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ABSTRACT 14 

Mutational signatures represent a footprint of tumor evolution and its endogenous and exogenous 15 
mutational processes. However, their functional impact on the proteome remains incompletely 16 
understood. We analysed the protein-coding impact of single base substitution signatures in 17 
12,341 cancer genomes from 18 cancer types. Stop-gain mutations (SGMs) were strongly enriched 18 
in the signatures of tobacco smoking, APOBEC cytidine deaminases, and reactive oxygen 19 
species. These mutational processes affect specific trinucleotide contexts to substitute serine 20 
and glutamic acid residues with stop codons. SGMs are enriched in cancer hallmark pathways 21 
and tumor suppressors such as TP53, FAT1, and APC. Tobacco-driven SGMs in lung cancer 22 
correlate with lifetime smoking history and highlight a preventable determinant of these harmful 23 
mutations. Our study exposes SGM expansion as a genetic mechanism by which endogenous and 24 
carcinogenic mutational processes contribute to protein loss-of-function, oncogenesis, and tumor 25 
heterogeneity, providing potential translational and mechanistic insights.  26 

  27 
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 2 

INTRODUCTION 28 

Cancer is driven by a few somatic mutations that enable oncogenic properties of cells, however most 29 
mutations in cancer genomes are functionally neutral passengers 1,2. Somatic mutations are caused by 30 
endogenous and exogeneous mutational processes with complex context- and sequence-specific 31 
activities that collectively mark tumor evolution and exposures over time 3. Single base substitution (SBS) 32 
signatures are the indicators of mutational processes in cancer genomes that can be inferred through a 33 
computational decomposition of somatic single-nucleotide variants (SNVs) and their trinucleotide 34 
sequence context in large cancer genomics datasets 4,5. SBS signatures have been linked to clock-like 35 
mutational processes of aging 6, deficiencies in DNA repair pathways 7, endogenous mutational 36 
processes such as the activity of APOBEC cytidine deaminases 8, environmental carcinogens such as UV 37 
light 9, lifestyle exposures such as tobacco smoking 10, dietary components such as aristolochic acid 11, as 38 
well as the effects of cancer therapies 12,13. The causes of other signatures remain uncharacterised. 39 
Mutational signatures are also increasingly found in the somatic mutation profiles of healthy tissues, 40 
indicating that the mutational processes contribute to mutagenesis in normal and pre-cancerous cells 14,15. 41 
Individual driver mutations in cancer genomes have been attributed to the activity of certain mutational 42 
processes 16,17. While some mutational signatures identified in cancer genomes can be reproduced in 43 
experimental systems 9,18,19, their mechanistic and etiological characterization is an ongoing challenge. As 44 
mutational processes are thought to predominantly generate passenger mutations, their broad functional 45 
implications on protein function and cellular pathways remain incompletely understood.  46 

Here we hypothesized that the mutational processes of SNVs have specific impacts on protein-coding 47 
sequence due to their trinucleotide sequence preferences encoded in SBS signatures. By characterizing 48 
the co-occurrence of mutational signatures and the sequence impact of associated SNVs in thousands of 49 
cancer genomes, we find that nonsense SNVs corresponding to stop-gain mutations (SGMs) are 50 
significantly associated with specific mutational processes of tobacco, APOBEC, and reactive oxygen 51 
species. SGMs are the most impactful class of SNVs that cause premature stop codons and result in 52 
truncated proteins or nonsense-mediated decay. Some consequences of these mutational processes 53 
appear as driver mutations in tumor suppressor genes and hallmark cancer pathways. These processes 54 
represent preventable carcinogenic exposures as well as endogenous sources of DNA damage, and their 55 
activity is explained by their sequence-specific interactions with the genetic code of stop codons. Our 56 
report provides direct evidence of the functional genetic impact of mutational signatures in cancer 57 
genomes and their interactions with the molecular and lifestyle drivers of the mutational processes, 58 
suggesting a role for these signatures in tumor heterogeneity and progression.   59 
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 60 

RESULTS 61 

Protein-truncating mutations in cancer genomes are enriched in mutational signatures of tobacco 62 
smoking, APOBEC, and ROS 63 

To study the protein-coding impact of SBS signatures, we analysed 12,341 cancer genomes from 18 64 
major tissue sites using data in three pan-cancer cohorts: The Cancer Genome Atlas (TCGA)  65 
PanCanAtlas 20 with 6509 exomes, Pan-Cancer Analysis of Whole Genomes 4 (PCAWG) with 2360 whole 66 

 

Figure 1. Protein-coding impact of mutational signatures in cancer genomes and associations with stop-gain mutations 
(SGMs). (a) Overview of study. Left: The associations of protein-coding impact of somatic single-nucleotide variants (SNVs) and 

the mutational signatures of single base substitutions (SBS) were studied using enrichment analysis in >12,000 cancer genomes. 

Middle: SGMs were enriched in the SBS signatures of tobacco smoking, APOBEC and ROS. The enrichments are explained by 

the trinucleotide preferences of the mutational processes that affect the genetic code of certain amino acids, converting these to 

stop codons. Right: Mutational signatures of SGMs were further studied in the context of affected driver genes and pathways as 

well as the clinical and molecular correlates of the mutational processes. (b) Significant enrichments of mutational signatures in 

SGMs in multiple cancer types and in three genomics datasets (FDR < 0.01). Bar plots show the cumulative significance of 

enriched SBS signatures in SGMs in various types of cancer. Tobacco smoking, APOBEC activity, and ROS exposure are the 

major mutational processes that contribute SGMs. (c) Observed and expected counts of SGMs derived from the most significant 

mutational processes in the three datasets of cancer genomes (TCGA, HMF, PCAWG). Mean expected mutation counts with 

95% confidence intervals (CI) from binomial sampling are shown on the bars. 
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genomes, and Hartwig Medical Foundation 21 (HMF) with 3472 whole genomes (Figure 1a) 67 
(Supplementary Figure 1). Hypermutated and low-confidence samples were filtered. 1.75 million exonic 68 
SNVs were classified based on their protein-coding function as missense (67.4%), silent (27.7%), stop-69 
gain (4.6%), stop-loss (0.1%) and start-loss (0.1%) mutations. We used consensus mutational signature 70 
calls of PCAWG 4 and annotated the signatures in the TCGA and HMF datasets using the SigProfiler 71 
software 5. Using these three datasets allowed us to replicate our findings across sequencing platforms, 72 
variant calling pipelines, and signature analysis methods. We performed a mutation enrichment analysis 73 
by asking which specific mutational signatures were found in the five functional SNV classes significantly 74 
more often than expected from chance alone. Systematic analysis of the 18 cancer types in the three 75 
genomics datasets revealed 332 associations of mutational signatures and protein-coding variant function 76 
(Fisher’s exact test, FDR < 0.01) (Supplementary Figure 2).  77 

We focused on stop-gain mutations (SGMs) (i.e., nonsense SNVs), the most disruptive class of SNVs that 78 
induces protein truncations and loss of function (LoF). SGMs were consistently enriched in the SBS 79 
signatures of three major mutational processes of tobacco smoking, APOBEC activity, and reactive 80 
oxygen species (Figure 1b-c). First, the tobacco smoking signature SBS4 with frequent C>A 81 
transversions 22 was enriched in SGMs in primary lung cancers in TCGA (10,054 vs. 8,006 expected 82 
SGMs, fold-change (FC) = 1.26, FDR = 4.6 x 10-242; Fisher’s exact test) and metastatic lung cancers in 83 
HMF (FC = 1.34; FDR = 1.9 x 10-85). Similarly, SGMs were also enriched in the SBS4 signature in the 84 
three cohorts of liver cancer samples (FDR < 10-5). The SBS29 signature attributed to tobacco chewing 85 
was also associated with SGMs in lung and liver cancers (FDR < 0.001).  86 

Second, the APOBEC signature SBS13 was enriched in SGMs in multiple cancer types, especially in 87 
breast (1653 SGMs observed vs. 931 expected, FDR = 1.1 x 10-138, HMF), head & neck (FC = 1.58; FDR 88 
= 3.3 x 10-53; TCGA), uterine, lung, and esophageal cancers. Notably, SBS13 appeared as the 89 
predominant APOBEC signature of SGMs while the alternative APOBEC signature SBS2 was not 90 
enriched in SGMs. SBS2 and SBS13 both preferably affect TCN trinucleotides, however SBS13 is 91 
primarily characterised by C>G and C>A mutations, while C>T mutations are common to SBS2, 92 
explaining the preferential enrichment of SBS13 to convert TCN to stop codons (TAG, TAA, TGA).  93 

Third, SBS18 and SBS36, the two mutational signatures associated with reactive oxygen species (ROS), 94 
were also enriched in SGMs. These SBS signatures characterised by C>A mutations were especially 95 
enriched in cancers of the digestive system such as colorectal cancer (HMF: 282 SGMs observed vs. 124 96 
expected; FDR = 5.0 x 10-37), esophageal cancer and stomach cancer, as well as pancreatic, neuro-97 
endocrine and breast cancers. As ROS signatures were overall less frequent in cancer genomes than 98 
other signatures, fewer SBS18-associated SGMs were also found. Less-frequent carcinogenic signatures 99 
of aflatoxin and aristolochic acid exposures were also significantly associated with SGMs. These 100 
observations were consistent in primary and metastatic cancers, and their detection in independent WGS 101 
and WES datasets also lends confidence to our findings. 102 
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We validated the associations of SGMs and SBS signatures with additional analyses. First, we repeated 103 
the enrichment analysis using a probabilistic approach that accounted for all potential sample-specific 104 
signature exposures for annotating individual SNVs. By sampling these signature annotations repeatedly, 105 
we confirmed that SGMs remained highly significantly enriched in the SBS signatures of tobacco 106 
smoking, APOBEC, and ROS (Supplementary Figure 3). The probabilistic analysis also showed an 107 
even stronger enrichment of APOBEC signatures in SGMs in lung cancer compared to the analysis of top 108 
signature annotations, while the highly significant enrichment of SGMs in the smoking signature was 109 
somewhat attenuated in the probabilistic analysis. Previous studies indicate that both the tobacco 110 
smoking and APOBEC processes contribute somatic mutations in lung cancer whereas APOBEC is more 111 
involved in later mutagenesis 23, potentially explaining this observation. Accordingly, a subset of SGMs 112 
were likely attributable to either tobacco smoking or APOBEC signatures, or the age-associated signature 113 
SBS5 (Supplementary Figure 4). Second, we performed a pan-cancer analysis by combining samples of 114 
all cancer types and again recovered the tobacco smoking, APOBEC and ROS signatures with very 115 
strong enrichments of SGMs (Supplementary Figure 5). Thus, the exogenous mutational process of 116 
tobacco smoking and the endogenous processes of APOBEC activity and ROS appear as major drivers 117 
of disruptive protein-truncating mutations that may directly affect protein function and regulation in cancer.  118 

We also reviewed the enriched SBS signatures of missense and silent SNVs (Supplementary Figure 2). 119 
Silent mutations were enriched in the mitotic clock-like signature SBS1 consistently in most cancer types 120 
across the three cohorts. SBS1 includes C>T transitions caused by 5-methylcytosine deamination. In 121 
contrast, missense SNVs were often enriched in the common clock-like signatures SBS5 and SBS40 that 122 
have relatively featureless (flat) trinucleotide profiles. Associations with APOBEC signatures were also 123 
identified in multiple cancer types: SBS2 was often enriched in silent SNVs while SBS13 was enriched in 124 
missense SNVs. Silent and missense SNVs comprise a large variety of trinucleotides and codons, and 125 
these signatures are detected in many cancer types, potentially explaining these broad associations and 126 
suggesting that functional subclasses of missense mutations should be considered in future analyses. 127 
Also, sample sizes and signature exposure determine the statistical power for detecting associations of 128 
SBS signatures and SNV annotations in the various cohorts. Taken together, these results exemplify the 129 
complex landscape of functional impacts mutational processes enact on the protein-coding genome.  130 

 131 

  132 
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Figure 2. SBS signatures induce protein-truncating mutations by targeting the genetic code. (a) SGMs of tobacco 

smoking, APOBEC, and ROS signatures are enriched in specific amino acids. Stacked bar plots show the proportion of SGMs 

involved in various amino acid substitutions. Left: SGMs of the three major signatures: SBS4 of tobacco smoking in lung cancer, 

SBS18 of ROS in colorectal cancer, and SBS13 of APOBEC activity in breast cancer. Right: control SGMs associated with all 

other mutational signatures in these cancer types. Enrichment of signature-associated SGMs relative to controls are shown as 

asterisks (Fisher’s exact tests). (b) Trinucleotide profiles of SGMs reflecting substitutions of glutamic acid and serine residues in 

proteins (Glu > Stop, Ser > Stop) and the reference COSMIC signatures for tobacco smoking (SBS4), ROS (SBS18), and 

APOBEC (SBS13). As controls, the profiles of the most frequent mutational signatures are shown (SBS5/40; two plots at the 

bottom). Cosine similarity (COS) scores are used to compare the signature-associated SGMs and the COSMIC reference 

signatures (top right of each facet). The trinucleotide substitutions relevant to panels (c) and (d) are highlighted on the X-axis. (c-
d) Interactions of the mutational signatures and the genetic code of stop codons. The trinucleotides encoding serine and glutamic 

acid residues are shown as rectangles. The trinucleotides that can create stop codons when mutated are shown in grey. The 

trinucleotide changes required to create these stop codons are characteristic of the mutational processes of tobacco smoking, 

APOBEC, and ROS. (c) Serine substitutions to stop codons. C>G and C>A transversions in SBS13 and SBS18 induce stop 

codons by substituting the middle nucleotides in the three codons of serines (yellow). (d) Glutamic acid substitutions to stop 

codons. C>A transversions in SBS4, SBS13, and SBS18 induce stop codons by affecting two consecutive codons (grey). Since 

SBS signatures are represented with pyrimidines as the reference nucleotides, this schematic shows the trinucleotides that are 

mutated to create stop codons from glutamic acids as their reverse complement sequences. Here, the reverse-complementary 

trinucleotide transversions substitute the two first nucleotides in the glutamic acid codon (teal) and the third nucleotide in any 

preceding codon (white). The trinucleotide changes shown are characteristic of the tobacco smoking signature SBS4. 

 133 
SGM signatures and the genetic code 134 

To explore the genetic mechanism underlying the enrichments of SGMs in the three major mutational 135 
processes, we studied the types of amino acids most frequently substituted by stop codons, focusing on 136 
tobacco smoking, APOBEC, and ROS signatures in lung, breast and colorectal cancers. Several types of 137 
amino acids were surprisingly frequently replaced by stop codons. Glutamic acid (Glu) residues showed 138 
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the strongest enrichment of stop codon substitutions in all three SBS signatures (Figure 2a). In lung 139 
cancer, Glu>Stop substitutions were enriched four-fold in the tobacco smoking signature SBS4 compared 140 
to other signatures (43.8% vs 10.6%, FDR < 10-300). Glutamic acid residues were also significantly 141 
affected by the APOBEC signature in breast cancer and ROS signatures in colorectal cancer (FC > 3.6, 142 
FDR < 1.7 x 10-57). As expected, these enrichments are also supported by reference SBS signatures of 143 
the COSMIC database 24 (Figure 2b, Supplementary Figure 6). Based on cosine similarity scores 144 
(COS), the SNV trinucleotide profiles corresponding to Glu>Stop substitutions in our data were 145 
considerably more similar to the COSMIC reference SBS signature profiles of tobacco smoking SBS4 and 146 
ROS SBS18 (lung: COSSBS4 = 0.40; colorectal: COSSBS18 = 0.62), compared to the frequent clock-like 147 
signatures SBS5 and SBS40 that we used as controls (lung: COSSBS5 = 0.13; colorectal: COSSBS40 = 148 
0.33). Besides Glu>Stop substitutions, other amino acids were also enriched in stop codon substitutions 149 
in tobacco smoking and ROS signatures, including glycine (Gly; 13.7%) and cysteine (Cys; 6.4%) 150 
residues (all FC>4.8; FDR < 3.6 x 10-60), while arginine, glutamine and other residues were less 151 
frequently affected by SGMs than expected. 152 

The APOBEC signature SGMs in breast cancer encoded stop codon substitutions almost exclusively in 153 
serine and glutamic acid residues (55.9% and 42.4%, respectively). Ser>Stop substitutions were 154 
significantly more frequent in SBS13 compared to other signatures (4.2% expected; FC = 13, FDR < 10-155 
300). Accordingly, the SNV trinucleotide profiles encoding Ser>Stop substitutions were considerably more 156 
similar to the COSMIC reference APOBEC signature (COSSBS13 = 0.65) than the more common SBS40 157 
reference signature we used as a control (COSSBS40 = 0.15), confirming the mutational signature 158 
annotations of SGMs in our data. Lastly, ROS signatures were also enriched in Ser>Stop substitutions in 159 
colorectal cancer (FDR = 6.2 x 10-6) while no enrichment of SGMs in serine residues was seen in the 160 
tobacco smoking signatures in lung cancer. 161 

To consolidate these statistical associations into a mechanistic model, we examined the genetic code of 162 
the most common stop codon substitutions involving serine and glutamic acid residues (Figure 2b-c). 163 
First, the APOBEC-associated Ser>Stop substitutions in breast cancer were predominantly encoded by 164 
T[C>G]A transversions (76.8%) as well as T[C>A]A and T[C>A]G transversions. The TCA and TCG 165 
trinucleotides encode the two serine codons that require one SNV to become stop codons. The 166 
corresponding stop codons TGA, TAA and TAG are induced by three of the transversions distinctive of 167 
the SBS13 APOBEC signature. Second, the Glu>Stop substitutions apparent in the tobacco smoking and 168 
ROS signatures were predominantly caused by T[C>A]N transversions that overlap two adjacent codons 169 
(Figure 2d). Here, the reverse-complementary trinucleotides NGA include the two first nucleotides of 170 
glutamic acid codons GAA and GAG, which are replaced with the stop codons TAA and TAG upon 171 
N[G>T]A transversions, respectively. This model explains the genesis of SGMs by the mutational 172 
processes of tobacco smoking, APOBEC and ROS. 173 

 174 
Driver genes and pathways with truncating mutations 175 
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To study the functional consequences of SGM signatures, we asked whether the mutations converge on 176 
specific genes. We focused on the six types of cancer in which consistent signature-SGM enrichments 177 
were found in the TCGA, PCAWG and HMF datasets. We identified 56 genes with significantly enriched 178 
SGMs of tobacco smoking, APOBEC, and ROS signatures compared to the exome-wide distributions of 179 
these signatures and all SGMs:  14 genes in lung and liver cancers with the tobacco smoking signature; 180 
44 genes in breast, head & neck, and uterine cancers with the APOBEC signature; and one gene (APC)  181 
in colorectal cancers with the ROS signature (Figure 3a-b; Supplementary Table 1) (Brown FDR < 0.05, 182 
Fisher’s exact tests). The genes included 556 signature-associated SGMs in 467 cancer genomes in the 183 
combined datasets, representing 3.8% of all tumors we studied. A large fraction of these (24 genes or 184 
43%) are known cancer genes of the COSMIC Cancer Gene Census (CGC) database 25 , significantly 185 
more than expected from chance alone (24 found, 2/56 genes expected; P = 1.4 x 10-20). Several core 186 
tumor suppressor genes (TSGs) such as TP53, FAT1, CDH1, RB1, NF1, and APC were identified.  187 

To further interpret the mutations functionally, we prioritised the genes with SGMs across cancer types, 188 
excluding colorectal cancer for which only one gene was found. Pathway enrichment analysis of SGM-189 
ranked genes highlighted biological processes and pathways of such as apoptosis, growth factor 190 
signalling, cell motility, cell proliferation and development (ActivePathways 26 FDR < 0.05; Figure 3c). 191 
Most detected pathways were identified in multiple cancer types; primarily through the tobacco signature 192 
in lung cancer and the APOBEC signature in head & neck cancer. Thus, the SGMs generated by these 193 
mutational processes converge to tumor suppressor genes and cancer pathways and therefore contribute 194 
to loss of protein function, oncogenesis, and tumor progression. 195 

The mutational signatures of tobacco smoking, APOBEC, and ROS were enriched in truncating mutations 196 
in important cancer genes. First, tobacco-associated SGMs were enriched in 14 genes in lung cancer 197 
across the three datasets, including TP53, in which most SGMs in the TCGA cohort (51/95) were driven 198 
by SBS4 (15 SBS4 SGMs expected, FDR = 1.8 x 10-11) (Figure 3d). Truncations in TP53 preferentially 199 
occurred towards the disordered C-terminal tail involved in protein tetramerization (P = 0.0051, one-200 
sample Wilcoxon rank-sum test) in which protein truncations have been associated with loss-of-function 201 
phenotypes of TP53 27 and where post-translational modification sites are often mutated in cancer 28. 202 
SGMs of SBS4 and SBS13 showed high levels of functional activity in saturation mutagenesis of TP53 27, 203 
supporting their roles in cancer phenotypes (Supplementary Figure 7). As another example, the second-204 
ranking gene STK11 had 20 of 22 SGMs attributable to the tobacco smoking signature in the TCGA 205 
dataset (1 SBS4 SGM expected; FDR = 5.6 x 10-17) (Supplementary Figure 8). Inactivating mutations of 206 
the bona fide TSG STK11 (i.e., LKB1; serine/threonine kinase 11) are common in lung cancer, modulate 207 
differentiation and metastasis in vivo, and have been observed more frequently patients with smoking 208 
history 29-31. Smoking-associated truncations in STK11 accumulated towards the N-terminus of the protein 209 
(P = 0.002), suggesting that the mutational process of tobacco smoking directly contributes to early 210 
truncations and loss of function of this TSG. Similar enrichments of SGMs were seen in other core TSGs 211 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2023. ; https://doi.org/10.1101/2023.03.19.533271doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.19.533271
http://creativecommons.org/licenses/by/4.0/


 9 

such as RB1, NF1, ARID1A, and emerging TSGs such as MGA, a transcription factor of the MYC network 212 
that suppresses growth and invasion in cellular and mouse models of lung cancer 32.  213 

Second, SGMs of the APOBEC signature SBS13 were enriched in 44 genes in breast, head & neck, and 214 
uterine cancer. The most significant gene, FAT1, was found in head & neck cancer in TCGA and included 215 
21 APOBEC-associated SGMs (1 SBS13 SGM expected, P = 8.3 x 10-18) (Figure 3e). FAT1 encodes a 216 
proto-cadherin and master regulator of the Hippo pathway that controls organ growth, cell polarisation, 217 
and cell-cell contacts. FAT1 is one of the most frequently mutated TSGs in cancer whose loss of function 218 
enhances tumor invasiveness, metastasis, and drug resistance 33,34, suggesting a link between APOBEC-219 
induced protein truncations and disease outcomes. Interestingly, FAT1 was also found in in lung cancer 220 
where SGMs were enriched in the tobacco signature SBS4. Besides FAT1, SGMs of the APOBEC 221 
signature were also seen in other hallmark cancer genes such CDH1, TP53, CDKN2A and TGFBR2, and 222 
putative cancer genes such as the receptor tyrosine kinase EPHA2 that regulates glutamine metabolism 223 
in cancer through the Hippo pathway 35.  224 

Third, the ROS signature SBS18 was enriched in SGMs in one gene, APC, which was identified in 225 
metastatic colorectal cancers of the HMF cohort (27/346 SGMs vs. 1 expected; P = 2.2 x 10-31) (Figure 226 
3f). APC inactivation is an early oncogenic event that disrupts beta-catenin degradation and activates 227 
WNT signalling 36,37, suggesting a link of APC loss with the oxidative stress in the tumor 228 
microenvironment, diet, or with the therapies of metastatic cancers 38.  229 

Tumor suppressor genes are often inactivated in cancer through multiple mechanisms. To determine 230 
whether TSGs were inactivated in samples with signature-associated SGMs, we asked whether the 56 231 
SGM-enriched genes were also altered by genomic copy number (CN) losses in the same tumor samples 232 
(Figure 3b). Indeed, the SGM-enriched genes appeared to carry both protein-truncating mutations and 233 
copy-number losses in most relevant cancer samples (58.9% or 275/467). This was also apparent in 234 
individual TSGs such as TP53 (67.1% or 55/82 samples), STK11 (86.2% or 25/29) and FAT1 (73.3% or 235 
33/45). Thus, some SGMs contributed by the mutational processes of tobacco and APOBEC may be 236 
involved in biallelic inactivation of TSGs where one gene copy is inactivated by SGMs while the other 237 
copy is deleted. 238 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2023. ; https://doi.org/10.1101/2023.03.19.533271doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.19.533271
http://creativecommons.org/licenses/by/4.0/


 10 

We asked if the SGM-enriched genes were in accordance with our model of SGM signatures and the 239 
genetic code (Figure 2c-d). As expected, the proteins encoded by the 56 SGM-enriched genes encoded 240 
for significantly more glutamic acid residues relative to the reference human proteome (Wilcoxon rank-241 
sum P = 8.2 x 10-6), while the subset of these proteins with APOBEC-associated truncations also 242 
associated with a higher serine content (P < 2.6 x 10-4) (Figure 3g). The genetic model was also 243 
supported at the level of individual genes. For example, most TP53 truncations of the tobacco smoking 244 
signature affected glutamic acids (32/51), while the APOBEC-associated truncations in FAT1 affected 245 
either serines (10/21) or glutamic acids (11/21). Furthermore, the same subset of core TSGs was 246 
enriched in both tobacco smoking- and APOBEC-associated SGMs in different cancer types (e.g., TP53, 247 
CDKN2A, NF1, FAT1 and ARID1A), as the SGMs introduced through the two mutational processes 248 
converge across different cancer types. Thus, certain TSGs may be more vulnerable to these mutational 249 
processes and the resulting SGMs due to their protein sequence content, indicating an interplay of the 250 
mutational processes and positive selection against tumor suppressive function.   251 
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Figure 3. SGMs of tobacco smoking, APOBEC, and ROS signatures are enriched in tumor suppressor genes (TSGs) and 
cancer hallmark pathways. (a) Genes that are significantly enriched in SGMs driven by the three mutational signatures SBS4, 

SBS13 and SBS18. Each cancer type and cohort was analysed separately and the findings were integrated across the three 

cancer cohorts (Fisher’s exact tests, Brown FDR < 0.05). Known cancer genes are shown in red. (b) SGMs in the significantly 

enriched genes often co-occur with genomic copy-number losses in the same cancer samples, indicative of loss of 

heterozygosity. (c) Biological processes and molecular pathways with enriched SGMs of tobacco smoking and APOBEC 

signatures. Significant pathways were identified by merging evidence through the SGM signatures and the cancer types 

(ActivePathways, FDR < 0.05). The enrichment map is a network where enriched pathways and processes are shown as nodes 

and the edges connect the pathways that share genes. Nodes are colored by the cancer types in which the SGM enrichment 

was detected. Light blue represents the pathways that reached significance only when the evidence from the five cancer types 

was combined. (d-f) Examples of major TSGs that are enriched in SGMs driven by the mutational processes of tobacco smoking, 

APOBEC, and ROS. Colored circles show the signature-associated SGMs, their reference amino acid residues, and their 

sequence positions. PFAM protein domains are shown as colored rectangles. The number of SGMs of the mutational signature 

(NSBS), the enrichment P-value of SGMs (PENR, Fisher’s exact test), and the P-value of SGMs accumulating towards either protein 

terminus (PSEQ, one-sample Wilcoxon rank-sum test) are shown. (d) SGMs in TP53 in lung cancer are enriched in the tobacco 

smoking signature SBS4. (e) SGMs in FAT1 in head & neck cancer are enriched in the APOBEC signature SBS13. (f) SGMs in 

APC are enriched in the ROS signature SBS18. (g) Genes enriched with SGMs of tobacco smoking, APOBEC, and ROS 

processes have a higher amino acid sequence content of Ser and Glu residues compared to all protein-coding genes (PRANK, 

one-sample Wilcoxon rank-sum test). Colors indicate the mutational signatures enriched in SGMs. 
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Clinical and molecular associations of SGM signatures  252 

We asked how the mutational processes of SGMs were manifested in individual cancer genomes. The 253 
largest number of SGMs was associated with the tobacco smoking signature in lung cancers. In TCGA, 254 
lung cancer samples included 10.5 tobacco smoking-associated SGMs per genome on average, whereas 255 
73% of cancers had at least one and 39% had at least ten such protein-truncating mutations. In primary 256 
TCGA breast cancers, the mutational process of APOBEC was associated with an average of 1.1 SGMs 257 
and affected a quarter of samples. In metastatic breast cancers of the HMF dataset, APOBEC-driven 258 
SGM burden was higher (mean 2.3 SGMs per sample; 32% of samples), consistent with longer or higher 259 
APOBEC levels in advanced cancers 39. ROS-associated SGMs, while less frequent in cancer genomes 260 
overall, were most pronounced in metastatic colorectal cancers in HMF, affecting 23% of samples with an 261 
average of 0.5 SGMs per genome (Figure 4a). Therefore, a large fraction of cancer genomes has some 262 
SGMs and potential loss-of-function alterations through these mutational processes.  263 

We next studied the activity of SGM signatures at the level of cancer subtypes. The enrichment of SGMs 264 
in the tobacco smoking signature was detected in primary lung adenocarcinomas (LUAD) and squamous 265 
cell carcinomas (LUSC) in TCGA, as well as metastatic non-small cell and small cell cancers in the HMF 266 
dataset (Figure 4b). APOBEC associations with SGMs in breast cancer were also confirmed in the major 267 
histological and molecular subtypes of the disease and were also detected in primary breast cancers and 268 
metastatic cancers originating from the breast. Notably, the Her2-positive breast cancer subtype in TCGA 269 
had three-fold more APOBEC-driven SGMs than all other subtypes combined (2.9 vs. 0.95 SGMs per 270 
genome) (Figure 4b), consistent with earlier studies showing higher APOBEC activity in that subtype 8. 271 
Thus, the mutational processes generating SGMs are active across lung and breast cancer subtypes and 272 
in primary and metastatic cancers.  273 

We analysed the mRNA abundance of APOBEC enzymes to study the molecular drivers of these 274 
mutational processes, focusing on breast cancer cohorts where most consistent signals of APOBEC-275 
driven SGMs were found. In TCGA, the cancer samples with higher APOBEC3A or APOBEC3B 276 
expression had significantly more APOBEC-driven SGMs compared to cancers with lower expression (P 277 
= 2.1 x 10-28, Poisson exact test). Similarly, significantly more SGMs involving serine and glutamic acid 278 
residues were found (P = 2.0 x 10-24). The positive association of APOBEC enzyme expression and SGM 279 
burden was also observed in the HMF cohort of metastatic cancers (Figure 4c), as well as other 280 
APOBEC3 genes (Supplementary Figure 9) The association of APOBEC mutagenesis with gene 281 
expression of the two enzymes confirms earlier studies of cancer genomes and experimental systems 282 
19,40 and connects the mutational processes of SGMs with the expected molecular pathway.  283 

Lastly, we assessed SGMs in the context of smoking history of lung cancer patients in TCGA. Compared 284 
to patients with smoking history, the cancer genomes of lifelong non-smokers had fewer tobacco-285 
associated SGMs of SBS4 (FDR < 10-6) and fewer Glu>Stop substitutions (FDR < 10-9). No significant 286 
differences in SBS4 SGM burden were found between current and recently-reformed smokers (FDR = 287 
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0.93); however, both groups had significantly more SBS4 SGMs than lifelong non-smokers and long-term 288 
reformed smokers (FDR < 10-6). Cancer subtype analysis confirmed the association between lifetime 289 
smoking and the burden of SBS4 SGMs in LUAD, while weaker signals were observed in LUSC (Figure 290 
4d). This is expected as the LUAD subtype is more common among non-smokers than LUSC 41 (13.6% 291 
and 3.7% in TCGA, respectively) and the more varied composition of the LUAD cohort may contribute to 292 
the more pronounced association with SGMs. Therefore, SGMs in lung cancer genomes can be attributed 293 
to lifetime smoking activity, indicating a preventable cause of these impactful genetic aberrations. Overall, 294 
the clinical and molecular associations of mutational processes and SGMs provide insights to tumor 295 
heterogeneity and patient outcomes and have potential implications to biomarker and therapy 296 
development.  297 

 

Figure 4. Molecular and clinical associations of SGMs with the mutational processes of tobacco smoking and APOBEC. 
(a) Mutational burden of SGMs of the three most significant mutational processes in cancer genomes. Stacked bar plots show 

the numbers of SGMs per cancer genome for the three SBS signatures: tobacco smoking in lung cancers (SBS4; left), APOBEC 

in breast cancer (SBS13; middle), and ROS in colorectal cancer (SBS18; right). Primary and metastatic cancer cohorts are 

compared (TCGA, HMF). Mean numbers of SGMs per cancer genome with ± 95% CI are shown above the bar plots. (b) SGMs 

of tobacco smoking and APOBEC signatures are also enriched in the molecular subtypes of lung and breast cancer. Expected 

total SGM counts with 95% CI are shown as points and whiskers. The counts of cancer samples in each group are shown in the 
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X-axis labels. Lung cancer subtypes include small-cell (SC), non-small cell (NSC), adenocarcinoma (LUAD), and squamous cell 

carcinoma (LUSC) as annotated in the datasets. (c) Gene expression of APOBEC3A and APOBEC3B in breast cancer samples 

in TCGA associates with more frequent SGMs of the SBS13 signature (left) and more frequent Ser>Stop and Glu>Stop 

substitutions (right). The analysis compared cancer samples that were grouped by the expression of APOBEC3A and 

APOBEC3B genes (median-dichotomized; high vs. low). P-values of Poisson exact tests are shown. (d) The SGMs of the 

tobacco smoking signature are associated with the smoking history of lung cancer patients in TCGA. Box plots show the 

numbers of SGMs of the SBS4 signature (left) and Glu>Stop substitutions per cancer genome (right). The counts of cancer 

samples in each group are shown below the box plots. The statistical significance of correlating SGM burden with respect to 

smoking history is shown in the grid plot at the bottom (Wilcoxon rank-sum test, FDR-adjusted; * < 0.05; ** < 0.01; *** < 0.001; 

**** < 10-16). 

 298 

DISCUSSION 299 

Our pan-cancer analysis shows that the mutational processes of tobacco smoking, APOBEC, and ROS 300 
are a source of protein-truncating mutations in cancer genomes. The trinucleotide context of these 301 
mutational processes results in substitutions of glutamic acid and serine residues to stop codons, 302 
explaining the strong statistical associations observed in many cancer types. In support of this 303 
mechanism, we present several lines of evidence. First, the tumor suppressors with the strongest 304 
enrichments of SGMs also have a high protein sequence content of these amino acids. Second, we can 305 
identify the mutational processes of SGMs in large cohorts of primary and metastatic cancers of various 306 
disease types, and in whole-genome and whole-exome sequencing datasets. Third, the mutational 307 
burden of SGMs correlates with the molecular drivers of the mutational processes, including lifestyle 308 
tobacco exposure of lung cancer patients and the expression levels of APOBEC genes. 309 

Our analysis ties together the functional impact of mutational processes and positive selection in cancer 310 
genomes. The genes with the most frequent SGMs associated with the three mutational processes are 311 
clearly enriched in core tumor suppressor genes, including early oncogenic drivers such as APC, later 312 
drivers of tumor progression and metastasis such as CDH1, as well as less-characterized cancer genes 313 
for further studies such as EPHA2 and MGA. SGM-enriched genes converge to cancer hallmark 314 
pathways across multiple cancer types. In many cases, protein-truncations of TSGs are combined with 315 
copy-number deletions, indicating that SGMs contribute to biallelic inactivation. The trinucleotide 316 
preferences of the mutational processes imply that the TSGs with a higher protein content of glutamic 317 
acids and serines are more vulnerable to protein truncations caused by these mutational processes. In 318 
these genes, SGMs likely promote cancer development and are under positive selection.  319 

The mutational processes that contribute SGMs are the major processes of somatic mutagenesis in many 320 
cancer types. Tobacco smoking appears as the most significant driver of SGMs in the cancers of lung, 321 
head and neck, and esophagus cancers that involve direct exposure to smoke. We also find SGM 322 
enrichments in lower-frequency carcinogenic processes of tobacco chewing, and the dietary carcinogens 323 
aflatoxin and aristolochic acids. Further, increased smoking is associated with higher SGM burden, 324 
indicating that the more an individual is exposed to tobacco smoke, the more likely they are to acquire 325 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2023. ; https://doi.org/10.1101/2023.03.19.533271doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.19.533271
http://creativecommons.org/licenses/by/4.0/


 15 

protein-truncating somatic mutations in tobacco-exposed cells. Therefore, loss-of-function mutations in 326 
cancer genomes appear to be determined by lifestyle and environmental exposures of smoking and 327 
exposure to second hand-smoke.  328 

APOBEC enzymes are core components of the innate immune system that are involved in restriction of 329 
virus replication and somatic antibody diversification 42. Aberrant APOBEC activity is a major cause of 330 
somatic mutations in many cancer types. APOBEC enzymes were described in virus restriction pathways 331 
that disable viruses by inducing missense and stop-gain mutations in viral RNA 43. This evolutionarily 332 
important mutational process of defense against pathogens corroborates our observations in cancer 333 
genomes. RNA editing by APOBEC1 causes a protein truncation in the apolipoprotein APOB that is 334 
required for lipid processing in the intestine 44,45. Somatic mutagenesis in normal human small intestines 335 
has been associated with APOBEC1 activity and includes protein truncations in TSGs 46. APOBEC 336 
mutagenesis is clustered in tissue-specific open-chromatin regions 47,48, indicating that the SGMs 337 
preferentially target actively expressed genes in which protein-truncating mutations are more likely to 338 
have functional consequences. Therapeutic APOBEC inhibition may help reduce the genesis of SGMs 339 
and the rein in tumor heterogeneity, especially as APOBEC has been linked to mutational processes, 340 
sub-clonal diversification, and driver mutations later in tumor evolution 39.  341 

Oxidative stress and ROS are major sources of genomic instability that are associated with lifestyle 342 
factors common in developed countries, such as malnutrition, limited dietary antioxidant levels, obesity, 343 
and excess alcohol consumption 49. Oxidative stress is also associated with some anti-cancer therapies 344 
such as ionizing radiation and certain chemotherapeutic agents. SGMs of ROS signatures were 345 
especially apparent in metastatic colorectal cancers that are commonly treated with radiation therapy. 346 
Interestingly, rare cancer-predisposing germline mutations of the DNA repair enzyme MUTYH have been 347 
associated with the ROS signature SBS18 and more frequent SGMs 50, supporting our findings of SBS18-348 
driven SGMs in cancer genomes. Thus, lifestyle variables, genetic makeup of patients and certain cancer 349 
treatments may contribute to loss-of-function mutagenesis, increasing genetic tumor heterogeneity and 350 
ultimately enabling additional molecular avenues of tumor progression and metastasis.  351 

As cancers evolve, they become more heterogeneous and their paths to progression and metastasis 352 
become more varied. This heterogeneity is likely acquired through additional mutations that further 353 
deregulate cancer pathways and unlock therapy resistance. By inducing SGMs, the mutational processes 354 
of tobacco, APOBEC and ROS directly contribute to tumor heterogeneity by causing protein loss-of-355 
function mutations. While not all these SGMs occur in core TSGs and directly drive cancer phenotypes, 356 
SGMs may involve genetic interactions with the core driver genes. Synergistic interactions may provide 357 
additional context-specific advantages to tumors in cases where the SGMs disrupt protective mechanisms 358 
and thereby enhance the phenotypes caused by core driver genes. On the other hand, SGMs may lead to 359 
synthetic lethal interactions where the SGMs disrupt a pathway that the core oncogenic pathway depends 360 
on. These interactions may be exploited for therapy by targeting other components of the SGM-disrupted 361 
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pathway. Therefore, SGM-inducing mutational processes are likely to increase inter-and intra-tumoral 362 
heterogeneity through loss-of-function. Mutational processes of SGMs may also have implications on the 363 
tumor’s interactions with the immune system. SGMs lead to truncated and malformed proteins, some of 364 
which may be expressed on the cell surface and appear as neoantigens. Such truncated proteins may 365 
render the tumor more visible to the immune system, highlighting avenues for T cell-based 366 
immunotherapies. Deeper analyses of the proteogenomic impact of mutational processes, their etiology 367 
and genetic and lifestyle associations may lead to innovative biomarkers, mechanistic insights to cancer 368 
pathways, and leads for therapy development.   369 
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METHODS 370 

Somatic mutations in cancer genomes. We analysed somatic SNVs in three cohorts of multiple cancer 371 
types: ICGC/TCGA Pan-cancer Analysis of Whole Genomes (PCAWG) 2 with whole genome sequencing 372 
(WGS) data of primary cancers, Hartwig Medical Foundation (HMF) 21 with WGS data of metastatic 373 
cancers, and the Cancer Genome Atlas (TCGA) PanCanAtlas 20 project with whole exome sequencing 374 
(WES) of mostly primary cancers. We used the Multi-Center Mutation Calling in Multiple Cancers (MC3) 375 
dataset of TCGA variant calls 51. We removed hypermutated tumor samples defined as those with 376 
>90,000 SNVs in WGS data and with >1800 SNVs in WES data, corresponding to genomes with 377 
approximately >30 SNVs/Mbps (n = 69 for PCAWG; n = 306 for HMF; n = 806 for TCGA). We excluded 378 
SNVs that did not pass the MC3 quality filter in TCGA. In WES data, we also removed lower-confidence 379 
samples with very few mutations for increased confidence in signature decomposition (<20 SNVs; 977 380 
samples in TCGA). In HMF, we removed 140 duplicate cancer genomes of tumors of the same patients 381 
by selecting the sample with the highest tumor purity. We also removed 25 samples lacking HMF patient 382 
IDs. To enable analyses across the TCGA, PCAWG and HMF cohorts, cancer types were consolidated to 383 
18 meta-types based on organs and/or anatomical sites, each with each cancer type including at least 25 384 
samples in the three cohorts (Supplementary Figure 1). In HMF, the organ of the primary tumor was 385 
used for cancer type classification. Cancers of and less-frequent primary sites and of unknown origin 386 
(HMF) were excluded. In total, we analysed 1,751,110 exonic SNVs. The functional effects of SNVs on 387 
protein-coding genes were annotated using the ANNOVAR software 52 (version 2019-Oct-24)by using the 388 
canonical protein isoforms of the genes. The final dataset contained 12,341 cancer genomes (2360 in 389 
PCAWG, 3472 in HMF, 6509 in TCGA). This included some samples that were present in both the 390 
PCAWG and TCGA cohorts (n = 484). The duplicate samples in PCAWG and TCGA were retained to 391 
provide additional technical validation across the sequencing platforms, variant calling pipelines, and 392 
signature mapping strategies used to produce the datasets.  393 

 394 

SBS signatures. Mutational signatures for single base substitutions (SBS) in PCAWG were retrieved from 395 
the consensus PCAWG dataset 4. In HMF and TCGA datasets, we separately assigned known SBS 396 
signatures to SNVs using the SigProfilerSingleSample software (version 0.0.0.27) 5 and the COSMIC 397 
SBS signature catalogue (version 3) 5,24. For most analyses, each SNV was assigned to the most 398 
probable SBS signature based on these signature exposure prections. We removed a small subset of 399 
samples in WGS data that were potentially contaminated with sequencing artefacts as defined by the 400 
presence of more than 20% of SNVs assigned to SBS27, SBS43, and SBS45-SBS60, comprising nine 401 
samples in PCAWG and four samples in HMF. The TCGA dataset was not further filtered beyond the 402 
MC3 quality filter 51. To verify the tobacco, APOBEC and ROS signatures of SGMs in lung, breast and 403 
colorectal cancers respectively, we computed cosine similarity (COS) scores to evaluate the similarity of 404 
the SGM trinucleotide profiles with the reference SBS trinucleotide signatures of the COSMIC database. 405 
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COS scores were separately computed for all SGMs and specific amino acid substitutions involving 406 
serines and glutamic acids. As controls, we also computed the equivalent COS scores comparing the 407 
SGM trinucleotide profiles with the two clock-like feature-less SBS signatures, SBS5 and SBS40, which 408 
were the most assigned SBS signatures in the respective cancer types.  409 

 410 

Enrichment analysis of protein-coding SNV classes and mutational signatures. We performed a 411 
comprehensive enrichment analysis of functional SNV annotations and mutational SBS signatures by 412 
separately comparing all consolidated cancer types in the three cancer cohorts. The analysis evaluated 413 
whether the classes of exonic SNVs (i.e., missense, stop-gain (i.e., non-sense), silent, start-loss, stop-414 
loss) were significantly enriched in certain mutational signatures more often than expected from the 415 
independent binomial distributions of these SNV classes and the SBS signatures in all protein-coding 416 
regions of a given cancer type and cohort. For each cancer type, we tested the signatures that were 417 
reasonably frequently detected, had at least 100 SNVs per cancer type and cohort, and included at least 418 
one SNV of the tested variant annotation class (e.g., SGM), excluding signatures annotated as 419 
sequencing artefacts in the COSMIC database (see above). Certain signatures associated with the 420 
common mutational processes were combined: clock-like signatures SBS5 and SBS40 (SBS5/40), UV 421 
signatures SBS 7a/b/c/d (SBS7), hypermutation-associated signatures SBS10a/b (SBS10), and the 422 
signatures SBS17a/b (SBS17). Since this analysis focused only on protein-coding regions, we excluded 423 
SNVs outside exons in the WGS datasets from our statistical tests. To provide comparable analyses of 424 
WGS and WES datasets and reduce the inflation of significance in better-powered WGS datasets, we 425 
excluded non-exonic variants from the statistical tests. Statistical analysis was conducted using one-tailed 426 
Fisher’s exact tests that asked whether a set of SNVs derived from a given SBS signature and another 427 
set of SNV with a given functional annotation were overlapping significantly more often than expected by 428 
chance alone. The resulting P-values were adjusted for multiple testing using the Benjamini-Hochberg 429 
False Discovery rate (FDR) method 53. Results were considered significant if FDR < 0.01. Expected 430 
values of mutations sharing SBS signatures and functional annotations were sampled from the 431 
independent binomial distributions over 10,000 iterations, parametrized by the product of the probabilities 432 
of signature mutations and functional annotations, respectively. Using a similar approach, we also asked 433 
if specific types of amino acids were more likely to be substituted with stop codons through the SGMs 434 
driven by the identified SBS signatures. This analysis focused on only three cancer types and and three 435 
SBS signatures in the cohorts with the strongest signals (SBS4 in lung cancer in TCGA, SBS13 in breast 436 
cancer in HMF, SBS18 in colorectal cancer in HMF). Fisher’s exact tests were performed to assess 437 
whether certain amino acids were co-occurring with the signatures significantly more often than expected 438 
from the individual binomial distributions of the signature-associated variants and the substituted amino 439 
acid. The resulting P-values were corrected for multiple testing using FDR.  440 

 441 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2023. ; https://doi.org/10.1101/2023.03.19.533271doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.19.533271
http://creativecommons.org/licenses/by/4.0/


 19 

Confirming the enrichment of SGMs in the major SBS signatures with probabilistic sampling. All major 442 
analyses in our study considered the most probable SBS signature for each SNV. To confirm our findings 443 
by accounting for the uncertainty in the signature annotations of individual SNVs and tumor samples, we 444 
performed a sampling analysis in which we assigned signatures to individual SNVs probabilistically over 445 
100 iterations. Each SNV was assigned an SBS signature based on the multinomial distribution 446 
parametrised by the probabilities of all the SBS signatures identified in the given cancer genome. This 447 
procedure allowed the less-probable signatures to be included in the SNV annotation based on their 448 
probabilities. The 100 probabilistically sampled SNV-to-signature assignments were then systematically 449 
analysed using the enrichment analysis approach described above, to determine which signatures were 450 
enriched in SGMs in various cancer types. Significant results for each iteration were selected after 451 
iteration-specific multiple testing correction (FDR < 0.05). The fold-changes and FDR-values of the 452 
different iterations were then visualised as volcano plots that summarized fold change and FDR in all 453 
iterations.  454 

 455 

Analysis of SBS signatures and SGMs in genes. Genes with significant signature-associated SGMs were 456 
identified using one-tailed Fisher’s exact tests separately for the three major signatures (SBS4, SBS13, 457 
SBS18). The tests compared the distribution of SGMs of each SBS signature in a gene relative to the 458 
distributions of all SGMs and all mutations of that SBS signature in all protein-coding genes combined. 459 
This analysis only used exonic mutations and excluded mutations in non-coding regions, similarly to the 460 
exome-wide analysis described above. Fisher’s exact tests were conducted for each gene separately and 461 
in all three cohorts separately (TCGA, HMF, PCAWG). Genes were only tested if they had at least one 462 
SGM assigned to the given mutational signature. The resulting P-values for each gene were merged 463 
using the Brown procedure 54 and corrected for multiple testing using FDR. Significant genes were 464 
selected based on the Brown merged FDR-values (FDR < 0.05). Known cancer genes of the COSMIC 465 
Cancer Gene Census (CGC) database 25 (version 2020-09-17, accessed 2021-10-21) were highlighted in 466 
the resulting gene list. A Fisher’s exact test was used to determine whether the CGC genes were found in 467 
the list more often than expected, using all protein-coding genes as the background set. In an additional 468 
analysis, all protein-coding genes were ranked according to the numbers of glutamic acid (Glu) and 469 
serine (Ser) residues in their canonical protein isoforms. Genes identified in the SGM enrichment analysis 470 
from above were tested for higher-than-expected Glu and Ser content using one-tailed Mann-Whitney U-471 
tests that determined whether the ranks of the selected genes were significantly higher than the median 472 
rank across the reference human proteome. For each candidate gene, we determined whether the 473 
sequence positions of the signature-associated SGMs were distributed towards either the N or C terminus 474 
of the protein more often than expected. One-tailed one-sample Wilcoxon rank-sum tests were used for 475 
this analysis. To analyse the functional impact of SGMs in TP53, we obtained data from saturation 476 
mutagenesis screens from the study by Giacomelli et al.  27 and compared the Z-scores of TP53 477 
functional activity among four classes of SNVs: (i) SGMs associated with SBS4 and/or SBS13 in any 478 
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cancer sample in our datasets (i.e., PCAWG, TCGA, HMF combined), (ii) all other SGMs of other SBS 479 
signatures (i.e., excluding SBS4 and SBS13) observed in any cancer sample in our datasets, (iii) 480 
missense SNVs observed in any cancer sample in our datasets, and (iv) as controls, all other mutations 481 
of TP53 studied in the mutagenesis screens but not in any human cancer genomes. Only unique 482 
mutations were analysed. Statistical significance estimates between the groups were determined using 483 
Wilcoxon rank-sum tests.  484 

 485 

Analysis of copy number alterations (CNAs) and SGMs. We aimed to identify potential biallelic 486 
inactivation cases where the gene was disrupted by both SGMs and copy number (CN) alterations 487 
leading to the genomic losses of the gene in the same tumor. We studied the 56 genes with significantly 488 
enriched signature-associated SGMs from our analysis that included 556 SGMs in 467 tumors in total. 489 
Separate strategies to select CNAs were used for the TCGA dataset and the PCAWG and HMF datasets. 490 
For TCGA samples profiled previously using SNP6 microarrays, we analysed the relative digital somatic 491 
CN calls of each gene as from previous consensus datasets. Gene losses in TCGA were defined through 492 
gene CN < 0. For PCAWG and HMF samples previously profiled using WGS, we analysed the CN values 493 
of genomic segments defined in these projects. To define the CN value for each gene, we considered the 494 
overlapping genomic segment with the lowest CN and of at least 1 kbps in length. To define gene losses 495 
in PCAWG and HMF, we used different criteria for autosomes and the X chromosome, and for samples 496 
with and without potential whole-genome duplication (WGD) events. A cancer genome was predicted to 497 
have undergone WGD if the genome-wide CN > 2.5. For non-WGD samples, we defined gene losses in 498 
autosomes through gene CN < 1.5. For WGD samples, we defined gene losses through gene CN < 2.0. 499 
The same thresholds were used to define gene losses in X chromosomes in female patients. Gene losses 500 
in X chromosomes in males were defined through gene CN < 1.0 for non-WGD samples and through 501 
gene CN < 1.5 for WGD samples. CNAs were unavailable for one relevant HMF sample and nine relevant 502 
TCGA samples, for which we assumed that no gene deletion events occurred. 503 

 504 

Pathway enrichment analysis. To understand the functional importance of the genes with SGMs of 505 
different mutational signatures, we performed an integrative pathway enrichment analysis using the 506 
ActivePathways method 26 (FDR < 0.05). The analysis was designed to prioritise genes and pathways 507 
that were enriched with signature-associated SGMs in multiple cancer types. We included the cancer 508 
types for which such genes were found, excluding colorectal cancer for which only one gene was found. 509 
For each cancer type, we selected the cohort with most cancer samples: lung (SBS4, TCGA), liver 510 
(SBS4, TCGA), breast (SBS13, HMF), head & neck (SBS13, TCGA), and uterine cancer (SBS13, TCGA). 511 
As the input to ActivePathways, we used a matrix of P-values of all protein-coding genes and the selected 512 
cancer types, such that each P-value reflected the enrichment of signature-associated SGMs in the gene 513 
and the cancer type. Gene sets of biological processes of Gene Ontology and molecular pathways of 514 
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Reactome were derived from the GMT files in the g:Profiler web server 55 (downloaded January 3, 2022). 515 
Gene sets with 100-500 genes were analysed. Statistically significant pathways were selected 516 
(ActivePathways, FDR < 0.05). The results were visualised as an enrichment map 56 and the subnetworks 517 
were labelled interactively to find common functional themes of similar pathways and processes. 518 

 519 

Analysis of SGMs of SBS signatures in tumor subtypes and correlation with patient smoking history. We 520 
studied the number of signature-associated SGMs in each cancer genome in the representative cancer 521 
types (SBS4 in lung, SBS13 in breast; SBS18 in colorectal), and compared primary cancers in TCGA and 522 
metastatic cancers in HMF. Mean numbers of signature-associated SGMs per cancer genome were 523 
reported with 95% confidence intervals, by also including the samples where these SBS signatures were 524 
not detectable. We also compared the per-tumor SGM counts separately in various subtypes of lung and 525 
breast cancer. Subtype analysis was not performed in colorectal cancer due to limited subtype 526 
information available. Cancer subtype annotations for PCAWG were retrieved from the ICGC data portal, 527 
from patient information tables for HMF, and for TCGA from the TCGAbiolinks R package 57 (v. 2.18.0). 528 
Samples with unknown and missing subtype annotations were excluded. To validate the associations of 529 
SGMs and SBS signatures in the relevant cancer subtypes, we repeated the signature enrichment 530 
analysis of SGMs in samples of specific cancer subtypes using Fisher’s exact tests as described above. 531 
We also analysed SGMs of the tobacco signature SBS4 in the context of smoking history of lung cancer 532 
patients. We compared the subsets of TCGA cancer samples based on the four categories of patient 533 
smoking history that were derived from TCGAbiolinks. We compared two categories of SGMs: SGMs 534 
assigned to SBS4, and SGMs causing Glu > Stop substitutions. Non-parametric Wilcoxon rank-sum tests 535 
were used to compare mutation counts per patient in the four categories of smoking history. We 536 
performed one analysis by combining all lung cancer patients based on their smoking history, and two 537 
additional analyses focused on the two major histological subtypes (adenocarcinoma and squamous cell 538 
carcinoma). In breast cancer samples, we associated the frequency of SGMs per cancer genome with the 539 
gene expression levels of APOBEC enzymes APOBEC3A and APOBEC3B. We analysed breast cancer 540 
datasets in TCGA and HMF using matching RNA-seq datasets. Cancer samples with no SBS13 541 
mutations were also included in the analyses. We excluded cancer samples with no matching RNA-seq 542 
data. Samples were split (median-dichotomised) into two subsets based on the median mRNA 543 
abundance of the APOBEC genes. The resulting two groups were compared using Poisson exact tests to 544 
compare mutation counts per cancer genome. Two types of mutations were considered: all snSNVs of 545 
the SBS13 signature, and all stop codon substitutions involving glutamic acids and serines combined (Glu 546 
> Stop, Ser > Stop). 547 

  548 
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