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 2 

ABSTRACT: 21 

Fundamental to effective Legionnaires’ disease outbreak control is the ability to 22 

rapidly identify the environmental source(s) of the causative agent, Legionella 23 

pneumophila. Genomics has revolutionised pathogen surveillance but L. 24 

pneumophila has a complex ecology and population structure that can limit source 25 

inference based on standard core genome phylogenetics. Here we present a 26 

powerful machine learning approach that assigns the geographical source of 27 

Legionnaires’ disease outbreaks more accurately than current core genome 28 

comparisons. Models were developed upon 534 L. pneumophila genome sequences, 29 

including 149 genomes linked to 20 previously reported Legionnaires’ disease 30 

outbreaks through detailed case investigations. Our classification models were 31 

developed in a cross-validation framework using only environmental L. pneumophila 32 

genomes. Assignments of clinical isolate geographic origins demonstrated high 33 

predictive sensitivity and specificity of the models, with no false positives or false 34 

negatives for 13 out of 20 outbreak groups, despite the presence of within-outbreak 35 

polyclonal population structure. Analysis of the same 534-genome panel with a 36 

conventional phylogenomic tree and a core genome multi-locus sequence type 37 

allelic distance-based classification approach revealed that our machine learning 38 

method had the highest overall classification performance – agreement with 39 

epidemiological information. Our multivariate statistical learning approach 40 

maximises use of genomic variation data and is thus well-suited for supporting 41 

Legionnaires’ disease outbreak investigations.  42 

 43 

  44 
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INTRODUCTION: 45 

Legionella pneumophila is a gram negative bacterium that can thrive in warm, moist 46 

built environments and then cause Legionnaires’ disease (LD) in humans when 47 

contaminated water is aerosolised and inhaled (David et al., 2016; Fields, Benson, & 48 

Besser, 2002; Mercante & Winchell, 2015; Schwake, Garner, Strom, Pruden, & 49 

Edwards, 2016). The vast majority of clinical infections are caused by L. pneumophila 50 

serogroup 1 (Yu et al., 2002). To combat LD outbreaks, public health authorities must 51 

rapidly investigate and determine the environmental sources to then intervene to 52 

prevent further disease transmission. A major difficulty in pin-pointing source(s) is 53 

the fact that there often exist a multitude of possible origins, particularly in densely 54 

populated urban settings. 55 

 56 

The advent of bacterial genotyping has been advantageous for LD outbreak 57 

investigations, helping to ‘rule in’ or ‘rule out’ suspected environmental sources by 58 

attempting to match the genotypes of L. pneumophila recovered from patients to 59 

those derived from a given environmental source. In particular, Sequence Based 60 

Typing (SBT) compares DNA sequence variations across seven core genes to 61 

generate a sequence type (ST) that is standardised and internationally recognised 62 

(Lück, Fry, Helbig, Jarraud, & Harrison, 2013). An ST can be used to assign isolates 63 

from clinical specimens to specific environmental sources. Despite its popularity and 64 

simple interpretation, the SBT scheme lacks discriminatory power. The scheme 65 

captures only a tiny fraction of bacterial genomic variation and this is problematic 66 

when the majority of LD cases are caused by just a handful of STs (Borchardt, Helbig, 67 
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& Lück, 2008; David et al., 2016; Harrison, Afshar, Doshi, Fry, & Lee, 2009). SBT is 68 

thus largely inadequate for LD source investigations. 69 

 70 

Whole genome sequencing is used increasingly routinely for public health 71 

surveillance and infectious disease outbreak investigations and recent efforts have 72 

utilised the power of genomics to confirm suspected bacterial pathogen 73 

environmental sources (Abrams & Trees, 2017; Goldberg, Sichtig, Geyer, Ledeboer, 74 

& Weinstock, 2015; Krøvel et al., 2022; Petzold, Prior, Moran-Gilad, Harmsen, & 75 

Lück, 2017; Ricci et al., 2022; Rousseau et al., 2022; Schoonmaker-Bopp et al., 2021; 76 

Wüthrich et al., 2019). In particular, genomic analyses that assess core-genome 77 

variation (sites present in all isolate genomes) such as phylogenomic trees and 78 

pairwise SNP distances, have been useful to investigate disease transmission (Gorrie 79 

et al., 2021; Ingle, Howden, & Duchene, 2021; Kwong et al., 2016; Sintchenko & 80 

Holmes, 2015).  81 

 82 

Another genomics-based approach for L. pneumophila source tracking is the core 83 

genome multi locus sequence typing (cgMLST) scheme that builds upon the SBT 84 

concept but greatly expands the genomic variation that is considered (Moran-Gilad 85 

et al., 2015). In cgMLST, the allele scheme is enlarged from seven core genes to a 86 

panel of 1,521 genes to produces an allele-type integer for each novel variant 87 

combination (Moran-Gilad et al., 2015). This systematised and expanded approach 88 

provides greater discrimination compared to conventional SBT, however like 89 

phylogenomic approaches, it is still limited to only core-genome variation. Despite 90 

the increased utility of such core-genome based approaches compared with SBT, 91 
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they still lack adequate discriminatory power for investigation of some L. 92 

pneumophila outbreaks where isolate genomes are often near identical at the core-93 

genome level (Buultjens et al., 2017; McAdam et al., 2014; Sánchez-Busó et al., 94 

2016). 95 

 96 

An alternative to core-genome analyses is to incorporate variation in accessory 97 

genome sites; that is, to use DNA sequences present in some but not all isolates. 98 

Here, to make better use of all the available genomic variation, we have developed a 99 

machine learning statistical modelling method that utilises SNP variation in both the 100 

accessory and core genome (pan-genome SNP variation) to classify genomes by 101 

likely environmental source. Our approach integrates pan-genome SNP variation 102 

using multivariate algorithms that model interrelationships among multiple variables 103 

to assign source with greater accuracy than a standard core-genome SNP 104 

comparison approach. This advance builds on our previously reported L. 105 

pneumophila source tracking modelling approach that had high positive classification 106 

capacity (rule-in) but had no negative classification ability (rule-out) (Buultjens et al., 107 

2017). 108 

 109 

In this study, we have implemented ‘one-versus-rest’ machine learning classifier 110 

algorithms with the ability to reject L. pneumophila clinical isolate genomes that 111 

don’t belong to classes used to train models, achieving both high classification 112 

sensitivity and specificity. We have benchmarked the classification performance of 113 

our machine learning method against phylogenomic and cgMLST allele distance 114 

approaches using epidemiological assignments. Our machine learning algorithms 115 
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built with pan-genome SNP variants allowed us to assign the environmental sources 116 

of LD outbreaks and make objective assignments of clinical isolate genome origins. It 117 

is envisioned that future LD public health investigations may make use of such 118 

sensitive and specific multivariate modelling advancements to rapidly identify the 119 

environmental source of L. pneumophila and reduce the spread of this preventable 120 

disease. 121 

 122 

 123 

METHODS: 124 

Bacterial genomes used in this study: 125 

The isolate genomes originating from this study were cultured and sequenced as per 126 

previously described (Buultjens et al., 2017). WGS data for an international collection 127 

of diverse L. pneumophila (spanning 23 STs) was included in this study 128 

(Supplementary Table. S1). A total of 246 isolates in this study were newly 129 

sequenced while 288 were publicly available as either draft genome assemblies or 130 

raw reads.  131 

 132 

Reference based core genome SNP calling: 133 

Snippy v4.4.5 was used to map reads and contigs to a previously described fully 134 

assembled L. pneumophila clinical isolate genome Lpm7613 originating from 135 

Melbourne, Australia (GenBank assembly accession: GCA_900092465.1) using a 136 

‘minfrac’ setting of 0.8 (https://github.com/tseemann/snippy). The snippy-core 137 

subcommand was used to generate a core genome SNP alignment - SNP variation in 138 

the fraction of the genome shared by all isolates. Pairwise SNP differences were 139 
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 7 

assessed using a custom R script (https://github.com/MDU-140 

PHL/pairwise_snp_differences). 141 

 142 

Phylogenomic tree analysis: 143 

Clonal Frame ML was used to infer sites impacted by recombination (Didelot & 144 

Wilson, 2015). The regions predicted to have been affected by recombination were 145 

used to generate a bed file that was subsequently used for masking of the core 146 

genome alignment with Snippy (see above). A maximum likelihood phylogenomic 147 

tree was built from the alignment of non-recombining core SNPs using FastTree 148 

v2.1.10 (Price, Dehal, & Arkin, 2009). Trees were displayed using FigTree v1.4.4 149 

(http://tree.bio.ed.ac.uk/software/figtree). The cophenetic function of the ape R 150 

package v5.6-2 (Paradis, Claude, & Strimmer, 2004) was used to compute a 534 × 151 

534 patristic distance matrix from the tree newick file. 152 

 153 

Core genome Multi Locus Sequence Typing: 154 

Core genome MLST analysis was undertaken using Coreugate v2.0.5 155 

(https://github.com/kristyhoran/Coreugate). Draft genome assemblies were 156 

generated by shovill v0.9.0 (https://github.com/tseemann/shovill) using the SPAdes 157 

genome assembler v3.15.2 (Bankevich et al., 2012) and provided as input for 158 

Coreugate (filter_samples_threshold=0.85). The L. pneumophila allele scheme used 159 

with Coreugate was described by (Moran-Gilad et al., 2015). 160 

 161 

Reference independent pan genome SNP calling: 162 
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Split Kmer Analysis (SKA) v1.0 was used to detect pan-genome SNPs (SNPs in core 163 

and accessory sites) from reads and assembly contigs (Harris, 2018). Raw reads were 164 

trimmed of adapter sequences using Trimmomatic v0.39 using the ‘-phred33’ option 165 

(Bolger, Lohse, & Usadel, 2014). Here, the fastq and fasta subcommands were used 166 

to generate split kmer files (kmer size of 15) from isolates with reads in the fastq file 167 

format and assembly contigs in fasta format, respectively. The split kmer files were 168 

combined using the align subcommand (p=0.1) to produce a reference-independent 169 

pan-genome SNP alignment and the humanise subcommand was used to generate a 170 

SNP matrix from the skf alignment file. 171 

 172 

Distance-based classification: 173 

Matrices of pairwise distances were generated from both the phylogenomic tree and 174 

the cgMLST alleles and used to devise distance-based classifiers. The average 175 

distance among the environmental isolates for each outbreak group was calculated 176 

and used as the outbreak group specific cut-off threshold to then classify the 113 177 

clinical isolate genomes as either being outbreak related or not. This analysis was 178 

conducted only for outbreak groups that had at least two environmental isolate 179 

genomes available (14 of the 20 groups) (Table. 1). 180 

 181 

Classifier evaluation: 182 

Performance of all classifiers was assessed using the F1 metric. The F1-score is the 183 

harmonic mean of the recall and precision, conveying the balance between these 184 

two metrics. Here, a F1-score of 1 indicates that the classifier performs perfectly (no 185 
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false positives or false negatives). The F1-score is particularly useful to appraise 186 

classification models when there is class imbalance. 187 

 188 

Machine learning classification framework: 189 

Preparation of test and train datasets: 190 

The SKA pan-genome SNP matrix was one-hot encoded using the scikit-learn library 191 

pre-processing module (Géron, 2019). The encoded matrix was divided into separate 192 

training and testing datasets upon whether the isolate genomes were sourced from 193 

either environmental samples, for training (n=421), or clinical samples, for testing 194 

(n=113) (Fig. 1A). 195 

 196 

Model development: 197 

As the available epidemiological information was discrete geographical locations, a 198 

supervised classification approach was used. Here the class labels were formatted to 199 

represent a binary array of ‘1’ (linked to outbreak) and ‘0’ (not linked to outbreak). 200 

The use of separate label files for each outbreak cluster allowed for the 201 

implementation of a ‘one-vs-rest’ classification framework, in which each outbreak 202 

group had its own model built, with the learning objective to include isolates of class 203 

‘1’ and reject those of class ‘0’. 204 

 205 

Upsampling to redress class imbalance: 206 

Due to the availability of few outbreak-associated environmental isolate genomes 207 

compared to that of clinical isolate genomes, there existed a substantial imbalance 208 

between the ‘0’ and ‘1’ classes in the training set. To reduce this class imbalance, 209 
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upsampling was implemented in which observations from the minority class were 210 

randomly selected (with replacement) and appended to the feature matrix (Fig. 1B). 211 

As each outbreak group had a different set of labels, this was undertaken for all 20 212 

outbreak groups. Given that there were approximately 20 minority class 213 

environmental isolate genomes to 400 majority class observations, an upsampling 214 

amount of 100 was chosen as this was approximately 1/4 of the majority class in 215 

each situation - a conservative upsampling portion given the severe class imbalance. 216 

The remaining class imbalance was addressed through specifying class weights to the 217 

classification algorithm (see below). 218 

 219 

 220 

Fig. 1. Flow diagram of the machine learning model development framework. A) 221 

Isolate genomes were separated from the input one-hot encoded matrix (n=534) 222 

according to being either environmentally (n=421) or clinically derived (n=113). B) 223 

Upsampling was performed on the environmental training dataset, where individuals 224 
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from the minority class were randomly upsampled (with replacement). C) Cross 225 

validation loop. In each iteration, the training data was randomly split into a training 226 

and testing partition of 80% and 20%, respectively, for ten repetitions. Various 227 

combinations of model parameters were used, and the classifier was evaluated upon 228 

ability to correctly assign the test set component of the data using the F1-score. D) 229 

The models for each outbreak group with the greatest F1-score in the cross-230 

validation loop were selected to form a set of final models. Final models were 231 

trained with all available upsampled environmental isolate genome data to then 232 

assign the classes of the previously unseen 113 clinical isolate genomes. E) 233 

Classification outputs were in the form of probabilities that were binarised as either 234 

belonging to or not belonging to each specific outbreak group class. Information of 235 

clinical isolate known origins was used to establish a confusion matrix and calculate 236 

the F1-score. 237 

 238 

Model development cross-validation: 239 

During model training, supervised classification algorithms learn specific patterns 240 

associated with each of the classes with the goal to develop models that are 241 

generalisable, in that they can make accurate assignments upon previously unseen 242 

observations. To promote optimal model development on the environmental isolate 243 

training dataset, an iterative cross-validation procedure was undertaken to 244 

determine the best model for each outbreak group (Fig. 1C). Here, the training data 245 

was randomly split into training and validation partitions (80% train and 20% 246 

validation) 10 times, with models built upon the training portion and used to classify 247 

the classes of the validation portion. For each iteration in the cross-validation loop, 248 
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the F1-score was recorded and used to evaluate each model. A different set of 249 

model parameter combinations was evaluated with each cross-validation iteration 250 

(model parameters: classifier algorithm, class weights, and number of selected 251 

features) (Fig. 1C). A total of 1,500 model combinations were evaluated in the cross-252 

validation phase. 253 

 254 

Multivariate classification algorithms: 255 

Two supervised classifier algorithms were implemented: Random Forest Classifiers 256 

(RFC) and Support Vector Classifiers (SVC) (Fig. 1C). RFC indiscriminately select a 257 

subset from the training data to create a collection of decision tree predictors to 258 

sum the predictions, in effect lowering the variance (Breiman, 1996). Here, each 259 

decision tree takes a set of features and provides an individual output, all of which 260 

are subsequently summarised to produce a final probabilistic output (Breiman, 261 

2001). The scikit-learn RFC module was implemented with default parameters 262 

(Géron, 2019). SVC optimise for non-linear combinations of features that best divide 263 

the classes across a multi-dimensional hyperplane (Boser, Guyon, & Vapnik, 1992). 264 

The scikit-learn SVC module was implemented with default parameters apart from 265 

using kernels: ‘linear’, ‘rbf’, ‘poly’ and ‘sigmoid’ (Géron, 2019). 266 

 267 

Class weights: 268 

A further approach to combat the occurrence of class imbalance was to specify class 269 

weights to the classification algorithms. The reasoning here was that classifiers have 270 

default assumptions of class balance and, when faced with class imbalance, a bias 271 

exists that favours towards the dominant class. In this case the ‘0’ or ‘not outbreak 272 
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related’ isolates are likely to cause bias, as they strongly outnumber the amount of 273 

‘1’ or ‘outbreak related’ isolates. By specifying class weights the classification 274 

algorithm is modified to account for the skewed class distribution, enabling 275 

improved training and higher performance assignments by penalising 276 

misclassification of the minority class. Specifically, the class weights were passed to 277 

the scikit-learn classifiers as a dictionary that stipulated class ‘0’ as 0.5 and class ‘1’ 278 

as an integer in the range of 1 to 5 (Fig. 1C).  279 

 280 

Univariate feature selection: 281 

Features that did not vary in proportion between the classes for a particular 282 

outbreak group are unlikely to have any classification value for model training and 283 

therefore only add noise. To reduce the number of uninformative features and focus 284 

on those that are associated with the class labels, feature selection was performed. 285 

The SelectKBest univariate module of scikit-learn was employed to assess the 286 

independence of individual features against the target variable using a chi-square 287 

test, selecting the top 50, 5,000 or all features (Fig. 1C) (Géron, 2019). To avoid any 288 

data-leakage, the univariate feature selection was only performed on the training set 289 

either during the cross-validation procedure or on all available environmental 290 

isolates for the building of the final models (see below). 291 

 292 

Final model classifications: 293 

Following selection of the top performing model combinations for each outbreak 294 

group, final models were built using the model parameters identified and trained 295 

with all available environmental isolates (n=421). Here, the final model for each 296 
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outbreak group learned as much as possible about the genomic variability in the 297 

data when all available environmental isolates were used (Fig. 1D-E). Thus, this was 298 

the optimal way to train the final models to make generalisable source attribution 299 

assignments upon the clinical isolate genomes. 300 

 301 

The code used to conduct the abovementioned analyses is detailed in the following 302 

github repository: 303 

https://github.com/abuultjens/Assign_Legionella_pneumophila_origins 304 

 305 

RESULTS: 306 

Selection of L. pneumophila genome sequences for classification model 307 

development: 308 

The overall objective of this research was to attempt to use multivariate statistical 309 

learning methods to assign the environmental sources of LD outbreaks. However, to 310 

benchmark the performance of such methods it was first necessary to select a set of 311 

L. pneumophila genomes representing different LD outbreak investigations. Our 312 

principles for genome selection were to maximise both genomic and spatial diversity 313 

to achieve a collection that spanned many Sequence Types (STs) and originated from 314 

various locations worldwide. A review of the literature and publicly available L. 315 

pneumophila genome sequences revealed studies from three different jurisdictions 316 

(see details below) spanning 20 distinct LD outbreaks that were suitable to include 317 

because they had sufficiently rich epidemiological information and associated L. 318 

pneumophila genomic data from both clinical and environmental sources. In all, 534 319 

L. pneumophila genomes were identified for use in this study, of which 421 and 113 320 
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represented bacterial isolates from environmental and clinical sources, respectively 321 

(Table. S1). 322 

 323 

The outbreak associated group consisted of 149 isolates that were epidemiologically 324 

linked to a total of 20 outbreaks across three major geographical regions: 1) 325 

Melbourne, Victoria, Australia, 2) Essex, England, and 3) New York State, United 326 

States (Table. S1). The Melbourne L. pneumophila genomes, hereon referred to with 327 

prefix “MELB”, represented five different LD outbreaks spread across the Melbourne 328 

metropolitan area, occurring between 1998-2018 (Buultjens et al., 2017). The Essex 329 

L. pneumophila genomes, hereon referred to with prefix “ESSEX”, consisted of 330 

genomes obtained from L. pneumophila isolates linked to LD disease occurring in five 331 

distinct wards within a single hospital campus (isolated between 2007-2011) (David 332 

et al., 2017). The New York State L. pneumophila genomes, hereon referred to with 333 

prefix “NY”, consisted of 10 separate LD outbreaks across the New York State area (L. 334 

pneumophila isolated between 2004-2012) (Raphael et al., 2016). 335 

 336 

To assist in developing a classification framework with negative classification 337 

capacity, i.e. the ability of the model to call true negatives, we included genome 338 

sequences from 74 L. pneumophila clinical isolates not associated with any of the 339 

abovementioned outbreaks, hereon referred to as clinical non-outbreak associated 340 

(CNOA) (Table. 1). These isolate genomes were isolated between 1986-2014 and 341 

originated from across Europe, the United Kingdom and Australia. In a similar way, 342 

to challenge the model building process, we included 311 environmental isolates 343 

(isolated between 1995-2018) that were not associated with any of the outbreaks 344 
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(MELB, ESSEX or NY), hereon referred to as the environmental non-outbreak 345 

associated (ENOA) (Table. 1). 346 

 347 

Table 1. Attributes of the 534 L. pneumophila isolates included in this study. 348 

Group Number of 

environmental 

isolates 

Number of 

clinical 

isolates 

STs Reference 

ENOA 311 NA 15 SBTs This study; Bartley, PB., et. al., 

2016; Buultjens, AH., et. al., 2017; 

David, S., Rusniok, C., et. al., 2016; 

David, S., et. al., 2017; Moran-Gilad, 

J., et. al., 2015; Qin, T., et.al., 2016 

CNOA NA 74 9 SBTs Bartley, PB., et. al., 2016 ; 

Buultjens, AH., et. al., 2017 ; David, 

S., Rusniok, C., et. al., 2016; David, 

S., et. al., 2017; Moran-Gilad, J., et. 

al., 2013 

MELB-2018 20 3 SBT30 This study 

MELB-A 14 11 SBT30 Buultjens, AH., et. al., 2017 

MELB-C 3 1 SBT30 Buultjens, AH., et. al., 2017 

MELB-G 18 2 SBT30 Buultjens, AH., et. al., 2017 

MELB-M 8 1 SBT30 Buultjens, AH., et. al., 2017 

ESSEX-A 7 2 SBT1 David et al., 2017 

ESSEX-B 3 1 SBT1 David et al., 2017 

ESSEX-E 2 1 SBT1 David et al., 2017 

ESSEX-G 14 1 SBT1 David et al., 2017 

ESSEX-H 5 2 SBT1 David et al., 2017 
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NY-1 3 1 SBT1 Raphael, B. Baker, D., et. al., 2016 

NY-2 2 2 ND Raphael, B. Baker, D., et. al., 2016 

NY-3 1 3 SBT1 Raphael, B. Baker, D., et. al., 2016 

NY-4 1 1 SBT1 Raphael, B. Baker, D., et. al., 2016 

NY-5 1 1 SBT62 Raphael, B. Baker, D., et. al., 2016 

NY-6 3 1 SBT36 Raphael, B. Baker, D., et. al., 2016 

NY-7 1 1 SBT36 Raphael, B. Baker, D., et. al., 2016 

NY-8 1 1 SBT1204 Raphael, B. Baker, D., et. al., 2016 

NY-9 2 1 SBT94 Raphael, B. Baker, D., et. al., 2016 

NY-10 1 2 SBT731 Raphael, B. Baker, D., et. al., 2016 

Total 421 113   

 349 

Population structure of L. pneumophila isolates used in this study: 350 

We examined the genomic context of 421 environmental L. pneumophila isolate 351 

genomes alongside 113 clinical isolate genomes to investigate the ability to make 352 

inferences of source attribution. The 20 outbreak groups were from three distinct 353 

geographical regions, Melbourne (Australia), Essex (UK) and New York (US). 354 

Sequence read alignment against a SBT30 reference genome revealed 221,214 core 355 

genome SNPs. There were 144,829 SNP sites inferred to have arisen by 356 

recombination, leaving 76,385 SNPs that were derived through vertical transmission. 357 

Pairwise SNP comparisons were performed to depict the amount of diversity within 358 

each outbreak group (Fig. 2A). Most of the groups had mean intra-group distances 359 

between 0-4 SNPs, while MELB-A, NY-3 and NY-8 had elevated within group 360 

variations of 41, 61 and 24 SNPs, respectively. 361 

 362 
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Phylogenomic analysis has become an important approach to examine pathogen 363 

population structure and to investigate the likely origins of L. pneumophila clinical 364 

isolates using WGS data (David et al., 2016; Gorzynski et al., 2022; Graham, Doyle, & 365 

Jennison, 2014; Qin et al., 2016; Reuter et al., 2013; Wüthrich et al., 2019). A 366 

phylogenomic tree was estimated from the non-recombining core-genome SNP 367 

alignment to depict the clonal ancestry (Fig. 2B). The tree illustrated the same 368 

grouping of outbreak related isolates that was observed with the pairwise SNP 369 

distance analysis. In particular, the groups with high internal SNP diversity displayed 370 

the existence of within-outbreak polyclonal population structure (Fig. 2B). The 371 

MELB-A isolate genomes were found to harbor several distinct genotypes, one of 372 

which was exclusively represented by clinical isolates (Fig. 1B-C). Outbreak group NY-373 

3 isolate genomes were located across several distinctive subtrees in the phylogeny, 374 

indicating a within group polyclonal population structure (Fig. 1B). NY-8 isolate 375 

genomes had an elevated within group diversity while also being substantially 376 

distinct to all other isolates included in the study (Fig. 1B). 377 

 378 
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 379 

Fig 2. Assessment of genomic population structure of 534 L. pneumophila clinical and 380 

environmental isolate genomes. A) Pairwise SNP comparisons of within outbreak 381 

group diversity. Three groups had elevated levels of within group diversity: MELB-A, 382 

NY-3 and NY-8. B) Phylogenomic tree generated from non-recombining core genome 383 

SNPs. Outbreak groups MELB-A, NY-3 and NY-8 are indicated C) Subtree containing 384 

isolate genomes associated with the MELB-A outbreak. The subtree is displayed as a 385 

cladogram with branch lengths transformed to illustrate the tree topology. Red star 386 

indicates a distinct genotype containing only clinical isolate genomes without any 387 

environmental representatives. 388 

 389 

Phylogenomic tree distance-based classification: 390 

To objectively assess the ability to infer clinical isolate origins from the phylogenomic 391 

tree, patristic distances were extracted and used to build outbreak group specific 392 

classifiers. Here, the patristic distances represent the individual total branch length 393 
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distances between all possible isolate pairs in the tree, represented as a 534 x 534 394 

distance matrix. The average distance between the environmental isolate genomes 395 

of each outbreak group were calculated for groups that had at least two or more 396 

environmental representatives (14 of the 20 outbreak groups). The average distance 397 

among environmental isolate genomes was used as a threshold to assign each query 398 

clinical isolate as either related or unrelated to the outbreak groups, with each group 399 

having a specific threshold distance (14 different thresholds and classifiers). The 400 

assumption underlying the use of distance thresholds was that a clinical isolate 401 

genome with equal or less patristic distance from the mean distance observed 402 

among environmental isolate genomes from a specific outbreak group is likely 403 

related to that outbreak while those with greater distances are more divergent and 404 

thus likely originated elsewhere. 405 

 406 

The cut-off distance threshold for each outbreak group was determined through 407 

analysis of only the environmental isolate genomes for each specific outbreak group. 408 

This is an ideal approach, as the thresholds are not biased by the addition of any 409 

clinical isolate genomes, therefore building a classification tool that is prospective, in 410 

that the system would be ready for deployment before the first clinical isolate 411 

genome is reported in an outbreak investigation. The performance of the classifiers 412 

was assessed using the F1-score which is the harmonic mean of method recall and 413 

precision, conveying the balance between these two metrics. Here, a F1-score of 1 414 

indicates that the classifier performs perfectly (no false positives or false negatives). 415 

The patristic distance-based classifiers demonstrated the ability to correctly assign 416 

most clinical isolate genomes to their known origins (0.43 mean false negatives), 417 
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however this approach had a high false positive rate (3.93 mean false positives) with 418 

an overall mean F1 score of 0.50 (Table. 2). 419 

 420 

Table 2. Distance-based and machine learning classifications for 113 test set clinical 421 

isolate genomes when trained on a set of 421 training environmental isolate 422 

genomes. 423 

 Patristic distance-based classifiers cgMLST distance-based classifiers Machine learning classifiers 

Outbreak 

group 

False 

positive 

False 

negative 

F1-score False 

positive 

False 

negative 

F1-score False 

positive 

False 

negative 

F1-score 

MELB-2018 4 0 0.60 2 0 0.75 0 0 1 

MELB-A 6 4 0.58 18 0 0.55 1 5 0.67 

MELB-C 11 0 0.15 6 0 0.25 0 1 0 

MELB-G 7 0 0.36 19 0 0.17 0 0 1 

MELB-M 11 0 0.15 22 0 0.08 0 0 1 

ESSEX-A 5 0 0.44 2 1 0.40 1 1 0.5 

ESSEX-B 4 0 0.33 3 0 0.4 1 1 0 

ESSEX-E 4 0 0.33 6 0 0.25 0 1 0 

ESSEX-G 3 0 0.40 4 0 0.33 1 0 0.67 

ESSEX-H 0 1 0.67 0 1 0.67 0 0 1 

NY-1 0 0 1 0 0 1 0 0 1 

NY-2 0 0 1 0 0 1 0 0 1 

NY-3 NA NA NA NA NA NA 0 3 0 

NY-4 NA NA NA NA NA NA 0 0 1 

NY-5 NA NA NA NA NA NA 0 0 1 

NY-6 0 0 1 0 0 1 0 0 1 

NY-7 NA NA NA NA NA NA 0 0 1 

NY-8 NA NA NA NA NA NA 0 0 1 

NY-9 0 1 0 0 0 1 0 0 1 

NY-10 NA NA NA NA NA NA 0 0 1 

AVERAGE 

*3.93 *0.43 *0.50 *5.86 *0.14 *0.56 

0.20 

(*0.29) 

0.60 

(*0.64) 

0.74 

(*0.70) 

* When considering groups with two or more environmental isolate genomes 424 
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 425 

cgMLST distance-based classification: 426 

In addition to phylogenomics, cgMLST is another genomic comparison approach 427 

used to infer the source attribution of L. pneumophila clinical isolate genomes which 428 

builds upon the established SBT genotyping method by greatly expanding the 429 

number of core-genome loci (Moran-Gilad et al., 2015; Qin et al., 2016). The 430 

advantage of cgMLST over analyses that consider all core genome SNPs is the 431 

standardised framework in which the alleles are called, in that cgMLST is not 432 

susceptible to fluctuations in core genome size caused by the addition or removal of 433 

isolates from the analysis. We next investigated if the allelic distance derived from 434 

the cgMLST scheme, when applied to the 534 isolates, could be used to provide 435 

improved source attribution inference. Here, the same threshold derivation and 436 

classification approach that was employed for the patristic distances was applied, 437 

however using a distance matrix generated from cgMLST allelic variation. 438 

 439 

The cgMLST based classifiers had fewer false negatives than the patristic distance-440 

based classifiers (0.14 mean false negatives) while having a higher false positive rate 441 

(5.86 mean false positives) and a marginally higher overall mean F1-score of 0.56 442 

(Table. 2). The classifiers performed well for NY outbreak groups that had more than 443 

one environmental isolate genome, all achieving F1-scores of 1. While the 444 

implementation of phylogenomic tree and cgMLST distance-based classifiers 445 

introduced an objective framework to make source inferences, these approaches 446 

were based solely on core-genome variation, raising the question of whether 447 
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approaches built using SNP variation from across the pan-genome may achieve 448 

greater assignment capacity. 449 

 450 

Machine learning classification: 451 

To enhance the classification capacity of the framework, we applied a machine 452 

learning approach that utilised an alignment containing 479,480 SNPs detected in 453 

both core and non-core sites. The advantage of using pan-genome SNPs for this type 454 

of analysis was that additional variation in accessory genome sites is thus 455 

considered, improving the discriminatory potential for downstream analyses. In 456 

addition to greater SNP variation, the use of a multivariate classification algorithm 457 

provides the advantage in that the concerted effects of all input genomic variants 458 

are modelled to learn about informative structures in the data. 459 

 460 

To reduce the likelihood of overfitting, a cross-validation framework was established 461 

that iteratively split the environmental isolate data into train and validation 462 

partitions. A total of 1,500 model combinations consisting of different model 463 

parameters using both Random Forest Classifiers (RFC) and Support Vector 464 

Classifiers (SVC) (see methods) were evaluated. In this way, the best model 465 

combination for each outbreak group was determined using only environmental 466 

isolate genomic variation prior to the analysis ever encountering any clinical isolate 467 

genomes, thus eliminating the risk of model overfitting, and providing a prospective 468 

approach. 469 

 470 

Machine learning model results: 471 
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Application of the final models for the assignment of the clinical isolate genomes 472 

provided the lowest false positive rate of all previous distance-based approaches 473 

(0.29 mean false positives), the highest level of false negatives (0.64 mean false 474 

negatives) and the highest overall mean F1 score of 0.70 when applied to the 14 475 

outbreaks with two or more environmental isolate genomes (Table. 2). Models 476 

developed for outbreak groups MELB-2018, MELB-G, MELB-M, ESSEX-H, NY-1 477 

through NY-2 and NY-4 through NY-10 (13/20) had F1-scores of 1, indicating the 478 

absence of any false positives or false negatives – classifications that perfectly align 479 

with the epidemiological labels (Table. 2). As the machine learning method used 480 

upsampling to artificially replicate the training observations, it was possible to apply 481 

this method to outbreak groups with as few as one environmental isolate genome, 482 

having an overall mean F1-score of 0.74 when applied to all 20 outbreak groups. 483 

(Table. 2). The parameters of the final models are reported in Supplementary Table 484 

2. 485 

 486 

Examination of machine learning model false positives and false negatives: 487 

False positives occurred with models ESSEX-A, ESSEX-B and ESSEX-G. In these 488 

instances, the false positives were from other ESSEX outbreak groups clinical isolate 489 

genomes (wards within the same hospital). Six of the models MELB-A, MELB-C, 490 

ESSEX-A, ESSEX-B, ESSEX-E and NY-3 had one or more false negative classifications. 491 

In the case of NY-3, there was an appreciable amount of within outbreak diversity 492 

(Fig. 2A) and just a single environmental isolate used for model training (Table. 1). 493 

For MELB-A, the four clinical isolates that were classified as false negatives by the 494 

machine learning approach were on a branch in the phylogeny that did not contain 495 
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any MELB-A environmental isolate genomes and therefore were from a specific 496 

genotype that was not represented in the training data (Fig. 2C). Despite this, all 11 497 

of the MELB-A clinical isolate genomes were within the top 21% of the 113 test-set 498 

clinical isolate genomes when ranked according to decreasing classification 499 

probability (Fig. 3A). 500 

 501 

Investigation of the machine learning classifier probabilities for outbreak groups 502 

ESSEX-A, ESSEX-B and ESSEX-E also revealed that despite having false negatives at 503 

the default classification threshold of 0.5, the classification probabilities were 504 

nonetheless informative to rank the clinical isolate genomes (Fig. 3B-D). In this way, 505 

when ranked according to decreasing probabilities, the clinical isolate genomes from 506 

ESSEX-A, ESSEX-B and ESSEX-E were contained withing the top 25%, 2% and 3% of all 507 

clinical isolate genomes, respectively (Fig. 3B-D). In these instances, if the 508 

classification threshold were lower than 0.5, these models would have provided 509 
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perfect and near perfect classifications.510 

 511 

Fig 3. Boxplots of classification probabilities for the outbreak linked and non-512 

outbreak linked 113 test set clinical isolate genomes for four outbreak group models 513 

that had false negative classifications. Red horizontal dotted lines indicate the 514 

classification threshold of 0.5. A: classification probabilities for outbreak group 515 

MELB-A. B: classification probabilities for outbreak group ESSEX-A. C: classification 516 

probabilities for outbreak group ESSEX-B. D: classification probabilities for outbreak 517 

group ESSEX-E. 518 

 519 

 520 

DISCUSSION: 521 

Timely and accurate identification of environmental sources of LD is of utmost 522 

importance to public health investigations and, in this era of high-resolution genomic 523 
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technologies, innovative approaches are needed to rapidly distil complex analyses to 524 

provide actionable insights. In this study, we have deployed a machine learning 525 

classification approach and assessed its’ ability alongside alternative approaches to 526 

make assignments of clinical isolate origins that align against the known 527 

epidemiological information for 20 distinct LD outbreaks. 528 

 529 

This work builds on our previous efforts to build accurate multivariate assignment 530 

models, here providing the necessary negative classification capacity that was 531 

lacking in our earlier work. To assess the ability of these multivariate approaches to 532 

call true negatives, we included 74 clinical isolates that were not associated with any 533 

of the 20 outbreak groups that were used to train the models. In a similar way, we 534 

also included 311 environmental isolates that were not associated with the outbreak 535 

groups to assess how well the model could learn from known outbreaks while faced 536 

with a larger than necessary training dataset that contained unrelated 537 

environmental isolates. Our improved approach presented in this investigation made 538 

use of a set of ‘one-vs-rest’ classification strategies, in which a separate target 539 

variable and model was used for each outbreak group. This had the effect of 540 

focusing on genomic variation that was specific to an individual outbreak group, 541 

optimising the model to include outbreak linked isolates while rejecting others and 542 

therefore affording negative classification capacity. 543 

 544 

The analysis of suspected pathogen transmission with phylogenomic trees built from 545 

core genome SNPs has become the de facto standard in the field of bacterial 546 

genomics. Here we assessed the ability of patristic distances derived from a 547 
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phylogenomic tree to place epidemiologically linked isolate genomes into 548 

arrangements that could then permit the inference of clinical isolate source 549 

attribution. Classifiers were devised for the 14 of the 20 groups that had at least two 550 

environmental isolate genomes, with assignment thresholds derived from the mean 551 

distance observed among the environmental representatives of each group. This 552 

approach provided an objective and quantitative phylogenomic-based framework 553 

for the classification of query clinical isolate genomes with high sensitivity; however, 554 

it suffered from low specificity and had an overall mean F1-score of 0.50.  555 

 556 

Another widely employed tool for L. pneumophila genomic comparisons is cgMLST, 557 

which builds on the established SBT method by greatly expanding the number of 558 

core loci. To investigate the utility of this method to infer clinical isolate genome 559 

source attribution, a matrix of cgMLST allelic distances was generated in the same 560 

way that patristic distances were used to build distance-based classifiers. The results 561 

from this approach were a slight improvement over the patristic distance-based 562 

classifiers, with a higher overall mean F1 score of 0.56, however there were a higher 563 

number of false positives, again offering meagre specificity and poor overall 564 

classification capacity. 565 

 566 

A machine learning classification framework was developed using pan-genome SNP 567 

variants to make probabilistic assignments by firstly training models upon variation 568 

among environmental isolate genomes to then classify the origins of clinical isolate 569 

genomes. To achieve this, an extensive cross-validation framework was established 570 

that assessed the performance of various model building parameters (see methods) 571 
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on the ability for an algorithm to learn upon a portion of environmental isolate 572 

genomes and then assign the known classes of the remaining environmental 573 

representatives (cross-validation), with the best classification models selected to 574 

then learn using the entire training set to make assignments upon the previously 575 

unseen clinical isolate genomes. 576 

 577 

The application of the machine learning models for the assignment of 113 test set 578 

clinical isolate genomes had the greatest classification capacity with 13 out of 20 579 

models achieving an F1-score of 1, indicating perfect sensitivity and specificity. The 580 

machine learning method also achieved the greatest overall mean F1 score of 0.70 581 

when evaluating the 14 groups with two or more environmental representatives and 582 

0.74 when applied to all 20 groups. The higher performance of the machine learning 583 

modelling approach compared to phylogenomic tree branch length distance and 584 

cgMLST allelic distance methods is likely since 1) it considered SNP variation across 585 

the pan-genome, 2) it explicitly made use of the underlying sequence composition of 586 

the SNP variation and 3) it employed a multivariate approach that modelled the 587 

concerted interactions of all input variants. Together, these three aspects of the 588 

modelling approach work to make efficient use of the richness of the available SNP 589 

allelic variation to achieve greater classification capacity. 590 

 591 

False positives were detected with machine learning models ESSEX-A, ESSEX-B and 592 

ESSEX-G. Here, the false positives were from other wards in the same hospital, 593 

suggesting a sort of ‘cross reactivity’ among nearby locations within a common 594 

institution. Despite these false positives, the 74 unrelated clinical isolates were 595 
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correctly assigned as true negatives by all final models, indicating overall satisfactory 596 

negative classification capacity. False negative assignments occurred with models 597 

MELB-A, MELB-C, ESSEX-A, ESSEX-B, ESSEX-E and NY-3. In the case of MELB-C and 598 

NY-3, previous analyses have identified that there likely exists an issue with the 599 

epidemiological source attribution for these outbreak groups, offering a possible 600 

explanation for the inability of the models to accurately assign these isolate 601 

genomes to their known origins in previous investigations (Buultjens et al., 2017; 602 

Raphael et al., 2016). 603 

 604 

For MELB-A, the four clinical isolates assigned as false negatives by the machine 605 

learning approach were on a branch in the phylogeny that did not contain any 606 

environmental isolate genomes from the MELB-A outbreak group, meaning this 607 

specific genotype was not represented in the training data. Despite this, all MELB-A 608 

clinical isolate genomes were within the top 21% of all clinical isolate genomes when 609 

ranked according to decreasing classification probability. This suggests that the 610 

modelling approach was able to make use of the level of shared ancestry among all 611 

MELB-A isolates to nevertheless provide a useful degree of probability ranking even 612 

when that specific genotype was not explicitly represented in the training data. Not 613 

dissimilar to what was seen with the MELB-A probability ranking, the classification 614 

probabilities for the ESSEX-A, ESSEX-B and ESSEX-G clinical isolate genomes revealed 615 

that the known positives for each of these groups were ranked highly despite being 616 

less than the standard classification threshold of 0.5. This highlights that alternative 617 

probability evaluation frameworks besides classification, such as probability ranking, 618 

should be considered for these approaches. 619 
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 620 

In addition to the use of a ‘one-vs-rest’ classification approach, another notable 621 

point of difference with this new method was the use of pan-genome SNPs derived 622 

from the reference independent kmer-based method, SKA. Our previous work built 623 

models using only variation in core-genome SNPs that were called using read 624 

alignment to a reference genome (Buultjens et al., 2017). The consequence of using 625 

pan-genome variation was particularly important in this application since the core-626 

genome among the diverse group of 534 L. pneumophila isolates is abbreviated, 627 

therefore reducing the total amount of SNP diversity. Specifically, the pan-genome 628 

alignment provided 258,266 more SNPs than when only core genome variants were 629 

considered, equating to addition information to be learnt by multivariate 630 

approaches. 631 

 632 

The lack of environmental isolates representing a specific MELB-A genotype that was 633 

observed exclusively among clinical isolates indicates that the methods used to 634 

sample, culture and sequence L. pneumophila from environmental sources had failed 635 

to adequately capture the true extent of bacterial diversity in that source. Efforts to 636 

capture environmental L. pneumophila diversity typically involve taking multiple 637 

colony picks from environmental samples. While care was taken in this approach to 638 

maximise the environmental diversity captured, there evidently was relevant 639 

diversity that did not progress to culture isolation and subsequent genome 640 

sequencing, presumably due to the limited sensitivity of culture-based methods 641 

(Reller, Weinstein, & Murdoch, 2003). Reduced detection of genomic diversity 642 

among environmental samples compared to that recovered from clinical specimens 643 
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has been observed in a previous investigation (Wüthrich et al., 2019). Alternative 644 

methods that would likely widen the capture of environmental diversity are shotgun 645 

metagenomic or culture independent sequencing approaches that directly sequence 646 

all environmental DNA, eliminating the bottleneck of culture (Christiansen et al., 647 

2014; Wéry et al., 2008). 648 

 649 

All outbreak groups, apart from MELB-2018, MELB-G and ESSEX-G, had very few 650 

numbers of environmental isolate genomes and in some cases just a single genome. 651 

Such limited examples of environmental genomic diversity are not optimal and the 652 

inclusion of greater numbers of training genomes for each group would likely 653 

improve the ability of the models to learn about outbreak specific signatures and 654 

make more accurate classifications. 655 

 656 

While this study focused on SNP variation, there may be further genomic 657 

information among additional variant types such as kmers counted directly from raw 658 

reads that may further improve model performance. Such kmer variation has the 659 

potential to capture additional genomic variations such as structural variations and 660 

copy number differences that were not assessed in this study. Further work may also 661 

investigate the specific genomic variants that permit the building of accurate 662 

classification models. Such outbreak associated variants may be diagnostic of specific 663 

point sources and thus may be informative to understand bacterial genomic 664 

responses to certain environmental reservoirs or public health control measures 665 

(e.g., different decontamination or biocide practices). 666 

 667 
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Given the dynamic nature of bacterial populations, routine re-building of the models 668 

with newly collected environmental isolates may be required to ensure accuracy as 669 

emerging genomic signatures are then learned by the model. Another consideration 670 

might be to limit the length of time in which genomes remain in the training 671 

database, as older genomic signatures may no longer represent extant L. 672 

pneumophila in environmental sources as time goes by. Here, a temporal sliding 673 

window could be used, as has been implemented in other bacterial genomic 674 

investigations (Gorrie et al., 2021). 675 

 676 

CONCLUSION: 677 

The advent of highly accessible bacterial genomics has provided a wealth of L. 678 

pneumophila genomes in publicly assessable databases that are paired with 679 

epidemiological information, of which provide the basis to build source attribution 680 

classification approaches. Our development of an improved machine learning 681 

classification technique now affords models with the ability to call true negatives, 682 

offering the previously lacking negative classification capacity. Here we demonstrate 683 

that our improved approach provides greater source tracking ability than two widely 684 

used methods – phylogenomic trees and cgMLST allelic variation. Given the reported 685 

high classification capacity of this improved approach, it is the vision of this work 686 

that, soon, future LD public health investigations may make use of such modelling 687 

advancements to rapidly pinpoint the correct environmental sources of L. 688 

pneumophila and reduce the incidence of this preventable disease. 689 

 690 
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