

1 **Mutational processes of tobacco smoking and APOBEC activity**

2 **generate protein-truncating mutations in cancer genomes**

3
4 Nina Adler¹, Alexander T. Bahcheli^{1,2}, Kevin Cheng^{1,3}, Khalid N. Al-Zahrani⁴, Mykhaylo Slobodyanyuk^{1,3},
5 Diogo Pellegrina¹, Daniel Schramek^{2,4}, Jüri Reimand^{1,2,3,@}

6 1. Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada

7 2. Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada

8 3. Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada

9 4. Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada

10

11 @ correspondence: Juri.Reimand@utoronto.ca

12

13

14 **ABSTRACT**

15 **Mutational signatures represent a footprint of tumor evolution and its endogenous and exogenous**
16 **mutational processes. However, their functional impact on the proteome remains incompletely**
17 **understood. We analysed the protein-coding impact of single base substitution signatures in**
18 **12,341 cancer genomes from 18 cancer types. Stop-gain mutations (SGMs) were strongly enriched**
19 **in the signatures of tobacco smoking, APOBEC cytidine deaminases, and reactive oxygen**
20 **species. These mutational processes affect specific trinucleotide contexts to substitute serine**
21 **and glutamic acid residues with stop codons. SGMs are enriched in cancer hallmark pathways**
22 **and tumor suppressors such as *TP53*, *FAT1*, and *APC*. Tobacco-driven SGMs in lung cancer**
23 **correlate with lifetime smoking history and highlight a preventable determinant of these harmful**
24 **mutations. Our study exposes SGM expansion as a genetic mechanism by which endogenous and**
25 **carcinogenic mutational processes contribute to protein loss-of-function, oncogenesis, and tumor**
26 **heterogeneity, providing potential translational and mechanistic insights.**

27

28 INTRODUCTION

29 Cancer is driven by a few somatic mutations that enable oncogenic properties of cells, however most
30 mutations in cancer genomes are functionally neutral passengers ^{1,2}. Somatic mutations are caused by
31 endogenous and exogenous mutational processes with complex context- and sequence-specific
32 activities that collectively mark tumor evolution and exposures over time ³. Single base substitution (SBS)
33 signatures are the indicators of mutational processes in cancer genomes that can be inferred through a
34 computational decomposition of somatic single-nucleotide variants (SNVs) and their trinucleotide
35 sequence context in large cancer genomics datasets ^{4,5}. SBS signatures have been linked to clock-like
36 mutational processes of aging ⁶, deficiencies in DNA repair pathways ⁷, endogenous mutational
37 processes such as the activity of APOBEC cytidine deaminases ⁸, environmental carcinogens such as UV
38 light ⁹, lifestyle exposures such as tobacco smoking ¹⁰, dietary components such as aristolochic acid ¹¹, as
39 well as the effects of cancer therapies ^{12,13}. The causes of other signatures remain uncharacterised.
40 Mutational signatures are also increasingly found in the somatic mutation profiles of healthy tissues,
41 indicating that the mutational processes contribute to mutagenesis in normal and pre-cancerous cells ^{14,15}.
42 Individual driver mutations in cancer genomes have been attributed to the activity of certain mutational
43 processes ^{16,17}. While some mutational signatures identified in cancer genomes can be reproduced in
44 experimental systems ^{9,18,19}, their mechanistic and etiological characterization is an ongoing challenge. As
45 mutational processes are thought to predominantly generate passenger mutations, their broad functional
46 implications on protein function and cellular pathways remain incompletely understood.
47 Here we hypothesized that the mutational processes of SNVs have specific impacts on protein-coding
48 sequence due to their trinucleotide sequence preferences encoded in SBS signatures. By characterizing
49 the co-occurrence of mutational signatures and the sequence impact of associated SNVs in thousands of
50 cancer genomes, we find that nonsense SNVs corresponding to stop-gain mutations (SGMs) are
51 significantly associated with specific mutational processes of tobacco, APOBEC, and reactive oxygen
52 species. SGMs are the most impactful class of SNVs that cause premature stop codons and result in
53 truncated proteins or nonsense-mediated decay. Some consequences of these mutational processes
54 appear as driver mutations in tumor suppressor genes and hallmark cancer pathways. These processes
55 represent preventable carcinogenic exposures as well as endogenous sources of DNA damage, and their
56 activity is explained by their sequence-specific interactions with the genetic code of stop codons. Our
57 report provides direct evidence of the functional genetic impact of mutational signatures in cancer
58 genomes and their interactions with the molecular and lifestyle drivers of the mutational processes,
59 suggesting a role for these signatures in tumor heterogeneity and progression.

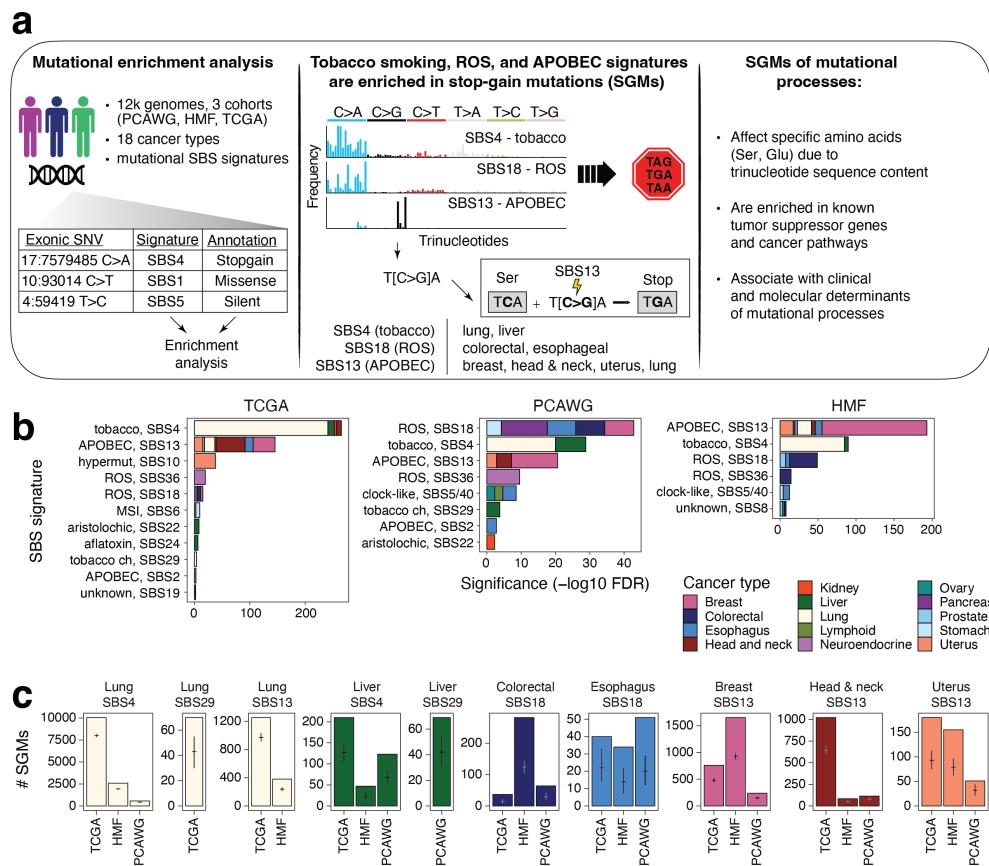


Figure 1. Protein-coding impact of mutational signatures in cancer genomes and associations with stop-gain mutations (SGMs). (a) Overview of study. Left: The associations of protein-coding impact of somatic single-nucleotide variants (SNVs) and the mutational signatures of single base substitutions (SBS) were studied using enrichment analysis in >12,000 cancer genomes. Middle: SGMs were enriched in the SBS signatures of tobacco smoking, APOBEC and ROS. The enrichments are explained by the trinucleotide preferences of the mutational processes that affect the genetic code of certain amino acids, converting these to stop codons. Right: Mutational signatures of SGMs were further studied in the context of affected driver genes and pathways as well as the clinical and molecular correlates of the mutational processes. (b) Significant enrichments of mutational signatures in SGMs in multiple cancer types and in three genomics datasets (FDR < 0.01). Bar plots show the cumulative significance of enriched SBS signatures in SGMs in various types of cancer. Tobacco smoking, APOBEC activity, and ROS exposure are the major mutational processes that contribute SGMs. (c) Observed and expected counts of SGMs derived from the most significant mutational processes in the three datasets of cancer genomes (TCGA, HMF, PCAWG). Mean expected mutation counts with 95% confidence intervals (CI) from binomial sampling are shown on the bars.

60

61 RESULTS

62 Protein-truncating mutations in cancer genomes are enriched in mutational signatures of tobacco 63 smoking, APOBEC, and ROS

64 To study the protein-coding impact of SBS signatures, we analysed 12,341 cancer genomes from 18
 65 major tissue sites using data in three pan-cancer cohorts: The Cancer Genome Atlas (TCGA)
 66 PanCanAtlas²⁰ with 6509 exomes, Pan-Cancer Analysis of Whole Genomes⁴ (PCAWG) with 2360 whole

67 genomes, and Hartwig Medical Foundation ²¹ (HMF) with 3472 whole genomes (**Figure 1a**)
68 (**Supplementary Figure 1**). Hypermutated and low-confidence samples were filtered. 1.75 million exonic
69 SNVs were classified based on their protein-coding function as missense (67.4%), silent (27.7%), stop-
70 gain (4.6%), stop-loss (0.1%) and start-loss (0.1%) mutations. We used consensus mutational signature
71 calls of PCAWG ⁴ and annotated the signatures in the TCGA and HMF datasets using the SigProfiler
72 software ⁵. Using these three datasets allowed us to replicate our findings across sequencing platforms,
73 variant calling pipelines, and signature analysis methods. We performed a mutation enrichment analysis
74 by asking which specific mutational signatures were found in the five functional SNV classes significantly
75 more often than expected from chance alone. Systematic analysis of the 18 cancer types in the three
76 genomics datasets revealed 332 associations of mutational signatures and protein-coding variant function
77 (Fisher's exact test, FDR < 0.01) (**Supplementary Figure 2**).

78 We focused on stop-gain mutations (SGMs) (i.e., nonsense SNVs), the most disruptive class of SNVs that
79 induces protein truncations and loss of function (LoF). SGMs were consistently enriched in the SBS
80 signatures of three major mutational processes of tobacco smoking, APOBEC activity, and reactive
81 oxygen species (**Figure 1b-c**). First, the tobacco smoking signature SBS4 with frequent C>A
82 transversions ²² was enriched in SGMs in primary lung cancers in TCGA (10,054 vs. 8,006 expected
83 SGMs, fold-change (FC) = 1.26, FDR = 4.6×10^{-242} ; Fisher's exact test) and metastatic lung cancers in
84 HMF (FC = 1.34; FDR = 1.9×10^{-85}). Similarly, SGMs were also enriched in the SBS4 signature in the
85 three cohorts of liver cancer samples (FDR < 10^{-5}). The SBS29 signature attributed to tobacco chewing
86 was also associated with SGMs in lung and liver cancers (FDR < 0.001).

87 Second, the APOBEC signature SBS13 was enriched in SGMs in multiple cancer types, especially in
88 breast (1653 SGMs observed vs. 931 expected, FDR = 1.1×10^{-138} , HMF), head & neck (FC = 1.58; FDR
89 = 3.3×10^{-53} ; TCGA), uterine, lung, and esophageal cancers. Notably, SBS13 appeared as the
90 predominant APOBEC signature of SGMs while the alternative APOBEC signature SBS2 was not
91 enriched in SGMs. SBS2 and SBS13 both preferably affect TCN trinucleotides, however SBS13 is
92 primarily characterised by C>G and C>A mutations, while C>T mutations are common to SBS2,
93 explaining the preferential enrichment of SBS13 to convert TCN to stop codons (TAG, TAA, TGA).

94 Third, SBS18 and SBS36, the two mutational signatures associated with reactive oxygen species (ROS),
95 were also enriched in SGMs. These SBS signatures characterised by C>A mutations were especially
96 enriched in cancers of the digestive system such as colorectal cancer (HMF: 282 SGMs observed vs. 124
97 expected; FDR = 5.0×10^{-37}), esophageal cancer and stomach cancer, as well as pancreatic, neuro-
98 endocrine and breast cancers. As ROS signatures were overall less frequent in cancer genomes than
99 other signatures, fewer SBS18-associated SGMs were also found. Less-frequent carcinogenic signatures
100 of aflatoxin and aristolochic acid exposures were also significantly associated with SGMs. These
101 observations were consistent in primary and metastatic cancers, and their detection in independent WGS
102 and WES datasets also lends confidence to our findings.

103 We validated the associations of SGMs and SBS signatures with additional analyses. First, we repeated
104 the enrichment analysis using a probabilistic approach that accounted for all potential sample-specific
105 signature exposures for annotating individual SNVs. By sampling these signature annotations repeatedly,
106 we confirmed that SGMs remained highly significantly enriched in the SBS signatures of tobacco
107 smoking, APOBEC, and ROS (**Supplementary Figure 3**). The probabilistic analysis also showed an
108 even stronger enrichment of APOBEC signatures in SGMs in lung cancer compared to the analysis of top
109 signature annotations, while the highly significant enrichment of SGMs in the smoking signature was
110 somewhat attenuated in the probabilistic analysis. Previous studies indicate that both the tobacco
111 smoking and APOBEC processes contribute somatic mutations in lung cancer whereas APOBEC is more
112 involved in later mutagenesis²³, potentially explaining this observation. Accordingly, a subset of SGMs
113 were likely attributable to either tobacco smoking or APOBEC signatures, or the age-associated signature
114 SBS5 (**Supplementary Figure 4**). Second, we performed a pan-cancer analysis by combining samples of
115 all cancer types and again recovered the tobacco smoking, APOBEC and ROS signatures with very
116 strong enrichments of SGMs (**Supplementary Figure 5**). Thus, the exogenous mutational process of
117 tobacco smoking and the endogenous processes of APOBEC activity and ROS appear as major drivers
118 of disruptive protein-truncating mutations that may directly affect protein function and regulation in cancer.
119 We also reviewed the enriched SBS signatures of missense and silent SNVs (**Supplementary Figure 2**).
120 Silent mutations were enriched in the mitotic clock-like signature SBS1 consistently in most cancer types
121 across the three cohorts. SBS1 includes C>T transitions caused by 5-methylcytosine deamination. In
122 contrast, missense SNVs were often enriched in the common clock-like signatures SBS5 and SBS40 that
123 have relatively featureless (flat) trinucleotide profiles. Associations with APOBEC signatures were also
124 identified in multiple cancer types: SBS2 was often enriched in silent SNVs while SBS13 was enriched in
125 missense SNVs. Silent and missense SNVs comprise a large variety of trinucleotides and codons, and
126 these signatures are detected in many cancer types, potentially explaining these broad associations and
127 suggesting that functional subclasses of missense mutations should be considered in future analyses.
128 Also, sample sizes and signature exposure determine the statistical power for detecting associations of
129 SBS signatures and SNV annotations in the various cohorts. Taken together, these results exemplify the
130 complex landscape of functional impacts mutational processes enact on the protein-coding genome.
131
132

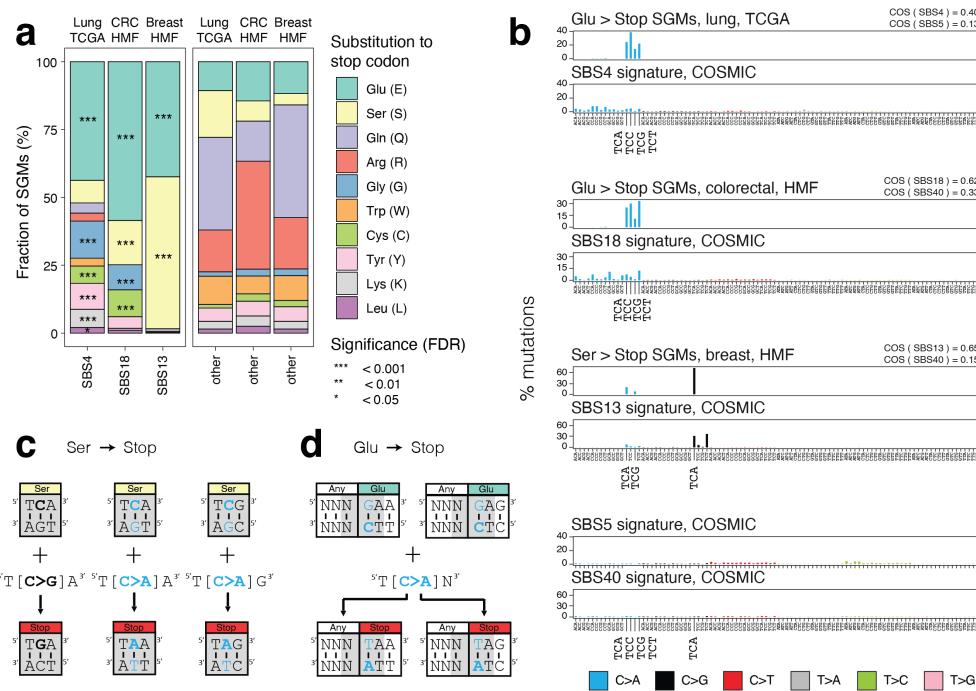


Figure 2. SBS signatures induce protein-truncating mutations by targeting the genetic code. (a) SGMs of tobacco smoking, APOBEC, and ROS signatures are enriched in specific amino acids. Stacked bar plots show the proportion of SGMs involved in various amino acid substitutions. Left: SGMs of the three major signatures: SBS4 of tobacco smoking in lung cancer, SBS18 of ROS in colorectal cancer, and SBS13 of APOBEC activity in breast cancer. Right: control SGMs associated with all other mutational signatures in these cancer types. Enrichment of signature-associated SGMs relative to controls are shown as asterisks (Fisher's exact tests). **(b)** Trinucleotide profiles of SGMs reflecting substitutions of glutamic acid and serine residues in proteins (Glu > Stop, Ser > Stop) and the reference COSMIC signatures for tobacco smoking (SBS4), ROS (SBS18), and APOBEC (SBS13). As controls, the profiles of the most frequent mutational signatures are shown (SBS5/40; two plots at the bottom). Cosine similarity (COS) scores are used to compare the signature-associated SGMs and the COSMIC reference signatures (top right of each facet). The trinucleotide substitutions relevant to panels (c) and (d) are highlighted on the X-axis. **(c-d)** Interactions of the mutational signatures and the genetic code of stop codons. The trinucleotides encoding serine and glutamic acid residues are shown as rectangles. The trinucleotides that can create stop codons are shown in grey. The trinucleotide changes required to create these stop codons are characteristic of the mutational processes of tobacco smoking, APOBEC, and ROS. **(c)** Serine substitutions to stop codons. C>G and C>A transversions in SBS13 and SBS18 induce stop codons by substituting the middle nucleotides in the three codons of serines (yellow). **(d)** Glutamic acid substitutions to stop codons. C>A transversions in SBS4, SBS13, and SBS18 induce stop codons by affecting two consecutive codons (grey). Since SBS signatures are represented with pyrimidines as the reference nucleotides, this schematic shows the trinucleotides that are mutated to create stop codons from glutamic acids as their reverse complement sequences. Here, the reverse-complementary trinucleotide transversions substitute the two first nucleotides in the glutamic acid codon (teal) and the third nucleotide in any preceding codon (white). The trinucleotide changes shown are characteristic of the tobacco smoking signature SBS4.

133
134

SGM signatures and the genetic code

135 To explore the genetic mechanism underlying the enrichments of SGMs in the three major mutational
136 processes, we studied the types of amino acids most frequently substituted by stop codons, focusing on
137 tobacco smoking, APOBEC, and ROS signatures in lung, breast and colorectal cancers. Several types of
138 amino acids were surprisingly frequently replaced by stop codons. Glutamic acid (Glu) residues showed

139 the strongest enrichment of stop codon substitutions in all three SBS signatures (**Figure 2a**). In lung
140 cancer, Glu>Stop substitutions were enriched four-fold in the tobacco smoking signature SBS4 compared
141 to other signatures (43.8% vs 10.6%, FDR $< 10^{-300}$). Glutamic acid residues were also significantly
142 affected by the APOBEC signature in breast cancer and ROS signatures in colorectal cancer (FC > 3.6 ,
143 FDR $< 1.7 \times 10^{-57}$). As expected, these enrichments are also supported by reference SBS signatures of
144 the COSMIC database ²⁴ (**Figure 2b, Supplementary Figure 6**). Based on cosine similarity scores
145 (COS), the SNV trinucleotide profiles corresponding to Glu>Stop substitutions in our data were
146 considerably more similar to the COSMIC reference SBS signature profiles of tobacco smoking SBS4 and
147 ROS SBS18 (lung: COS_{SBS4} = 0.40; colorectal: COS_{SBS18} = 0.62), compared to the frequent clock-like
148 signatures SBS5 and SBS40 that we used as controls (lung: COS_{SBS5} = 0.13; colorectal: COS_{SBS40} =
149 0.33). Besides Glu>Stop substitutions, other amino acids were also enriched in stop codon substitutions
150 in tobacco smoking and ROS signatures, including glycine (Gly; 13.7%) and cysteine (Cys; 6.4%)
151 residues (all FC >4.8 ; FDR $< 3.6 \times 10^{-60}$), while arginine, glutamine and other residues were less
152 frequently affected by SGMs than expected.

153 The APOBEC signature SGMs in breast cancer encoded stop codon substitutions almost exclusively in
154 serine and glutamic acid residues (55.9% and 42.4%, respectively). Ser>Stop substitutions were
155 significantly more frequent in SBS13 compared to other signatures (4.2% expected; FC = 13, FDR $< 10^{-300}$). Accordingly, the SNV trinucleotide profiles encoding Ser>Stop substitutions were considerably more
156 similar to the COSMIC reference APOBEC signature (COS_{SBS13} = 0.65) than the more common SBS40
157 reference signature we used as a control (COS_{SBS40} = 0.15), confirming the mutational signature
158 annotations of SGMs in our data. Lastly, ROS signatures were also enriched in Ser>Stop substitutions in
159 colorectal cancer (FDR = 6.2×10^{-6}) while no enrichment of SGMs in serine residues was seen in the
160 tobacco smoking signatures in lung cancer.

161

162 To consolidate these statistical associations into a mechanistic model, we examined the genetic code of
163 the most common stop codon substitutions involving serine and glutamic acid residues (**Figure 2b-c**).
164 First, the APOBEC-associated Ser>Stop substitutions in breast cancer were predominantly encoded by
165 T[C>G]A transversions (76.8%) as well as T[C>A]A and T[C>A]G transversions. The TCA and TCG
166 trinucleotides encode the two serine codons that require one SNV to become stop codons. The
167 corresponding stop codons TGA, TAA and TAG are induced by three of the transversions distinctive of
168 the SBS13 APOBEC signature. Second, the Glu>Stop substitutions apparent in the tobacco smoking and
169 ROS signatures were predominantly caused by T[C>A]N transversions that overlap two adjacent codons
170 (**Figure 2d**). Here, the reverse-complementary trinucleotides NGA include the two first nucleotides of
171 glutamic acid codons GAA and GAG, which are replaced with the stop codons TAA and TAG upon
172 N[G>T]A transversions, respectively. This model explains the genesis of SGMs by the mutational
173 processes of tobacco smoking, APOBEC and ROS.

174

175 **Driver genes and pathways with truncating mutations**

176 To study the functional consequences of SGM signatures, we asked whether the mutations converge on
177 specific genes. We focused on the six types of cancer in which consistent signature-SGM enrichments
178 were found in the TCGA, PCAWG and HMF datasets. We identified 56 genes with significantly enriched
179 SGMs of tobacco smoking, APOBEC, and ROS signatures compared to the exome-wide distributions of
180 these signatures and all SGMs: 14 genes in lung and liver cancers with the tobacco smoking signature;
181 44 genes in breast, head & neck, and uterine cancers with the APOBEC signature; and one gene (*APC*)
182 in colorectal cancers with the ROS signature (**Figure 3a-b; Supplementary Table 1**) (Brown FDR < 0.05,
183 Fisher's exact tests). The genes included 556 signature-associated SGMs in 467 cancer genomes in the
184 combined datasets, representing 3.8% of all tumors we studied. A large fraction of these (24 genes or
185 43%) are known cancer genes of the COSMIC Cancer Gene Census (CGC) database²⁵, significantly
186 more than expected from chance alone (24 found, 2/56 genes expected; P = 1.4 x 10⁻²⁰). Several core
187 tumor suppressor genes (TSGs) such as *TP53*, *FAT1*, *CDH1*, *RB1*, *NF1*, and *APC* were identified.
188 To further interpret the mutations functionally, we prioritised the genes with SGMs across cancer types,
189 excluding colorectal cancer for which only one gene was found. Pathway enrichment analysis of SGM-
190 ranked genes highlighted biological processes and pathways of such as apoptosis, growth factor
191 signalling, cell motility, cell proliferation and development (ActivePathways²⁶ FDR < 0.05; **Figure 3c**).
192 Most detected pathways were identified in multiple cancer types; primarily through the tobacco signature
193 in lung cancer and the APOBEC signature in head & neck cancer. Thus, the SGMs generated by these
194 mutational processes converge to tumor suppressor genes and cancer pathways and therefore contribute
195 to loss of protein function, oncogenesis, and tumor progression.
196 The mutational signatures of tobacco smoking, APOBEC, and ROS were enriched in truncating mutations
197 in important cancer genes. First, tobacco-associated SGMs were enriched in 14 genes in lung cancer
198 across the three datasets, including *TP53*, in which most SGMs in the TCGA cohort (51/95) were driven
199 by SBS4 (15 SBS4 SGMs expected, FDR = 1.8 x 10⁻¹¹) (**Figure 3d**). Truncations in *TP53* preferentially
200 occurred towards the disordered C-terminal tail involved in protein tetramerization (P = 0.0051, one-
201 sample Wilcoxon rank-sum test) in which protein truncations have been associated with loss-of-function
202 phenotypes of *TP53*²⁷ and where post-translational modification sites are often mutated in cancer²⁸.
203 SGMs of SBS4 and SBS13 showed high levels of functional activity in saturation mutagenesis of *TP53*²⁷,
204 supporting their roles in cancer phenotypes (**Supplementary Figure 7**). As another example, the second-
205 ranking gene *STK11* had 20 of 22 SGMs attributable to the tobacco smoking signature in the TCGA
206 dataset (1 SBS4 SGM expected; FDR = 5.6 x 10⁻¹⁷) (**Supplementary Figure 8**). Inactivating mutations of
207 the *bona fide* TSG *STK11* (i.e., *LKB1*; serine/threonine kinase 11) are common in lung cancer, modulate
208 differentiation and metastasis *in vivo*, and have been observed more frequently in patients with smoking
209 history²⁹⁻³¹. Smoking-associated truncations in *STK11* accumulated towards the N-terminus of the protein
210 (P = 0.002), suggesting that the mutational process of tobacco smoking directly contributes to early
211 truncations and loss of function of this TSG. Similar enrichments of SGMs were seen in other core TSGs

212 such as *RB1*, *NF1*, *ARID1A*, and emerging TSGs such as *MGA*, a transcription factor of the MYC network
213 that suppresses growth and invasion in cellular and mouse models of lung cancer³².

214 Second, SGMs of the APOBEC signature SBS13 were enriched in 44 genes in breast, head & neck, and
215 uterine cancer. The most significant gene, *FAT1*, was found in head & neck cancer in TCGA and included
216 21 APOBEC-associated SGMs (1 SBS13 SGM expected, $P = 8.3 \times 10^{-18}$) (**Figure 3e**). *FAT1* encodes a
217 proto-cadherin and master regulator of the Hippo pathway that controls organ growth, cell polarisation,
218 and cell-cell contacts. *FAT1* is one of the most frequently mutated TSGs in cancer whose loss of function
219 enhances tumor invasiveness, metastasis, and drug resistance^{33,34}, suggesting a link between APOBEC-
220 induced protein truncations and disease outcomes. Interestingly, *FAT1* was also found in lung cancer
221 where SGMs were enriched in the tobacco signature SBS4. Besides *FAT1*, SGMs of the APOBEC
222 signature were also seen in other hallmark cancer genes such *CDH1*, *TP53*, *CDKN2A* and *TGFBR2*, and
223 putative cancer genes such as the receptor tyrosine kinase *EPHA2* that regulates glutamine metabolism
224 in cancer through the Hippo pathway³⁵.

225 Third, the ROS signature SBS18 was enriched in SGMs in one gene, *APC*, which was identified in
226 metastatic colorectal cancers of the HMF cohort (27/346 SGMs vs. 1 expected; $P = 2.2 \times 10^{-31}$) (**Figure**
227 **3f**). *APC* inactivation is an early oncogenic event that disrupts beta-catenin degradation and activates
228 WNT signalling^{36,37}, suggesting a link of *APC* loss with the oxidative stress in the tumor
229 microenvironment, diet, or with the therapies of metastatic cancers³⁸.

230 Tumor suppressor genes are often inactivated in cancer through multiple mechanisms. To determine
231 whether TSGs were inactivated in samples with signature-associated SGMs, we asked whether the 56
232 SGM-enriched genes were also altered by genomic copy number (CN) losses in the same tumor samples
233 (**Figure 3b**). Indeed, the SGM-enriched genes appeared to carry both protein-truncating mutations and
234 copy-number losses in most relevant cancer samples (58.9% or 275/467). This was also apparent in
235 individual TSGs such as *TP53* (67.1% or 55/82 samples), *STK11* (86.2% or 25/29) and *FAT1* (73.3% or
236 33/45). Thus, some SGMs contributed by the mutational processes of tobacco and APOBEC may be
237 involved in biallelic inactivation of TSGs where one gene copy is inactivated by SGMs while the other
238 copy is deleted.

239 We asked if the SGM-enriched genes were in accordance with our model of SGM signatures and the
240 genetic code (**Figure 2c-d**). As expected, the proteins encoded by the 56 SGM-enriched genes encoded
241 for significantly more glutamic acid residues relative to the reference human proteome (Wilcoxon rank-
242 sum $P = 8.2 \times 10^{-6}$), while the subset of these proteins with APOBEC-associated truncations also
243 associated with a higher serine content ($P < 2.6 \times 10^{-4}$) (**Figure 3g**). The genetic model was also
244 supported at the level of individual genes. For example, most TP53 truncations of the tobacco smoking
245 signature affected glutamic acids (32/51), while the APOBEC-associated truncations in FAT1 affected
246 either serines (10/21) or glutamic acids (11/21). Furthermore, the same subset of core TSGs was
247 enriched in both tobacco smoking- and APOBEC-associated SGMs in different cancer types (e.g., *TP53*,
248 *CDKN2A*, *NF1*, *FAT1* and *ARID1A*), as the SGMs introduced through the two mutational processes
249 converge across different cancer types. Thus, certain TSGs may be more vulnerable to these mutational
250 processes and the resulting SGMs due to their protein sequence content, indicating an interplay of the
251 mutational processes and positive selection against tumor suppressive function.

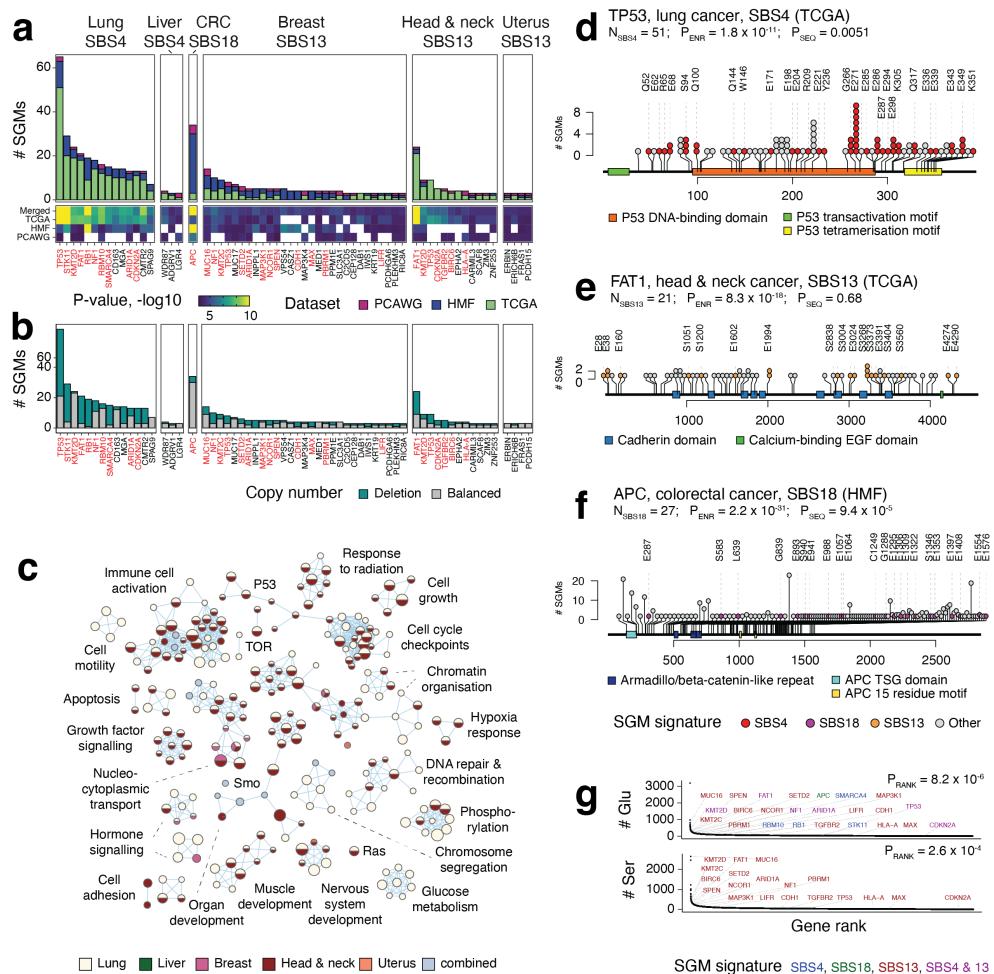


Figure 3. SGMs of tobacco smoking, APOBEC, and ROS signatures are enriched in tumor suppressor genes (TSGs) and cancer hallmark pathways. (a) Genes that are significantly enriched in SGMs driven by the three mutational signatures SBS4, SBS13 and SBS18. Each cancer type and cohort was analysed separately and the findings were integrated across the three cancer cohorts (Fisher's exact tests, Brown FDR < 0.05). Known cancer genes are shown in red. (b) SGMs in the significantly enriched genes often co-occur with genomic copy-number losses in the same cancer samples, indicative of loss of heterozygosity. (c) Biological processes and molecular pathways with enriched SGMs of tobacco smoking and APOBEC signatures. Significant pathways were identified by merging evidence through the SGM signatures and the cancer types (ActivePathways, FDR < 0.05). The enrichment map is a network where enriched pathways and processes are shown as nodes and the edges connect the pathways that share genes. Nodes are colored by the cancer types in which the SGM enrichment was detected. Light blue represents the pathways that reached significance only when the evidence from the five cancer types was combined. (d-f) Examples of major TSGs that are enriched in SGMs driven by the mutational processes of tobacco smoking, APOBEC, and ROS. Colored circles show the signature-associated SGMs, their reference amino acid residues, and their sequence positions. PFAM protein domains are shown as colored rectangles. The number of SGMs of the mutational signature (N_{SBS}), the enrichment P-value of SGMs (P_{ENR} , Fisher's exact test), and the P-value of SGMs accumulating towards either protein terminus (P_{SEQ} , one-sample Wilcoxon rank-sum test) are shown. (d) SGMs in *TP53* in lung cancer are enriched in the tobacco smoking signature SBS4. (e) SGMs in *FAT1* in head & neck cancer are enriched in the APOBEC signature SBS13. (f) SGMs in *APC* are enriched in the ROS signature SBS18. (g) Genes enriched with SGMs of tobacco smoking, APOBEC, and ROS processes have a higher amino acid sequence content of Ser and Glu residues compared to all protein-coding genes (P_{RANK} , one-sample Wilcoxon rank-sum test). Colors indicate the mutational signatures enriched in SGMs.

252 **Clinical and molecular associations of SGM signatures**

253 We asked how the mutational processes of SGMs were manifested in individual cancer genomes. The
254 largest number of SGMs was associated with the tobacco smoking signature in lung cancers. In TCGA,
255 lung cancer samples included 10.5 tobacco smoking-associated SGMs per genome on average, whereas
256 73% of cancers had at least one and 39% had at least ten such protein-truncating mutations. In primary
257 TCGA breast cancers, the mutational process of APOBEC was associated with an average of 1.1 SGMs
258 and affected a quarter of samples. In metastatic breast cancers of the HMF dataset, APOBEC-driven
259 SGM burden was higher (mean 2.3 SGMs per sample; 32% of samples), consistent with longer or higher
260 APOBEC levels in advanced cancers³⁹. ROS-associated SGMs, while less frequent in cancer genomes
261 overall, were most pronounced in metastatic colorectal cancers in HMF, affecting 23% of samples with an
262 average of 0.5 SGMs per genome (**Figure 4a**). Therefore, a large fraction of cancer genomes has some
263 SGMs and potential loss-of-function alterations through these mutational processes.

264 We next studied the activity of SGM signatures at the level of cancer subtypes. The enrichment of SGMs
265 in the tobacco smoking signature was detected in primary lung adenocarcinomas (LUAD) and squamous
266 cell carcinomas (LUSC) in TCGA, as well as metastatic non-small cell and small cell cancers in the HMF
267 dataset (**Figure 4b**). APOBEC associations with SGMs in breast cancer were also confirmed in the major
268 histological and molecular subtypes of the disease and were also detected in primary breast cancers and
269 metastatic cancers originating from the breast. Notably, the Her2-positive breast cancer subtype in TCGA
270 had three-fold more APOBEC-driven SGMs than all other subtypes combined (2.9 vs. 0.95 SGMs per
271 genome) (**Figure 4b**), consistent with earlier studies showing higher APOBEC activity in that subtype⁸.
272 Thus, the mutational processes generating SGMs are active across lung and breast cancer subtypes and
273 in primary and metastatic cancers.

274 We analysed the mRNA abundance of APOBEC enzymes to study the molecular drivers of these
275 mutational processes, focusing on breast cancer cohorts where most consistent signals of APOBEC-
276 driven SGMs were found. In TCGA, the cancer samples with higher *APOBEC3A* or *APOBEC3B*
277 expression had significantly more APOBEC-driven SGMs compared to cancers with lower expression (P
278 = 2.1×10^{-28} , Poisson exact test). Similarly, significantly more SGMs involving serine and glutamic acid
279 residues were found (P = 2.0×10^{-24}). The positive association of APOBEC enzyme expression and SGM
280 burden was also observed in the HMF cohort of metastatic cancers (**Figure 4c**), as well as other
281 APOBEC3 genes (**Supplementary Figure 9**). The association of APOBEC mutagenesis with gene
282 expression of the two enzymes confirms earlier studies of cancer genomes and experimental systems
283^{19,40} and connects the mutational processes of SGMs with the expected molecular pathway.

284 Lastly, we assessed SGMs in the context of smoking history of lung cancer patients in TCGA. Compared
285 to patients with smoking history, the cancer genomes of lifelong non-smokers had fewer tobacco-
286 associated SGMs of SBS4 (FDR < 10^{-6}) and fewer Glu>Stop substitutions (FDR < 10^{-9}). No significant
287 differences in SBS4 SGM burden were found between current and recently-reformed smokers (FDR =

288 0.93); however, both groups had significantly more SBS4 SGMs than lifelong non-smokers and long-term
 289 reformed smokers ($FDR < 10^{-6}$). Cancer subtype analysis confirmed the association between lifetime
 290 smoking and the burden of SBS4 SGMs in LUAD, while weaker signals were observed in LUSC (Figure
 291 4d). This is expected as the LUAD subtype is more common among non-smokers than LUSC ⁴¹ (13.6%
 292 and 3.7% in TCGA, respectively) and the more varied composition of the LUAD cohort may contribute to
 293 the more pronounced association with SGMs. Therefore, SGMs in lung cancer genomes can be attributed
 294 to lifetime smoking activity, indicating a preventable cause of these impactful genetic aberrations. Overall,
 295 the clinical and molecular associations of mutational processes and SGMs provide insights to tumor
 296 heterogeneity and patient outcomes and have potential implications to biomarker and therapy
 297 development.

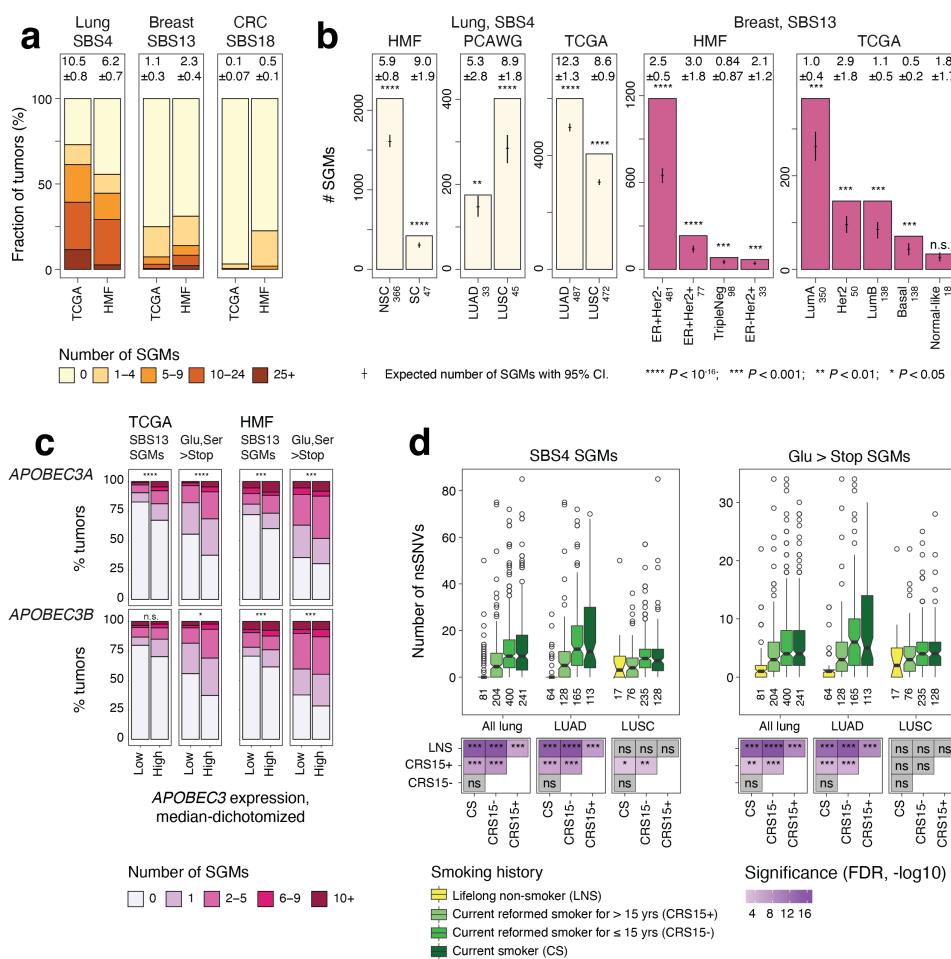


Figure 4. Molecular and clinical associations of SGMs with the mutational processes of tobacco smoking and APOBEC.

(a) Mutational burden of SGMs of the three most significant mutational processes in cancer genomes. Stacked bar plots show the numbers of SGMs per cancer genome for the three SBS signatures: tobacco smoking in lung cancers (SBS4; left), APOBEC in breast cancer (SBS13; middle), and ROS in colorectal cancer (SBS18; right). Primary and metastatic cancer cohorts are compared (TCGA, HMF). Mean numbers of SGMs per cancer genome with $\pm 95\%$ CI are shown above the bar plots. (b) SGMs of tobacco smoking and APOBEC signatures are also enriched in the molecular subtypes of lung and breast cancer. Expected total SGM counts with 95% CI are shown as points and whiskers. The counts of cancer samples in each group are shown in the

X-axis labels. Lung cancer subtypes include small-cell (SC), non-small cell (NSC), adenocarcinoma (LUAD), and squamous cell carcinoma (LUSC) as annotated in the datasets. (c) Gene expression of *APOBEC3A* and *APOBEC3B* in breast cancer samples in TCGA associates with more frequent SGMs of the SBS13 signature (left) and more frequent Ser>Stop and Glu>Stop substitutions (right). The analysis compared cancer samples that were grouped by the expression of *APOBEC3A* and *APOBEC3B* genes (median-dichotomized; high vs. low). P-values of Poisson exact tests are shown. (d) The SGMs of the tobacco smoking signature are associated with the smoking history of lung cancer patients in TCGA. Box plots show the numbers of SGMs of the SBS4 signature (left) and Glu>Stop substitutions per cancer genome (right). The counts of cancer samples in each group are shown below the box plots. The statistical significance of correlating SGM burden with respect to smoking history is shown in the grid plot at the bottom (Wilcoxon rank-sum test, FDR-adjusted; * < 0.05; ** < 0.01; *** < 0.001; **** < 10⁻¹⁶).

298

299 **DISCUSSION**

300 Our pan-cancer analysis shows that the mutational processes of tobacco smoking, APOBEC, and ROS
301 are a source of protein-truncating mutations in cancer genomes. The trinucleotide context of these
302 mutational processes results in substitutions of glutamic acid and serine residues to stop codons,
303 explaining the strong statistical associations observed in many cancer types. In support of this
304 mechanism, we present several lines of evidence. First, the tumor suppressors with the strongest
305 enrichments of SGMs also have a high protein sequence content of these amino acids. Second, we can
306 identify the mutational processes of SGMs in large cohorts of primary and metastatic cancers of various
307 disease types, and in whole-genome and whole-exome sequencing datasets. Third, the mutational
308 burden of SGMs correlates with the molecular drivers of the mutational processes, including lifestyle
309 tobacco exposure of lung cancer patients and the expression levels of APOBEC genes.

310 Our analysis ties together the functional impact of mutational processes and positive selection in cancer
311 genomes. The genes with the most frequent SGMs associated with the three mutational processes are
312 clearly enriched in core tumor suppressor genes, including early oncogenic drivers such as *APC*, later
313 drivers of tumor progression and metastasis such as *CDH1*, as well as less-characterized cancer genes
314 for further studies such as *EPHA2* and *MGA*. SGM-enriched genes converge to cancer hallmark
315 pathways across multiple cancer types. In many cases, protein-truncations of TSGs are combined with
316 copy-number deletions, indicating that SGMs contribute to biallelic inactivation. The trinucleotide
317 preferences of the mutational processes imply that the TSGs with a higher protein content of glutamic
318 acids and serines are more vulnerable to protein truncations caused by these mutational processes. In
319 these genes, SGMs likely promote cancer development and are under positive selection.

320 The mutational processes that contribute SGMs are the major processes of somatic mutagenesis in many
321 cancer types. Tobacco smoking appears as the most significant driver of SGMs in the cancers of lung,
322 head and neck, and esophagus cancers that involve direct exposure to smoke. We also find SGM
323 enrichments in lower-frequency carcinogenic processes of tobacco chewing, and the dietary carcinogens
324 aflatoxin and aristolochic acids. Further, increased smoking is associated with higher SGM burden,
325 indicating that the more an individual is exposed to tobacco smoke, the more likely they are to acquire

326 protein-truncating somatic mutations in tobacco-exposed cells. Therefore, loss-of-function mutations in
327 cancer genomes appear to be determined by lifestyle and environmental exposures of smoking and
328 exposure to second hand-smoke.

329 APOBEC enzymes are core components of the innate immune system that are involved in restriction of
330 virus replication and somatic antibody diversification ⁴². Aberrant APOBEC activity is a major cause of
331 somatic mutations in many cancer types. APOBEC enzymes were described in virus restriction pathways
332 that disable viruses by inducing missense and stop-gain mutations in viral RNA ⁴³. This evolutionarily
333 important mutational process of defense against pathogens corroborates our observations in cancer
334 genomes. RNA editing by APOBEC1 causes a protein truncation in the apolipoprotein APOB that is
335 required for lipid processing in the intestine ^{44,45}. Somatic mutagenesis in normal human small intestines
336 has been associated with APOBEC1 activity and includes protein truncations in TSGs ⁴⁶. APOBEC
337 mutagenesis is clustered in tissue-specific open-chromatin regions ^{47,48}, indicating that the SGMs
338 preferentially target actively expressed genes in which protein-truncating mutations are more likely to
339 have functional consequences. Therapeutic APOBEC inhibition may help reduce the genesis of SGMs
340 and the rein in tumor heterogeneity, especially as APOBEC has been linked to mutational processes,
341 sub-clonal diversification, and driver mutations later in tumor evolution ³⁹.

342 Oxidative stress and ROS are major sources of genomic instability that are associated with lifestyle
343 factors common in developed countries, such as malnutrition, limited dietary antioxidant levels, obesity,
344 and excess alcohol consumption ⁴⁹. Oxidative stress is also associated with some anti-cancer therapies
345 such as ionizing radiation and certain chemotherapeutic agents. SGMs of ROS signatures were
346 especially apparent in metastatic colorectal cancers that are commonly treated with radiation therapy.
347 Interestingly, rare cancer-predisposing germline mutations of the DNA repair enzyme MUTYH have been
348 associated with the ROS signature SBS18 and more frequent SGMs ⁵⁰, supporting our findings of SBS18-
349 driven SGMs in cancer genomes. Thus, lifestyle variables, genetic makeup of patients and certain cancer
350 treatments may contribute to loss-of-function mutagenesis, increasing genetic tumor heterogeneity and
351 ultimately enabling additional molecular avenues of tumor progression and metastasis.

352 As cancers evolve, they become more heterogeneous and their paths to progression and metastasis
353 become more varied. This heterogeneity is likely acquired through additional mutations that further
354 deregulate cancer pathways and unlock therapy resistance. By inducing SGMs, the mutational processes
355 of tobacco, APOBEC and ROS directly contribute to tumor heterogeneity by causing protein loss-of-
356 function mutations. While not all these SGMs occur in core TSGs and directly drive cancer phenotypes,
357 SGMs may involve genetic interactions with the core driver genes. Synergistic interactions may provide
358 additional context-specific advantages to tumors in cases where the SGMs disrupt protective mechanisms
359 and thereby enhance the phenotypes caused by core driver genes. On the other hand, SGMs may lead to
360 synthetic lethal interactions where the SGMs disrupt a pathway that the core oncogenic pathway depends
361 on. These interactions may be exploited for therapy by targeting other components of the SGM-disrupted

362 pathway. Therefore, SGM-inducing mutational processes are likely to increase inter-and intra-tumoral
363 heterogeneity through loss-of-function. Mutational processes of SGMs may also have implications on the
364 tumor's interactions with the immune system. SGMs lead to truncated and malformed proteins, some of
365 which may be expressed on the cell surface and appear as neoantigens. Such truncated proteins may
366 render the tumor more visible to the immune system, highlighting avenues for T cell-based
367 immunotherapies. Deeper analyses of the proteogenomic impact of mutational processes, their etiology
368 and genetic and lifestyle associations may lead to innovative biomarkers, mechanistic insights to cancer
369 pathways, and leads for therapy development.

370 **METHODS**

371 Somatic mutations in cancer genomes. We analysed somatic SNVs in three cohorts of multiple cancer
372 types: ICGC/TCGA Pan-cancer Analysis of Whole Genomes (PCAWG)² with whole genome sequencing
373 (WGS) data of primary cancers, Hartwig Medical Foundation (HMF)²¹ with WGS data of metastatic
374 cancers, and the Cancer Genome Atlas (TCGA) PanCanAtlas²⁰ project with whole exome sequencing
375 (WES) of mostly primary cancers. We used the Multi-Center Mutation Calling in Multiple Cancers (MC3)
376 dataset of TCGA variant calls⁵¹. We removed hypermutated tumor samples defined as those with
377 >90,000 SNVs in WGS data and with >1800 SNVs in WES data, corresponding to genomes with
378 approximately >30 SNVs/Mbps (n = 69 for PCAWG; n = 306 for HMF; n = 806 for TCGA). We excluded
379 SNVs that did not pass the MC3 quality filter in TCGA. In WES data, we also removed lower-confidence
380 samples with very few mutations for increased confidence in signature decomposition (<20 SNVs; 977
381 samples in TCGA). In HMF, we removed 140 duplicate cancer genomes of tumors of the same patients
382 by selecting the sample with the highest tumor purity. We also removed 25 samples lacking HMF patient
383 IDs. To enable analyses across the TCGA, PCAWG and HMF cohorts, cancer types were consolidated to
384 18 meta-types based on organs and/or anatomical sites, each with each cancer type including at least 25
385 samples in the three cohorts (**Supplementary Figure 1**). In HMF, the organ of the primary tumor was
386 used for cancer type classification. Cancers of and less-frequent primary sites and of unknown origin
387 (HMF) were excluded. In total, we analysed 1,751,110 exonic SNVs. The functional effects of SNVs on
388 protein-coding genes were annotated using the ANNOVAR software⁵² (version 2019-Oct-24) by using the
389 canonical protein isoforms of the genes. The final dataset contained 12,341 cancer genomes (2360 in
390 PCAWG, 3472 in HMF, 6509 in TCGA). This included some samples that were present in both the
391 PCAWG and TCGA cohorts (n = 484). The duplicate samples in PCAWG and TCGA were retained to
392 provide additional technical validation across the sequencing platforms, variant calling pipelines, and
393 signature mapping strategies used to produce the datasets.

394

395 SBS signatures. Mutational signatures for single base substitutions (SBS) in PCAWG were retrieved from
396 the consensus PCAWG dataset⁴. In HMF and TCGA datasets, we separately assigned known SBS
397 signatures to SNVs using the SigProfilerSingleSample software (version 0.0.0.27)⁵ and the COSMIC
398 SBS signature catalogue (version 3)^{5,24}. For most analyses, each SNV was assigned to the most
399 probable SBS signature based on these signature exposure prections. We removed a small subset of
400 samples in WGS data that were potentially contaminated with sequencing artefacts as defined by the
401 presence of more than 20% of SNVs assigned to SBS27, SBS43, and SBS45-SBS60, comprising nine
402 samples in PCAWG and four samples in HMF. The TCGA dataset was not further filtered beyond the
403 MC3 quality filter⁵¹. To verify the tobacco, APOBEC and ROS signatures of SGMs in lung, breast and
404 colorectal cancers respectively, we computed cosine similarity (COS) scores to evaluate the similarity of
405 the SGM trinucleotide profiles with the reference SBS trinucleotide signatures of the COSMIC database.

406 COS scores were separately computed for all SGMs and specific amino acid substitutions involving
407 serines and glutamic acids. As controls, we also computed the equivalent COS scores comparing the
408 SGM trinucleotide profiles with the two clock-like feature-less SBS signatures, SBS5 and SBS40, which
409 were the most assigned SBS signatures in the respective cancer types.

410

411 Enrichment analysis of protein-coding SNV classes and mutational signatures. We performed a
412 comprehensive enrichment analysis of functional SNV annotations and mutational SBS signatures by
413 separately comparing all consolidated cancer types in the three cancer cohorts. The analysis evaluated
414 whether the classes of exonic SNVs (*i.e.*, missense, stop-gain (*i.e.*, non-sense), silent, start-loss, stop-
415 loss) were significantly enriched in certain mutational signatures more often than expected from the
416 independent binomial distributions of these SNV classes and the SBS signatures in all protein-coding
417 regions of a given cancer type and cohort. For each cancer type, we tested the signatures that were
418 reasonably frequently detected, had at least 100 SNVs per cancer type and cohort, and included at least
419 one SNV of the tested variant annotation class (*e.g.*, SGM), excluding signatures annotated as
420 sequencing artefacts in the COSMIC database (see above). Certain signatures associated with the
421 common mutational processes were combined: clock-like signatures SBS5 and SBS40 (SBS5/40), UV
422 signatures SBS 7a/b/c/d (SBS7), hypermutation-associated signatures SBS10a/b (SBS10), and the
423 signatures SBS17a/b (SBS17). Since this analysis focused only on protein-coding regions, we excluded
424 SNVs outside exons in the WGS datasets from our statistical tests. To provide comparable analyses of
425 WGS and WES datasets and reduce the inflation of significance in better-powered WGS datasets, we
426 excluded non-exonic variants from the statistical tests. Statistical analysis was conducted using one-tailed
427 Fisher's exact tests that asked whether a set of SNVs derived from a given SBS signature and another
428 set of SNV with a given functional annotation were overlapping significantly more often than expected by
429 chance alone. The resulting P-values were adjusted for multiple testing using the Benjamini-Hochberg
430 False Discovery rate (FDR) method ⁵³. Results were considered significant if FDR < 0.01. Expected
431 values of mutations sharing SBS signatures and functional annotations were sampled from the
432 independent binomial distributions over 10,000 iterations, parametrized by the product of the probabilities
433 of signature mutations and functional annotations, respectively. Using a similar approach, we also asked
434 if specific types of amino acids were more likely to be substituted with stop codons through the SGMs
435 driven by the identified SBS signatures. This analysis focused on only three cancer types and three
436 SBS signatures in the cohorts with the strongest signals (SBS4 in lung cancer in TCGA, SBS13 in breast
437 cancer in HMF, SBS18 in colorectal cancer in HMF). Fisher's exact tests were performed to assess
438 whether certain amino acids were co-occurring with the signatures significantly more often than expected
439 from the individual binomial distributions of the signature-associated variants and the substituted amino
440 acid. The resulting P-values were corrected for multiple testing using FDR.

441

442 Confirming the enrichment of SGMs in the major SBS signatures with probabilistic sampling. All major
443 analyses in our study considered the most probable SBS signature for each SNV. To confirm our findings
444 by accounting for the uncertainty in the signature annotations of individual SNVs and tumor samples, we
445 performed a sampling analysis in which we assigned signatures to individual SNVs probabilistically over
446 100 iterations. Each SNV was assigned an SBS signature based on the multinomial distribution
447 parametrised by the probabilities of all the SBS signatures identified in the given cancer genome. This
448 procedure allowed the less-probable signatures to be included in the SNV annotation based on their
449 probabilities. The 100 probabilistically sampled SNV-to-signature assignments were then systematically
450 analysed using the enrichment analysis approach described above, to determine which signatures were
451 enriched in SGMs in various cancer types. Significant results for each iteration were selected after
452 iteration-specific multiple testing correction (FDR < 0.05). The fold-changes and FDR-values of the
453 different iterations were then visualised as volcano plots that summarized fold change and FDR in all
454 iterations.

455

456 Analysis of SBS signatures and SGMs in genes. Genes with significant signature-associated SGMs were
457 identified using one-tailed Fisher's exact tests separately for the three major signatures (SBS4, SBS13,
458 SBS18). The tests compared the distribution of SGMs of each SBS signature in a gene relative to the
459 distributions of all SGMs and all mutations of that SBS signature in all protein-coding genes combined.
460 This analysis only used exonic mutations and excluded mutations in non-coding regions, similarly to the
461 exome-wide analysis described above. Fisher's exact tests were conducted for each gene separately and
462 in all three cohorts separately (TCGA, HMF, PCAWG). Genes were only tested if they had at least one
463 SGM assigned to the given mutational signature. The resulting P-values for each gene were merged
464 using the Brown procedure⁵⁴ and corrected for multiple testing using FDR. Significant genes were
465 selected based on the Brown merged FDR-values (FDR < 0.05). Known cancer genes of the COSMIC
466 Cancer Gene Census (CGC) database²⁵ (version 2020-09-17, accessed 2021-10-21) were highlighted in
467 the resulting gene list. A Fisher's exact test was used to determine whether the CGC genes were found in
468 the list more often than expected, using all protein-coding genes as the background set. In an additional
469 analysis, all protein-coding genes were ranked according to the numbers of glutamic acid (Glu) and
470 serine (Ser) residues in their canonical protein isoforms. Genes identified in the SGM enrichment analysis
471 from above were tested for higher-than-expected Glu and Ser content using one-tailed Mann-Whitney U-
472 tests that determined whether the ranks of the selected genes were significantly higher than the median
473 rank across the reference human proteome. For each candidate gene, we determined whether the
474 sequence positions of the signature-associated SGMs were distributed towards either the N or C terminus
475 of the protein more often than expected. One-tailed one-sample Wilcoxon rank-sum tests were used for
476 this analysis. To analyse the functional impact of SGMs in TP53, we obtained data from saturation
477 mutagenesis screens from the study by Giacomelli *et al.*²⁷ and compared the Z-scores of TP53
478 functional activity among four classes of SNVs: (i) SGMs associated with SBS4 and/or SBS13 in any

479 cancer sample in our datasets (i.e., PCAWG, TCGA, HMF combined), (ii) all other SGMs of other SBS
480 signatures (i.e., excluding SBS4 and SBS13) observed in any cancer sample in our datasets, (iii)
481 missense SNVs observed in any cancer sample in our datasets, and (iv) as controls, all other mutations
482 of TP53 studied in the mutagenesis screens but not in any human cancer genomes. Only unique
483 mutations were analysed. Statistical significance estimates between the groups were determined using
484 Wilcoxon rank-sum tests.

485

486 Analysis of copy number alterations (CNAs) and SGMs. We aimed to identify potential biallelic
487 inactivation cases where the gene was disrupted by both SGMs and copy number (CN) alterations
488 leading to the genomic losses of the gene in the same tumor. We studied the 56 genes with significantly
489 enriched signature-associated SGMs from our analysis that included 556 SGMs in 467 tumors in total.
490 Separate strategies to select CNAs were used for the TCGA dataset and the PCAWG and HMF datasets.
491 For TCGA samples profiled previously using SNP6 microarrays, we analysed the relative digital somatic
492 CN calls of each gene as from previous consensus datasets. Gene losses in TCGA were defined through
493 gene CN < 0. For PCAWG and HMF samples previously profiled using WGS, we analysed the CN values
494 of genomic segments defined in these projects. To define the CN value for each gene, we considered the
495 overlapping genomic segment with the lowest CN and of at least 1 kbps in length. To define gene losses
496 in PCAWG and HMF, we used different criteria for autosomes and the X chromosome, and for samples
497 with and without potential whole-genome duplication (WGD) events. A cancer genome was predicted to
498 have undergone WGD if the genome-wide CN > 2.5. For non-WGD samples, we defined gene losses in
499 autosomes through gene CN < 1.5. For WGD samples, we defined gene losses through gene CN < 2.0.
500 The same thresholds were used to define gene losses in X chromosomes in female patients. Gene losses
501 in X chromosomes in males were defined through gene CN < 1.0 for non-WGD samples and through
502 gene CN < 1.5 for WGD samples. CNAs were unavailable for one relevant HMF sample and nine relevant
503 TCGA samples, for which we assumed that no gene deletion events occurred.

504

505 Pathway enrichment analysis. To understand the functional importance of the genes with SGMs of
506 different mutational signatures, we performed an integrative pathway enrichment analysis using the
507 ActivePathways method²⁶ (*FDR* < 0.05). The analysis was designed to prioritise genes and pathways
508 that were enriched with signature-associated SGMs in multiple cancer types. We included the cancer
509 types for which such genes were found, excluding colorectal cancer for which only one gene was found.
510 For each cancer type, we selected the cohort with most cancer samples: lung (SBS4, TCGA), liver
511 (SBS4, TCGA), breast (SBS13, HMF), head & neck (SBS13, TCGA), and uterine cancer (SBS13, TCGA).
512 As the input to ActivePathways, we used a matrix of P-values of all protein-coding genes and the selected
513 cancer types, such that each P-value reflected the enrichment of signature-associated SGMs in the gene
514 and the cancer type. Gene sets of biological processes of Gene Ontology and molecular pathways of

515 Reactome were derived from the GMT files in the g:Profiler web server⁵⁵ (downloaded January 3, 2022).
516 Gene sets with 100-500 genes were analysed. Statistically significant pathways were selected
517 (ActivePathways, FDR < 0.05). The results were visualised as an enrichment map⁵⁶ and the subnetworks
518 were labelled interactively to find common functional themes of similar pathways and processes.

519

520 Analysis of SGMs of SBS signatures in tumor subtypes and correlation with patient smoking history. We
521 studied the number of signature-associated SGMs in each cancer genome in the representative cancer
522 types (SBS4 in lung, SBS13 in breast; SBS18 in colorectal), and compared primary cancers in TCGA and
523 metastatic cancers in HMF. Mean numbers of signature-associated SGMs per cancer genome were
524 reported with 95% confidence intervals, by also including the samples where these SBS signatures were
525 not detectable. We also compared the per-tumor SGM counts separately in various subtypes of lung and
526 breast cancer. Subtype analysis was not performed in colorectal cancer due to limited subtype
527 information available. Cancer subtype annotations for PCAWG were retrieved from the ICGC data portal,
528 from patient information tables for HMF, and for TCGA from the TCGAbiolinks R package⁵⁷ (v. 2.18.0).
529 Samples with unknown and missing subtype annotations were excluded. To validate the associations of
530 SGMs and SBS signatures in the relevant cancer subtypes, we repeated the signature enrichment
531 analysis of SGMs in samples of specific cancer subtypes using Fisher's exact tests as described above.
532 We also analysed SGMs of the tobacco signature SBS4 in the context of smoking history of lung cancer
533 patients. We compared the subsets of TCGA cancer samples based on the four categories of patient
534 smoking history that were derived from TCGAbiolinks. We compared two categories of SGMs: SGMs
535 assigned to SBS4, and SGMs causing Glu > Stop substitutions. Non-parametric Wilcoxon rank-sum tests
536 were used to compare mutation counts per patient in the four categories of smoking history. We
537 performed one analysis by combining all lung cancer patients based on their smoking history, and two
538 additional analyses focused on the two major histological subtypes (adenocarcinoma and squamous cell
539 carcinoma). In breast cancer samples, we associated the frequency of SGMs per cancer genome with the
540 gene expression levels of APOBEC enzymes *APOBEC3A* and *APOBEC3B*. We analysed breast cancer
541 datasets in TCGA and HMF using matching RNA-seq datasets. Cancer samples with no SBS13
542 mutations were also included in the analyses. We excluded cancer samples with no matching RNA-seq
543 data. Samples were split (median-dichotomised) into two subsets based on the median mRNA
544 abundance of the APOBEC genes. The resulting two groups were compared using Poisson exact tests to
545 compare mutation counts per cancer genome. Two types of mutations were considered: all snSNVs of
546 the SBS13 signature, and all stop codon substitutions involving glutamic acids and serines combined (Glu
547 > Stop, Ser > Stop).

548

549 **Acknowledgments.** This work was supported by the Project Grant of Canadian Institutes of Health
550 Research (CIHR) to J.R., the Operating Grant of the Cancer Research Society (CRS) to J.R., as well as
551 the Investigator Award to J.R. from the Ontario Institute for Cancer Research (OICR). J.R. was supported
552 by the New Investigator Award of the Terry Fox Research Institute (TFRI). A.T.B. was partially supported
553 by an Ontario Graduate Scholarship. D.P. was partially supported by an Ontario STAGE HostSeq
554 fellowship. Funding to OICR is provided by the Government of Ontario. This publication and the
555 underlying study have been made possible partly based on the data that Hartwig Medical Foundation has
556 made available to the study. The results published here are in part based on data generated by The
557 Cancer Genome Atlas Research Network.

558 **Author contributions.** N.A. led the data analysis, interpreted the results, and prepared the figures. K.C.,
559 M.S., A.T.B., D.P., K.A., and D.S. contributed to the data analysis, interpretation of results, and writing.
560 N.A. and J.R. wrote the manuscript with input from all authors. J.R. conceived and oversaw the project.
561 All authors reviewed and edited the manuscript and approved the final version.

562 **References**

563 1 Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. *Cell* **144**, 646-
564 674 (2011). <https://doi.org/10.1016/j.cell.2011.02.013>

565 2 ICGC-TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis
566 of whole genomes. *Nature* **578**, 82-93 (2020). <https://doi.org/10.1038/s41586-020-1969-6>

567 3 Supek, F. & Lehner, B. Scales and mechanisms of somatic mutation rate variation across
568 the human genome. *DNA Repair (Amst)*, 102647 (2019).
<https://doi.org/10.1016/j.dnarep.2019.102647>

569 4 Alexandrov, L. B. *et al.* The repertoire of mutational signatures in human cancer. *Nature*
570 **578**, 94-101 (2020). <https://doi.org/10.1038/s41586-020-1943-3>

571 5 Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. & Stratton, M. R.
573 Deciphering signatures of mutational processes operative in human cancer. *Cell Rep* **3**,
574 246-259 (2013). <https://doi.org/10.1016/j.celrep.2012.12.008>

575 6 Alexandrov, L. B. *et al.* Clock-like mutational processes in human somatic cells. *Nature*
576 *genetics* **47**, 1402-1407 (2015). <https://doi.org/10.1038/ng.3441>

577 7 Nik-Zainal, S. *et al.* Mutational processes molding the genomes of 21 breast cancers. *Cell*
578 **149**, 979-993 (2012). <https://doi.org/10.1016/j.cell.2012.04.024>

579 8 Roberts, S. A. *et al.* An APOBEC cytidine deaminase mutagenesis pattern is widespread
580 in human cancers. *Nature genetics* **45**, 970-976 (2013). <https://doi.org/10.1038/ng.2702>

581 9 Pfeifer, G. P., You, Y. H. & Besaratinia, A. Mutations induced by ultraviolet light. *Mutat*
582 *Res* **571**, 19-31 (2005). <https://doi.org/10.1016/j.mrfmmm.2004.06.057>

583 10 Alexandrov, L. B. *et al.* Mutational signatures associated with tobacco smoking in human
584 cancer. *Science* **354**, 618-622 (2016). <https://doi.org/10.1126/science.aag0299>

585 11 Poon, S. L. *et al.* Genome-wide mutational signatures of aristolochic acid and its
586 application as a screening tool. *Sci Transl Med* **5**, 197ra101 (2013).
<https://doi.org/10.1126/scitranslmed.3006086>

588 12 Pich, O. *et al.* The mutational footprints of cancer therapies. *Nature genetics* **51**, 1732-
589 1740 (2019). <https://doi.org/10.1038/s41588-019-0525-5>

590 13 Behjati, S. *et al.* Mutational signatures of ionizing radiation in second malignancies. *Nat*
591 *Commun* **7**, 12605 (2016). <https://doi.org/10.1038/ncomms12605>

592 14 Martincorena, I. *et al.* Tumor evolution. High burden and pervasive positive selection of
593 somatic mutations in normal human skin. *Science* **348**, 880-886 (2015).
<https://doi.org/10.1126/science.aaa6806>

595 15 Blokzijl, F. *et al.* Tissue-specific mutation accumulation in human adult stem cells during
596 life. *Nature* **538**, 260-264 (2016). <https://doi.org/10.1038/nature19768>

597 16 Poulos, R. C., Wong, Y. T., Ryan, R., Pang, H. & Wong, J. W. H. Analysis of 7,815
598 cancer exomes reveals associations between mutational processes and somatic driver
599 mutations. *PLoS Genet* **14**, e1007779 (2018).
<https://doi.org/10.1371/journal.pgen.1007779>

601 17 Temko, D., Tomlinson, I. P. M., Severini, S., Schuster-Bockler, B. & Graham, T. A. The
602 effects of mutational processes and selection on driver mutations across cancer types. *Nat*
603 *Commun* **9**, 1857 (2018). <https://doi.org/10.1038/s41467-018-04208-6>

604 18 Kucab, J. E. *et al.* A Compendium of Mutational Signatures of Environmental Agents.
605 *Cell* **177**, 821-836 e816 (2019). <https://doi.org/10.1016/j.cell.2019.03.001>

606 19 Suspene, R. *et al.* Somatic hypermutation of human mitochondrial and nuclear DNA by
607 APOBEC3 cytidine deaminases, a pathway for DNA catabolism. *Proc Natl Acad Sci U S*
608 **A** **108**, 4858-4863 (2011). <https://doi.org/10.1073/pnas.1009687108>

609 20 Hoadley, K. A. *et al.* Cell-of-Origin Patterns Dominate the Molecular Classification of
610 10,000 Tumors from 33 Types of Cancer. *Cell* **173**, 291-304 e296 (2018).
<https://doi.org/10.1016/j.cell.2018.03.022>

612 21 Priestley, P. *et al.* Pan-cancer whole-genome analyses of metastatic solid tumours. *Nature*
613 **575**, 210-216 (2019). <https://doi.org/10.1038/s41586-019-1689-y>

614 22 Pfeifer, G. P. *et al.* Tobacco smoke carcinogens, DNA damage and p53 mutations in
615 smoking-associated cancers. *Oncogene* **21**, 7435-7451 (2002).
<https://doi.org/10.1038/sj.onc.1205803>

617 23 de Bruin, E. C. *et al.* Spatial and temporal diversity in genomic instability processes
618 defines lung cancer evolution. *Science* **346**, 251-256 (2014).
<https://doi.org/10.1126/science.1253462>

620 24 Tate, J. G. *et al.* COSMIC: the Catalogue Of Somatic Mutations In Cancer. *Nucleic Acids*
621 *Res* **47**, D941-D947 (2019). <https://doi.org/10.1093/nar/gky1015>

622 25 Futreal, P. A. *et al.* A census of human cancer genes. *Nat Rev Cancer* **4**, 177-183 (2004).
<https://doi.org/10.1038/nrc1299>

624 26 Paczkowska, M. *et al.* Integrative pathway enrichment analysis of multivariate omics
625 data. *Nature Communications* **11**, 735 (2020).

626 27 Giacomelli, A. O. *et al.* Mutational processes shape the landscape of TP53 mutations in
627 human cancer. *Nature genetics* **50**, 1381-1387 (2018). <https://doi.org/10.1038/s41588-018-0204-y>

629 28 Reimand, J. & Bader, G. D. Systematic analysis of somatic mutations in phosphorylation
630 signaling predicts novel cancer drivers. *Molecular systems biology* **9**, 637 (2013).
<https://doi.org/10.1038/msb.2012.68>

632 29 Ji, H. *et al.* LKB1 modulates lung cancer differentiation and metastasis. *Nature* **448**, 807-
633 810 (2007). <https://doi.org/10.1038/nature06030>

634 30 Sanchez-Cespedes, M. *et al.* Inactivation of LKB1/STK11 is a common event in
635 adenocarcinomas of the lung. *Cancer Res* **62**, 3659-3662 (2002).

636 31 Pecuchet, N. *et al.* Different prognostic impact of STK11 mutations in non-squamous
637 non-small-cell lung cancer. *Oncotarget* **8**, 23831-23840 (2017).
<https://doi.org/10.18632/oncotarget.6379>

639 32 Mathsyaraja, H. *et al.* Loss of MGA repression mediated by an atypical polycomb
640 complex promotes tumor progression and invasiveness. *Elife* **10** (2021).
<https://doi.org/10.7554/elife.64212>

642 33 Pastushenko, I. *et al.* Fat1 deletion promotes hybrid EMT state, tumour stemness and
643 metastasis. *Nature* **589**, 448-455 (2021). <https://doi.org/10.1038/s41586-020-03046-1>

644 34 Li, Z. *et al.* Loss of the FAT1 Tumor Suppressor Promotes Resistance to CDK4/6
645 Inhibitors via the Hippo Pathway. *Cancer Cell* **34**, 893-905 e898 (2018).
<https://doi.org/10.1016/j.ccr.2018.11.006>

647 35 Edwards, D. N. *et al.* The receptor tyrosine kinase EphA2 promotes glutamine
648 metabolism in tumors by activating the transcriptional coactivators YAP and TAZ. *Sci*
649 *Signal* **10** (2017). <https://doi.org/10.1126/scisignal.aan4667>

650 36 Powell, S. M. *et al.* APC mutations occur early during colorectal tumorigenesis. *Nature*
651 **359**, 235-237 (1992). <https://doi.org/10.1038/359235a0>

652 37 Morin, P. J. *et al.* Activation of beta-catenin-Tcf signaling in colon cancer by mutations
653 in beta-catenin or APC. *Science* **275**, 1787-1790 (1997).
654 <https://doi.org/10.1126/science.275.5307.1787>

655 38 Perillo, B. *et al.* ROS in cancer therapy: the bright side of the moon. *Exp Mol Med* **52**,
656 192-203 (2020). <https://doi.org/10.1038/s12276-020-0384-2>

657 39 McGranahan, N. *et al.* Clonal status of actionable driver events and the timing of
658 mutational processes in cancer evolution. *Sci Transl Med* **7**, 283ra254 (2015).
659 <https://doi.org/10.1126/scitranslmed.aaa1408>

660 40 Burns, M. B. *et al.* APOBEC3B is an enzymatic source of mutation in breast cancer.
661 *Nature* **494**, 366-370 (2013). <https://doi.org/10.1038/nature11881>

662 41 Barbone, F., Bovenzi, M., Cavallieri, F. & Stanta, G. Cigarette smoking and histologic
663 type of lung cancer in men. *Chest* **112**, 1474-1479 (1997).
664 <https://doi.org/10.1378/chest.112.6.1474>

665 42 Harris, R. S. & Dudley, J. P. APOBECs and virus restriction. *Virology* **479-480**, 131-145
666 (2015). <https://doi.org/10.1016/j.virol.2015.03.012>

667 43 Zhang, H. *et al.* The cytidine deaminase CEM15 induces hypermutation in newly
668 synthesized HIV-1 DNA. *Nature* **424**, 94-98 (2003). <https://doi.org/10.1038/nature01707>

669 44 Teng, B., Burant, C. F. & Davidson, N. O. Molecular cloning of an apolipoprotein B
670 messenger RNA editing protein. *Science* **260**, 1816-1819 (1993).
671 <https://doi.org/10.1126/science.8511591>

672 45 Powell, L. M. *et al.* A novel form of tissue-specific RNA processing produces
673 apolipoprotein-B48 in intestine. *Cell* **50**, 831-840 (1987). [https://doi.org/10.1016/0092-8674\(87\)90510-1](https://doi.org/10.1016/0092-8674(87)90510-1)

675 46 Wang, Y. *et al.* APOBEC mutagenesis is a common process in normal human small
676 intestine. *Nature genetics* (2023). <https://doi.org/10.1038/s41588-022-01296-5>

677 47 Supek, F. & Lehner, B. Clustered Mutation Signatures Reveal that Error-Prone DNA
678 Repair Targets Mutations to Active Genes. *Cell* **170**, 534-547 e523 (2017).
679 <https://doi.org/10.1016/j.cell.2017.07.003>

680 48 Ocsenas, O. & Reimand, J. Chromatin accessibility of primary human cancers ties
681 regional mutational processes and signatures with tissues of origin. *PLoS Comput Biol*
682 **18**, e1010393 (2022). <https://doi.org/10.1371/journal.pcbi.1010393>

683 49 Gorlach, A. *et al.* Reactive oxygen species, nutrition, hypoxia and diseases: Problems
684 solved? *Redox Biol* **6**, 372-385 (2015). <https://doi.org/10.1016/j.redox.2015.08.016>

685 50 Barreiro, R. A. S. *et al.* Monoallelic deleterious MUTYH germline variants as a driver for
686 tumorigenesis. *J Pathol* **256**, 214-222 (2022). <https://doi.org/10.1002/path.5829>

687 51 Ellrott, K. *et al.* Scalable Open Science Approach for Mutation Calling of Tumor Exomes
688 Using Multiple Genomic Pipelines. *Cell Syst* **6**, 271-281 e277 (2018).
689 <https://doi.org/10.1016/j.cels.2018.03.002>

690 52 Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic
691 variants from high-throughput sequencing data. *Nucleic acids research* **38**, e164 (2010).
692 <https://doi.org/10.1093/nar/gkq603>

693 53 Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate - a Practical and
694 Powerful Approach to Multiple Testing. *J Roy Stat Soc B Met* **57**, 289-300 (1995).

695 54 Brown, M. B. A Method for Combining Non-Independent, One-Sided Tests of
696 Significance. *Biometrics* **31**, 987-992 (1975).

697 55 Reimand, J., Kull, M., Peterson, H., Hansen, J. & Vilo, J. g:Profiler--a web-based toolset
698 for functional profiling of gene lists from large-scale experiments. *Nucleic acids research*
699 **35**, W193-200 (2007). <https://doi.org/10.1093/nar/gkm226>
700 56 Reimand, J. *et al.* Pathway enrichment analysis and visualization of omics data using
701 g:Profiler, GSEA, Cytoscape and EnrichmentMap. *Nat Protoc* **14**, 482-517 (2019).
702 <https://doi.org/10.1038/s41596-018-0103-9>
703 57 Colaprico, A. *et al.* TCGAbiolinks: an R/Bioconductor package for integrative analysis of
704 TCGA data. *Nucleic Acids Res* **44**, e71 (2016). <https://doi.org/10.1093/nar/gkv1507>
705