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ABSTRACT:

Fundamental to effective Legionnaires’ disease outbreak control is the ability to
rapidly identify the environmental source(s) of the causative agent, Legionella
pneumophila. Genomics has revolutionised pathogen surveillance but L.
pneumophila has a complex ecology and population structure that can limit source
inference based on standard core genome phylogenetics. Here we present a
powerful machine learning approach that assigns the geographical source of
Legionnaires’ disease outbreaks more accurately than current core genome
comparisons. Models were developed upon 534 L. pneumophila genome sequences,
including 149 genomes linked to 20 previously reported Legionnaires’ disease
outbreaks through detailed case investigations. Our classification models were
developed in a cross-validation framework using only environmental L. pneumophila
genomes. Assignments of clinical isolate geographic origins demonstrated high
predictive sensitivity and specificity of the models, with no false positives or false
negatives for 13 out of 20 outbreak groups, despite the presence of within-outbreak
polyclonal population structure. Analysis of the same 534-genome panel with a
conventional phylogenomic tree and a core genome multi-locus sequence type
allelic distance-based classification approach revealed that our machine learning
method had the highest overall classification performance — agreement with
epidemiological information. Our multivariate statistical learning approach
maximises use of genomic variation data and is thus well-suited for supporting

Legionnaires’ disease outbreak investigations.
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INTRODUCTION:

Legionella pneumophila is a gram negative bacterium that can thrive in warm, moist
built environments and then cause Legionnaires’ disease (LD) in humans when
contaminated water is aerosolised and inhaled (David et al., 2016; Fields, Benson, &
Besser, 2002; Mercante & Winchell, 2015; Schwake, Garner, Strom, Pruden, &
Edwards, 2016). The vast majority of clinical infections are caused by L. pneumophila
serogroup 1 (Yu et al., 2002). To combat LD outbreaks, public health authorities must
rapidly investigate and determine the environmental sources to then intervene to
prevent further disease transmission. A major difficulty in pin-pointing source(s) is
the fact that there often exist a multitude of possible origins, particularly in densely

populated urban settings.

The advent of bacterial genotyping has been advantageous for LD outbreak
investigations, helping to ‘rule in’ or ‘rule out’ suspected environmental sources by
attempting to match the genotypes of L. pneumophila recovered from patients to
those derived from a given environmental source. In particular, Sequence Based
Typing (SBT) compares DNA sequence variations across seven core genes to
generate a sequence type (ST) that is standardised and internationally recognised
(Lick, Fry, Helbig, Jarraud, & Harrison, 2013). An ST can be used to assign isolates
from clinical specimens to specific environmental sources. Despite its popularity and
simple interpretation, the SBT scheme lacks discriminatory power. The scheme
captures only a tiny fraction of bacterial genomic variation and this is problematic

when the majority of LD cases are caused by just a handful of STs (Borchardt, Helbig,
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& Liick, 2008; David et al., 2016; Harrison, Afshar, Doshi, Fry, & Lee, 2009). SBT is

thus largely inadequate for LD source investigations.

Whole genome sequencing is used increasingly routinely for public health
surveillance and infectious disease outbreak investigations and recent efforts have
utilised the power of genomics to confirm suspected bacterial pathogen
environmental sources (Abrams & Trees, 2017; Goldberg, Sichtig, Geyer, Ledeboer,
& Weinstock, 2015; Krgvel et al., 2022; Petzold, Prior, Moran-Gilad, Harmsen, &
Lick, 2017; Ricci et al., 2022; Rousseau et al., 2022; Schoonmaker-Bopp et al., 2021;
Withrich et al., 2019). In particular, genomic analyses that assess core-genome
variation (sites present in all isolate genomes) such as phylogenomic trees and
pairwise SNP distances, have been useful to investigate disease transmission (Gorrie
et al.,, 2021; Ingle, Howden, & Duchene, 2021; Kwong et al., 2016; Sintchenko &

Holmes, 2015).

Another genomics-based approach for L. pneumophila source tracking is the core
genome multi locus sequence typing (cgMLST) scheme that builds upon the SBT
concept but greatly expands the genomic variation that is considered (Moran-Gilad
et al., 2015). In cgMLST, the allele scheme is enlarged from seven core genes to a
panel of 1,521 genes to produces an allele-type integer for each novel variant
combination (Moran-Gilad et al., 2015). This systematised and expanded approach
provides greater discrimination compared to conventional SBT, however like
phylogenomic approaches, it is still limited to only core-genome variation. Despite

the increased utility of such core-genome based approaches compared with SBT,
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they still lack adequate discriminatory power for investigation of some L.
pneumophila outbreaks where isolate genomes are often near identical at the core-
genome level (Buultjens et al., 2017; McAdam et al., 2014; Sanchez-Busoé et al.,

2016).

An alternative to core-genome analyses is to incorporate variation in accessory
genome sites; that is, to use DNA sequences present in some but not all isolates.
Here, to make better use of all the available genomic variation, we have developed a
machine learning statistical modelling method that utilises SNP variation in both the
accessory and core genome (pan-genome SNP variation) to classify genomes by
likely environmental source. Our approach integrates pan-genome SNP variation
using multivariate algorithms that model interrelationships among multiple variables
to assign source with greater accuracy than a standard core-genome SNP
comparison approach. This advance builds on our previously reported L.
pneumophila source tracking modelling approach that had high positive classification
capacity (rule-in) but had no negative classification ability (rule-out) (Buultjens et al.,

2017).

In this study, we have implemented ‘one-versus-rest’ machine learning classifier
algorithms with the ability to reject L. pneumophila clinical isolate genomes that
don’t belong to classes used to train models, achieving both high classification
sensitivity and specificity. We have benchmarked the classification performance of
our machine learning method against phylogenomic and cgMLST allele distance

approaches using epidemiological assignments. Our machine learning algorithms
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built with pan-genome SNP variants allowed us to assign the environmental sources
of LD outbreaks and make objective assignments of clinical isolate genome origins. It
is envisioned that future LD public health investigations may make use of such
sensitive and specific multivariate modelling advancements to rapidly identify the
environmental source of L. pneumophila and reduce the spread of this preventable

disease.

METHODS:

Bacterial genomes used in this study:

The isolate genomes originating from this study were cultured and sequenced as per
previously described (Buultjens et al., 2017). WGS data for an international collection
of diverse L. pneumophila (spanning 23 STs) was included in this study
(Supplementary Table. S1). A total of 246 isolates in this study were newly
sequenced while 288 were publicly available as either draft genome assemblies or

raw reads.

Reference based core genome SNP calling:

Snippy v4.4.5 was used to map reads and contigs to a previously described fully
assembled L. pneumophila clinical isolate genome Lpm7613 originating from
Melbourne, Australia (GenBank assembly accession: GCA_900092465.1) using a

‘minfrac’ setting of 0.8 (https://github.com/tseemann/snippy). The snippy-core

subcommand was used to generate a core genome SNP alignment - SNP variation in

the fraction of the genome shared by all isolates. Pairwise SNP differences were
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assessed using a custom R script (https://github.com/MDU-

PHL/pairwise_snp_differences).

Phylogenomic tree analysis:

Clonal Frame ML was used to infer sites impacted by recombination (Didelot &
Wilson, 2015). The regions predicted to have been affected by recombination were
used to generate a bed file that was subsequently used for masking of the core
genome alignment with Snippy (see above). A maximum likelihood phylogenomic
tree was built from the alignment of non-recombining core SNPs using FastTree
v2.1.10 (Price, Dehal, & Arkin, 2009). Trees were displayed using FigTree v1.4.4

(http://tree.bio.ed.ac.uk/software/figtree). The cophenetic function of the ape R

package v5.6-2 (Paradis, Claude, & Strimmer, 2004) was used to compute a 534 x

534 patristic distance matrix from the tree newick file.

Core genome Multi Locus Sequence Typing:
Core genome MLST analysis was undertaken using Coreugate v2.0.5

(https://github.com/kristyhoran/Coreugate). Draft genome assemblies were

generated by shovill v0.9.0 (https://github.com/tseemann/shovill) using the SPAdes
genome assembler v3.15.2 (Bankevich et al., 2012) and provided as input for
Coreugate (filter_samples_threshold=0.85). The L. pneumophila allele scheme used

with Coreugate was described by (Moran-Gilad et al., 2015).

Reference independent pan genome SNP calling:


http://tree.bio.ed.ac.uk/software/figtree
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Split Kmer Analysis (SKA) v1.0 was used to detect pan-genome SNPs (SNPs in core
and accessory sites) from reads and assembly contigs (Harris, 2018). Raw reads were
trimmed of adapter sequences using Trimmomatic v0.39 using the ‘-phred33’ option
(Bolger, Lohse, & Usadel, 2014). Here, the fastg and fasta subcommands were used
to generate split kmer files (kmer size of 15) from isolates with reads in the fastq file
format and assembly contigs in fasta format, respectively. The split kmer files were
combined using the align subcommand (p=0.1) to produce a reference-independent
pan-genome SNP alignment and the humanise subcommand was used to generate a

SNP matrix from the skf alignment file.

Distance-based classification:

Matrices of pairwise distances were generated from both the phylogenomic tree and
the cgMLST alleles and used to devise distance-based classifiers. The average
distance among the environmental isolates for each outbreak group was calculated
and used as the outbreak group specific cut-off threshold to then classify the 113
clinical isolate genomes as either being outbreak related or not. This analysis was
conducted only for outbreak groups that had at least two environmental isolate

genomes available (14 of the 20 groups) (Table. 1).

Classifier evaluation:
Performance of all classifiers was assessed using the F1 metric. The F1-score is the
harmonic mean of the recall and precision, conveying the balance between these

two metrics. Here, a F1-score of 1 indicates that the classifier performs perfectly (no
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false positives or false negatives). The F1-score is particularly useful to appraise

classification models when there is class imbalance.

Machine learning classification framework:

Preparation of test and train datasets:

The SKA pan-genome SNP matrix was one-hot encoded using the scikit-learn library
pre-processing module (Géron, 2019). The encoded matrix was divided into separate
training and testing datasets upon whether the isolate genomes were sourced from
either environmental samples, for training (n=421), or clinical samples, for testing

(n=113) (Fig. 1A).

Model development:

As the available epidemiological information was discrete geographical locations, a
supervised classification approach was used. Here the class labels were formatted to
represent a binary array of ‘1’ (linked to outbreak) and ‘0’ (not linked to outbreak).
The use of separate label files for each outbreak cluster allowed for the
implementation of a ‘one-vs-rest’ classification framework, in which each outbreak
group had its own model built, with the learning objective to include isolates of class

‘1’ and reject those of class ‘0.

Upsampling to redress class imbalance:
Due to the availability of few outbreak-associated environmental isolate genomes
compared to that of clinical isolate genomes, there existed a substantial imbalance

between the ‘0’ and ‘1’ classes in the training set. To reduce this class imbalance,
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upsampling was implemented in which observations from the minority class were
randomly selected (with replacement) and appended to the feature matrix (Fig. 1B).
As each outbreak group had a different set of labels, this was undertaken for all 20
outbreak groups. Given that there were approximately 20 minority class
environmental isolate genomes to 400 majority class observations, an upsampling
amount of 100 was chosen as this was approximately 1/4 of the majority class in
each situation - a conservative upsampling portion given the severe class imbalance.
The remaining class imbalance was addressed through specifying class weights to the

classification algorithm (see below).

534 isolates

A 421 environmental isolates
\ 4
Upsampling (n=100)
Randomly add resampled observations to feature matrix from minority class

Cross validation (10 reps)
Training data 80%,

Model development
Algorithms: RFC, SVC-linear, SVC-rbf, SV -poly, SVC-sigmoid
Feature selection: 50, 5000, all
Class weights: 1, 2, 3,4, 5
\{
Model evaluation:
Select model with best F1-score for each outbreak group

& D E
113 clinical isolates: Final model deployment: Prediction evaluation
unseen during model ==p 113 class label predictions ==  Classifier probabilities
development Predicted classes, confusion matrix

Fig. 1. Flow diagram of the machine learning model development framework. A)
Isolate genomes were separated from the input one-hot encoded matrix (n=534)
according to being either environmentally (n=421) or clinically derived (n=113). B)

Upsampling was performed on the environmental training dataset, where individuals

10
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from the minority class were randomly upsampled (with replacement). C) Cross
validation loop. In each iteration, the training data was randomly split into a training
and testing partition of 80% and 20%, respectively, for ten repetitions. Various
combinations of model parameters were used, and the classifier was evaluated upon
ability to correctly assign the test set component of the data using the F1-score. D)
The models for each outbreak group with the greatest F1-score in the cross-
validation loop were selected to form a set of final models. Final models were
trained with all available upsampled environmental isolate genome data to then
assign the classes of the previously unseen 113 clinical isolate genomes. E)
Classification outputs were in the form of probabilities that were binarised as either
belonging to or not belonging to each specific outbreak group class. Information of
clinical isolate known origins was used to establish a confusion matrix and calculate

the Fl1-score.

Model development cross-validation:

During model training, supervised classification algorithms learn specific patterns
associated with each of the classes with the goal to develop models that are
generalisable, in that they can make accurate assignments upon previously unseen
observations. To promote optimal model development on the environmental isolate
training dataset, an iterative cross-validation procedure was undertaken to
determine the best model for each outbreak group (Fig. 1C). Here, the training data
was randomly split into training and validation partitions (80% train and 20%
validation) 10 times, with models built upon the training portion and used to classify

the classes of the validation portion. For each iteration in the cross-validation loop,

11
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the F1-score was recorded and used to evaluate each model. A different set of
model parameter combinations was evaluated with each cross-validation iteration
(model parameters: classifier algorithm, class weights, and number of selected
features) (Fig. 1C). A total of 1,500 model combinations were evaluated in the cross-

validation phase.

Multivariate classification algorithms:

Two supervised classifier algorithms were implemented: Random Forest Classifiers
(RFC) and Support Vector Classifiers (SVC) (Fig. 1C). RFC indiscriminately select a
subset from the training data to create a collection of decision tree predictors to
sum the predictions, in effect lowering the variance (Breiman, 1996). Here, each
decision tree takes a set of features and provides an individual output, all of which
are subsequently summarised to produce a final probabilistic output (Breiman,
2001). The scikit-learn RFC module was implemented with default parameters
(Géron, 2019). SVC optimise for non-linear combinations of features that best divide
the classes across a multi-dimensional hyperplane (Boser, Guyon, & Vapnik, 1992).
The scikit-learn SVC module was implemented with default parameters apart from

using kernels: ‘linear’, ‘rbf’, ‘poly’ and ‘sigmoid’ (Géron, 2019).

Class weights:

A further approach to combat the occurrence of class imbalance was to specify class
weights to the classification algorithms. The reasoning here was that classifiers have
default assumptions of class balance and, when faced with class imbalance, a bias

exists that favours towards the dominant class. In this case the ‘0’ or ‘not outbreak

12
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related’ isolates are likely to cause bias, as they strongly outnumber the amount of
‘1’ or ‘outbreak related’ isolates. By specifying class weights the classification
algorithm is modified to account for the skewed class distribution, enabling
improved training and higher performance assignments by penalising
misclassification of the minority class. Specifically, the class weights were passed to
the scikit-learn classifiers as a dictionary that stipulated class ‘0’ as 0.5 and class ‘1’

as an integer in the range of 1 to 5 (Fig. 1C).

Univariate feature selection:

Features that did not vary in proportion between the classes for a particular
outbreak group are unlikely to have any classification value for model training and
therefore only add noise. To reduce the number of uninformative features and focus
on those that are associated with the class labels, feature selection was performed.
The SelectKBest univariate module of scikit-learn was employed to assess the
independence of individual features against the target variable using a chi-square
test, selecting the top 50, 5,000 or all features (Fig. 1C) (Géron, 2019). To avoid any
data-leakage, the univariate feature selection was only performed on the training set
either during the cross-validation procedure or on all available environmental

isolates for the building of the final models (see below).

Final model classifications:
Following selection of the top performing model combinations for each outbreak
group, final models were built using the model parameters identified and trained

with all available environmental isolates (n=421). Here, the final model for each

13
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outbreak group learned as much as possible about the genomic variability in the
data when all available environmental isolates were used (Fig. 1D-E). Thus, this was
the optimal way to train the final models to make generalisable source attribution

assignments upon the clinical isolate genomes.

The code used to conduct the abovementioned analyses is detailed in the following
github repository:

https://github.com/abuultjens/Assign Legionella pneumophila origins

RESULTS:

Selection of L. pneumophila genome sequences for classification model
development:

The overall objective of this research was to attempt to use multivariate statistical
learning methods to assign the environmental sources of LD outbreaks. However, to
benchmark the performance of such methods it was first necessary to select a set of
L. pneumophila genomes representing different LD outbreak investigations. Our
principles for genome selection were to maximise both genomic and spatial diversity
to achieve a collection that spanned many Sequence Types (STs) and originated from
various locations worldwide. A review of the literature and publicly available L.
pneumophila genome sequences revealed studies from three different jurisdictions
(see details below) spanning 20 distinct LD outbreaks that were suitable to include
because they had sufficiently rich epidemiological information and associated L.
pneumophila genomic data from both clinical and environmental sources. In all, 534

L. pneumophila genomes were identified for use in this study, of which 421 and 113

14
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represented bacterial isolates from environmental and clinical sources, respectively

(Table. S1).

The outbreak associated group consisted of 149 isolates that were epidemiologically
linked to a total of 20 outbreaks across three major geographical regions: 1)
Melbourne, Victoria, Australia, 2) Essex, England, and 3) New York State, United
States (Table. S1). The Melbourne L. pneumophila genomes, hereon referred to with
prefix “MELB”, represented five different LD outbreaks spread across the Melbourne
metropolitan area, occurring between 1998-2018 (Buultjens et al., 2017). The Essex
L. pneumophila genomes, hereon referred to with prefix “ESSEX”, consisted of
genomes obtained from L. pneumophila isolates linked to LD disease occurring in five
distinct wards within a single hospital campus (isolated between 2007-2011) (David
et al., 2017). The New York State L. pneumophila genomes, hereon referred to with
prefix “NY”, consisted of 10 separate LD outbreaks across the New York State area (L.

pneumophila isolated between 2004-2012) (Raphael et al., 2016).

To assist in developing a classification framework with negative classification
capacity, i.e. the ability of the model to call true negatives, we included genome
sequences from 74 L. pneumophila clinical isolates not associated with any of the
abovementioned outbreaks, hereon referred to as clinical non-outbreak associated
(CNOA) (Table. 1). These isolate genomes were isolated between 1986-2014 and
originated from across Europe, the United Kingdom and Australia. In a similar way,
to challenge the model building process, we included 311 environmental isolates

(isolated between 1995-2018) that were not associated with any of the outbreaks
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347

348

(MELB, ESSEX or NY), hereon referred to as the environmental non-outbreak

associated (ENOA) (Table. 1).

Table 1. Attributes of the 534 L. pneumophila isolates included in this study.

Group Number of Number of STs Reference
environmental clinical
isolates isolates

ENOA 311 NA 15 SBTs This study; Bartley, PB., et. al.,
2016; Buultjens, AH., et. al., 2017;
David, S., Rusniok, C., et. al., 2016;
David, S, et. al., 2017; Moran-Gilad,
J., et. al,, 2015; Qin, T., et.al., 2016

CNOA NA 74 9 SBTs Bartley, PB., et. al., 2016 ;
Buultjens, AH., et. al., 2017 ; David,
S., Rusniok, C., et. al., 2016; David,
S., et. al., 2017; Moran-Gilad, J,, et.
al., 2013

MELB-2018 20 3 SBT30 This study

MELB-A 14 11 SBT30 Buultjens, AH., et. al., 2017

MELB-C 3 1 SBT30 Buultjens, AH., et. al., 2017

MELB-G 18 2 SBT30 Buultjens, AH., et. al., 2017

MELB-M 8 1 SBT30 Buultjens, AH., et. al., 2017

ESSEX-A 7 2 SBT1 David et al., 2017

ESSEX-B 3 1 SBT1 David et al., 2017

ESSEX-E 2 1 SBT1 David et al., 2017

ESSEX-G 14 1 SBT1 David et al., 2017

ESSEX-H 5 2 SBT1 David et al., 2017
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NY-1 3 1 SBT1 Raphael, B. Baker, D., et. al., 2016
NY-2 2 2 ND Raphael, B. Baker, D., et. al., 2016
NY-3 1 3 SBT1 Raphael, B. Baker, D., et. al., 2016
NY-4 1 1 SBT1 Raphael, B. Baker, D., et. al., 2016
NY-5 1 1 SBT62 Raphael, B. Baker, D., et. al., 2016
NY-6 3 1 SBT36 Raphael, B. Baker, D., et. al., 2016
NY-7 1 1 SBT36 Raphael, B. Baker, D., et. al., 2016
NY-8 1 1 SBT1204 Raphael, B. Baker, D., et. al., 2016
NY-9 2 1 SBT94 Raphael, B. Baker, D., et. al., 2016
NY-10 1 2 SBT731 Raphael, B. Baker, D., et. al., 2016
Total 421 113

Population structure of L. pneumophila isolates used in this study:

We examined the genomic context of 421 environmental L. pneumophila isolate
genomes alongside 113 clinical isolate genomes to investigate the ability to make
inferences of source attribution. The 20 outbreak groups were from three distinct
geographical regions, Melbourne (Australia), Essex (UK) and New York (US).
Sequence read alignment against a SBT30 reference genome revealed 221,214 core
genome SNPs. There were 144,829 SNP sites inferred to have arisen by
recombination, leaving 76,385 SNPs that were derived through vertical transmission.
Pairwise SNP comparisons were performed to depict the amount of diversity within
each outbreak group (Fig. 2A). Most of the groups had mean intra-group distances
between 0-4 SNPs, while MELB-A, NY-3 and NY-8 had elevated within group

variations of 41, 61 and 24 SNPs, respectively.
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Phylogenomic analysis has become an important approach to examine pathogen
population structure and to investigate the likely origins of L. pneumophila clinical
isolates using WGS data (David et al., 2016; Gorzynski et al., 2022; Graham, Doyle, &
Jennison, 2014; Qin et al., 2016; Reuter et al., 2013; Wthrich et al., 2019). A
phylogenomic tree was estimated from the non-recombining core-genome SNP
alignment to depict the clonal ancestry (Fig. 2B). The tree illustrated the same
grouping of outbreak related isolates that was observed with the pairwise SNP
distance analysis. In particular, the groups with high internal SNP diversity displayed
the existence of within-outbreak polyclonal population structure (Fig. 2B). The
MELB-A isolate genomes were found to harbor several distinct genotypes, one of
which was exclusively represented by clinical isolates (Fig. 1B-C). Outbreak group NY-
3 isolate genomes were located across several distinctive subtrees in the phylogeny,
indicating a within group polyclonal population structure (Fig. 1B). NY-8 isolate
genomes had an elevated within group diversity while also being substantially

distinct to all other isolates included in the study (Fig. 1B).
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5,000 SNPs

Mean SNP distance
(errorbars: sd ; points: min/max)

Pairwise comparisons Environmental

Fig 2. Assessment of genomic population structure of 534 L. pneumophila clinical and
environmental isolate genomes. A) Pairwise SNP comparisons of within outbreak
group diversity. Three groups had elevated levels of within group diversity: MELB-A,
NY-3 and NY-8. B) Phylogenomic tree generated from non-recombining core genome
SNPs. Outbreak groups MELB-A, NY-3 and NY-8 are indicated C) Subtree containing
isolate genomes associated with the MELB-A outbreak. The subtree is displayed as a
cladogram with branch lengths transformed to illustrate the tree topology. Red star
indicates a distinct genotype containing only clinical isolate genomes without any

environmental representatives.

Phylogenomic tree distance-based classification:
To objectively assess the ability to infer clinical isolate origins from the phylogenomic
tree, patristic distances were extracted and used to build outbreak group specific

classifiers. Here, the patristic distances represent the individual total branch length
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distances between all possible isolate pairs in the tree, represented as a 534 x 534
distance matrix. The average distance between the environmental isolate genomes
of each outbreak group were calculated for groups that had at least two or more
environmental representatives (14 of the 20 outbreak groups). The average distance
among environmental isolate genomes was used as a threshold to assign each query
clinical isolate as either related or unrelated to the outbreak groups, with each group
having a specific threshold distance (14 different thresholds and classifiers). The
assumption underlying the use of distance thresholds was that a clinical isolate
genome with equal or less patristic distance from the mean distance observed
among environmental isolate genomes from a specific outbreak group is likely
related to that outbreak while those with greater distances are more divergent and

thus likely originated elsewhere.

The cut-off distance threshold for each outbreak group was determined through
analysis of only the environmental isolate genomes for each specific outbreak group.
This is an ideal approach, as the thresholds are not biased by the addition of any
clinical isolate genomes, therefore building a classification tool that is prospective, in
that the system would be ready for deployment before the first clinical isolate
genome is reported in an outbreak investigation. The performance of the classifiers
was assessed using the Fl-score which is the harmonic mean of method recall and
precision, conveying the balance between these two metrics. Here, a F1-score of 1
indicates that the classifier performs perfectly (no false positives or false negatives).
The patristic distance-based classifiers demonstrated the ability to correctly assign

most clinical isolate genomes to their known origins (0.43 mean false negatives),
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however this approach had a high false positive rate (3.93 mean false positives) with

an overall mean F1 score of 0.50 (Table. 2).

Table 2. Distance-based and machine learning classifications for 113 test set clinical

isolate genomes when trained on a set of 421 training environmental isolate

genomes.

Patristic distance-based classifiers cgMLST distance-based classifiers Machine learning classifiers
Outbreak False False Fl-score False False Fl-score False False Fl-score
group positive negative positive negative positive negative
MELB-2018 4 0 0.60 2 0 0.75 0 0 1
MELB-A 6 4 0.58 18 0 0.55 1 5 0.67
MELB-C 11 0 0.15 6 0 0.25 0 1 0
MELB-G 7 0 0.36 19 0 0.17 0 0 1
MELB-M 11 0 0.15 22 0 0.08 0 0 1
ESSEX-A 5 0 0.44 2 1 0.40 1 1 0.5
ESSEX-B 4 0 0.33 3 0 0.4 1 1 0
ESSEX-E 4 0 0.33 6 0 0.25 0 1 0
ESSEX-G 3 0 0.40 4 0 0.33 1 0 0.67
ESSEX-H 0 1 0.67 0 1 0.67 0 0 1
NY-1 0 0 1 0 0 1 0 0 1
NY-2 0 0 1 0 0 1 0 0 1
NY-3 NA NA NA NA NA NA 0 3 0
NY-4 NA NA NA NA NA NA 0 0 1
NY-5 NA NA NA NA NA NA 0 0 1
NY-6 0 0 1 0 0 1 0 0 1
NY-7 NA NA NA NA NA NA 0 0 1
NY-8 NA NA NA NA NA NA 0 0 1
NY-9 0 1 0 0 0 1 0 0 1
NY-10 NA NA NA NA NA NA 0 0 1
AVERAGE 0.20 0.60 0.74

*3.93 *0.43 *0.50 *5.86 *0.14 *0.56 (*0.29) (*0.64) (*0.70)

When considering groups with two or more environmental isolate genomes
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cgMLST distance-based classification:

In addition to phylogenomics, cgMLST is another genomic comparison approach
used to infer the source attribution of L. pneumophila clinical isolate genomes which
builds upon the established SBT genotyping method by greatly expanding the
number of core-genome loci (Moran-Gilad et al., 2015; Qin et al., 2016). The
advantage of cgMLST over analyses that consider all core genome SNPs is the
standardised framework in which the alleles are called, in that cgMLST is not
susceptible to fluctuations in core genome size caused by the addition or removal of
isolates from the analysis. We next investigated if the allelic distance derived from
the cgMLST scheme, when applied to the 534 isolates, could be used to provide
improved source attribution inference. Here, the same threshold derivation and
classification approach that was employed for the patristic distances was applied,

however using a distance matrix generated from cgMLST allelic variation.

The cgMLST based classifiers had fewer false negatives than the patristic distance-
based classifiers (0.14 mean false negatives) while having a higher false positive rate
(5.86 mean false positives) and a marginally higher overall mean F1-score of 0.56
(Table. 2). The classifiers performed well for NY outbreak groups that had more than
one environmental isolate genome, all achieving F1-scores of 1. While the
implementation of phylogenomic tree and cgMLST distance-based classifiers
introduced an objective framework to make source inferences, these approaches

were based solely on core-genome variation, raising the question of whether
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approaches built using SNP variation from across the pan-genome may achieve

greater assignment capacity.

Machine learning classification:

To enhance the classification capacity of the framework, we applied a machine
learning approach that utilised an alignment containing 479,480 SNPs detected in
both core and non-core sites. The advantage of using pan-genome SNPs for this type
of analysis was that additional variation in accessory genome sites is thus
considered, improving the discriminatory potential for downstream analyses. In
addition to greater SNP variation, the use of a multivariate classification algorithm
provides the advantage in that the concerted effects of all input genomic variants

are modelled to learn about informative structures in the data.

To reduce the likelihood of overfitting, a cross-validation framework was established
that iteratively split the environmental isolate data into train and validation
partitions. A total of 1,500 model combinations consisting of different model
parameters using both Random Forest Classifiers (RFC) and Support Vector
Classifiers (SVC) (see methods) were evaluated. In this way, the best model
combination for each outbreak group was determined using only environmental
isolate genomic variation prior to the analysis ever encountering any clinical isolate
genomes, thus eliminating the risk of model overfitting, and providing a prospective

approach.

Machine learning model results:
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Application of the final models for the assignment of the clinical isolate genomes
provided the lowest false positive rate of all previous distance-based approaches
(0.29 mean false positives), the highest level of false negatives (0.64 mean false
negatives) and the highest overall mean F1 score of 0.70 when applied to the 14
outbreaks with two or more environmental isolate genomes (Table. 2). Models
developed for outbreak groups MELB-2018, MELB-G, MELB-M, ESSEX-H, NY-1
through NY-2 and NY-4 through NY-10 (13/20) had F1-scores of 1, indicating the
absence of any false positives or false negatives — classifications that perfectly align
with the epidemiological labels (Table. 2). As the machine learning method used
upsampling to artificially replicate the training observations, it was possible to apply
this method to outbreak groups with as few as one environmental isolate genome,
having an overall mean F1-score of 0.74 when applied to all 20 outbreak groups.

(Table. 2). The parameters of the final models are reported in Supplementary Table

Examination of machine learning model false positives and false negatives:

False positives occurred with models ESSEX-A, ESSEX-B and ESSEX-G. In these
instances, the false positives were from other ESSEX outbreak groups clinical isolate
genomes (wards within the same hospital). Six of the models MELB-A, MELB-C,
ESSEX-A, ESSEX-B, ESSEX-E and NY-3 had one or more false negative classifications.
In the case of NY-3, there was an appreciable amount of within outbreak diversity
(Fig. 2A) and just a single environmental isolate used for model training (Table. 1).
For MELB-A, the four clinical isolates that were classified as false negatives by the

machine learning approach were on a branch in the phylogeny that did not contain
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any MELB-A environmental isolate genomes and therefore were from a specific
genotype that was not represented in the training data (Fig. 2C). Despite this, all 11
of the MELB-A clinical isolate genomes were within the top 21% of the 113 test-set
clinical isolate genomes when ranked according to decreasing classification

probability (Fig. 3A).

Investigation of the machine learning classifier probabilities for outbreak groups
ESSEX-A, ESSEX-B and ESSEX-E also revealed that despite having false negatives at
the default classification threshold of 0.5, the classification probabilities were
nonetheless informative to rank the clinical isolate genomes (Fig. 3B-D). In this way,
when ranked according to decreasing probabilities, the clinical isolate genomes from
ESSEX-A, ESSEX-B and ESSEX-E were contained withing the top 25%, 2% and 3% of all
clinical isolate genomes, respectively (Fig. 3B-D). In these instances, if the

classification threshold were lower than 0.5, these models would have provided
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perfect and near perfect classifications.

A MELB-A: 100% of OB_linked within the top 21%

= o
o =3

Classification Probability
=)

0.0~

Outbreak_linked

MNot_outbreak_linked

Class

C ESSEX-B: 100% of OB_linked within the top 2%

Classification Probability
=)

0.0- *

Mot_outbreak_linked Outbreak_linked

Class

Classification Probability

B ESSEX-A: 100% of OB_linked within the top 25%

=1
i
'

I
o
ha

PR

Not_outbreak_linked

QOutbreak_linked

Class

D ESSEX-E: 100% of OB_linked within the top 3%

= =
o o
kS -

' '

Classification Probability
=}
Q
R

0.00-

Mot_outbreak_linked Outbreak_linked

Class

Fig 3. Boxplots of classification probabilities for the outbreak linked and non-

outbreak linked 113 test set clinical isolate genomes for four outbreak group models

that had false negative classifications. Red horizontal dotted lines indicate the

classification threshold of 0.5. A: classification probabilities for outbreak group

MELB-A. B: classification probabilities for outbreak group ESSEX-A. C: classification

probabilities for outbreak group ESSEX-B. D: classification probabilities for outbreak

group ESSEX-E.

DISCUSSION:

Timely and accurate identification of environmental sources of LD is of utmost

importance to public health investigations and, in this era of high-resolution genomic
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technologies, innovative approaches are needed to rapidly distil complex analyses to
provide actionable insights. In this study, we have deployed a machine learning
classification approach and assessed its’ ability alongside alternative approaches to
make assignments of clinical isolate origins that align against the known

epidemiological information for 20 distinct LD outbreaks.

This work builds on our previous efforts to build accurate multivariate assignment
models, here providing the necessary negative classification capacity that was
lacking in our earlier work. To assess the ability of these multivariate approaches to
call true negatives, we included 74 clinical isolates that were not associated with any
of the 20 outbreak groups that were used to train the models. In a similar way, we
also included 311 environmental isolates that were not associated with the outbreak
groups to assess how well the model could learn from known outbreaks while faced
with a larger than necessary training dataset that contained unrelated
environmental isolates. Our improved approach presented in this investigation made
use of a set of ‘one-vs-rest’ classification strategies, in which a separate target
variable and model was used for each outbreak group. This had the effect of
focusing on genomic variation that was specific to an individual outbreak group,
optimising the model to include outbreak linked isolates while rejecting others and

therefore affording negative classification capacity.

The analysis of suspected pathogen transmission with phylogenomic trees built from
core genome SNPs has become the de facto standard in the field of bacterial

genomics. Here we assessed the ability of patristic distances derived from a
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phylogenomic tree to place epidemiologically linked isolate genomes into
arrangements that could then permit the inference of clinical isolate source
attribution. Classifiers were devised for the 14 of the 20 groups that had at least two
environmental isolate genomes, with assignment thresholds derived from the mean
distance observed among the environmental representatives of each group. This
approach provided an objective and quantitative phylogenomic-based framework
for the classification of query clinical isolate genomes with high sensitivity; however,

it suffered from low specificity and had an overall mean F1-score of 0.50.

Another widely employed tool for L. pneumophila genomic comparisons is cgMLST,
which builds on the established SBT method by greatly expanding the number of
core loci. To investigate the utility of this method to infer clinical isolate genome
source attribution, a matrix of cgMLST allelic distances was generated in the same
way that patristic distances were used to build distance-based classifiers. The results
from this approach were a slight improvement over the patristic distance-based
classifiers, with a higher overall mean F1 score of 0.56, however there were a higher
number of false positives, again offering meagre specificity and poor overall

classification capacity.

A machine learning classification framework was developed using pan-genome SNP
variants to make probabilistic assignments by firstly training models upon variation
among environmental isolate genomes to then classify the origins of clinical isolate
genomes. To achieve this, an extensive cross-validation framework was established

that assessed the performance of various model building parameters (see methods)
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on the ability for an algorithm to learn upon a portion of environmental isolate
genomes and then assign the known classes of the remaining environmental
representatives (cross-validation), with the best classification models selected to
then learn using the entire training set to make assignments upon the previously

unseen clinical isolate genomes.

The application of the machine learning models for the assignment of 113 test set
clinical isolate genomes had the greatest classification capacity with 13 out of 20
models achieving an F1-score of 1, indicating perfect sensitivity and specificity. The
machine learning method also achieved the greatest overall mean F1 score of 0.70
when evaluating the 14 groups with two or more environmental representatives and
0.74 when applied to all 20 groups. The higher performance of the machine learning
modelling approach compared to phylogenomic tree branch length distance and
cgMLST allelic distance methods is likely since 1) it considered SNP variation across
the pan-genome, 2) it explicitly made use of the underlying sequence composition of
the SNP variation and 3) it employed a multivariate approach that modelled the
concerted interactions of all input variants. Together, these three aspects of the
modelling approach work to make efficient use of the richness of the available SNP

allelic variation to achieve greater classification capacity.

False positives were detected with machine learning models ESSEX-A, ESSEX-B and
ESSEX-G. Here, the false positives were from other wards in the same hospital,
suggesting a sort of ‘cross reactivity’ among nearby locations within a common

institution. Despite these false positives, the 74 unrelated clinical isolates were
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correctly assigned as true negatives by all final models, indicating overall satisfactory
negative classification capacity. False negative assignments occurred with models
MELB-A, MELB-C, ESSEX-A, ESSEX-B, ESSEX-E and NY-3. In the case of MELB-C and
NY-3, previous analyses have identified that there likely exists an issue with the
epidemiological source attribution for these outbreak groups, offering a possible
explanation for the inability of the models to accurately assign these isolate
genomes to their known origins in previous investigations (Buultjens et al., 2017;

Raphael et al., 2016).

For MELB-A, the four clinical isolates assigned as false negatives by the machine
learning approach were on a branch in the phylogeny that did not contain any
environmental isolate genomes from the MELB-A outbreak group, meaning this
specific genotype was not represented in the training data. Despite this, all MELB-A
clinical isolate genomes were within the top 21% of all clinical isolate genomes when
ranked according to decreasing classification probability. This suggests that the
modelling approach was able to make use of the level of shared ancestry among all
MELB-A isolates to nevertheless provide a useful degree of probability ranking even
when that specific genotype was not explicitly represented in the training data. Not
dissimilar to what was seen with the MELB-A probability ranking, the classification
probabilities for the ESSEX-A, ESSEX-B and ESSEX-G clinical isolate genomes revealed
that the known positives for each of these groups were ranked highly despite being
less than the standard classification threshold of 0.5. This highlights that alternative
probability evaluation frameworks besides classification, such as probability ranking,

should be considered for these approaches.
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In addition to the use of a ‘one-vs-rest’ classification approach, another notable
point of difference with this new method was the use of pan-genome SNPs derived
from the reference independent kmer-based method, SKA. Our previous work built
models using only variation in core-genome SNPs that were called using read
alignment to a reference genome (Buultjens et al., 2017). The consequence of using
pan-genome variation was particularly important in this application since the core-
genome among the diverse group of 534 L. pneumophila isolates is abbreviated,
therefore reducing the total amount of SNP diversity. Specifically, the pan-genome
alignment provided 258,266 more SNPs than when only core genome variants were
considered, equating to addition information to be learnt by multivariate

approaches.

The lack of environmental isolates representing a specific MELB-A genotype that was
observed exclusively among clinical isolates indicates that the methods used to
sample, culture and sequence L. pneumophila from environmental sources had failed
to adequately capture the true extent of bacterial diversity in that source. Efforts to
capture environmental L. pneumophila diversity typically involve taking multiple
colony picks from environmental samples. While care was taken in this approach to
maximise the environmental diversity captured, there evidently was relevant
diversity that did not progress to culture isolation and subsequent genome
sequencing, presumably due to the limited sensitivity of culture-based methods
(Reller, Weinstein, & Murdoch, 2003). Reduced detection of genomic diversity

among environmental samples compared to that recovered from clinical specimens
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has been observed in a previous investigation (Withrich et al., 2019). Alternative
methods that would likely widen the capture of environmental diversity are shotgun
metagenomic or culture independent sequencing approaches that directly sequence
all environmental DNA, eliminating the bottleneck of culture (Christiansen et al.,

2014; Wéry et al., 2008).

All outbreak groups, apart from MELB-2018, MELB-G and ESSEX-G, had very few
numbers of environmental isolate genomes and in some cases just a single genome.
Such limited examples of environmental genomic diversity are not optimal and the
inclusion of greater numbers of training genomes for each group would likely
improve the ability of the models to learn about outbreak specific signatures and

make more accurate classifications.

While this study focused on SNP variation, there may be further genomic
information among additional variant types such as kmers counted directly from raw
reads that may further improve model performance. Such kmer variation has the
potential to capture additional genomic variations such as structural variations and
copy number differences that were not assessed in this study. Further work may also
investigate the specific genomic variants that permit the building of accurate
classification models. Such outbreak associated variants may be diagnostic of specific
point sources and thus may be informative to understand bacterial genomic
responses to certain environmental reservoirs or public health control measures

(e.g., different decontamination or biocide practices).
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Given the dynamic nature of bacterial populations, routine re-building of the models
with newly collected environmental isolates may be required to ensure accuracy as
emerging genomic signatures are then learned by the model. Another consideration
might be to limit the length of time in which genomes remain in the training
database, as older genomic signatures may no longer represent extant L.
pneumophila in environmental sources as time goes by. Here, a temporal sliding
window could be used, as has been implemented in other bacterial genomic

investigations (Gorrie et al., 2021).

CONCLUSION:

The advent of highly accessible bacterial genomics has provided a wealth of L.
pneumophila genomes in publicly assessable databases that are paired with
epidemiological information, of which provide the basis to build source attribution
classification approaches. Our development of an improved machine learning
classification technique now affords models with the ability to call true negatives,
offering the previously lacking negative classification capacity. Here we demonstrate
that our improved approach provides greater source tracking ability than two widely
used methods — phylogenomic trees and cgMLST allelic variation. Given the reported
high classification capacity of this improved approach, it is the vision of this work
that, soon, future LD public health investigations may make use of such modelling
advancements to rapidly pinpoint the correct environmental sources of L.

pneumophila and reduce the incidence of this preventable disease.
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