, with the fast phasic dopamine release encoding 

prediction-error learning (Schultz, 2007). However, recent work has challenged this ‘slow tonic = 

motivation’ and ‘fast phasic = learning’ idea of dopamine function. Dopamine release driven 

changes in motivation were found to occur as fast as the measurement techniques allows it to (i.e., 

ultra-fast (milliseconds) with dLight1, fast (seconds) with voltammetry and slow (minutes) with 

micro-dialysis) (Berke, 2018; Hamid et al., 2015; Mohebi et al., 2019). Therefore, dopamine-

dependent changes in motivation can occur fast (sub-second scales), even within trials themselves, 

and do not necessarily conform to the slow tonic changes. The papers also found that rats were 

more motivated (i.e., they had shorter latency to start the next trial) when the average reward rate 

was high - when the animal is in a high dopaminergic state. Our current model has salience 

calculated at each state within the trial, allowing for fast modulation of the current action’s value. 

Also, dopamine levels ramp up as the animal gets closer to the reward (Howe et al., 2013), 

consistent with dopamine’s role in motivation/performance processes, interpreted as continuous 

increases in value states that are closest to the reward state (Berke, 2018). These dopamine ramps 

and the increasing value of states closest to the reward interpretation brings an interesting 

explanation into how relapse behaviors in people with substance use disorders increase as they get 
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closer to the substance of abuse (high availability) (Abbott, 2020; Sureshkumar et al., 2021; 

Washton, 1986). Here, a higher drug availability or proximity to the drug may cause dopamine 

levels to ramp up, causing a high value representation for the states that are closest to the drug 

reward and increasing the probability of relapsing as a result. One consequence of these dopamine 

ramps is a higher average prediction-error rate, and this would create a salience misattribution 

effect where the positives of the current action are overweighted compared to the negatives (eq 8). 

Therefore, as the person gets closer to the drug, and dopamine ramps up, the value of that current 

action (taking the drug) is increased. This is because the positives of the current drug action are 

weighted even more, and at the same time, the negatives are weighted less. This causes an even 

larger value increase towards the drug action but slows down any value decreases towards that 

drug action. Therefore, dopamine encoding motivation/performance has an important implication 

for how relapse may be made more likely through the salience misattribution effect in eq 8.   

One possibility for how learning and motivation may work together under the present 

model is through different stages within a trial. When a drug-cue, or any cue with a high salience 

is presented, it may trigger the motivational salience and drive the decision towards the states that 

follow the high salience cue, which is consistent with the incentive salience accounts (Robinson & 

Berridge, 1993). Data from Hamid et al., (2015) is also consistent with this cue triggering 

motivational salience interpretation, where artificial stimulation of dopaminergic neurons within 

the VTA (via optogenetics) caused the animal to engage faster (with more motivation) at the 

current trial (consistent with dopamine’s motivation/performance). But at the stage where a reward 

prediction-error is generated, it may be the learning/updating processes involved. This learning 

stage is where the prediction-errors are weighted in proportion to the salience placed on them (i.e., 

more from positive prediction-errors, and less from negative). This learning interpretation during 
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the reward prediction error stage is also consistent with data from Hamid et al., (2015). Here, 

artificial dopaminergic stimulation during a reward prediction-error caused the animal to repeat 

the same action (consistent with learning/value update role of dopamine). That data can be 

interpreted under our salience model where the increased dopamine is now causing a greater value 

update of that same action (by over-weighting positives and downweighting negatives), and 

therefore increasing the probability of repeating the same action. This interpretation is particularly 

supported because the same action is repeated, irrespective of whether the reward was given or not 

at the end of the trial. Therefore, when the negatives of an action are downweighted in salience, 

and any positives are overweighted – the probability of repeating that action, regardless of the 

outcome, is made higher. Similarly, in the case of addictive behaviors, the agent is reinforced to 

take drug actions through cue triggered motivational salience (that accelerates the value increase 

by downweighting negatives and overweighting positives of that action). The agent is then further 

reinforced through asymmetric learning from the prediction-errors generated at the feedback stage, 

where positives are more heavily weighted, and negatives less so. This salience misattribution 

effect may be one motivation and learning dysfunction in people with a substance use disorder 

which could further increase drug-related behaviors. This idea is speculative but could be tested 

experimentally, wherein midbrain dopaminergic signatures (release and cell firing) are analyzed 

separately at the cue and prediction-error/feedback epochs of an experiment manipulating reward 

rate.  

Given our strong focus on dopamine’s role in encoding reward prediction-error learning 

and motivation, it is critical to address recent experimental work suggesting that while dopamine 

encodes reward prediction-errors, it only does so in limited contexts/conditions (Coddington et al., 

2023; Coddington & Dudman, 2018, 2019; Howe et al., 2013; Jeong et al., 2022; Kutlu et al., 2021; 
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Matsumoto & Hikosaka, 2009; Ungless et al., 2004). Recently, Kutlu et al., (2021) suggested that 

dopamine’s role can be better explained as encoding perceived salience, instead of encoding 

reward prediction-errors and signed/unsigned non-reward prediction-errors. This brought together 

seemingly disparate results on dopamine’s role in prediction-errors and aversion. The paper used 

dLight1.1 to record dopamine dynamics with a fast (sub-second) temporal resolution in vivo in the 

nucleus accumbens core (NAc) in mice. Kultu et al., (2021) found that dopamine does encode 

reward prediction-errors during positive reinforcement (cue → action → reward) but not during 

negative reinforcement (cue → action → avoid punishment). Also inconsistent with the reward 

prediction-error hypothesis, when a cue predicts a reward, but then switches to now predicting a 

punishment (worse than expected), there was a positive dopamine response, instead of negative 

which the reward prediction-error hypothesis would predict. Overall, through various experiments, 

the authors suggested that dopamine is encoding perceived salience, which is computationally 

defined as the product of stimulus intensity and attentional value of a stimulus (termed the Kutlu-

Calipari-Schmajuk (KCS) model). The attentional value factor is largely modulated by novelty, 

which is encoded by dopamine. Further, the authors note that perceived salience, particularly the 

attentional value factor, is subjective and depends on the context, situations, and experience and 

that it can contribute to learning.  

In contrast to the KCS model, the SMMA model presented here views salience as being 

proportional to the instantaneous prediction-error and the average prediction-error. Kutlu et al., 

(2021) brought together seemingly disparate data in dopamine encoding reward prediction-errors 

and aversive stimuli under the perceived salience framework. However, our current model views 

salience as a direct modulator of learning and motivation within the reinforcement learning 

framework, which may not be inconsistent with the perceived salience framework. For example, 
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after a switch from cue → reward, to now, cue → cost, our model would also predict a positive 

dopamine response, encoding salience. Here, a large negative prediction-error would increase the 

salience (eq 8), predicting a positive, and not a negative dopamine response. The difference in the 

SMMA model is that this salience is then used to update the value representation of that state, but 

this update is not directly conceptualized within the KCS model.  

The SMMA model also predicts a positive salience-related dopamine response to novelty, 

through the average prediction-error term. The more the average prediction-error, the more novel 

the environment (i.e., if the agent has a high prediction-error rate, the environment is less known 

and produces large prediction-errors), and the greater the dopaminergic salience. The KCS model 

goes further to also explain dopamine’s role (or lack of a role) in non-reward related signed and 

unsigned prediction-errors, which our present salience model does not. Non-reward prediction-

errors are not within the scope of the current model and is therefore a limitation, when compared 

to the KCS model. Both models are similar in that dopamine is encoding salience but diverge in 

how salience in mathematically defined and conceptually used to influence behavior. Our current 

model explains behavior through salience modulating value updating and explains aspects of 

asymmetric learning when in different dopaminergic states, whereas the KCS model deals with 

behavior change through novelty related attentional mechanisms and goes beyond reward 

prediction-errors.    

The ACTR policy learning model by Coddington et al., (2023) is another new model of 

note in comparison to our model. The authors experimentally showed that optogenetic stimulation 

of midbrain dopaminergic neurons in rats could also slow learning, which is inconsistent with the 

traditional reward prediction error account of dopamine function. These findings were interpreted 

as mesolimbic dopamine activity playing a role in setting an adaptive learning rate of given action 
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policies, which was a component within their ACTR model. Similar to our current model, the 

ACTR model has a dynamic parameter that weights learning on a trial-by-trial basis. However, 

within the ACTR model, the parameter modulating learning rate is defined based on the summation 

of sensory cue (preparatory) and movement/action (reactive) related components. This parameter 

is then used to weight performance-errors (and not reward prediction-errors) that drives policy 

learning. In the current model, learning was modulated through a salience factor based on the 

instantaneous and average reward prediction-errors, instead of updates in action policy values. In 

sum, similar to the other proposed models, we also propose that dopamine is playing a role in 

modulating learning. The critical distinction is that we propose this role for dopamine within the 

reward-prediction error framework, under a single parameter regime, while also integrating with 

the motivation function of dopamine.  

 

Anterior cingulate cortex and internal representation updates 

We primarily focused on two factors in our salience model: the instantaneous prediction-error and 

the average prediction-error. While dopaminergic mechanisms are very likely involved in 

encoding these reward prediction-error processes, the average prediction-error may also be 

encoded in systems other than the dopaminergic system. Kennerley et al., (2006) report that ACC 

lesions in monkeys did not impair immediate performance in a reversal learning task but impaired 

the overall performance as the monkeys were less able to integrate overall reward histories to guide 

their choices. Wittmann et al., (2016) used functional magnetic resonance imaging (fMRI) in 

humans and found instantaneous prediction-error encoded in the ventral striatum blood oxygen 

level dependent (BOLD) signal. However, they also found the ACC encoded expected prediction-
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error, as calculated based on reward histories for a given environment.  They hypothesized that 

expected prediction-error could modulate the weight placed on the instantaneous prediction-error.  

Further accounts have also suggested that the ACC may encode reward histories and 

influence future behavior by integrating or weighting the immediate reward with the rate of 

rewards from previous trials (i.e., average reward rate) (Bernacchia et al., 2011; Buckley et al., 2009; 

Holroyd & Yeung, 2012; Sallet et al., 2007; Seo & Lee, 2007). For example, (Buckley et al., 2009) found 

that only a specific lesion in the macaque ACC, and not the other PFC regions, impaired 

performance in a Wisconsin-card sorting task such that reward histories were not integrated to 

optimize decisions. Other lesions, such as the orbitofrontal cortex, impaired the current reward 

value updating, but not the ACC-dependent use of reward histories. Another paper found that a 

lesion of the medial prefrontal cortex (mPFC) in rats, which includes the ACC, can disrupt 

weighting of reward prediction-errors within the ventral tegmental area (Starkweather et al., 2018). 

This shows that ACC might modulate instantaneous reward prediction-errors in the VTA. These 

studies collectively suggest that one possible way in which the salience in the SMMA model may 

be implemented is through ACC function, which may track the average prediction-error variable, 

accounting for reward histories in a given environment. This influences the instantaneous 

prediction-error and internal representation updating. 

The involvement of ACC in estimating the average prediction-error may explain 

asymmetric learning in people with a substance use disorder through more than the increase in 

dopamine levels from the drug taking. Those with a substance use disorder may have a higher 

estimate for the average prediction-error due to reduced sensitivity/updating from error learning 

but increased sensitivity/updating from rewards. As a result, when the average prediction-error is 

calculated for people with a substance use disorder, the positives are represented more so than the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.19.533364doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.19.533364
http://creativecommons.org/licenses/by-nc-nd/4.0/


negatives, possibly producing a higher average prediction-error. This high average prediction-error 

may then be used to further reduce error learning as proposed in our mathematical definition of 

salience, creating a cyclic process of decreased sensitivity to negatives but increased to positives. 

We speculate that this salience misattribution process may be initiated by dopamine from drugs or 

drug cues from the hypersensitized dopaminergic circuits, but then persists through the ACC 

weighting mechanism. We therefore predict that in an experiment where participants need to infer 

an average reward rate, people with a substance use disorder may have a higher estimation of this 

average reward rate than controls, particularly when drug cues are used to predict future rewards. 

In sum, both dopamine and ACC may play a role in weighting internal representation updating 

based on the average prediction-error and the instantaneous prediction-error (i.e., salience in eq 8) 

and producing the salience misattribution effect where positives are overweighted, compared to 

the negatives in people with a substance use disorder.    

 

Craving  

Consistent with previous accounts (Ashare & Hawk, 2012; Giordano et al., 2002; Hoffman et al., 2008), 

our SMMA model produced steeper discounting for drug rewards under a craving state where the 

average prediction-error is negative, (Figure 12). However, the model also placed greater salience 

on non-drug related negative prediction-errors, compared to non-drug related positive prediction-

errors under an induced craving state (where the average prediction-error is negative). The 

evidence for this effect for non-drug rewards during a craving state in people with a substance use 

disorder is currently mixed, with some suggesting reduced processing of both, positive and 

negative non-drug related reward prediction errors (Deserno et al., 2015; García-García et al., 

2017; Park et al., 2010; Parvaz et al., 2015; Ubl et al., 2014). Rose et al., (2014) found an increased 
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responsiveness to negative prediction-errors and decrease to positive in people with a cocaine use 

disorder. In contrast, Wang et al., (2019) found increased sensitivity to positive prediction errors 

and learning rates for loss avoidance in deprived people with a cocaine use disorder. Overall, our 

model predicts increased learning from negative prediction-errors and reduced learning from 

positives during the craving state. However, this prediction does not bring together the currently 

limited, but disparate data on cravings and prediction-errors, and is therefore a limitation of our 

current model. 

There are other computational models of addiction that include craving but do so very 

conceptually. Redish et al., (2007) does not directly model craving but suggests that high drug 

availability and the presence of drug cues, may cause an agent to revert to the original state-

representation, in which the drug actions were originally learned and where the value of drug 

rewards is very high. Reverting to this original state-representation would produce strong increases 

in craving levels and also the chances of relapsing. This model offers an explanation into why 

relapse may occur even after years of abstinence (Washton, 1986). Our current SMMA model does 

not include a state splitting component but may still explain aspects of cravings under one dynamic 

state, with changes in the average prediction-error.  

Gu and colleagues used a Bayesian framework to conceptualize craving as a high 

‘discomfort’ state due to failures in updating Bayesian beliefs on physiological/interoceptive 

bodily states (Gu, 2018; Gu & Filbey, 2017). Here, agents start with a prior belief of low 

craving/discomfort, as the drug is expected to be delivered, but then receive sensory evidence 

(Bayesian likelihood) associated with no drugs being delivered (e.g., increased heart rate). Over 

time, this sensory evidence starts to have high Bayesian precision as drugs continue to not be 

delivered. Hence, the agent becomes more certain of the lack of drug delivery, leading to an update 
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in the posterior Bayesian belief towards increased discomfort/craving. Data from people with a 

nicotine use disorder suggests that this craving/discomfort state only reduces when the drug is 

expected (prior is towards low craving) and delivered, but not when the drug is unexpected but 

still delivered (Gu et al., 2016). Therefore, the model and the associated data from Gu et al., (2016) 

suggests that craving has a top-down component beyond just  pharmacology, and that expectations 

on receiving the drug can influence whether there is a reduction in the craving state.  

Both models (Gu, 2018; Redish et al., 2007) offer largely conceptual explanations of 

craving behaviors, but do not directly simulate craving behaviors, particularly behaviors on how 

drug and non-drug rewards may be differently processed under this craving state. Our current 

model views craving as a state where there is a negative average prediction-error, which causes 

more value updates from non-drug negatives than positives. This is more consistent with a 

depressive state (Rouhani & Niv, 2019) and may also be conceptualized as a ‘discomfort’ state, 

consistent with Gu & Filbey (2017). However, SMMA offers a more mathematically concrete 

conceptualization. Further, our model can simulate steeper discounting of drug rewards, which 

previous models do not. An important distinction of the  proposed model is that the craving state 

can be induced by first giving the agent the drug and forming the expectation, and then removing 

the drug. This causes large negative prediction-errors to the point where the average prediction-

error is negative. However, more human data and mathematically concrete models are needed in 

order to better understand the diverse neurocomputational underpinnings of the craving state. 

 

Delay Discounting 
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Delay discounting of rewards is a large component of the current model and is produced through 

placing less salience on the delay as the average prediction-error rate increases. Note that all the 

delay discounting effects here are produced without manipulating the discounting factor (γ) factor 

in eq 8, and thus are a consequence of a salience misattribution effect. Steeper discounting for 

delayed rewards is a complex phenomenon and involves many different neural systems and 

computations (Madden & Bickel, 2010). Pine et al., (2010) suggested that high dopamine levels, 

induced through L-dopa consumption, increases steepness in delay discounting in humans. 

However, dopamine’s role in modulating delay discounting is complex. There are mixed results 

based on the animal species used, the task and technique, the dose, and the drug used to modulate 

dopamine levels (Floresco et al., 2008; Isles et al., 2003; Kobayashi & Schultz, 2008; Koffarnus et al., 

2011; Richards et al., 1999; Tedford et al., 2015; Wade et al., 2000). We limit our interpretations here 

to cases where dopamine may produce steeper discounting, with a high average prediction-error 

rate as a consequence of increased dopamine levels. This is in line with Niv et al., (2007), who 

suggest that a high reward rate causes the agent to act with more vigor and, with less engagement 

of the deliberative decision-making strategies, as the opportunity cost of not acting in a rich 

environment is greater than the cost of acting. We propose that one consequence of these high 

vigor behaviors in a rich environment, with a high average reward and prediction-error rate, is that 

the delay has less salience, producing less value updating for delayed rewards, which may therefore 

contribute to faster discounting. 

In a task involving episodic future thinking and delay discounting, using fMRI in humans, 

Peters & Büchel (2010) found increased engagement of the ACC and ACC-hippocampal coupling 

when participants were reminded of the future event compared to when they were not. The authors 

interpreted this as the ACC engaging greater cognitive control and adjusting values based on the 
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changes in context, supporting adaptive decision-making. We speculate that ACC engagement 

may influence delay discounting by increasing the salience of future events, possibly through 

initiating hippocampal task representations of the future events, making the future more concrete 

and producing slower discounting. Previous accounts have found that a mPFC disruption reduced 

vicarious trial and error (VTE) behaviors (Kidder et al., 2021; Schmidt & Redish, 2021). VTE is when 

an animal imagines the future by initiating a representation of future outcomes for evaluation and 

deliberates one choice over the other (Johnson & Redish, 2007; Redish, 2016). A neurophysiological 

basis for these VTE task representations are within the hippocampal place cells (Johnson & Redish, 

2007). Given that mPFC disruption reduces these deliberative VTE behaviors, we speculate that 

ACC engagement here may be initiating the task representation though hippocampal coupling, 

such that the future is represented with more salience, and increasing the value update, and 

decreasing the discounting of the future as the delay increases. Overall, states with high dopamine 

levels, where there is a high average prediction-error, may cause behaviors with increased vigor, 

where ACC-hippocampal dependent deliberate decision-making strategies are less engaged, and 

may therefore produce steeper discounting in people with a substance use disorder whereby the 

future may be represented with less certainty, and therefore less salience.      

 

Behavioural addictions 

It has been suggested that the environmental contingencies of some situations could produce 

behavioural addictions through continuous positive prediction-errors (e.g., endless scrolling for 

social media and perpetual reward uncertainty for gambling) (Ciria et al., 2022; Zack et al., 2020). 

Further, high unpredictability and uncertainty may be used by designers to possibly increase use 

and maximise positive prediction-errors through unexpected positive notifications (e.g., more 
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“likes” than expected) (Alter, 2017; Lanier, 2019). The reversal learning simulation in Figure 8, 

without the ncDA factor, suggests that even a high average prediction-error rate, which is caused 

by a large number of positive prediction-errors, can produce a salience misattribution effect where 

the instantaneous positive prediction-errors are weighted more so than the negatives. As a result, 

in a positive but unpredictable environment, the agent is more likely to win (get a positive 

prediction-error) and stay as a result. Likewise, the agent is less likely to lose (get a negative 

prediction-error) and change behaviour. Therefore, unpredictability can enhance behavioural 

addictions in part because of this salience misattribution effect, causing the agent to be less likely 

to switch behaviour even after losses/negative prediction-errors and more likely to win and stay 

on the same behaviour. The current model predicts that the point where the agent is most likely to 

stay in the addictive behaviour is when the ratio between the absolute prediction-error and the 

average prediction-error is close to 1. It is at this point where the difference between the salience 

placed on the negative prediction-error and the positive prediction-error is the greatest (see Fig. 

8d), making the agent least likely to lose and shift behaviour and most likely to win and stay on 

the same behaviour. The decrease in lose-shift effect is bounded by the absolute ratio of the average 

prediction-error and the prediction-error to be less than 1, and when the ratio is above 1, lose-shift 

starts to increase. This increase in lose-shift behaviour is possibly a limitation of the current model, 

as a high positive prediction-error rate should continue to make the agent less likely to lose and 

shift, and this limitation should be addressed in future models that are more specifically designed 

to address behavioural addictions.      

 

Conclusions and future directions 
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Starting from the concept that salience modulates internal representation updating, we proposed a 

novel mathematical model where salience is proportional to the instantaneous prediction-error and 

the average prediction-error, and the salience placed on the delay to the reward is inversely 

proportional to the average prediction-error rate. Using this definition, we simulated key aspects 

of addictive behaviours where 1) drug related negative prediction-errors/costs are downweighted 

in salience, but 2) drug related positive prediction-errors/rewards are overweighted in salience, and 

3) drug rewards are discounted faster than non-drug rewards. We also conceptualized a craving 

statein the model as a state with a negative average prediction error where drug rewards are 

discounted faster, and non-drug positives are weighted less than non-drug negatives. We went 

further to suggest that maximising positive prediction-errors and increasing the average prediction-

error rate may contribute to the behavioural persistence seen in behavioural addictions (e.g., social 

media and gambling). Here, a high average prediction-error contributes to the salience 

misattribution effect where the costs are downweighted in salience, and consequently, the 

probability of losing and shifting is reduced. At the same time, rewards are overweighted in 

salience and consequently, the probability of winning and repeating the same behaviour increases. 

In sum, we suggest that a salience factor that modulates internal representation updating could be 

producing a misaligned internal representation in people with a substance use disorder. This 

misaligned internal representation is then used to produce key aspects of maladaptive decision-

making in people with a substance use disorder. The proposed model may be relevant in two main 

future research directions: 1) experimentally testing how dopamine and ACC may regulate reward-

related motivation and learning through a salience factor that modulates internal representation 

updating and, 2) how this salience misattribution effect may be ameliorated in people with a 
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dependence, so that the internal representation is no longer misaligned in selectively updating from 

drug related positives, and less so from drug related costs. 
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