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ABSTRACT

The inverse problem in brain source imaging is the recon-
struction of brain activity from non-invasive recordings of
electroencephalography (EEG) and magnetoencephalography
(MEG). One key challenge is the efficient recovery of sparse
brain activity when the data is corrupted by structured noise
that is low-rank noise. This is often the case when there are a
few active sources of environmental noise and the MEG/EEG
sensor noise is highly correlated. In this paper, we propose a
novel robust empirical Bayesian framework which provides us
a tractable algorithm for jointly estimating a low-rank noise
covariance and brain source activity. Specifically, we use a
factor analysis model for the structured noise, and infer a
sparse set of variance parameters for source activity, while
performing Variational Bayesian inference for the noise. One
key aspect of this algorithm is that it does not require any addi-
tional baseline measurements to estimate the noise covariance
from the sensor data. We perform exhaustive experiments on
both simulated and real datasets. Our algorithm achieves supe-
rior performance as compared to several existing benchmark
algorithms.

Index Terms— EEG, MEG, brain source imaging, low-
rank noise.

1. INTRODUCTION

Electromagnetic brain imaging is the reconstruction of brain
activity from non-invasive recordings of magnetic fields and
electric potentials. Electroencephalography (EEG) and mag-
netoencephalography (MEG) are widely used techniques to
study the function of human brain [1, 2]. Efficient estima-
tion of the brain activity on the cortex surface is important
for neuroscience research and clinical diagnosis [3]. It is
crucial to determine, to the extent possible, where and when
neurophysiological activity is occurring. Thus, the inverse
problem turns out to be estimating both the spatial location
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of the sources and the time course of brain activity from the
EEG/MEG measurements. Several methods have been intro-
duced to solve this ill-posed inverse problem of brain source
imaging. The regularization based methods attempt to enforce
prior information on the source signal. The minimum-norm
estimation algorithm (MNE) [4] tries to minimize the L2 norm
of the solution favoring low power of the brain activity. Other
variants of MNE include the weighted MNE (wMNE) [5],
low resolution brain electromagnetic tomography (LORETA)
[6], and standardized LORETA (sLORETA) [7], etc. Another
broad class of approach is to consider Bayesian techniques
[8, 9, 10, 11, 12, 13, 14] with appropriate priors assigned to
the model parameters. Recently introduced Champagne algo-
rithm [8], a novel tomographic source reconstruction algorithm
derived in an empirical Bayesian fashion with incorporation
of deep theoretical ideas about sparse-source recovery from
noisy, constrained measurements. One of active current re-
search focus is to improve upon the reconstruction methods
under realistic noise assumption such as low-rank statistical
model [11]. An enduring challenge is to jointly remove the
noise of the sensor arrays and recover the brain signal. The
noise statistics in the model plays a crucial role in the success
of sparse source recovery. In particular, the noise covariance
in sensor data is what dictates the working of Bayesian frame-
works. The existing works include noise covariance matrix
of both diagonal and full structure. In this work, we consider
one of most realistic assumptions - low rank noise covariance.
This is often the case when there are a few active sources of
environmental noise or the MEG/EEG sensors are highly cor-
related. To best of our knowledge, no existing algorithm has
addressed the brain source estimation problem under low-rank
noise covariance.

In this paper, we propose a novel robust empirical Bayesian
framework for brain source imaging under low-rank noise as-
sumption. It provides us a tractable algorithm for iteratively
estimating the noise covariance and the brain source activity.
The proposed algorithm is found to be quite robust to initial-
ization and computationally efficient. The proposed algorithm
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does not require any additional baseline measurements to es-
timate noise covariance from sensor data. We further show
that the new algorithm produces competitive performance with
benchmark method on real MEG data and able to resolve
distinct and functionally relevant brain areas.

This paper is outlined as follows. In Section 2, we in-
troduce the inverse problem in brain source imaging under
low-rank noise. This is followed by the proposed Bayesian
reconstruction algorithm. Next, in Section 3, we show the ex-
perimental results of our approach on synthetic and real MEG
data. Finally, we conclude in Section 4.

2. THEORY

2.1. Probabilistic Generative Model

In brain source imaging setup, brain activity originates from a
number of electric current dipoles, where the location, orienta-
tion, and the magnitude of each dipole determine the recorded
signal from the EEG electrodes. We consider the following
forward model between measurements and brain sources:

y = Lx+ ε, (1)

where y ∈ RM×K is the EEG/MEG sensor data measured at
M sensors at K time-points, x ∈ RN×K is the underlined
brain signals where N is the number of voxels. The lead-field
matrix L ∈ RM×N represents the propagation of electromag-
netic field from a particular source location to the EEG/MEG
sensors. The additive measurement noise ε is drawn from
N (0,Λ−1), where Λ is the precision of the noise.

In this work, the noise is modelled in terms of the co-
variance of the noise statistics as the follows:

Λ =
r∑

i=1

nin
T
i + σI, (2)

where I ∈ RM×M is an identity matrix, σ is a scaling factor,
and r represents the rank of the noise statistics. The above low-
rank noise is simulated by placing correlated passive (corre-
lated) source of noise at close proximity of MEG/EEG sensors.
Notice that for σ = 0, the noise co-variance Λ in either (2) is
purely low-rank; it’s rank is r. For σ ̸= 0 in (2), the noise is a
mixture of low-rank and homoscedastic statistics.

We assume zero-mean Gaussian prior for the underlying
source: xk ∈ RN×1 ∼ N (0,Φ−1), k = 1, . . . ,K, where
ϕ−1 = [ϕ−1

1 , . . . , ϕ−1
N ]⊤ contains N distinct unknown vari-

ances for the brain sources and Φ−1 = diag(ϕ−1). We con-
sider to solve the inverse problem by using Bayesian learning
framework; by finding the maximum a-posterior probability
(MAP) solution. The posterior probability p(xk|yk) can be
derived by using Bayes’ rule

p(xk|yk) ∝ p(yk|xk)p(xk),

where p(yk|xk) = N (Lxk,Λ
−1) and p(xk) = N (xk|0,Φ−1).

It is straightforward to show that posterior probability p(xk|yk)

is also Gaussian. Suppose, the posterior probability takes the
following form:

p(xk|yk) = N (xk|xk,Γ
−1),

where xk is the posterior mean, and Γ is the posterior precision
matrix. Further it can be shown that:

Γ = Φ+LTΛL,

xk = Γ−1LTΛyk. (3)

2.2. Proposed Bayesian Inference Algorithm

Notice that we need both Φ and Λ to compute the Bayesian
estimate of unknown x is computed using (3). However, since
we have access to only y, the idea is to compute the com-
plete data likelihood and average over it with the posterior
probability as follows:

Θ(Φ,Λ) = E [log p(y,x|Φ,Λ)]

where the expectation [·] is taken with respect to p(x|y). The
complete data likelihood is expressed as

log p(y,x|Φ,Λ) =
K

2
log|Φ| − 1

2

K∑
k=1

xT
kΦxk

+
K

2
log|Λ| − 1

2

K∑
k=1

(yk −Lxk)
TΛ(yk −Lxk).

(4)

Update of Source Parameter: Here we obtain the optimal Φ̂
by maximizing the average likelihood Θ(Φ,Λ) for a fixed Λ
as follows: ∂

∂ΦΘ(Φ,Λ) = 0. With further derivation, we can
show that it follows MacKay update equation:

ϕj =
[Γ−1LTΛL]j,j
1
K

∑K
k=1 x

2
k(j)

, (5)

where [·] indicates (j, j)-th element of a matrix.
Update of Noise Parameter: In this work, we propose to
estimate Λ̂ via factor analysis of the following residual noise
at l-th iteration:

η
(l)
k = yk −Lx

(l)
k . (6)

The idea is to obtain the covariance of η(l)k using Bayesian
factor analysis. In other words, we assume a factored decom-
position of ηk as follows:

ηk = Aνk + δ,

where the residual noise at k-th time-point is ηk ∈ RM×1,
A ∈ RM×P , νk is a P -dimensional column vector, and δ is
modeling noise. Notice that we drop the iteration symbol l for
simplification of notations.
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Algorithm 1: Low-rank Champagne.
Input: Sensor data y; lead-field matrix L.
Output: Brain source activity x.

1 Set random initialization: Φ and Λ.
2 Initialize l← 1.
3 repeat
4 Compute Γ = LTΛL+Φ.
5 Compute x = Γ−1LTΛy.
6 Estimate Φ using (5).
7 Compute η = (y −Lx).
8 Estimate Λ← factor-analysis(η).
9 l← l + 1.

10 until stopping condition: l = lmax

We assume the prior probability distribution of the factor
νk is assumed to be the zero-mean Gaussian with its precision
matrix equal to the identity matrix,

p(νk) = N (νk|0, I)

The factor activity is assumed to be independent across time.
Thus, the joint prior distribution:

p(ν) =

K∏
k=1

p(νk) =

K∏
k=1

N (νk|0, I),

where I is an identity matrix of size (P × P ). The modeling
noise δ is assumed to be Gaussian with the mean of zero:

p(δ) = N (νk|0,Ω−1),

where Ω is a diagonal precision matrix. Further, with few steps
of mathematical derivations, we obtain the Bayesian estimate
of residual noise covariance as follows:

Λ =
(
AAT +Ω−1

)
. (7)

Finally we summarize the proposed reconstruction method in
Algorithm 1. The key aspect is the novel way of estimating co-
variance of residual noise within each iteration of the proposed
Bayesian algorithm. We note that our work is motivated by
one recent empirical Bayesian source reconstruction algorithm
is called Champagne [8]. We refer the proposed algorithm as
Low-rank Champagne.

3. RESULTS

3.1. Simulations and Real Data

We generate source signal data by simulating dipole sources
with fixed orientation. The damped sinusoidal time courses
with frequencies sampled randomly between 1 and 75 Hz are
created as voxel source time activity. The time-courses are

Fig. 1. Reconstruction of active brain sources under simulated
brain noise of rank r = 5 and SNR 5 dB.

then projected to the sensors using the lead-field matrix gen-
erated by the forward model. We consider 271 MEG sensors
and a single shell spherical model [15] implemented in SPM12
http://www.fil.ion.ucl.ac.uk/spm at the default spatial resolu-
tion of 8196 voxels at approximately 5 mm spacing. We set
time period as 480 samples with source activities of interest
and noise activity.

Real MEG data we used in our experiments was acquired
in the Biomagnetic Imaging Laboratory at University of Cal-
ifornia, San Francisco (UCSF) using a CTF Omega 2000
whole-head MEG system from VSM MedTech (Coquitlam,
BC, Canada) with 1200 Hz sampling rate. The lead field
for each subject was calculated in NUTMEG software using
a single-sphere head model (two spherical orientation lead
fields) and an 8 mm voxel grid. the lead field was calculated
using a three-shell spherical model at the coarse resolution.
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(a) sLORETA [7]. (b) FUN [16]. (c) Cai et al. [12]. (d) Proposed.

Fig. 2. Auditory evoked field (AEF) results.
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(a) A′ metric.
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(b) AP metric.

Fig. 3. Performance with varying SNR (dB) for rank r = 10.
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(a) A′ metric.
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(b) AP metric.

Fig. 4. Performance with varying rank for -2 dB SNR.

3.2. Benchmarks and Performance Quantification

In this paper, we choose noise-learned Champagne [Cai et
al. 2021] as the key benchmarks to compare with. Two other
we compare are sLORETA [7] and full structure noise (FUN)
learning method [16]. The performance of simulated brain
source reconstruction is evaluated based on response receiver
operator characteristics (FROC) [12]. We compute A′ and
aggregated performance (AP) metrics to quantify performance
of source localization and reconstruction. For both, a higher
value indicates better result.

3.3. Simulation Results

A brain source reconstruction example is shown in Fig. 1.
We simulated a time-course with 5 active sources randomly

placed with 3D brain. We also generated low-rank noise as
demonstrated in (2). The simulated brain signal is then pro-
jected to measurement space by applying the leadfield matrix
and then the noise is added at SNR = 5dB. Finally, we recon-
struct the underlined time-course using the proposed algorithm.
We also compared the reconstruction performance with recent
method by Cai et al. [12]. It is visually evident that our method
performs better that the state-of-the-art method.

Performance results versus SNR (for a fixed rank) for the
respective algorithms are plotted in Fig. 3. Reconstruction
performance is evaluated for five randomly seeded dipolar
sources with an inter-source correlation coefficient of 0.99.
We also study the performance with varying the rank of the
noise covariance for fixed SNR level in Fig. 4. It is clear that
proposed Low-rank Champagne outperforms in both setting in
terms of both A′ and AP metrics.

3.4. Results on real datasets

The localization result for AEF (Auditory Evoked Fields) data
of a single representative is shown in Fig 2. We also compare
the performance with sLORETA, FUN, and Cai et al. [12].
Our method is able to localize bilateral auditory activity which
is supposed to be in Heschl’s gyrus, the location of primary
auditory cortex. In contrast, sLORETA performance is not as
good because of the presence of correlated sources.

4. DISCUSSION

In this paper, we proposed a new method for MEG source
reconstruction and localization. The algorithm is able to es-
timate sensor noise from observed data without the need for
additional pre-stimulus or baseline data. To be the best of
our understanding, the improved performance of this algo-
rithm arises from the efficient the method of estimating the
noise statistics via factor analysis of residual component. In
summary, this algorithm displays significant advantages over
many existing benchmark algorithms for electromagnetic brain
source imaging.
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