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Summary

Polymicrobial biofilms play an important role in the devel opment and pathogenesis of CAUTI.
Proteus mirabilis and Enterococcus faecalis are common CAUTI pathogens that persistently co-
colonize the catheterized urinary tract and form biofilms with increased biomass and antibiotic
resistance. In this study, we uncover the metabolic interplay that drives biofilm enhancement and
examine the contribution to CAUTI severity. Through compositional and proteomic biofilm
analyses, we determined that the increase in biofilm biomass stems from an increase in the
protein fraction of the polymicrobial biofilm matrix. We further observed an enrichment in
proteins associated with ornithine and arginine metabolism in polymicrobial biofilms compared
to single-species biofilms. We show that L-ornithine secretion by E. faecalis promotes arginine
biosynthesisin P. mirabilis, and that disruption of this metabolic interplay abrogates the biofilm
enhancement we see in vitro and leads to significant decreases in infection severity and

dissemination in amurine CAUTI modd!.

Keywords: Proteus mirabilis, Enterococcus faecalis, CAUTI, UTI, polymicraobial, biofilm,

metabolic crossfeeding, ornithine, arginine, bacterial metabolism
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I ntroduction

Urinary tract infections (UTIs) are among the most common infections worldwide and
account for approximately 40% of all nosocomial infectionsin the United States . UTIs are
classified into two broad categories, uncomplicated and complicated UTI, dependent upon the
presence of risk factors, disease severity, and location of infection **°. Urinary catheterization is
a common procedure in healthcare settings with approximately 15-25% of patients at a general
hospital acquiring a catheter at some point in their stay; the incidence of catheterization is even
more frequent for the elderly, long-term care patients, and critically ill patients °**. Catheter
insertion facilitates the development of bacterial colonization through avariety of means,
including mechanical disruption, induction of inflammation, and by providing an ideal surface
for bacterial attachment ***%, Each day a urinary catheter isin place, thereis acompounding 3-
8% incidence of bacteriuria, and the majority of patients with long term catheterization (>28
days) will experience at least one symptomatic catheter-associated UTI (CAUTI) 812192,
CAUTI isone type of complicated UTI and is associated with high rate of treatment failure,
increased patient morbidity and mortality, overuse of antibiotics, increased length of stay and

7,13,22,23

hospital cost

The epidemiology of CAUTI also differs from that of uncomplicated UTI; uncomplicated
UTIs are most often caused by Escherichia coli, while complicated catheter-associated
bacteriuriaand CAUTI are caused by a more diverse range of pathogensin addition to E. cali,
including Proteus mirabilis, Enterococcus faecalis, Klebsiella spp., Pseudomonas aeruginosa,
and Staphylococcus species >?4?°, Catheter-associated bacteriuria and CAUTI are frequently
polymicrobial, which further complicate treatment efficacy and infection severity *2"~%°. While

much research has focused on investigating the clinical relevance and pathogenesis of E. coli in
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the context of UTI, thereis a paucity of studies investigating the pathogenesis of polymicrobial
infection and opportunistic pathogens that frequently colonize catheterized patients. With therise
in antimicrobial resistance and the growing appreciation for the polymicrobia nature of CAUTI,
thereis aclear need for investigations into the impact of polymicrobial interactions as they may

result in synergistic effects for co-colonizing pathogens 3.

Our prior work identified P. mirabilisand E. faecalis as the most common and persistent

co-colonization partnersin catheterized individuals *****

, suggesting that interactions between
these species facilitate persistent colonization. P. mirabilisis a Gram-negative rod-shaped
bacterium that possess numerous virulence factors that contribute to the establishment of CAUTI
and progression to secondary infections, and is the most common cause of infection-induced
urinary stones, catheter encrustation, and blockage **. E. faecalis is a Gram-positive, non-
motile, and highly resistant bacterium of growing medical concern ***, Both species pose
serious challenges to effective treatment that are compounded by co-colonization. It is therefore

critical to understand the interactions between these two species and to identify potential

strategies for disrupting persistent co-colonization.

We previously demonstrated that P. mirabilis and E. faecalis co-localize on catheters and
within the bladder during experimental CAUTI, resulting in polymicrobial biofilmswith
enhanced biomass and antibiotic resistance '°. However, the underlying mechanism of biofilm
enhancement was not elucidated. Coinfection with P. mirabilis and E. faecalis also dramatically
increases the incidence of urolithiasis and bacteremia (39), although it is not yet known if the
increase in disease severity is related to increased catheter biofilm biomass. In this study, we
uncovered the metabolic interplay that drives biofilm enhancement and examined contribution to

infection severity. We demonstrate that secretion of L-ornithine from E. faecalis viathe ArcD
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arginine/ornithine antiporter drives L-arginine biosynthesis by P. mirabilis, ultimately increasing
the protein content of polymicrobial biofilms and facilitating dissemination from the urinary tract
to the bloodstream. Thus, modulating the metabolic interplay between these species could
potentially disrupt polymicrobial biofilm formation, persistent colonization, and risk of

progression to severe disease.
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80 Reaults

81  P.mirabilisand E. faecalis polymicrobial biofilms have increased biofilm biomassthat is
82  associated with increased protein content. To investigate the underlying mechanism of
83  enhanced biomass during polymicrobial biofilm formation, we began by studying single and
84  polymicrobial biofilm formation in TSB-G (Tryptic soy broth supplemented with 1.5% glucose)
85  under stationary conditionsin 24-well plates. Biofilm biomass was assessed using crystal violet
86  staining, while bacterial colony forming units (CFUs) were determined via serial dilution and
87  plating on appropriate agar for each organism. E. faecalis forms slightly larger single-species
88  hiofilmsthan P. mirabilis; however, when grown together, biofilm biomassis significantly
89  enhanced (Figure 1 A), confirming our previous observations **. The increase in biofilm biomass
90  was not driven by changesin total bacterial burden or viability as ~10® CFUs of each species
91  wererecovered from the single and co-culture biofilms (Figure 1 B). To determine the source of
92 theincreased biofilm biomass, we quantified the amount of protein, carbohydrate, and
93  extracelular DNA (eDNA) in the total biofilm suspension (BS), the cell-associated fraction of
94  thebiofilm (CF), and the NaOH-extracted extrapolymeric substance fraction (EPS) from single
95 and polymicrobial biofilms. Protein was the most abundant component of both the single-species
96 and polymicrobial biofilms, and polymicrobial biofilms had a significant increasein total protein
97  content in the biofilm suspension and cell-associated fraction compared to the single-species
98  hiofilmsof P. mirabilisand E. faecalis (Figure 1 C). Carbohydrates were the next most abundant
99  component of single-species and polymicrobial biofilms, but no significant increases were

100  observed in the polymicrobial biofilms (Figure 1 D). The least abundant component of the

101 biofilm matrix was found to be eDNA, and no significant increases in content were observed in

102  thepolymicrobial biofilms compared to the single-species (Figure 1 E). Thus, biofilm
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enhancement is driven by an increase in protein content ssemming from the cell-associated
fraction rather than the EPS. The importance of protein in mediating the enhancement phenotype
was confirmed by establishing biofilms in the presence of 50 pg/mL of proteinase K (PK), which
had no effect on single-species biofilms but resulted in a significant reduction in biomass of the

polymicrobial biofilm (Figure 1 F).

Liquid chromatography mass spectrometry analysis of single and polymicrobial biofilms
was next used to identify the proteins that are enriched in the polymicrobial biofilms. We
identified 1427 proteinsin the P. mirabilis single-species biofilms, 1061 proteinsin E. faecalis
single-species biofilms, and 1845 proteins in the polymicrobial biofilms, confirming an increase
in protein content. Further, 78% of proteins from the polymicrobial biofilms mapped to P.
mirabilis and 22% mapped to E. faecalis, suggesting that the mgjority of the biofilm protein
content derives from P. mirabilis. This analysis revealed significant differencesin protein
abundances linked to a variety of metabolic pathways and virulence factors in P. mirabilisand E.
faecalis, including an increase in abundance of multiple proteins related to ornithine and arginine
biosynthesis and metabolism. (Table 1, Supplemental Table 1, and Supplemental Figure 1).
Specifically, 37 P. mirabilis proteins were enriched greater than 2-fold in the polymicrobial
biofilm compared to P. mirabilis single biofilms, and 6/25 are involved in ornithing/arginine
transport and metabolism. In E. faecalis, 225 proteins were enriched (>2-fold) compared to the
single biofilm, the majority of which pertain to metabolism, tranglation, and cell growth and
division. The changes in ornithine and arginine metabolism drew immediate interest in light of
previous work by Keogh et al, wherein L-ornithine export from E. faecalis, driven by the ArcD
L-ornithine/L-arginine antiporter, modulated biofilm formation, siderophore production, and

fitness of E. coli “°. P. mirabilis can either directly metabolize L-ornithine to the polyamine
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putrescine via ornithine decarboxylase (SpeF), or it can use L-ornithine for L-arginine
biosynthesis via ornithine carbamoyltransfers (Argl/ArgF), and can then catabolize L-arginine to
putrescine via arginine decarboxylase (SpeA) and agmatinase (SpeB). We therefore focused on

the contribution of this pathway to polymicrobial biofilm enhancement.

Arginine biosynthesis from ornithineisa critical determinant of P. mirabilisfitnessin vitro.
Before investigating the importance of arginine/ornithine metabolism in mediating the biofilm
enhancement phenotype, we first examined the growth characteristics of an E. faecalisarcD
mutant as well as P. mirabilis ornithine catabolism mutants speF (PM10307) and argl/F
(PM13457, herein referred to as argF) under relevant conditions. Disrupting ornithine export had
no impact on E. faecalis growth or viability as the arcD mutant grew similarly to wild-type
OG1RF in brain heart infusion broth (BHI), tryptic soy broth supplemented with 1.5% glucose
(TSB-G), and pooled human urine (Figure 2 A, B, & C). Similarly, disrupting ornithine
metabolism and arginine biosynthesis by P. mirabilis had no impact on growth or viability in
rich media, as the argF and speF mutants grew similarly to wild-type HI4320 in TSB-G and
Luria-Bertani broth (LB) (Figure2 D & E). However, in minimal salts media (PMSM), loss of
argF completely abrogated P. mirabilis growth while loss of speF had no impact (Figure 2 F).
The argF mutant growth defect could be fully rescued by supplementation with either L-
citrulline or L-arginine but not by L-ornithine or the arginine catabolic products agmatine or
putrescine, demonstrating that mutation of argF resultsin L-arginine auxotrophy in P. mirabilis

(Figure2 F).

Human urineis considered to be a nutrient-limited medium for bacteria, providing mainly

amino acids and small peptides as nutrient sources **. When grown in pooled human urine, the
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speF mutant grew similarly to wild-type while viability of the argF mutant stopped increasing
after ~3 hours (Figure 2 G). This corresponds to the timing of a~50% reduction in the arginine
concentration of urine (from ~134 M to ~60 uM) by wild-type P. mirabilis *, which is notable
as aprior study observed that growth of an E. coli arginine auxotroph became limited when the
concentration of arginine decreased below 60 UM ****. Importantly, growth of argF in human
urine could again be rescued by supplementation with L-citrulline to fuel

L-arginine biosynthesis, much like growth in minimal medium (Figure 2 G).

Subtle fitness defects can often be further magnified when a mutant strain is directly
competing against its parental isolate. We therefore conducted co-challenge experimentsin
human urine, in which cultures were inoculated with a 1:1 mixture of each mutant versus wild-
type and a competitive index was calculated based on their ratio at the start of the experiment
and hourly thereafter (Figure2 H & 1). During direct co-challenge with wild-type P. mirabilis,
fitness of the argF mutant was significantly decreased after just 2 hours of growth in urine. The
defect was likely due to competition for arginine and was rescued by supplementation with
citrulline. In contrast, no fitness defects were observed for the speF mutant or the E. faecalis
arcD mutant. Thus, the use of L-ornithineto fuel L-arginine biosynthesisis critical for P.
mirabilis growth in minimal medium and for optimal fitness in human urine, but ornithine

secretion by E. faecalis and ornithine catabolism to putrescine in P. mirabilis are dispensable.

We previously demonstrated that P. mirabilis and E. faecalis do not exhibit obvious
competitive behavior in human urine, as the growth rates for each species were equivalent during
co-culture compared to single-species culture *°. However, considering the importance of L-
arginine biosynthesis to P. mirabilis fitness during growth in urine, we sought to determine

whether arginine/ornithine interplay aters viability of either species during co-culturein urine
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172 (Supplemental Figure 2 A). Interestingly, growth of the argF mutant plateaued early during co-
173 culture wild-type E. faecalis but not during co-culture with the arcD mutant. This observation
174  suggests that E. faecalis may impair growth of the argF mutant by stealing the limited L-arginine
175  present in urine. In contrast, the E. faecalis arcD mutant exhibited a dlightly faster initial growth
176  rate during co-culture with P. mirabilis than wild-type E. faecalis, and this was independent of P.
177 mirabilis L-arginine biosynthesis (Supplemental Figure 2 B). Thus, loss of arcD may provide E.
178  faecaliswith adight advantage during initial co-culture with P. mirabilis, although the mutant

179  and wild-type strains achieved the samefinal cell density in stationary phase.

180

181  L-ornithine secretion by Ef facilitates polymicrobial biofilm enhancement. To investigate
182  the contribution of Ef arginine/ornithine antiport to polymicrobial biofilm enhancement, we

183  established single and polymicrobial biofilmswith Pm, AargF, Ef, and AarcD and measured

184  biofilm biomass and protein content. Neither of the mutants exhibited differencesin single-

185  species biofilm biomass compared to their respective parental strains (Figure 3C). However,

186  enhancement of biofilm biomass and protein content were both abrogated during co-culture of
187  Pmwith AarcD (Figure 3C and D), indicating that arginine/ornithine antiport by Ef iscritical for
188  theincreased biomass that occurs during co-culture. When Pm AargF was co-cultured with wild-
189  type Ef, biofilm enhancement was still observed but to alower level than for the parental strains,
190  and protein levels were similar. Thus, the ability of Pmto use L-ornithine for production of

191  citrulline during L-arginine biosynthesisis not critical for biofilm enhancement under these

192  conditions. Importantly, all differences in biofilm biomass and protein content were independent

193  of any potential impact on bacterial viability (Supplemental Figure 3A).
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194 We previously demonstrated that direct cell-cell contact was required for biofilm

195  enhancement, as neither Pm nor Ef exhibited altered biofilm biomass during co-culture when
196  separated by atranswell insert *. Thus, it was surprising that |loss of arginine/ornithine antiport
197  in Ef abrogated polymicrobial biofilm enhancement. We therefore sought to determine if

198  exogenous ornithine could promote biofilm enhancement. In agreement with our prior findings,
199  theaddition of 10 mM ornithine had no impact on single species biofilm biomass for any of the
200  strains (Figure 3E). However, ornithine supplementation fully restored biofilm enhancement
201 during co-culture of either wild-type Pmor AargF with Ef AarcD (Figure 3E) and also restored
202  biofilm protein levels (Figure 3F). Thus, the presence of excess ornithine aloneis sufficient to
203  restore contact-dependent enhancement of biofilm biomass during co-culture. If ornithine-

204  dependent arginine biosynthesisin Pmwas required for biofilm enhancement, supplementation
205  should not have restored enhancement during co-culture of AargF with AarcD. Considering that
206 auxotrophy of the AargF mutant could not be complemented by supplementation with ornithine,
207  thesefindings suggest that ornithine either promotes biofilm enhancement through a mechanism
208  that isindependent of Pm arginine biosynthesis, or that Pm has access to alternative precursors

209  for arginine biosynthesis during co-culture with Ef.

210 To examine the specific contribution of arginine to biofilm enhancement,

211 supplementation experiments were repeated with 10 mM L-arginine (Figure 3G).

212 Supplementation again had no impact on single species biofilms, but the addition of arginine
213 restored biofilm enhancement during co-culture of either wild-type Pm or AargF with Ef AarcD.
214  Considering that Ef encodes other arginine import systems such as the Art ABC transporter,

215  excessarginine could still be taken up by Ef without ornithine antiport. Thus, arginine import by

216  ether Pmor Ef restores contact-dependent biofilm enhancement.
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To determine if arginine catabolism or putrescine biosynthesis by Pm are required for
biofilm enhancement, we next used Pm mutants in speA, speB, and speF (Figure 3H) “°. Much
like AargF, single species biofilms formed by each of the mutants exhibited similar biomass to
wild-type Pm. Polymicrobial biofilms formed with each of the mutants were identical to those
formed by wild-type Pm, indicating that L-arginine catabolism and putrescine biosynthesis are
not required for polymicrobial biofilm enhancement. To confirm these results, we further
examined the contribution of agmatine and putrescine to polymicrobial biofilm enhancement, as
Ef produces an agmatine/putrescine antiporter. Supplementation with 10 mM agmatine had no
impact on single species biofilms, but fully restored contact-dependent biofilm enhancement
during co-culture of either wild-type Pm or AargF with Ef AarcD (Figure 31). In contrast,
supplementation with putrescine failed to restore biofilm biomass (Figure 3J). Since Pm can only
use agmatine to produce putrescine and neither putrescine supplementation nor |oss of
agmatinase activity (AspeB) abrogated enhancement, our findings suggest that agmatine is most
likely mediating enhancement viaimport by Ef. Taken together, these data suggest that biofilm
enhancement is mediated through a combination of ornithine production by Ef, agmatine import
by Ef, and arginineimport by at least one species, al of which are disrupted by loss of

arginine/ornithine antiport in Ef.

L -ornithine secretion by E. faecalisand L -arginine biosynthesis by P. mirabilis contribute
to enhanced disease severity and dissemination during polymicrobial infection. We
previously demonstrated that polymicrobial infection with E. faecalis and P. mirabilisincreases
disease severity during experimental CAUTI and we demonstrated the importance of biofilm

formation to bacterial pathogenesis in the context of CAUTI 394 We therefore sought to
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240  determine the contribution of E. faecalis L-ornithine secretion and P. mirabilis L-arginine

241  biosynthesisto establishing polymicrobial catheter biofilms as well as promoting dissemination
242  tothe kidneys and bloodstream and overall disease severity. We utilized the E. faecalis arcD

243  mutant and the P. mirabilis argF mutant to examine the specific contribution of ornithine export
244  and arginine biosynthesis to pathogenesis in the well-established murine CAUTI model #2478,
245  Female CBA/J mice aged 6-8 weeks were transurethrally inoculated with 10° CFUs of either

246 wild type P. mirabilis, the argF mutant, wild-type E. faecalis, the arcD mutant, or polymicrobial
247  mixtures, and a4mm silicone catheter segment was placed in the bladder during inoculation.

248  Mice were euthanized 96 hours post-inoculation and bacterial burden was quantified in the urine,

249  Dbladder, kidneys, and spleen (Figure 4).

250 Neither ArgF nor ArcD alone were important for establishing single-species infection, as
251  the mutants colonized all organs of the urinary tract to asimilar level as the wild-type strains
252  (Figure4 A & B). There were also no differencesin infection severity for arcD compared to
253  wild-type E. faecalis, although there was a decrease in the number of mice that developed

254  bacteremia during infection with the argF mutant compared to wild-type P. mirabilis (Table 2).
255  Differencesin disease severity became more apparent in the context of polymicrobial infection.
256 While both species were detected in all coinfected mice by differential plating (Supplemental
257  Figure4), mice coinfected with the mutant strains displayed a trend towards decreased CFUs in
258  all organs compared to mice coinfected with the wild-type strains, which was statistically

259  dgignificant in the spleen (Figure 4 C). Strikingly, animals coinfected with the mutant strains had
260  significantly fewer indicators of severe disease as compared to mice coinfected with the wild
261  type strains, including kidney discoloration and mottling, kidney hematoma, and bacteremia

262  (Table2). The decreased incidence of bacteremia s particularly notable, as an increased
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263 incidence of bacteremiaisone of the hallmarks of P. mirabilis and E. faecalis coinfection
264  compared to single-species infection *°. Taken together, these data clearly demonstrate that L-
265  ornithine secretion by E. faecalis facilitates L-arginine biosynthesis by P. mirabilis, the

266  combined action of which aters polymicrobial biofilm formation and infection severity.
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Discussion

Bacterial biofilms have long been noted to be vital for pathogenesis and disease
progression in avariety of disease contexts, including CAUTI “*=2, There has been a growing
appreciation for the fact that many diseases and biofilms are polymicrobial environments, where
the network of interactions between bacterial species and the host are important determinants of
the overall course of disease development 193252 However, thereis still a paucity of studies
addressing the interactions that contribute to polymicrobial biofilm formation, colonization, and
pathogenesis. Previously, we demonstrated that E. faecalis and P. mirabilis are frequent co-
colonizersin catheterized patient populations and that they co-localize and form unique biofilm
communities with enhanced biofilm biomass, persistence, and antibiotic resistance *°. However,

the underlying mechanism was yet to be understood.

Herein, we have demonstrated that L-ornithine secretion from E. faecalis feedsinto L-
arginine biosynthesis and metabolism by P. mirabilis, resulting in a contact-dependent increase
in protein content and biofilm biomass compared to single-species biofilms (summarized in
Figure 5). Not only were we able to demonstrate that this metabolic interaction influences
biofilm formation in vitro, but we also uncovered an important role for this metabolic interplay
in mediating disease severity in amouse model of polymicrobial CAUTI. Thisstudy addsto a
growing body of work that metabolic cross-feeding is a determinant of polymicrobial infections.
Previously, Keogh et al (2016) demonstrated that L-ornithine secretion from E. faecalis
increased E. coli siderophore production and biofilm growth under iron-limitation, as well as
persistence in awound infection model “. More recently, work by Smith et al. (2022)
demonstrated that E. faecalis enhances the fitness and virulence of the gut pathogen

Clostridioides difficile by providing a source of fermentable amino acids, including ornithine .
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290  In both of these studies, L-ornithine from E. faecalis enhanced growth of the partner species. In

291  contrast, our work demonstrates a growth-independent role for L-ornithine in mediating contact-
292  dependent polymicrobial interactions. Together, these studies underscore the pivotal role that E.
293  faecalis L-ornithine secretion plays in mediating different polymicrobial interactionsin multiple

294  disease contexts, and further highlights the potential of L-ornithine asacommon metabolite cue.

295 Considering that supplementation with either ornithine, arginine, or agmatine restored
296  polymicrobial biofilm enhancement for the mutant strains while putrescine did not, our data

297 indicatethat either intracellular L-arginine stores or biosynthesis intermediates are likely the key
298  mediators of biofilm enhancement in Pm. Our prior studies have demonstrated an important

299  contribution of L-arginineto P. mirabilis fitness and virulence; specifically, L-arginine acts as an
300 environmental cueto promote swarming motility, and catabolism to agmatine via SpeA

301  contributesto acid tolerance, motility, and fitness within the urinary tract in addition to fueling
302 putrescine biosynthesis >’. In our prior genome-wide transposon insertion site sequencing (Tn-
303  seq) study, we also found that polymicrobial infection with another common coinfection partner,
304  Providencia stuartii, causes P. mirabilis to require the L-arginine biosynthetic pathway

305  (including argF) but not speA, speB, or speF for optimal fitness, suggesting a specific

306  involvement of L-arginine and its biosynthesis intermediates rather than its catabolic products. >
307  Combined with this current study, these observations hint at the potential for L-arginine to act as

308 akey determinant of P. mirabilis virulence and fitnessin polymicrobial CAUTI.

309 The observation that ornithine supplementation restored enhancement of biofilms formed
310 by co-culture of AargF with AarcD was initially surprising since disrupting ornithine
311  carbamoyltransferase should prevent generation of citrulline and subsequently arginine by Pm.

312 However, it ispossible that ornithine catabolism via speF may at least partially compensate for
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loss of argF under these conditions. Unfortunately, testing this hypothesis requires an argF/spefF
double mutant in Pm for which numerous attempts proved unsuccessful, suggesting that

ornithine catabolism by at least one of these pathways is required for Pmviability in vitro.

While the specific fate of arginine remains to be determined, we hypothesize that P.
mirabilis may directly utilize the excess L-arginine generated from L-ornithine for production of
specific proteins that mediate biofilm enhancement. Our proteomics experiments revealed a 5-
fold increase in the fimbrial chaperone protein fim5C in polymicrobial biofilms compared to P.
mirabilis single-species biofilms, suggesting that L-arginine may contribute to production of
certain fimbriae (Table 1). Fimbriae are known to play avital rolein P. mirabilis biofilm
formation and mediate adherence to the catheter surface ***°, although their specific contribution
to polymicrabial biofilm formation has yet to be explored. Another product of P. mirabilis that
may be responsible for the increase in biofilm biomass in the polymicrobial biofilmsis a putative
repeats-in-toxin (RTX) adhesion protein RtxA. RTX toxins are part of afamily of pore forming
cytolysins produced mainly by Gram-negative bacteria, and they can have diverse functions
including adhesion, which can play arolein biofilm formation ®>%2. The most well characterized
RTX adhesin is the Pseudomonas fluorescens protein LapA, which was shown to be essential for
biofilm formation ®#%. RtxA was the most over-represented P. mirabilis protein from
polymicrobial biofilms, suggesting that E. faecalis enhances RtxA production during biofilm
formation. Interestingly, both fim5C and rtxA were identified as P. mirabilis fitness factors
during polymicrobial CAUTI with P. stuartii but not during single-species infection, suggesting
that both proteins may play a specific role in mediating polymicrobial interactions *. The
contribution of these adhesins to polymicrobial interactions are an active area of ongoing

investigation.
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As an alternative, the L-arginine biosynthesis intermediates generated from L-ornithine
may be acting as nutrient signals within P. mirabilis and triggering phenotypic changes that
ultimately influence biofilm formation, rather than being directly used for protein synthesis. It is
also possible that the L-arginine generated by P. mirabilisis being exported and taken up by E.
faecalis through an arcD-independent transport mechanism, and that E. faecalisisdriving the
contact-dependent biofilm enhancement through an arginine-dependent mechanism. The full
complement of arginine import and export machinery are not yet fully elucidated in these
species, but uncovering the mechanisms behind arginine export in P. mirabilis and import by E.
faecalis are expected to contribute to a deeper understanding into this important polymicrobial
interaction. Future efforts will be focused on identifying the specific protein mediators of biofilm
enhancement, distinguishing which microbe isresponsible for their production, and defining the

role of L-argininein their biosynthesis.

It is also important to remember that the CAUTI bladder environment istypically
polymicrobial and thus there are many more bacterial species present than just P. mirabilis and
E. faecalis ***%°. Bacteria engage in multiple cooperative and competitive interactions, which
can be mediated by small molecules such as L-ornithine, and multiple different bacterial species
can be competing for and responding to the same metabolic cue. The addition of other
uropathogens s likely to modulate or influence the cross-feeding interaction described here, and
this can be accomplished through a variety of mechanisms that change the nutrient landscape,
spatial structure of the community, or community metabolism ®%. Additionally, other
uropathogens, such as P. stuartii, E. coli, and Morganella morganii, have been shown to
modulate virulence factor production and activity in P. mirabilis and may also contribute to

biofilm formation “>#". It is also possible that with the addition of other common uropathogens,
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359 theL-ornithine-driven biofilm enhancement may be disrupted though competition for this or

360 other metabolites.

361 Given that P. mirabilisand E. faecalis both exhibit intrinsic resistance to several

362  antibiotics and that polymicrobial biofilm formation further exacerbates these concerns, this

363  work can be used to develop new approaches to prevent or disrupt biofilm formation. Our data
364  suggest that targeting ornithine metabolism and arginine biosynthesis may represent a new

365 avenue for exploration, especially as disrupting these pathways also decreases risk of developing
366  severe disease during experimental infection. However, considering that catheter-associated

367  bacteriuriaand CAUTI aso frequently involve additional co-colonizing species such as E. coli,
368  additional investigations are needed to understand how other co-colonizing pathogens influence

369  biofilm formation, metabolic cross-feeding, and disease progression.
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370 Methods

371  Bacterial strains. Proteus mirabilis strain HI4320 was isolated from the urine of along-term
372 catheterized patient in a chronic care facility *°. All P. mirabilis mutants used in this study were
373  generated by inserting a kanamycin resistance cassette into the gene of interest following the
374  SigmaTargeTron group |1 intron protocol as previously described 2. The P. mirabilis speF,
375  speA, and speB mutants were previously constructed >, while the argF mutant was specifically
376  generated for this study. Mutants were verified by selection on kanamycin and PCR. The

377  Enterococcus faecalis strain used in this study isan oral clinical isolate, OGIRF "*"* The E.

378  faecalis AarcD mutant was previously generated via mariner transposon mutagenesis ">,

379

380 Bacterial culture conditions. P. mirabilis was cultured at 37°C with shaking at 225 RPM in 5
381 mL of low-salt LB (LSLB) broth (10 g/L tryptone, 5 g/L yeast extract, 0.1g/L NaCl) or on LSLB
382  plates solidified with 1.5% agar. E. faecalis was routinely cultured in 5 mL of Brain Heart

383  Infusion (BHI) broth at 37°C with shaking at 225 RPM or on BHI agar plates solidified with
384  1.5% agar. P. mirabilis mutant strains were grown in media supplemented with 50 pg/mL

385  kanamycin, while the E. faecalis mutant strain was grown with 8 pg/mL chloramphenicol. Both
386  speciesof bacteria were also grown in Tryptic Soy Broth supplemented with 1.5% glucose

387 (TSB-G) asindicated. Proteus mirabilis minimal salts medium (PMSM) was used in

388  experiments requiring defined growth medium (10.5 g/L K;HPO4, 4.5 g/L KH2PO4, 1 g/L

389  (NH4)2S04, 15 g/L agar, supplemented with 0.002% nicotinic acid, 1 mM MgSO,, and 0.2%
390 glyceral). PMSM was supplemented further with addition of 10 mM L-ornithine, L-arginine, or
391  L-citrulline asindicated. Filter sterilized pooled human urine from at least 20 de-identified

392 female donors was purchased from Cone Bioproducts (Sequin, TX), stored at -20C, and used as
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indicated as a physiologically relevant growth medium. For co-challenge experiments, samples
were plated on plain LSLB agar (total CFUs), LSLB with kanamycin (P. mirabilis mutant strain

CFUs), and BHI agar supplemented with 100 pg/ml spectinomycin (E. faecalis CFUS).

Crystal violet staining of bacterial biofilms. Overnight cultures of wild-type or mutant bacteria
were adjusted to approximately 2x10” CFU/mL, an ODggy of 0.02 for P. mirabilis and ODgq of
0.04 for E. faecalis, in either TSB-G or pooled human urine asindicated, and 750 puL was
dispensed in triplicate into the wells of tissue culture treated 24-well plates (Falcon 353047). For
polymicrobial biofilms, 325 L of the appropriate P. mirabilis and E. faecalis strains were added
to the well to a final volume of 750 pL. Sterile media was dispensed in triplicate into wells to
serve as ablank for the crystal violet staining. Plates were incubated for 24 hours at 37°C in
partially sealed bags with a damp paper towel, after which supernatants were gently aspirated
and adherent biofilms were washed twice with 1 mL of 1x phosphate buffered saline (PBS), with
care taken to not disrupt the biofilm community. Next, 1 mL of 95% ethanol was added to each
well and the plate was incubated at room temperature for 15 minutes, after which ethanol was
aspirated and the plate was allowed to air dry with the lid off for 60 minutes. Biofilms were then
stained with 0.1% crystal violet and incubated at room temperature for 60 minutes, after such
time the crystal violet solution was aspirated and biofilms were washed once with 1 mL of
deionized water. Stained biofilms were solubilized in 1 mL of 95% ethanol and plates were
incubated at room temperature on a plate shaker at 200 RPM for 15 minutes. Usinga 1l mL

mi cropi pette tip, the bottom and sides of wells in the plate were scraped to ensure all stained

biofilm biomass was fully resuspended. Crystal violet absorbance was then read at 570 nm using
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415 aBioTek Synergy H1 plate reader. Crystal violet absorbancein all figuresis expressed relative

416  to absorbancein the E. faecalis monoculture biofilm wells.
417

418  Determination of bacterial viability of biofilms. Biofilms were established in triplicate in

419  tissue culture treated 24-well plates as described above and incubated for 24 hours at 37°C.

420  Supernatants were removed, biofilms were gently washed with 1mL of sterile 1x PBS, and

421  scraped as described above to resuspend. Suspensions were then serially diluted and plated onto
422  appropriate agar using an EddyJet 2 spiral plater (Neutec Group) for determination of CFUs

423  using a ProtoCOL 3 automated colony counter (Synbiosis).
424

425  Growth curves. Overnight cultures of bacteria were adjusted to approximately 2x10” CFU/mL
426  inthe various growth media described above. 200 L of the adjusted bacterial suspension was
427  didributed in at least triplicate wells of a clear 96-well plate and incubated in a BioTek Synergy
428  H196-well plate reader at 37°C with continuous double-orbital shaking and a 1°C temperature
429 differential between the top and bottom of the plate to prevent condensation. Bacterial growth
430  was assessed via absorbance (ODeoo) every 15 minutes for aperiod of 18 hours. For assessment
431 of CFUs, 5 mL bacterial suspensions were incubated at 37°C with shaking at 225 RPM, aliquots
432  weretaken hourly, serially diluted, and plated onto appropriate agar using an EddyJet 2 spiral
433 plater (Neutec Group) for determination of CFUs using a ProtoCOL 3 automated colony counter

434  (Synbiosis).

435
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Biofilm compositional analysis. Biofilms were established as described above in 24-well plates
and incubated for 20 hours at 37°C, with the exception that an entire 24-well plate was used for
each inoculum. Compositional analysis was performed as previously described for P. mirabilis
" Briefly, supernatants were removed and all wells of the entire 24-wel| plate were gently
resuspended into atotal volume of 3 mL of sterile Milli-Q water, an aliquot was removed from
thistotal volume to generate the biofilm suspension fraction (BS). Suspensions were fixed for 1
hour with formaldehyde (37%) by incubating at room temperature with shaking at 200 RPM. 1
M NaOH was then added and samples were incubated for 3 hours at room temperature with
shaking at 200 RPM. Samples were then centrifuged (20,000xg) for 1 hour at 4°C. Supernatant
containing the soluble extrapolymeric substance (EPS) was removed and placed in a sterile
microcentrifuge tube, while the remaining pellet was resuspended in 1 mL Milli-Q water to
generate the cell fraction (CF). The EPS was filtered through a 0.22 um filter and then was
transferred to Slide-A-Lyzer dialysis cassette (Thermofisher, Cat# 66380) and placed in beaker
containing Milli-Q water. The Milli-Q water was replaced twice after 2 hours, after which the
sample was left to dialyze overnight. Samples were removed from the dialysis cassette to
generate the EPS fraction (EPS). All samples were stored at -20C until end point analysis. Total
eDNA was determined using the PicoGreen assay (Invitrogen, MP07581), total carbohydrate
was determined using the Total Carbohydrate Assay Kit (Sigma, Cat# MAK104-1KT), and total
protein was determined via Pierce BCA protein assay kit (Thermofisher, Cat# 23250), all
following the manufacturer’ s instructions ”"*®. For comparison of wild-type and mutant
polymicrobial biofilm protein content, biofilms were established in 24-well plates and grown for
24 hours at 37°C, after which three wells were scrapped, pooled, and analyzed as described

above.
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459

460  Liquid-chromatography mass spectrometry (L C-MS) analysis of bacterial biofilms. Sample
461  preparation and data analysis are described in detail in Supplemental Item 5. The mass
462  spectrometry proteomics data have been deposited to the ProteomeX change Consortium viathe

463  PRIDE partner repository with the dataset identifier PXD041693 ”.
464

465 Mouse model of CAUTI. CAUTI studies were performed as previously described “*#"%. In
466  short, the inoculum was prepared by washing overnight cultures in PBS and adjusting to an
467  ODgy Of 0.2 for P. mirabilis and ODew of 0.4 for E. faecalis (~2x10® CFU/mL), then diluting
468  1:100 to make a final inoculum of 2x10° CFU/mL. Co-challenge inocula were generated by
469  combining a 50:50 mix of each single-species inoculum. Female CBA/J mice aged 6-8 weeks
470  (Jackson Laboratory) were anesthetized with a weight appropriate dose of ketamine/xylazine
471 (80-120mg/kg ketamine and 5-10 mg/kg xylazine) via IP injection, after which mice were
472 inoculated transurethrally with 50 pL of the appropriate inoculum suspension, delivering ~1x10°
473  CFU/mouse. A 4 mm segment of sterile silicone tubing (0.64 mm O.D., 0.30 mm I.D., Braintree
474  Scientific Inc.) was advanced into the bladder during inoculation and retained there for the
475 duration of the study as done previously *®. After 96 hours, urine was collected, bladders,
476  kidneys, and spleens were harvested and placed into 5 mL Eppendorf tubes containing 1 mL 1x
477 PBS and 500 pL of 3.2mm dainless steel beads. Tissues were homogenized using a Bullet
478 Blender 5 Gold (Next Advance, Speed 8, 4 minutes). Bladders were treated to two cycles to
479  ensure full homogenization. Tissue homogenates were serialy diluted and plated onto
480 appropriate agar using an EddyJet 2 spiral plater (Neutec Group) for determination of CFUs

481  using aProtoCOL 3 automated colony counter (Synbiosis).
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482

483  Statistical analysis. Statistical significance of experimental results for biofilm, CFU, and growth
484  curve data was assessed by two-way analysis of variance (ANOVA) multiple comparisons or
485 one-way ANOVA as indicated in figure legends. For CAUTI model results, CFUs data was
486  assessed by one-way ANOVA of logy transformed data, and chi-square tests were used to
487 analyzed incidences of abnormalities and health events. These analyses were performed using

488  GraphPad Prism, version 9.3 (GraphPad Software) with a 95% confidence interval.
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501 FigureLegends:

502

503 Figurel. P. mirabilisand E. faecalis polymicrobial biofilms exhibit enhanced biofilm

504 biomassthat isdriven by biofilm compositional changes and not bacterial counts. (A)

505 Crystal violet staining of biofilms grown for 24hrsin TSB-G. (B) Colony forming units of

506  biofilms grown for 24hrsin TSB-G. Data represent the mean + standard deviation for 3-5

507  independent experiments with at least three replicates each. ns = non-significant, **** = P<.0001
508 by one-way ANOV A multiple comparisons. (C-E) Biofilm compositional analysis of 20-hour
509  single or polymicrobial biofilms detailing C) total eDNA, D) total carbohydrate, and E) total

510 protein, BS = biofilm supernatant fraction, CF = cell associated fraction, EPS = extrapolymeric
511  substancefraction. (F) Crystal violet staining of biofilms grown for 24hrsin TSB-G with 50

512  pg/mL proteinase-K. Data represent the mean + standard deviation for at least three independent
513  experiments with at least two replicates each. ns = non-significant, * = P<.05; ** = P<.01; *** =

514  P<.001; **** = P<.0001 by repeated measures one-way ANOVA.

515

516  Figure 2. Ornithineand arginine metabolism are key deter minants of P. mirabilisgrowth in
517  vitroin both laboratory media and physiologically relevant pooled human urine. E.

518 faecalis growth curvesin A) BHI, B) TSB-G, and C) pooled human urine. P. mirabilis growth
519 curvesin D) TSB-GE) LB, F) PMSM (Proteus minimal salts media) without supplementation or
520  supplemented with 10 mM ornithine, 10mM arginine, 10 mM citrulline, 10 mM agmatine, or 10
521  mM putrescine. G) CFUs of P. mirabilis and mutants during growth in pooled human urine. (H-

522  |) Competitive index (CI) of P. mirabilis mutants co-inoculated with wild-type P. mirabilis (H)
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or E. faecalis arcD mutant co-inoculated with wild-type E. faecalis (1) in pooled human urine.
Each symbol represents the log10 CI for an individual inoculum, error bars represent the
medians and dashed line indicates the log10 CI = 0O (the expected valueif the ratio of mutant/WT

is1:1). * = P<.05 by one sample t test against atheoretical 1og10 CI = 0.

Figure 3. L-ornithine secretion from E. faecalis drives P. mirabilis ar ginine biosynthesis
and increased biofilm biomass. (A) Crystal violet staining of single-species and polymicrobial
biofilms grown for 24 hrsin TSB-G. (B) Total protein content as measured by BCA from three
pooled biofilms per experiment. (D) Crystal violet staining of biofilms grown for 24 hrsin TSB-
G with or without 10 mM of L-ornithine. (D) Total protein content as measured by BCA from
three pooled biofilms per experiment when established in TSB-G with or without 10mM L-
ornithine supplementation. (E) Crystal violet staining of biofilms grown for 24 hrsin TSB-G
with or without 10 mM of L-arginine. (F) Crystal violet staining of biofilms grown for 24 hrsin
TSB-G with P. mirabilis arginine catabolism mutants, speA and speB. (G-H) Crystal violet
staining of biofilms grown for 24 hrsin TSB-G with or without 10 mM of agmatine (G) or
putrescine (H). (1) Crystal violet staining of single or polymicrobial biofilms grown for 24 hours
in pooled human urine. Data represent the mean = SD for 3-5 independent experiments with at
least two replicates each. ns = non-significant, One-way ANOV A multiple comparisons, * p <
0.05, ** p<0.01, *** p<0.001, **** p <0.0001. (J) All known genesinvolved in L-ornithine
metabolism and L-arginine biosynthesisin P. mirabilis are displayed. L-ornithine can either be
directly catabolized to putrescine via ornithine decarboxylate (SpeF), or it can feed into L-
arginine biosynthesis via ornithine carbamoyltransferse (ArgF), which generates L-citrulline.

Argininosuccinate synthase (ArgG) uses ATP to generate L-arginino-succinate from L-citrulline
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and L-aspartate, then argininosuccinate lyase (ArgH) generates L-arginine and fumarate from L-
arginino-succinate. L-arginine can then be catabolized to putrescine via arginine decarboxylase
(SpeA) and agmatinase (SpeB). Genesin purple were identified as enriched in polymicrobial

biofilms.

Figure 4. Metabolic inter play between E. faecalisand P. mirabilis contributesto secondary
bacteremia. Bacterial countsin urine, bladder, kidney, and spleen samples collected at 96hrs
post infection in a CAUTI murine model. Animals were infected with 10° CFUS/mL of either A)
wild type P. mirabilis or P. mirabilis AargF, or B) wild type E. faecalis or E. faecalis AarcD in
single species infections. (C) Mice were coinfected with a 50:50 mixture of the wild-type strains
or their respective mutants for polymicrobial infection experiments, with bacterial counts being
depicted astotal bacterial burden per organ. Total bacterial burden was analyzed via
nonparametric One-Way ANOVA, * p = 0.0154. Data presented is representative of three

combined, independent animal studies, n = 4-16.

Figure5. Working model of the metabolic inter play between E. faecalisand P. mirabilisin
polymicrobial CAUTI infection. Model of metabolic interplay between E. faecalisand P.
mirabilisin polymicrobial biofilms. All known genesinvolved in L-ornithine metabolism and L-
arginine biosynthesisin P. mirabilis are displayed. L-ornithine can either be directly catabolized
to putrescine via ornithine decarboxylate (SpeF), or it can feed into L-arginine biosynthesis via
ornithine carbamoyltransferse (ArgF), which generates L-citrulline. Argininosuccinate synthase

(PMI_RS16015) uses ATP to generate L-arginino-succinate from L-citrulline and L-aspartate,
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568  then argininosuccinate lyase (ArgH) generates L-arginine and fumarate from L-arginino-

569  succinate. L-arginine can then be catabolized to putrescine via arginine decarboxylase (SpeA)
570 and agmatinase (SpeB). Our data support a model in which ornithine secretion by E. faecalis
571  coupled with direct cell-cell contact increases L-arginine metabolism and protein expression by
572  P. mirabilis, leading to the development of a polymicrobial biofilm with significantly increased
573  biomass and antibiotic resistance. Co-colonization of the two pathogens increases morbidity and
574  mortality in amurine CAUTI model. However, disruption of ornithine/arginine metabolic

575 interplay leads to significant reductions disease severity, revealing a new potential target for

576  disrupting polymicrobial infection.

577
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578 Tablel. Liquid chromatography mass spectrometry (L C-MS) analysis showsan

579  upregulation of many ornithine and arginine metabolism related genes. LC-MS analysis
580 summary detailing the ratio of select proteins within the polymicrobial biofilms to single species

581  hiofilms. Select proteins that were at least 2-fold increased in polymicrobial biofilms are detailed

582  within, proteins related to ornithine/arginine metabolism are bolded.

P. mirabilis E. faecalis
Protein Name RatioProtein Name Ratio
arginine ABC transporter substrate-binding protein 2.08 |N-acetylmuramic acid 6-phosphate etherase 79.45
or nithine car bamoyltr ansfer ase 2.31 [Trk family potassium (K+) transporter, membrane protein 81.90
20G-Fe dioxygenase family protein 3.51 |carbamoyl-phosphate synthase, large subunit 89.25
or nithine decar boxylase SpeF 4.03 |hypothetical protein OG1RF_11509 89.74
argininosuccinate lyase 4.08 |pyruvate phosphate dikinase 90.17
UDP-N-acetyl glucosamine 2-epimerase (non-hydrolyzing) 4.25 |methylmal onate-semial dehyde dehydrogenase (acylating) 109.13
FAD-dependent oxidoreductase 4.78 |YehR like protein 118.52
fimbrial chaperone fim5C 5.72 |dihydrolipoyl dehydrogenase 132.58
arginosuccinate synthase 6.18 [anaerobic ribonucleoside-tri phosphate reductase large subunit 149.40
electron transport complex subunit RsxC 7.12 3-methyl-2-oxobutanoate dehydrogenase 154.12
nitrogen regulation protein NR(I1) 7.29 |ABC superfamily ATP binding cassette transporter, ABC/membrane protein ~ 211.30
795 sper midine/putrescine ABC superfamily ATP binding cassette
ABC transporter permease transporter 264.33
acetylglutamate kinase 8.23 [2-dehydropantoate 2-reductase 476.32
N-acetyl-gamma-gl utamyl-phosphate reductase 10.62 |sel enium-dependent molybdenum hydroxylase 1 627.14
hypothetical protein 13.23 |branched-chain a pha-keto acid 666.84
LysR family transcriptional regulator 14.92 |putative transcriptional activator SriM 1088.25
MARTX multifunctional-autoprocessing repeats-in-toxin holotoxin 3450 _
RtxA 5-dehydro-2-deoxygluconokinase 1487.36
583
584

585
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Table 2. Metabolic inter play between E. faecalisand P. mirabilis contributesto
polymicrobial infection severity. Incidence of bacteremia and tissue abnormalities in murine
CAUTI infections. Chi-sgquare tests were used to determine if frequency of events are statistically

different between groups.

Chi- Chi- Chi-
Adver se health event or Pm+ | dargF +
square square square
tissue abnor mality Pm dargk 25 AETED Ef AarcD
P value P value P value

Bladder hematoma and/or

C 1/13| 0/11 | 0.306 |0/20| 0/18 | >0.999 | 0/14 0/13 >0.999
blood in urine

Kidney hematoma 3/13| 0/11 | 0.088 [0/20| 0/18 | >0.999 | 5/14 0/13 0.011*

Kidney color changeand/or |1 151 0,19 | 0347 |o/20 018 | >0.000 | 814 | 213 | 0.013*

mottling

Kidney stone 2/13| 3/11 | 0475 (0/20 0/18 | >0.999 | 5/14 1/13 0.054
Any abnormality 4/13( 3/11 | 0.099 [0/20 0/18 | >0.999 | 8/14 2/13 0.013*
Bacteremia 11/13 4/11 | 0.015* |0/20| 0/18 | >0.999 | 13/14 6/13 0.003*
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Supplemental figure and table legends:

Supplemental Figure 1. Proteomicsidentification of proteins present in P. mirabilisor E.
faecalis single species biofilms. Protein identification was performed by searching against a
combined database of P. mirabilis and E. faecalis protein sequence. Total protein intensities for
single and polymicrobial biofilms. Protein intensities show that protein content within

polymicrobial biofilmsislargely driven by increasesin P. mirabilis derived proteins.

Supplemental Figure 2. Fitness of P. mirabilisargF, P. mirabilis speF, and E. faecalisarcD
during growth in human urine. P. mirabilis and the argF mutant were co-cultured with either
E. faecalis or the arcD mutant in human urine, and samples were plated every hour for
determination of CFUs. A) P. mirabilis and B) E. faecalis CFU counts from the urine co-
cultures. Error bars represent mean and standard deviation. * P<0.05, **P<0.01 by two-way
ANOVA comparison of argF CFUs from argF+ Ef to argF and wild-type CFUs from the other

co-culturesin panel A, and for arcD CFUs compaed to E. faecalis CFUs in panel B.

Supplemental Figure 3. Differencesin biofilm biomass are not due to changesin bacterial
viability. CFUs of biofilms grown for 24-hoursin A) TSB-G or B) pooled human urine. Data
represent the mean + standard deviation for at |east three independent experiments with at least

two replicates each. ns = non-significant, * = P<.05 as determined by One-way ANOVA.
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Supplemental Figure 4. Colony forming units of each species from coinfected mice. P.
mirabilis and E. faecalis bacterial countsin urine (U), bladder (B), kidney (K), and spleen (S)
homogenates. The CFUs from an individual coinfected mouse are connected with a black line for

each organ.

Supplemental Item 5. LCM S methodology and analysis. Protein digestion: Biofilm
suspension fraction (BS) was prepared as described above. After which, a surfactant-aided
precipitation/on-pellet digestion method was adopted in the current study for sample preparation
8 n brief, 100 ug protein was aliquoted from each sample and diluted to 1 pg/pL with 1% SDS.
Protein was sequentially reduced by 10 mM dithiothreitol (DTT) at 56 C for 30 min and
alkylated by 25 mM iodoacetamide (IAM) at 37 C in darkness for 30 min. Both steps were
performed with rigorous vortexing in athermomixer (Eppendorf). A total of 6 volumes of chilled
acetone was then added to each sample with constant vortexing, and the mixture was incubated
at -20'C for 3 hr. After centrifugation at 20,000 g, 4 C for 30 min, liquid was decanted, and
protein pellet was gently washed by 500 yuL methanol and air-dried for 1 min. A volume of 80
uL 50 mM pH 8.4 Tris-formic acid (FA) was then added, and samples were sonicated to loosen
the protein pellet. A total volume of 20 pL trypsin (Sigma Aldrich, dissolved in 50 mM pH 8.4
Tris-FA) was added for 6-hr digestion at 37 C with rigorous vortexing in a thermomixer.
Digestion was terminated by addition of 1 uL FA, and samples were centrifuged at 20,000 g, 4 C

for 30 min. Supernatant was carefully transferred to LC vialsfor analysis.

LC-MS analysis: The LC-MS system consists of a Dionex pLtimate 3000 nano LC
system, a Dinex pLtimate 3000 micro LC system with a WPS-3000 autosampler, and a

ThermoFisher Orbitrap Fusion Lumos mass spectrometer. A large-inner diameter (i.d.) trapping
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636  column (300-umi.d. x 5 mm) was coupled to the nano LC column (75-um i.d. X 65 cm, packed
637  with 2.5-um Xselect CSH C18 material) for high-capacity sample loading, cleanup and delivery.
638  For each sample, 4 uL derived peptide was injected for LC-MS analysis. Mobile phase A and B
639  were 0.1% FA in 2% acetonitrile (ACN) and 0.1% FA in 88% ACN. The 180-min LC gradient
640  profile was: 4% for 3 min, 4-11 for 5 min, 11-32% B for 117 min, 32-50% B for 10 min, 50—
641  97% B for 5 min, 97% B for 7 min, and then equilibrated to 4% for 27 min. The mass
642  spectrometer was operated under data-dependent acquisition (DDA) mode with a maximal duty
643  cycle of 3 s. MS1 spectra was acquired by Orbitrap (OT) under 120k resolution for ions within
644  the m/z range of 400-1,500. Automatic Gain Control (AGC) and maximal injection time was set
645 at 120% and 50 ms, and dynamic exclusion was set at 45 s, + 10 ppm. Precursor ions were
646 isolated by quadrupole using a m/z window of 1.2 Th, and were fragmented by high-energy
647  collison dissociation (HCD). MS2 spectra was acquired OT under 15k resolution with a
648  maximal injection time of 50 ms. Detailed LC-M S settings and relevant information are enclosed

649  inaprevious publication by Shen et a.%.

650 Data processing: LC-MS files were searched against a NCBI protein sequence database
651  containing both Proteus mirabilis and Enterococcus faecalis protein sequences using Sequest HT
652 embedded in Proteome Discoverer 1.4 (ThermoFisher Scientific). Target-decoy searching
653  approach using a concatenated forward and reverse protein sequence database was employed for
654 global FDR estimation and control. Searching parameters include: 1) Precursor ion mass
655  tolerance: 20 ppm; 2) Product ion mass tolerance: 0.02 Da; 3) Maximal missed cleavages per
656 peptide: 2; 4) Fixed modifications. carbamidomethylation of cysteine; 5) Dynamic
657 modifications: Oxidation of methionine, Acetylation of peptide N-terminals. Peptide filtering,

658  protein inference and grouping, and FDR control were accomplished by Scaffold v5.0.0
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659  (Proteome Software, Inc.) The filtered peptide-spectrum match (PSM) list was exported. Protein
660 quantification was performed using lonStar, an in-house developed MS1 ion current-based
661  quantitative proteomics method ®. Peptide quantitative features were first generated by a two-
662  step procedure encompassing 1) Chromatographic alignment with ChromAlign for inter-run
663  calibration of retention time (RT) shift; ii) Data-independent M S1 feature generation a direct ion-
664  current extraction (DICE) method, which extracts ion chromatograms for all precursor ions with
665  corresponding MS2 scans in the aligned dataset with a defined m/z-RT window (10 ppm, 1 min).
666  Both steps were accomplished in SIEVE v2.2 (ThermoFisher Scientific). Post-feature generation

667 data processing was accomplished by UHR-lonStar v1.4 (https://github.com/JunQu-

668  Lab/UHRIonStarApp) ®. The filtered PSM list and the quantitative features database were first

669 integrated by MS2 scan number to generate a list of annotated frames with peptide sequence
670  assignment. The annotated frames were then subjected to dataset-wide normalization, principal
671  component-based detection and removal of peptide outliers, and data aggregation to protein
672 level. Protein quantification results were exported and manually curated and processed in

673  Microsoft Excdl.
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