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ABSTRACT

Mutational signatures represent a footprint of tumor evolution and its endogenous and exogenous
mutational processes. However, their functional impact on the proteome remains incompletely
understood. We analysed the protein-coding impact of single base substitution signatures in
12,341 cancer genomes from 18 cancer types. Stop-gain mutations (SGMs) were strongly enriched
in the signatures of tobacco smoking, APOBEC cytidine deaminases, and reactive oxygen
species. These mutational processes affect specific trinucleotide contexts to substitute serine
and glutamic acid residues with stop codons. SGMs are enriched in cancer hallmark pathways
and tumor suppressors such as TP53, FAT1, and APC. Tobacco-driven SGMs in lung cancer
correlate with lifetime smoking history and highlight a preventable determinant of these harmful
mutations. Our study exposes SGM expansion as a genetic mechanism by which endogenous and
carcinogenic mutational processes contribute to protein loss-of-function, oncogenesis, and tumor

heterogeneity, providing potential translational and mechanistic insights.
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INTRODUCTION

Cancer is driven by a few somatic mutations that enable oncogenic properties of cells, however most
mutations in cancer genomes are functionally neutral passengers "2. Somatic mutations are caused by
endogenous and exogeneous mutational processes with complex context- and sequence-specific
activities that collectively mark tumor evolution and exposures over time 3. Single base substitution (SBS)
signatures are the indicators of mutational processes in cancer genomes that can be inferred through a
computational decomposition of somatic single-nucleotide variants (SNVs) and their trinucleotide
sequence context in large cancer genomics datasets 4°. SBS signatures have been linked to clock-like
mutational processes of aging ©, deficiencies in DNA repair pathways 7, endogenous mutational
processes such as the activity of APOBEC cytidine deaminases 8, environmental carcinogens such as UV
light °, lifestyle exposures such as tobacco smoking '°, dietary components such as aristolochic acid "', as
well as the effects of cancer therapies >3, The causes of other signatures remain uncharacterised.
Mutational signatures are also increasingly found in the somatic mutation profiles of healthy tissues,
indicating that the mutational processes contribute to mutagenesis in normal and pre-cancerous cells 415,
Individual driver mutations in cancer genomes have been attributed to the activity of certain mutational
processes '¢'7. While some mutational signatures identified in cancer genomes can be reproduced in
experimental systems %89 their mechanistic and etiological characterization is an ongoing challenge. As
mutational processes are thought to predominantly generate passenger mutations, their broad functional

implications on protein function and cellular pathways remain incompletely understood.

Here we hypothesized that the mutational processes of SNVs have specific impacts on protein-coding
sequence due to their trinucleotide sequence preferences encoded in SBS signatures. By characterizing
the co-occurrence of mutational signatures and the sequence impact of associated SNVs in thousands of
cancer genomes, we find that nonsense SNVs corresponding to stop-gain mutations (SGMs) are
significantly associated with specific mutational processes of tobacco, APOBEC, and reactive oxygen
species. SGMs are the most impactful class of SNVs that cause premature stop codons and result in
truncated proteins or nonsense-mediated decay. Some consequences of these mutational processes
appear as driver mutations in tumor suppressor genes and hallmark cancer pathways. These processes
represent preventable carcinogenic exposures as well as endogenous sources of DNA damage, and their
activity is explained by their sequence-specific interactions with the genetic code of stop codons. Our
report provides direct evidence of the functional genetic impact of mutational signatures in cancer
genomes and their interactions with the molecular and lifestyle drivers of the mutational processes,

suggesting a role for these signatures in tumor heterogeneity and progression.
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Figure 1. Protein-coding impact of mutational signatures in cancer genomes and associations with stop-gain mutations

(SGMs). (a) Overview of study. Left: The associations of protein-coding impact of somatic single-nucleotide variants (SNVs) and

the mutational signatures of single base substitutions (SBS) were studied using enrichment analysis in >12,000 cancer genomes.

Middle: SGMs were enriched in the SBS signatures of tobacco smoking, APOBEC a

nd ROS. The enrichments are explained by

the trinucleotide preferences of the mutational processes that affect the genetic code of certain amino acids, converting these to

stop codons. Right: Mutational signatures of SGMs were further studied in the context of affected driver genes and pathways as

well as the clinical and molecular correlates of the mutational processes. (b) Significant enrichments of mutational signatures in

SGMs in multiple cancer types and in three genomics datasets (FDR < 0.01). Bar plots show the cumulative significance of

enriched SBS signatures in SGMs in various types of cancer. Tobacco smoking, APOBEC activity, and ROS exposure are the

major mutational processes that contribute SGMs. (¢) Observed and expected counts of SGMs derived from the most significant

mutational processes in the three datasets of cancer genomes (TCGA, HMF, PCAWG). Mean expected mutation counts with

95% confidence intervals (CI) from binomial sampling are shown on the bars.

RESULTS

Protein-truncating mutations in cancer genomes are enriched in mutational signatures of tobacco

smoking, APOBEC, and ROS

To study the protein-coding impact of SBS signatures, we analysed 12,341 cancer genomes from 18

major tissue sites using data in three pan-cancer cohorts: The Cancer Genome Atlas (TCGA)
PanCanAtlas 2° with 6509 exomes, Pan-Cancer Analysis of Whole Genomes * (PCAWG) with 2360 whole
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67  genomes, and Hartwig Medical Foundation 2! (HMF) with 3472 whole genomes (Figure 1a)

68  (Supplementary Figure 1). Hypermutated and low-confidence samples were filtered. 1.75 million exonic
69  SNVs were classified based on their protein-coding function as missense (67.4%), silent (27.7%), stop-
70 gain (4.6%), stop-loss (0.1%) and start-loss (0.1%) mutations. We used consensus mutational signature
71 calls of PCAWG # and annotated the signatures in the TCGA and HMF datasets using the SigProfiler

72 software °. Using these three datasets allowed us to replicate our findings across sequencing platforms,
73 variant calling pipelines, and signature analysis methods. We performed a mutation enrichment analysis
74 by asking which specific mutational signatures were found in the five functional SNV classes significantly
75 more often than expected from chance alone. Systematic analysis of the 18 cancer types in the three

76  genomics datasets revealed 332 associations of mutational signatures and protein-coding variant function

77  (Fisher's exact test, FDR < 0.01) (Supplementary Figure 2).

78  We focused on stop-gain mutations (SGMs) (i.e., nonsense SNVs), the most disruptive class of SNVs that
79  induces protein truncations and loss of function (LoF). SGMs were consistently enriched in the SBS

80  signatures of three major mutational processes of tobacco smoking, APOBEC activity, and reactive

81 oxygen species (Figure 1b-c). First, the tobacco smoking signature SBS4 with frequent C>A

82  transversions 2?2 was enriched in SGMs in primary lung cancers in TCGA (10,054 vs. 8,006 expected

83  SGMs, fold-change (FC) = 1.26, FDR = 4.6 x 10°4?; Fisher’s exact test) and metastatic lung cancers in

84  HMF (FC = 1.34; FDR = 1.9 x 10%). Similarly, SGMs were also enriched in the SBS4 signature in the

85  three cohorts of liver cancer samples (FDR < 10°). The SBS29 signature attributed to tobacco chewing

86  was also associated with SGMs in lung and liver cancers (FDR < 0.001).

87  Second, the APOBEC signature SBS13 was enriched in SGMs in multiple cancer types, especially in

88 breast (1653 SGMs observed vs. 931 expected, FDR = 1.1 x 10738, HMF), head & neck (FC = 1.58; FDR
89  =3.3x10°3; TCGA), uterine, lung, and esophageal cancers. Notably, SBS13 appeared as the

90  predominant APOBEC signature of SGMs while the alternative APOBEC signature SBS2 was not

91 enriched in SGMs. SBS2 and SBS13 both preferably affect TCN trinucleotides, however SBS13 is

92  primarily characterised by C>G and C>A mutations, while C>T mutations are common to SBS2,

93  explaining the preferential enrichment of SBS13 to convert TCN to stop codons (TAG, TAA, TGA).

94  Third, SBS18 and SBS36, the two mutational signatures associated with reactive oxygen species (ROS),
95  were also enriched in SGMs. These SBS signatures characterised by C>A mutations were especially
96 enriched in cancers of the digestive system such as colorectal cancer (HMF: 282 SGMs observed vs. 124
97 expected; FDR = 5.0 x 10%"), esophageal cancer and stomach cancer, as well as pancreatic, neuro-
98 endocrine and breast cancers. As ROS signatures were overall less frequent in cancer genomes than
99  other signatures, fewer SBS18-associated SGMs were also found. Less-frequent carcinogenic signatures
100  of aflatoxin and aristolochic acid exposures were also significantly associated with SGMs. These
101 observations were consistent in primary and metastatic cancers, and their detection in independent WGS

102 and WES datasets also lends confidence to our findings.
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103 We validated the associations of SGMs and SBS signatures with additional analyses. First, we repeated
104 the enrichment analysis using a probabilistic approach that accounted for all potential sample-specific
105 signature exposures for annotating individual SNVs. By sampling these signature annotations repeatedly,
106  we confirmed that SGMs remained highly significantly enriched in the SBS signatures of tobacco

107  smoking, APOBEC, and ROS (Supplementary Figure 3). The probabilistic analysis also showed an

108  even stronger enrichment of APOBEC signatures in SGMs in lung cancer compared to the analysis of top
109  signature annotations, while the highly significant enrichment of SGMs in the smoking signature was

110  somewhat attenuated in the probabilistic analysis. Previous studies indicate that both the tobacco

111 smoking and APOBEC processes contribute somatic mutations in lung cancer whereas APOBEC is more
112 involved in later mutagenesis 2%, potentially explaining this observation. Accordingly, a subset of SGMs
113 were likely attributable to either tobacco smoking or APOBEC signatures, or the age-associated signature
114  SBSS5 (Supplementary Figure 4). Second, we performed a pan-cancer analysis by combining samples of
115  all cancer types and again recovered the tobacco smoking, APOBEC and ROS signatures with very

116  strong enrichments of SGMs (Supplementary Figure 5). Thus, the exogenous mutational process of
117  tobacco smoking and the endogenous processes of APOBEC activity and ROS appear as major drivers

118 of disruptive protein-truncating mutations that may directly affect protein function and regulation in cancer.

119  We also reviewed the enriched SBS signatures of missense and silent SNVs (Supplementary Figure 2).
120 Silent mutations were enriched in the mitotic clock-like signature SBS1 consistently in most cancer types
121 across the three cohorts. SBS1 includes C>T transitions caused by 5-methylcytosine deamination. In
122 contrast, missense SNVs were often enriched in the common clock-like signatures SBS5 and SBS40 that
123 have relatively featureless (flat) trinucleotide profiles. Associations with APOBEC signatures were also
124 identified in multiple cancer types: SBS2 was often enriched in silent SNVs while SBS13 was enriched in
125 missense SNVs. Silent and missense SNVs comprise a large variety of trinucleotides and codons, and
126  these signatures are detected in many cancer types, potentially explaining these broad associations and
127  suggesting that functional subclasses of missense mutations should be considered in future analyses.
128 Also, sample sizes and signature exposure determine the statistical power for detecting associations of
129 SBS signatures and SNV annotations in the various cohorts. Taken together, these results exemplify the

130 complex landscape of functional impacts mutational processes enact on the protein-coding genome.
131
132
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Figure 2. SBS signatures induce protein-truncating mutations by targeting the genetic code. (a) SGMs of tobacco
smoking, APOBEC, and ROS signatures are enriched in specific amino acids. Stacked bar plots show the proportion of SGMs
involved in various amino acid substitutions. Left: SGMs of the three major signatures: SBS4 of tobacco smoking in lung cancer,
SBS18 of ROS in colorectal cancer, and SBS13 of APOBEC activity in breast cancer. Right: control SGMs associated with all
other mutational signatures in these cancer types. Enrichment of signature-associated SGMs relative to controls are shown as
asterisks (Fisher’s exact tests). (b) Trinucleotide profiles of SGMs reflecting substitutions of glutamic acid and serine residues in
proteins (Glu > Stop, Ser > Stop) and the reference COSMIC signatures for tobacco smoking (SBS4), ROS (SBS18), and
APOBEC (SBS13). As controls, the profiles of the most frequent mutational signatures are shown (SBS5/40; two plots at the
bottom). Cosine similarity (COS) scores are used to compare the signature-associated SGMs and the COSMIC reference
signatures (top right of each facet). The trinucleotide substitutions relevant to panels (c) and (d) are highlighted on the X-axis. (c-
d) Interactions of the mutational signatures and the genetic code of stop codons. The trinucleotides encoding serine and glutamic
acid residues are shown as rectangles. The trinucleotides that can create stop codons when mutated are shown in grey. The
trinucleotide changes required to create these stop codons are characteristic of the mutational processes of tobacco smoking,
APOBEC, and ROS. (c) Serine substitutions to stop codons. C>G and C>A transversions in SBS13 and SBS18 induce stop
codons by substituting the middle nucleotides in the three codons of serines (yellow). (d) Glutamic acid substitutions to stop
codons. C>A transversions in SBS4, SBS13, and SBS18 induce stop codons by affecting two consecutive codons (grey). Since
SBS signatures are represented with pyrimidines as the reference nucleotides, this schematic shows the trinucleotides that are
mutated to create stop codons from glutamic acids as their reverse complement sequences. Here, the reverse-complementary
trinucleotide transversions substitute the two first nucleotides in the glutamic acid codon (teal) and the third nucleotide in any

preceding codon (white). The trinucleotide changes shown are characteristic of the tobacco smoking signature SBS4.

133

134  SGM signatures and the genetic code

135 To explore the genetic mechanism underlying the enrichments of SGMs in the three major mutational
136 processes, we studied the types of amino acids most frequently substituted by stop codons, focusing on
137  tobacco smoking, APOBEC, and ROS signatures in lung, breast and colorectal cancers. Several types of

138  amino acids were surprisingly frequently replaced by stop codons. Glutamic acid (Glu) residues showed
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139  the strongest enrichment of stop codon substitutions in all three SBS signatures (Figure 2a). In lung

140  cancer, Glu>Stop substitutions were enriched four-fold in the tobacco smoking signature SBS4 compared
141  to other signatures (43.8% vs 10.6%, FDR < 10-3%). Glutamic acid residues were also significantly

142  affected by the APOBEC signature in breast cancer and ROS signatures in colorectal cancer (FC > 3.6,
143 FDR < 1.7 x 10%7). As expected, these enrichments are also supported by reference SBS signatures of
144  the COSMIC database #* (Figure 2b, Supplementary Figure 6). Based on cosine similarity scores

145 (COS), the SNV trinucleotide profiles corresponding to Glu>Stop substitutions in our data were

146  considerably more similar to the COSMIC reference SBS signature profiles of tobacco smoking SBS4 and
147  ROS SBS18 (lung: COSsss4 = 0.40; colorectal: COSsgs1s = 0.62), compared to the frequent clock-like
148  signatures SBS5 and SBS40 that we used as controls (lung: COSsgss = 0.13; colorectal: COSsgs40 =

149 0.33). Besides Glu>Stop substitutions, other amino acids were also enriched in stop codon substitutions
150  in tobacco smoking and ROS signatures, including glycine (Gly; 13.7%) and cysteine (Cys; 6.4%)

151  residues (all FC>4.8; FDR < 3.6 x 10°%), while arginine, glutamine and other residues were less

152 frequently affected by SGMs than expected.

153 The APOBEC signature SGMs in breast cancer encoded stop codon substitutions almost exclusively in
154  serine and glutamic acid residues (55.9% and 42.4%, respectively). Ser>Stop substitutions were

155  significantly more frequent in SBS13 compared to other signatures (4.2% expected; FC = 13, FDR < 10
156  3%). Accordingly, the SNV trinucleotide profiles encoding Ser>Stop substitutions were considerably more
157  similar to the COSMIC reference APOBEC signature (COSsss13 = 0.65) than the more common SBS40
158  reference signature we used as a control (COSsss40 = 0.15), confirming the mutational signature

159  annotations of SGMs in our data. Lastly, ROS signatures were also enriched in Ser>Stop substitutions in
160  colorectal cancer (FDR = 6.2 x 10) while no enrichment of SGMs in serine residues was seen in the

161  tobacco smoking signatures in lung cancer.

162 To consolidate these statistical associations into a mechanistic model, we examined the genetic code of
163 the most common stop codon substitutions involving serine and glutamic acid residues (Figure 2b-c).
164 First, the APOBEC-associated Ser>Stop substitutions in breast cancer were predominantly encoded by
165 T[C>GJA transversions (76.8%) as well as T[C>A]A and T[C>A]G transversions. The TCA and TCG

166 trinucleotides encode the two serine codons that require one SNV to become stop codons. The

167 corresponding stop codons TGA, TAA and TAG are induced by three of the transversions distinctive of
168 the SBS13 APOBEC signature. Second, the Glu>Stop substitutions apparent in the tobacco smoking and
169 ROS signatures were predominantly caused by T[C>A]N transversions that overlap two adjacent codons
170  (Figure 2d). Here, the reverse-complementary trinucleotides NGA include the two first nucleotides of
171 glutamic acid codons GAA and GAG, which are replaced with the stop codons TAA and TAG upon

172 N[G>T]A transversions, respectively. This model explains the genesis of SGMs by the mutational

173 processes of tobacco smoking, APOBEC and ROS.

174

175 Driver genes and pathways with truncating mutations
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To study the functional consequences of SGM signatures, we asked whether the mutations converge on
specific genes. We focused on the six types of cancer in which consistent signature-SGM enrichments
were found in the TCGA, PCAWG and HMF datasets. We identified 56 genes with significantly enriched
SGMs of tobacco smoking, APOBEC, and ROS signatures compared to the exome-wide distributions of
these signatures and all SGMs: 14 genes in lung and liver cancers with the tobacco smoking signature;
44 genes in breast, head & neck, and uterine cancers with the APOBEC signature; and one gene (APC)
in colorectal cancers with the ROS signature (Figure 3a-b; Supplementary Table 1) (Brown FDR < 0.05,
Fisher’'s exact tests). The genes included 556 signature-associated SGMs in 467 cancer genomes in the
combined datasets, representing 3.8% of all tumors we studied. A large fraction of these (24 genes or
43%) are known cancer genes of the COSMIC Cancer Gene Census (CGC) database 2°, significantly
more than expected from chance alone (24 found, 2/56 genes expected; P = 1.4 x 10-%°). Several core
tumor suppressor genes (TSGs) such as TP53, FAT1, CDH1, RB1, NF1, and APC were identified.

To further interpret the mutations functionally, we prioritised the genes with SGMs across cancer types,
excluding colorectal cancer for which only one gene was found. Pathway enrichment analysis of SGM-
ranked genes highlighted biological processes and pathways of such as apoptosis, growth factor
signalling, cell motility, cell proliferation and development (ActivePathways % FDR < 0.05; Figure 3c).
Most detected pathways were identified in multiple cancer types; primarily through the tobacco signature
in lung cancer and the APOBEC signature in head & neck cancer. Thus, the SGMs generated by these
mutational processes converge to tumor suppressor genes and cancer pathways and therefore contribute

to loss of protein function, oncogenesis, and tumor progression.

The mutational signatures of tobacco smoking, APOBEC, and ROS were enriched in truncating mutations
in important cancer genes. First, tobacco-associated SGMs were enriched in 14 genes in lung cancer
across the three datasets, including TP53, in which most SGMs in the TCGA cohort (51/95) were driven
by SBS4 (15 SBS4 SGMs expected, FDR = 1.8 x 10™'") (Figure 3d). Truncations in TP53 preferentially
occurred towards the disordered C-terminal tail involved in protein tetramerization (P = 0.0051, one-
sample Wilcoxon rank-sum test) in which protein truncations have been associated with loss-of-function
phenotypes of TP53 27 and where post-translational modification sites are often mutated in cancer 2.
SGMs of SBS4 and SBS13 showed high levels of functional activity in saturation mutagenesis of TP53 %7,
supporting their roles in cancer phenotypes (Supplementary Figure 7). As another example, the second-
ranking gene STK71 had 20 of 22 SGMs attributable to the tobacco smoking signature in the TCGA
dataset (1 SBS4 SGM expected; FDR = 5.6 x 10""") (Supplementary Figure 8). Inactivating mutations of
the bona fide TSG STK11 (i.e., LKB1; serine/threonine kinase 11) are common in lung cancer, modulate
differentiation and metastasis in vivo, and have been observed more frequently patients with smoking
history %', Smoking-associated truncations in STK11 accumulated towards the N-terminus of the protein
(P = 0.002), suggesting that the mutational process of tobacco smoking directly contributes to early

truncations and loss of function of this TSG. Similar enrichments of SGMs were seen in other core TSGs
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212 such as RB1, NF1, ARID1A, and emerging TSGs such as MGA, a transcription factor of the MYC network

213 that suppresses growth and invasion in cellular and mouse models of lung cancer 2.

214 Second, SGMs of the APOBEC signature SBS13 were enriched in 44 genes in breast, head & neck, and
215 uterine cancer. The most significant gene, FAT1, was found in head & neck cancer in TCGA and included
216 21 APOBEC-associated SGMs (1 SBS13 SGM expected, P = 8.3 x 10'8) (Figure 3e). FAT? encodes a
217 proto-cadherin and master regulator of the Hippo pathway that controls organ growth, cell polarisation,
218  and cell-cell contacts. FAT1 is one of the most frequently mutated TSGs in cancer whose loss of function
219  enhances tumor invasiveness, metastasis, and drug resistance 332, suggesting a link between APOBEC-
220 induced protein truncations and disease outcomes. Interestingly, FAT1 was also found in in lung cancer
221 where SGMs were enriched in the tobacco signature SBS4. Besides FAT1, SGMs of the APOBEC

222 signature were also seen in other hallmark cancer genes such CDH1, TP53, CDKN2A and TGFBR2, and
223 putative cancer genes such as the receptor tyrosine kinase EPHAZ2 that regulates glutamine metabolism

224 in cancer through the Hippo pathway 3.

225 Third, the ROS signature SBS18 was enriched in SGMs in one gene, APC, which was identified in

226  metastatic colorectal cancers of the HMF cohort (27/346 SGMs vs. 1 expected; P = 2.2 x 10*") (Figure
227 3f). APC inactivation is an early oncogenic event that disrupts beta-catenin degradation and activates
228  WNT signalling 36", suggesting a link of APC loss with the oxidative stress in the tumor

229  microenvironment, diet, or with the therapies of metastatic cancers .

230 Tumor suppressor genes are often inactivated in cancer through multiple mechanisms. To determine

231 whether TSGs were inactivated in samples with signature-associated SGMs, we asked whether the 56
232 SGM-enriched genes were also altered by genomic copy number (CN) losses in the same tumor samples
233 (Figure 3b). Indeed, the SGM-enriched genes appeared to carry both protein-truncating mutations and
234 copy-number losses in most relevant cancer samples (58.9% or 275/467). This was also apparent in

235 individual TSGs such as TP53 (67.1% or 55/82 samples), STK11 (86.2% or 25/29) and FAT1 (73.3% or
236  33/45). Thus, some SGMs contributed by the mutational processes of tobacco and APOBEC may be
237  involved in biallelic inactivation of TSGs where one gene copy is inactivated by SGMs while the other

238  copy is deleted.
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239  We asked if the SGM-enriched genes were in accordance with our model of SGM signatures and the
240  genetic code (Figure 2c-d). As expected, the proteins encoded by the 56 SGM-enriched genes encoded
241 for significantly more glutamic acid residues relative to the reference human proteome (Wilcoxon rank-
242  sum P =8.2 x 10°%), while the subset of these proteins with APOBEC-associated truncations also

243 associated with a higher serine content (P < 2.6 x 10*) (Figure 3g). The genetic model was also

244 supported at the level of individual genes. For example, most TP53 truncations of the tobacco smoking
245  signature affected glutamic acids (32/51), while the APOBEC-associated truncations in FAT1 affected
246  either serines (10/21) or glutamic acids (11/21). Furthermore, the same subset of core TSGs was

247  enriched in both tobacco smoking- and APOBEC-associated SGMs in different cancer types (e.g., TP53,
248 CDKN2A, NF1, FAT1 and ARID1A), as the SGMs introduced through the two mutational processes

249 converge across different cancer types. Thus, certain TSGs may be more vulnerable to these mutational
250 processes and the resulting SGMs due to their protein sequence content, indicating an interplay of the

251 mutational processes and positive selection against tumor suppressive function.
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Figure 3. SGMs of tobacco smoking, APOBEC, and ROS signatures are enriched in tumor suppressor genes (TSGs) and
cancer hallmark pathways. (a) Genes that are significantly enriched in SGMs driven by the three mutational signatures SBS4,
SBS13 and SBS18. Each cancer type and cohort was analysed separately and the findings were integrated across the three
cancer cohorts (Fisher’s exact tests, Brown FDR < 0.05). Known cancer genes are shown in red. (b) SGMs in the significantly
enriched genes often co-occur with genomic copy-number losses in the same cancer samples, indicative of loss of
heterozygosity. (c) Biological processes and molecular pathways with enriched SGMs of tobacco smoking and APOBEC
signatures. Significant pathways were identified by merging evidence through the SGM signatures and the cancer types
(ActivePathways, FDR < 0.05). The enrichment map is a network where enriched pathways and processes are shown as nodes
and the edges connect the pathways that share genes. Nodes are colored by the cancer types in which the SGM enrichment
was detected. Light blue represents the pathways that reached significance only when the evidence from the five cancer types
was combined. (d-f) Examples of major TSGs that are enriched in SGMs driven by the mutational processes of tobacco smoking,
APOBEC, and ROS. Colored circles show the signature-associated SGMs, their reference amino acid residues, and their
sequence positions. PFAM protein domains are shown as colored rectangles. The number of SGMs of the mutational signature
(Nsgs), the enrichment P-value of SGMs (Penr, Fisher’s exact test), and the P-value of SGMs accumulating towards either protein
terminus (Pseq, one-sample Wilcoxon rank-sum test) are shown. (d) SGMs in TP53 in lung cancer are enriched in the tobacco
smoking signature SBS4. (e) SGMs in FAT1 in head & neck cancer are enriched in the APOBEC signature SBS13. (f) SGMs in
APC are enriched in the ROS signature SBS18. (g) Genes enriched with SGMs of tobacco smoking, APOBEC, and ROS
processes have a higher amino acid sequence content of Ser and Glu residues compared to all protein-coding genes (Prank,

one-sample Wilcoxon rank-sum test). Colors indicate the mutational signatures enriched in SGMs.
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252 Clinical and molecular associations of SGM signatures

253 We asked how the mutational processes of SGMs were manifested in individual cancer genomes. The
254  largest number of SGMs was associated with the tobacco smoking signature in lung cancers. In TCGA,
255 lung cancer samples included 10.5 tobacco smoking-associated SGMs per genome on average, whereas
256 73% of cancers had at least one and 39% had at least ten such protein-truncating mutations. In primary
257 TCGA breast cancers, the mutational process of APOBEC was associated with an average of 1.1 SGMs
258 and affected a quarter of samples. In metastatic breast cancers of the HMF dataset, APOBEC-driven
259  SGM burden was higher (mean 2.3 SGMs per sample; 32% of samples), consistent with longer or higher
260  APOBEC levels in advanced cancers *°. ROS-associated SGMs, while less frequent in cancer genomes
261 overall, were most pronounced in metastatic colorectal cancers in HMF, affecting 23% of samples with an
262  average of 0.5 SGMs per genome (Figure 4a). Therefore, a large fraction of cancer genomes has some

263 SGMs and potential loss-of-function alterations through these mutational processes.

264  We next studied the activity of SGM signatures at the level of cancer subtypes. The enrichment of SGMs
265 in the tobacco smoking signature was detected in primary lung adenocarcinomas (LUAD) and squamous
266  cell carcinomas (LUSC) in TCGA, as well as metastatic non-small cell and small cell cancers in the HMF
267  dataset (Figure 4b). APOBEC associations with SGMs in breast cancer were also confirmed in the major
268 histological and molecular subtypes of the disease and were also detected in primary breast cancers and
269 metastatic cancers originating from the breast. Notably, the Her2-positive breast cancer subtype in TCGA
270  had three-fold more APOBEC-driven SGMs than all other subtypes combined (2.9 vs. 0.95 SGMs per
271 genome) (Figure 4b), consistent with earlier studies showing higher APOBEC activity in that subtype 8.
272  Thus, the mutational processes generating SGMs are active across lung and breast cancer subtypes and

273 in primary and metastatic cancers.

274  We analysed the mRNA abundance of APOBEC enzymes to study the molecular drivers of these

275 mutational processes, focusing on breast cancer cohorts where most consistent signals of APOBEC-
276 driven SGMs were found. In TCGA, the cancer samples with higher APOBEC3A or APOBEC3B

277  expression had significantly more APOBEC-driven SGMs compared to cancers with lower expression (P
278  =2.1x107%, Poisson exact test). Similarly, significantly more SGMs involving serine and glutamic acid
279  residues were found (P = 2.0 x 102). The positive association of APOBEC enzyme expression and SGM
280 burden was also observed in the HMF cohort of metastatic cancers (Figure 4c), as well as other

281 APOBEC3 genes (Supplementary Figure 9) The association of APOBEC mutagenesis with gene

282  expression of the two enzymes confirms earlier studies of cancer genomes and experimental systems

283  '940 and connects the mutational processes of SGMs with the expected molecular pathway.

284  Lastly, we assessed SGMs in the context of smoking history of lung cancer patients in TCGA. Compared
285 to patients with smoking history, the cancer genomes of lifelong non-smokers had fewer tobacco-
286  associated SGMs of SBS4 (FDR < 10°°) and fewer Glu>Stop substitutions (FDR < 10-). No significant

287  differences in SBS4 SGM burden were found between current and recently-reformed smokers (FDR =
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288  0.93); however, both groups had significantly more SBS4 SGMs than lifelong non-smokers and long-term
289  reformed smokers (FDR < 10%). Cancer subtype analysis confirmed the association between lifetime
290  smoking and the burden of SBS4 SGMs in LUAD, while weaker signals were observed in LUSC (Figure
291  4d). This is expected as the LUAD subtype is more common among non-smokers than LUSC #' (13.6%
292 and 3.7% in TCGA, respectively) and the more varied composition of the LUAD cohort may contribute to
293  the more pronounced association with SGMs. Therefore, SGMs in lung cancer genomes can be attributed
294  to lifetime smoking activity, indicating a preventable cause of these impactful genetic aberrations. Overall,
295 the clinical and molecular associations of mutational processes and SGMs provide insights to tumor
296  heterogeneity and patient outcomes and have potential implications to biomarker and therapy
297  development.
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Figure 4. Molecular and clinical associations of SGMs with the mutational processes of tobacco smoking and APOBEC.

(a) Mutational burden of SGMs of the three most significant mutational processes in cancer genomes. Stacked bar plots show

the numbers of SGMs per cancer genome for the three SBS signatures: tobacco smoking in lung cancers (SBS4; left), APOBEC

in breast cancer (SBS13; middle), and ROS in colorectal cancer (SBS18; right). Primary and metastatic cancer cohorts are

compared (TCGA, HMF). Mean numbers of SGMs per cancer genome with = 95% CI are shown above the bar plots. (b) SGMs

of tobacco smoking and APOBEC signatures are also enriched in the molecular subtypes of lung and breast cancer. Expected

total SGM counts with 95% CI are shown as points and whiskers. The counts of cancer samples in each group are shown in the
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X-axis labels. Lung cancer subtypes include small-cell (SC), non-small cell (NSC), adenocarcinoma (LUAD), and squamous cell
carcinoma (LUSC) as annotated in the datasets. (c) Gene expression of APOBEC3A and APOBECS3B in breast cancer samples
in TCGA associates with more frequent SGMs of the SBS13 signature (left) and more frequent Ser>Stop and Glu>Stop
substitutions (right). The analysis compared cancer samples that were grouped by the expression of APOBEC3A and
APOBECS3B genes (median-dichotomized; high vs. low). P-values of Poisson exact tests are shown. (d) The SGMs of the
tobacco smoking signature are associated with the smoking history of lung cancer patients in TCGA. Box plots show the
numbers of SGMs of the SBS4 signature (left) and Glu>Stop substitutions per cancer genome (right). The counts of cancer
samples in each group are shown below the box plots. The statistical significance of correlating SGM burden with respect to
smoking history is shown in the grid plot at the bottom (Wilcoxon rank-sum test, FDR-adjusted; * < 0.05; ** < 0.01; *** < 0.001;

wEE o 4 0—16).
298
299  DISCUSSION

300 Our pan-cancer analysis shows that the mutational processes of tobacco smoking, APOBEC, and ROS
301 are a source of protein-truncating mutations in cancer genomes. The trinucleotide context of these

302 mutational processes results in substitutions of glutamic acid and serine residues to stop codons,

303 explaining the strong statistical associations observed in many cancer types. In support of this

304 mechanism, we present several lines of evidence. First, the tumor suppressors with the strongest

305 enrichments of SGMs also have a high protein sequence content of these amino acids. Second, we can
306 identify the mutational processes of SGMs in large cohorts of primary and metastatic cancers of various
307 disease types, and in whole-genome and whole-exome sequencing datasets. Third, the mutational

308 burden of SGMs correlates with the molecular drivers of the mutational processes, including lifestyle

309 tobacco exposure of lung cancer patients and the expression levels of APOBEC genes.

310 Our analysis ties together the functional impact of mutational processes and positive selection in cancer
311 genomes. The genes with the most frequent SGMs associated with the three mutational processes are
312 clearly enriched in core tumor suppressor genes, including early oncogenic drivers such as APC, later
313 drivers of tumor progression and metastasis such as CDH1, as well as less-characterized cancer genes
314  for further studies such as EPHA2 and MGA. SGM-enriched genes converge to cancer hallmark

315 pathways across multiple cancer types. In many cases, protein-truncations of TSGs are combined with
316 copy-number deletions, indicating that SGMs contribute to biallelic inactivation. The trinucleotide

317  preferences of the mutational processes imply that the TSGs with a higher protein content of glutamic
318 acids and serines are more vulnerable to protein truncations caused by these mutational processes. In

319 these genes, SGMs likely promote cancer development and are under positive selection.

320  The mutational processes that contribute SGMs are the major processes of somatic mutagenesis in many
321 cancer types. Tobacco smoking appears as the most significant driver of SGMs in the cancers of lung,
322 head and neck, and esophagus cancers that involve direct exposure to smoke. We also find SGM

323 enrichments in lower-frequency carcinogenic processes of tobacco chewing, and the dietary carcinogens
324  aflatoxin and aristolochic acids. Further, increased smoking is associated with higher SGM burden,

325 indicating that the more an individual is exposed to tobacco smoke, the more likely they are to acquire
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326 protein-truncating somatic mutations in tobacco-exposed cells. Therefore, loss-of-function mutations in
327 cancer genomes appear to be determined by lifestyle and environmental exposures of smoking and

328  exposure to second hand-smoke.

329  APOBEC enzymes are core components of the innate immune system that are involved in restriction of
330 virus replication and somatic antibody diversification 2. Aberrant APOBEC activity is a major cause of
331 somatic mutations in many cancer types. APOBEC enzymes were described in virus restriction pathways
332  that disable viruses by inducing missense and stop-gain mutations in viral RNA 43, This evolutionarily
333 important mutational process of defense against pathogens corroborates our observations in cancer
334 genomes. RNA editing by APOBEC1 causes a protein truncation in the apolipoprotein APOB that is
335  required for lipid processing in the intestine 4445, Somatic mutagenesis in normal human small intestines
336  has been associated with APOBEC1 activity and includes protein truncations in TSGs “¢. APOBEC

337  mutagenesis is clustered in tissue-specific open-chromatin regions 4/48, indicating that the SGMs

338 preferentially target actively expressed genes in which protein-truncating mutations are more likely to
339 have functional consequences. Therapeutic APOBEC inhibition may help reduce the genesis of SGMs
340  and the rein in tumor heterogeneity, especially as APOBEC has been linked to mutational processes,

341 sub-clonal diversification, and driver mutations later in tumor evolution 3°.

342 Oxidative stress and ROS are major sources of genomic instability that are associated with lifestyle

343 factors common in developed countries, such as malnutrition, limited dietary antioxidant levels, obesity,
344  and excess alcohol consumption 4°. Oxidative stress is also associated with some anti-cancer therapies
345  such as ionizing radiation and certain chemotherapeutic agents. SGMs of ROS signatures were

346 especially apparent in metastatic colorectal cancers that are commonly treated with radiation therapy.
347 Interestingly, rare cancer-predisposing germline mutations of the DNA repair enzyme MUTYH have been
348  associated with the ROS signature SBS18 and more frequent SGMs *°, supporting our findings of SBS18-
349  driven SGMs in cancer genomes. Thus, lifestyle variables, genetic makeup of patients and certain cancer
350 treatments may contribute to loss-of-function mutagenesis, increasing genetic tumor heterogeneity and

351 ultimately enabling additional molecular avenues of tumor progression and metastasis.

352 As cancers evolve, they become more heterogeneous and their paths to progression and metastasis

353 become more varied. This heterogeneity is likely acquired through additional mutations that further

354  deregulate cancer pathways and unlock therapy resistance. By inducing SGMs, the mutational processes
355  of tobacco, APOBEC and ROS directly contribute to tumor heterogeneity by causing protein loss-of-

356  function mutations. While not all these SGMs occur in core TSGs and directly drive cancer phenotypes,
357 SGMs may involve genetic interactions with the core driver genes. Synergistic interactions may provide
358 additional context-specific advantages to tumors in cases where the SGMs disrupt protective mechanisms
359  and thereby enhance the phenotypes caused by core driver genes. On the other hand, SGMs may lead to
360  synthetic lethal interactions where the SGMs disrupt a pathway that the core oncogenic pathway depends

361 on. These interactions may be exploited for therapy by targeting other components of the SGM-disrupted
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362 pathway. Therefore, SGM-inducing mutational processes are likely to increase inter-and intra-tumoral
363 heterogeneity through loss-of-function. Mutational processes of SGMs may also have implications on the
364 tumor’s interactions with the immune system. SGMs lead to truncated and malformed proteins, some of
365 which may be expressed on the cell surface and appear as neoantigens. Such truncated proteins may
366 render the tumor more visible to the immune system, highlighting avenues for T cell-based

367 immunotherapies. Deeper analyses of the proteogenomic impact of mutational processes, their etiology
368 and genetic and lifestyle associations may lead to innovative biomarkers, mechanistic insights to cancer

369  pathways, and leads for therapy development.
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370  METHODS

371 Somatic mutations in cancer genomes. We analysed somatic SNVs in three cohorts of multiple cancer

372  types: ICGC/TCGA Pan-cancer Analysis of Whole Genomes (PCAWG) ? with whole genome sequencing
373 (WGS) data of primary cancers, Hartwig Medical Foundation (HMF) 2! with WGS data of metastatic

374  cancers, and the Cancer Genome Atlas (TCGA) PanCanAtlas 2 project with whole exome sequencing
375 (WES) of mostly primary cancers. We used the Multi-Center Mutation Calling in Multiple Cancers (MC3)
376  dataset of TCGA variant calls 5'. We removed hypermutated tumor samples defined as those with

377  >90,000 SNVs in WGS data and with >1800 SNVs in WES data, corresponding to genomes with

378 approximately >30 SNVs/Mbps (n = 69 for PCAWG; n = 306 for HMF; n = 806 for TCGA). We excluded
379 SNVs that did not pass the MC3 quality filter in TCGA. In WES data, we also removed lower-confidence
380  samples with very few mutations for increased confidence in signature decomposition (<20 SNVs; 977
381 samples in TCGA). In HMF, we removed 140 duplicate cancer genomes of tumors of the same patients
382 by selecting the sample with the highest tumor purity. We also removed 25 samples lacking HMF patient
383 IDs. To enable analyses across the TCGA, PCAWG and HMF cohorts, cancer types were consolidated to
384 18 meta-types based on organs and/or anatomical sites, each with each cancer type including at least 25
385  samples in the three cohorts (Supplementary Figure 1). In HMF, the organ of the primary tumor was
386  used for cancer type classification. Cancers of and less-frequent primary sites and of unknown origin
387 (HMF) were excluded. In total, we analysed 1,751,110 exonic SNVs. The functional effects of SNVs on
388  protein-coding genes were annotated using the ANNOVAR software °2 (version 2019-Oct-24)by using the
389 canonical protein isoforms of the genes. The final dataset contained 12,341 cancer genomes (2360 in
390 PCAWG, 3472 in HMF, 6509 in TCGA). This included some samples that were present in both the

391 PCAWG and TCGA cohorts (n = 484). The duplicate samples in PCAWG and TCGA were retained to
392 provide additional technical validation across the sequencing platforms, variant calling pipelines, and

393  signature mapping strategies used to produce the datasets.
394

395 SBS signatures. Mutational signatures for single base substitutions (SBS) in PCAWG were retrieved from
396  the consensus PCAWG dataset . In HMF and TCGA datasets, we separately assigned known SBS
397  signatures to SNVs using the SigProfilerSingleSample software (version 0.0.0.27) ° and the COSMIC

398  SBS signature catalogue (version 3) 524, For most analyses, each SNV was assigned to the most

399 probable SBS signature based on these signature exposure prections. We removed a small subset of
400  samples in WGS data that were potentially contaminated with sequencing artefacts as defined by the
401  presence of more than 20% of SNVs assigned to SBS27, SBS43, and SBS45-SBS60, comprising nine
402  samples in PCAWG and four samples in HMF. The TCGA dataset was not further filtered beyond the
403  MC3 quality filter ®'. To verify the tobacco, APOBEC and ROS signatures of SGMs in lung, breast and
404  colorectal cancers respectively, we computed cosine similarity (COS) scores to evaluate the similarity of
405  the SGM trinucleotide profiles with the reference SBS trinucleotide signatures of the COSMIC database.
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406 COS scores were separately computed for all SGMs and specific amino acid substitutions involving
407 serines and glutamic acids. As controls, we also computed the equivalent COS scores comparing the
408 SGM trinucleotide profiles with the two clock-like feature-less SBS signatures, SBS5 and SBS40, which

409  were the most assigned SBS signatures in the respective cancer types.
410

411 Enrichment analysis of protein-coding SNV classes and mutational signatures. We performed a

412  comprehensive enrichment analysis of functional SNV annotations and mutational SBS signatures by
413 separately comparing all consolidated cancer types in the three cancer cohorts. The analysis evaluated
414 whether the classes of exonic SNVs (i.e., missense, stop-gain (i.e., non-sense), silent, start-loss, stop-
415 loss) were significantly enriched in certain mutational signatures more often than expected from the

416  independent binomial distributions of these SNV classes and the SBS signatures in all protein-coding
417 regions of a given cancer type and cohort. For each cancer type, we tested the signatures that were

418 reasonably frequently detected, had at least 100 SNVs per cancer type and cohort, and included at least
419  one SNV of the tested variant annotation class (e.g., SGM), excluding signatures annotated as

420  sequencing artefacts in the COSMIC database (see above). Certain signatures associated with the

421 common mutational processes were combined: clock-like signatures SBS5 and SBS40 (SBS5/40), UV
422  signatures SBS 7a/b/c/d (SBS7), hypermutation-associated signatures SBS10a/b (SBS10), and the

423  signatures SBS17a/b (SBS17). Since this analysis focused only on protein-coding regions, we excluded
424 SNVs outside exons in the WGS datasets from our statistical tests. To provide comparable analyses of
425 WGS and WES datasets and reduce the inflation of significance in better-powered WGS datasets, we
426  excluded non-exonic variants from the statistical tests. Statistical analysis was conducted using one-tailed
427  Fisher's exact tests that asked whether a set of SNVs derived from a given SBS signature and another
428  set of SNV with a given functional annotation were overlapping significantly more often than expected by
429 chance alone. The resulting P-values were adjusted for multiple testing using the Benjamini-Hochberg
430  False Discovery rate (FDR) method 3. Results were considered significant if FDR < 0.01. Expected

431 values of mutations sharing SBS signatures and functional annotations were sampled from the

432 independent binomial distributions over 10,000 iterations, parametrized by the product of the probabilities
433 of signature mutations and functional annotations, respectively. Using a similar approach, we also asked
434 i specific types of amino acids were more likely to be substituted with stop codons through the SGMs
435 driven by the identified SBS signatures. This analysis focused on only three cancer types and and three
436  SBS signatures in the cohorts with the strongest signals (SBS4 in lung cancer in TCGA, SBS13 in breast
437 cancer in HMF, SBS18 in colorectal cancer in HMF). Fisher’'s exact tests were performed to assess

438  whether certain amino acids were co-occurring with the signatures significantly more often than expected
439  from the individual binomial distributions of the signature-associated variants and the substituted amino

440  acid. The resulting P-values were corrected for multiple testing using FDR.

441
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Confirming the enrichment of SGMs in the major SBS signatures with probabilistic sampling. All major

analyses in our study considered the most probable SBS signature for each SNV. To confirm our findings
by accounting for the uncertainty in the signature annotations of individual SNVs and tumor samples, we
performed a sampling analysis in which we assigned signatures to individual SNVs probabilistically over
100 iterations. Each SNV was assigned an SBS signature based on the multinomial distribution
parametrised by the probabilities of all the SBS signatures identified in the given cancer genome. This
procedure allowed the less-probable signatures to be included in the SNV annotation based on their
probabilities. The 100 probabilistically sampled SNV-to-signature assignments were then systematically
analysed using the enrichment analysis approach described above, to determine which signatures were
enriched in SGMs in various cancer types. Significant results for each iteration were selected after
iteration-specific multiple testing correction (FDR < 0.05). The fold-changes and FDR-values of the
different iterations were then visualised as volcano plots that summarized fold change and FDR in all

iterations.

Analysis of SBS signatures and SGMs in genes. Genes with significant signature-associated SGMs were

identified using one-tailed Fisher’s exact tests separately for the three major signatures (SBS4, SBS13,
SBS18). The tests compared the distribution of SGMs of each SBS signature in a gene relative to the
distributions of all SGMs and all mutations of that SBS signature in all protein-coding genes combined.
This analysis only used exonic mutations and excluded mutations in non-coding regions, similarly to the
exome-wide analysis described above. Fisher's exact tests were conducted for each gene separately and
in all three cohorts separately (TCGA, HMF, PCAWG). Genes were only tested if they had at least one
SGM assigned to the given mutational signature. The resulting P-values for each gene were merged
using the Brown procedure 54 and corrected for multiple testing using FDR. Significant genes were
selected based on the Brown merged FDR-values (FDR < 0.05). Known cancer genes of the COSMIC
Cancer Gene Census (CGC) database 2° (version 2020-09-17, accessed 2021-10-21) were highlighted in
the resulting gene list. A Fisher’'s exact test was used to determine whether the CGC genes were found in
the list more often than expected, using all protein-coding genes as the background set. In an additional
analysis, all protein-coding genes were ranked according to the numbers of glutamic acid (Glu) and
serine (Ser) residues in their canonical protein isoforms. Genes identified in the SGM enrichment analysis
from above were tested for higher-than-expected Glu and Ser content using one-tailed Mann-Whitney U-
tests that determined whether the ranks of the selected genes were significantly higher than the median
rank across the reference human proteome. For each candidate gene, we determined whether the
sequence positions of the signature-associated SGMs were distributed towards either the N or C terminus
of the protein more often than expected. One-tailed one-sample Wilcoxon rank-sum tests were used for
this analysis. To analyse the functional impact of SGMs in TP53, we obtained data from saturation
mutagenesis screens from the study by Giacomelli et al. 2" and compared the Z-scores of TP53

functional activity among four classes of SNVs: (i) SGMs associated with SBS4 and/or SBS13 in any

19


https://doi.org/10.1101/2023.03.19.533271
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.19.533271; this version posted March 19, 2023. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

479
480
481
482
483
484

485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503

504

505
506
507
508
509
510
511
512
513
514

available under aCC-BY 4.0 International license.

cancer sample in our datasets (i.e., PCAWG, TCGA, HMF combined), (ii) all other SGMs of other SBS
signatures (i.e., excluding SBS4 and SBS13) observed in any cancer sample in our datasets, (iii)
missense SNVs observed in any cancer sample in our datasets, and (iv) as controls, all other mutations
of TP53 studied in the mutagenesis screens but not in any human cancer genomes. Only unique
mutations were analysed. Statistical significance estimates between the groups were determined using

Wilcoxon rank-sum tests.

Analysis of copy number alterations (CNAs) and SGMs. We aimed to identify potential biallelic

inactivation cases where the gene was disrupted by both SGMs and copy number (CN) alterations
leading to the genomic losses of the gene in the same tumor. We studied the 56 genes with significantly
enriched signature-associated SGMs from our analysis that included 556 SGMs in 467 tumors in total.
Separate strategies to select CNAs were used for the TCGA dataset and the PCAWG and HMF datasets.
For TCGA samples profiled previously using SNP6 microarrays, we analysed the relative digital somatic
CN calls of each gene as from previous consensus datasets. Gene losses in TCGA were defined through
gene CN < 0. For PCAWG and HMF samples previously profiled using WGS, we analysed the CN values
of genomic segments defined in these projects. To define the CN value for each gene, we considered the
overlapping genomic segment with the lowest CN and of at least 1 kbps in length. To define gene losses
in PCAWG and HMF, we used different criteria for autosomes and the X chromosome, and for samples
with and without potential whole-genome duplication (WGD) events. A cancer genome was predicted to
have undergone WGD if the genome-wide CN > 2.5. For non-WGD samples, we defined gene losses in
autosomes through gene CN < 1.5. For WGD samples, we defined gene losses through gene CN < 2.0.
The same thresholds were used to define gene losses in X chromosomes in female patients. Gene losses
in X chromosomes in males were defined through gene CN < 1.0 for non-WGD samples and through
gene CN < 1.5 for WGD samples. CNAs were unavailable for one relevant HMF sample and nine relevant

TCGA samples, for which we assumed that no gene deletion events occurred.

Pathway enrichment analysis. To understand the functional importance of the genes with SGMs of

different mutational signatures, we performed an integrative pathway enrichment analysis using the
ActivePathways method 26 (FDR < 0.05). The analysis was designed to prioritise genes and pathways
that were enriched with signature-associated SGMs in multiple cancer types. We included the cancer
types for which such genes were found, excluding colorectal cancer for which only one gene was found.
For each cancer type, we selected the cohort with most cancer samples: lung (SBS4, TCGA), liver
(SBS4, TCGA), breast (SBS13, HMF), head & neck (SBS13, TCGA), and uterine cancer (SBS13, TCGA).
As the input to ActivePathways, we used a matrix of P-values of all protein-coding genes and the selected
cancer types, such that each P-value reflected the enrichment of signature-associated SGMs in the gene

and the cancer type. Gene sets of biological processes of Gene Ontology and molecular pathways of
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515 Reactome were derived from the GMT files in the g:Profiler web server % (downloaded January 3, 2022).
516 Gene sets with 100-500 genes were analysed. Statistically significant pathways were selected
517 (ActivePathways, FDR < 0.05). The results were visualised as an enrichment map °¢ and the subnetworks

518  were labelled interactively to find common functional themes of similar pathways and processes.
519

520 Analysis of SGMs of SBS signatures in tumor subtypes and correlation with patient smoking history. We

521 studied the number of signature-associated SGMs in each cancer genome in the representative cancer
522  types (SBS4 in lung, SBS13 in breast; SBS18 in colorectal), and compared primary cancers in TCGA and
523 metastatic cancers in HMF. Mean numbers of signature-associated SGMs per cancer genome were

524 reported with 95% confidence intervals, by also including the samples where these SBS signatures were
525 not detectable. We also compared the per-tumor SGM counts separately in various subtypes of lung and
526 breast cancer. Subtype analysis was not performed in colorectal cancer due to limited subtype

527 information available. Cancer subtype annotations for PCAWG were retrieved from the ICGC data portal,
528  from patient information tables for HMF, and for TCGA from the TCGADbiolinks R package %’ (v. 2.18.0).
529 Samples with unknown and missing subtype annotations were excluded. To validate the associations of
530 SGMs and SBS signatures in the relevant cancer subtypes, we repeated the signature enrichment

531 analysis of SGMs in samples of specific cancer subtypes using Fisher’'s exact tests as described above.
532 We also analysed SGMs of the tobacco signature SBS4 in the context of smoking history of lung cancer
533 patients. We compared the subsets of TCGA cancer samples based on the four categories of patient
534 smoking history that were derived from TCGAbiolinks. We compared two categories of SGMs: SGMs
535 assigned to SBS4, and SGMs causing Glu > Stop substitutions. Non-parametric Wilcoxon rank-sum tests
536  were used to compare mutation counts per patient in the four categories of smoking history. We

537 performed one analysis by combining all lung cancer patients based on their smoking history, and two
538 additional analyses focused on the two major histological subtypes (adenocarcinoma and squamous cell
539  carcinoma). In breast cancer samples, we associated the frequency of SGMs per cancer genome with the
540  gene expression levels of APOBEC enzymes APOBEC3A and APOBEC3B. We analysed breast cancer
541 datasets in TCGA and HMF using matching RNA-seq datasets. Cancer samples with no SBS13

542 mutations were also included in the analyses. We excluded cancer samples with no matching RNA-seq
543 data. Samples were split (median-dichotomised) into two subsets based on the median mRNA

544 abundance of the APOBEC genes. The resulting two groups were compared using Poisson exact tests to
545 compare mutation counts per cancer genome. Two types of mutations were considered: all snSNVs of
546  the SBS13 signature, and all stop codon substitutions involving glutamic acids and serines combined (Glu
547 > Stop, Ser > Stop).

548
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