

1 **Polθ is phosphorylated by Polo-like kinase 1 (PLK1) to enable repair of DNA**
2 **double strand breaks in mitosis**

3
4 Camille Gelot¹, Marton Tibor Kovacs¹, Simona Miron², Emilie Mylne¹, Rania Ghoul²,
5 Tatiana Popova³, Florent Dingli⁴, Damarys Loew⁴, Josée Guirouilh-Barbat⁵, Elaine
6 Del Nery⁶, Sophie Zinn-Justin² and Raphael Ceccaldi¹

7
8 1 INSERM U830, PSL Research University, Institut Curie, Paris, France.
9 2 Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay
10 University, Gif-sur-Yvette, France.

11 3 INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe labellisée
12 par la Ligue Nationale Contre le Cancer, PSL Research University, Institut Curie,
13 Paris, France.

14 4 CurieCoreTech Mass Spectrometry Proteomics, Institut Curie, PSL Research
15 University, Paris, France.

16 5 Université de Paris, INSERM U1016, UMR 8104 CNRS, Equipe Labellisée Ligue
17 Nationale Contre le Cancer, Institut Cochin, Paris, France.

18 6 Department of Translational Research-Biophenics High-Content Screening
19 Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), PSL Research University,
20 Institut Curie, Paris, France.

21
22 Corresponding author: Raphael Ceccaldi (raphael.ceccaldi@curie.fr)
23

24 **Abstract**

25

26 DNA double strand breaks (DSBs) are deleterious lesions that challenge genome
27 integrity. To mitigate this threat, human cells rely on the activity of multiple DNA
28 repair machineries that are tightly regulated throughout the cell cycle¹. In interphase,
29 DSBs are mainly repaired by non-homologous end joining (NHEJ) and homologous
30 recombination (HR)². However, these pathways are completely inhibited in mitosis^{3–5},
31 leaving the fate of mitotic DSBs unknown. Here we show that DNA polymerase theta
32 (Polθ)⁶ repairs mitotic DSBs and thereby maintains genome integrity. In contrast to
33 other DSB repair factors, Polθ function is activated in mitosis upon phosphorylation
34 by the Polo-like kinase 1 (PLK1). Phosphorylated Polθ is recruited to mitotic DSBs,
35 where it mediates joining of broken DNA ends, while halting mitotic progression. The
36 lack of Polθ leads to a shortening of mitotic duration and defective repair of mitotic
37 DSBs, resulting in a loss of genome integrity. In addition, we identify mitotic Polθ
38 repair as the underlying cause of the synthetic lethality between Polθ and HR. Our
39 findings reveal the critical importance of mitotic DSB repair for maintaining genome
40 stability.

41

42 **Introduction**

43

44 Cells can enter mitosis with DSBs that are formed during interphase⁷, and
45 DSBs can also form in mitosis, as a consequence of replication stress (RS)^{8,9}. As a
46 result, HR-deficient (HRD) cells, that experience elevated levels of RS, are prone to
47 accumulate mitotic DSBs¹⁰. It has been shown that broken DSB ends can be held
48 together by a tethering complex and pass through mitosis in this manner, awaiting
49 repair in the next cell cycle^{11,12}. However, this pathway alone might not be sufficient
50 in safeguarding the genome against mitotic DSBs, arguing for the existence of
51 parallel alternatives. A heretofore unaddressed, yet intriguing possibility is that DSB
52 repair pathways, alternative to HR and NHEJ^{13,14}, might be active in mitosis. The
53 DNA polymerase theta (Polθ) has recently emerged as a major player in alternative
54 end joining (alt-EJ) repair^{15–17}, essential for HR-deficient cell survival^{18–21}. Here we
55 reasoned that Polθ-mediated alt-EJ could play a key role in repairing mitotic DSBs,
56 thereby maintaining genome integrity and ensuring HR-deficient cell survival.

57

58 **Results**

59

60 **Polθ functions downstream of the HR pathway in S phase**

61 To investigate the function of Polθ in human cells, we tagged the endogenous
62 POLQ locus with a NeonGreen (NG) tag, or exogenously expressed GFP-tagged
63 Polθ in several human cell line models. In these cells, Polθ localized to sites of DSBs
64 in a poly (ADP-ribose) polymerase (PARP)-dependent manner, as previously
65 reported^{18,19} (Extended Data Fig. 1a-d). In order to decipher the regulation of Polθ
66 localization to DSBs, we performed an unbiased immunofluorescence screening of

67 Polθ foci formation. Briefly, first, RPE-1 cells expressing GFP-Polθ were transfected
68 with an siRNA library targeting factors involved in the DNA damage response (DDR).
69 Cells were exposed to ionizing radiation (IR) and Polθ foci were scored by automatic
70 fluorescence microscopy. As expected, siRNAs against Polθ itself or FANCD2²²
71 abolished Polθ foci formation (Fig. 1a). Surprisingly, knockdown of core factors in
72 HR, such as BARD1, BRCA1, PALB2 or BRCA2 resulted in a striking reduction of
73 Polθ foci formation (Fig. 1a and Table 1). Results of the screen were validated by
74 independent, siRNA or mAID (degron)-mediated knockdown of various HR genes
75 (Extended Data Fig. 1e,f). Additionally, immunoprecipitation (IP) coupled to label-free
76 mass spectrometry (MS) analysis of tagged Polθ showed that Polθ co-purified with
77 several members of the HR pathway, such as BARD1, BRCA1, PALB2, and BRCA2
78 (Extended Data Fig. 1g-i and Table 2). Altogether, our data provides evidence that
79 Polθ is recruited to sites of DSBs downstream of the HR pathway in interphase.
80 These results are in accordance with recent studies demonstrating that Polθ and HR
81 effectors, such as RAD51 and RPA, can compete for the repair of similar
82 substrates^{18,23,24} (Extended Data Fig. 1j).

83

84 **Polθ forms foci at mitotic entry, independently of HR**

85 To decipher the conundrum of HR-dependent Polθ foci formation and
86 synthetic lethality between Polθ and HR^{18,19}, we compared Polθ foci formation in cells
87 lacking HR with wild-type (WT) isogenic counterparts²⁰. We found that, the cell cycle
88 distribution of Polθ foci in *BRCA2*^{-/-} cells was the inverse of that of WT cells. In WT
89 cells, Polθ foci were mostly visible in S phase (PCNA-positive) cells, while in *BRCA2*^{-/-}
90 cells, Polθ foci were prominent in G1 and G2 (PCNA-negative) cells but absent in S
91 (Fig. 1b and Extended Data Fig. 1k and 2a, Videos 1-3). Our data suggests that,

92 while Pol θ functions downstream of HR in S, it performs HR-independent functions
93 from G2 to the next G1 phase. Using live-microscopy, we found that, in *BRCA2*^{-/-}
94 cells, Pol θ accumulated in G2, close to mitotic entry (after disappearance of PCNA
95 foci) (Fig. 1c). Additionally, Pol θ foci in G2 could be induced by replication stress
96 (RS) (aphidicolin (APH) treatment) in WT cells, to the level of *BRCA2*^{-/-} cells (Fig. 1d).
97 Interestingly, the vast majority of Pol θ foci in *BRCA2*^{-/-} cells were transmitted from G2
98 to mitosis (Fig. 1e). Taken together, our findings indicate that, in *BRCA2*^{-/-} cells, Pol θ
99 marks intrinsic RS-induced lesions in G2 that remain unresolved and are transmitted
100 to mitosis.

101

102 **Pol θ is recruited to mitotic DSBs**

103 We found that, similar to G2 cells, mitotic cells showed an increase in Pol θ foci
104 formation upon RS, confirming the persistence of Pol θ -marked lesions (Fig. 1f and
105 Extended Data Fig. 2b-d). Almost all mitotic Pol θ foci colocalized with phosphorylated
106 histone H2AX (γ H2AX, a DSB marker), indicating that Pol θ marks RS-induced DSBs
107 in mitosis (Fig. 1g and Extended Data Fig. 2c,d). Of note, Pol θ colocalized poorly
108 with mitotic DNA synthesis (MiDas) foci (labelled by EdU and FANCD2)²⁵ arguing for
109 a MiDas-independent role of Pol θ (Extended Data Fig. 2e,f). While HR and NHEJ
110 repair are inactivated in mitosis, early events of the DDR still occur, such as
111 recruitment of the scaffold proteins MDC1 and TOPBP1 to DSBs, in an ATM-
112 dependent manner^{11,26,27}. We found that, the vast majority of mitotic Pol θ foci co-
113 localized with MDC1 and TOPBP1 foci, while Pol θ foci in interphase co-localized only
114 with MDC1 but not with TOPBP1 (Extended Data Fig. 2g). Interestingly, Pol θ also
115 formed filament-like structures perfectly associating with TOPBP1 (Fig. 1h and
116 Extended Data Fig. 2h,i). This was particularly evident in cells under RS, suggesting

117 that these mitotic filaments are instrumental to the cellular response to RS (Extended
118 Data Fig. 2h,i). Furthermore, MDC1 knockdown prevented the formation of Pol θ foci
119 in both interphase and mitosis, while TOPBP1 knockdown suppressed Pol θ foci (and
120 filament) formation only in mitosis (Fig 1i and Extended Data Fig. 2j). This shows
121 that, while MDC1 acts similarly in both interphase and mitotic DDR, the interaction
122 between TOPBP1 and Pol θ is specific to mitosis.

123

124 To further confirm the recruitment of Pol θ to mitotic DSBs, we irradiated mitotic
125 cells (collected by gentle shake-off of nocodazole-arrested cells) and measured Pol θ
126 foci formation. We found that Pol θ foci formation could be induced upon IR
127 (Extended Data Fig. 3a-d). This was especially striking, since there are no other
128 known DNA repair factors that can be recruited to DSBs generated in mitosis¹.
129 Furthermore, IR-induced mitotic Pol θ foci (similarly to RS-induced) co-localized with
130 the TOPBP1/MDC1 complex and relied on ATM and MDC1 for their formation
131 (Extended Data Fig. 3e-i). Taken together, our data suggests that the early steps of
132 the DDR mediated by ATM and MDC1 is conserved between interphase and mitosis.
133 However, repair pathways diverge downstream of MDC1, with classical DSB repair
134 (HR and NHEJ) dominating in interphase and, TOPBP1/Pol θ comprising a novel,
135 alternative pathway responding to mitotic DSBs.

136

137 **Pol θ repairs mitotic DSBs**

138 In mitosis, while it is well accepted that HR and NHEJ repair activities are
139 inhibited, the activity of alternative pathways remains unaddressed. While there has
140 not been direct evidence of DSB repair in mitosis, recent data suggests that alt-
141 EJ^{28,29} and Pol θ could be active in mitosis³⁰⁻³². To detect DSB repair in mitosis, we

142 took advantage of recent advances in genome editing, allowing the induction of
143 DSBs within minutes after Cas9 protein transfection. Nocodazole-arrested cells were
144 transfected with a Cas9/gRNA complex to induce DSB formation at two different sites
145 in the AAVS1 safe locus, whose mutagenic repair would destroy a nearby HphI
146 restriction site. After DSB induction, a small genomic region around the cut site was
147 PCR amplified and digested by HphI. Finally, undigested PCR products (representing
148 mutagenic repair) were subjected to Sanger sequencing (Fig. 2a and Extended Data
149 Fig. 4a).

150 We observed evidence of mutagenic mitotic DSB repair at both of the two loci
151 tested (Fig. 2b). To rule out contamination from interphase cells, the purity of mitotic
152 samples was confirmed by histone H3 phospho-S10 immunofluorescence (H3pS10)
153 (a specific marker of mitosis) (96-100% purity)(Extended Data Fig. 4b). We next
154 compared mitotic DSB repair to that of asynchronous control cells. We found that
155 repair products obtained from cells in mitosis differed significantly from those in
156 asynchronous cells (more products with deletions > 10 bp associated with the use of
157 microhomology (MH)), further ruling out the hypothesis of a contaminant (Extended
158 Data Fig. 4c-e).

159 Furthermore, we observed a striking difference in mitotic DSB repair between
160 WT and *POLQ* knockout (*POLQ*^{-/-}) cells (Fig. 2b-d and Extended Data Fig. 4f-g,
161 Table 3). The number of repair events was greatly diminished at both loci in *POLQ*^{-/-}
162 cells, indicating that Polθ is required for efficient mitotic DSB repair (Fig. 2b).
163 Previous studies have demonstrated that Polθ-mediated repair uses
164 microhomologies (MHs) and generates deletions of up to 60 bp³³⁻³⁶. Accordingly, we
165 found that, while WT and *POLQ*^{-/-} cells both exhibited repair products with <10 or >50
166 bp deletions, repair products with deletions ranging from 10 to 50 bp were

167 remarkably absent in *POLQ*^{-/-} cells (Fig 2c, d). In addition, we showed that, the use of
168 MH was common in WT cells but greatly diminished in the few repair products
169 detected in *POLQ*^{-/-} cells (Extended Data Fig. 4f). Finally, to assess the contribution
170 of Polθ to mitotic DSB repair in a more quantitative manner, we determined the
171 kinetics of γH2AX foci resolution after IR in mitosis. We found that, while the vast
172 majority of γH2AX foci in WT cells were resolved 5 hours (h) after IR, they persisted
173 in *POLQ*^{-/-} cells (Fig. 2e). Altogether, our results pinpoint Polθ as a major player in
174 mitotic DSB repair. As opposed to it being an alternative repair factor in interphase,
175 we posit that Polθ is the main DSB repair factor in mitosis.

176

177 **Polθ controls mitotic timing**

178 In interphase, DNA damage is accompanied by the activation of checkpoints,
179 halting cell cycle progression, thus allowing time for DNA repair. It has been shown
180 that DSBs in mitosis delay anaphase onset and that ATM and MDC1 can participate
181 in this phenomenon, arguing for the existence of a DNA damage-induced checkpoint
182 in mitosis^{37,38}. Since Polθ is recruited to mitotic DSBs in an ATM- and MDC1-
183 dependent manner, we wondered whether Polθ could be a part of this checkpoint.

184 First, we found that, Polθ is recruited to DSBs localized at regions known to
185 trigger checkpoint activation in mitosis (centromeric regions (CREST-positive) and
186 acentric DNA fragments)^{38,39} (Extended Data Fig. 5a-d). Second, we measured time
187 spent in mitosis as a proxy for mitotic checkpoint activation. Time lapse microscopy
188 revealed that *POLQ*^{-/-} cells spend less time in mitosis than WT counterparts, which
189 can be rescued by complementation with WT Polθ. Altogether, this points towards a
190 role of Polθ in regulating mitotic duration (Fig. 2f and Extended Data Fig. 5e, Videos
191 4-6). In addition, we found that while ATM induced a shortening of mitotic duration,

192 as previously reported³⁸, it did not further impact mitotic duration in *POLQ*^{-/-} cells
193 indicating epistasis between Polθ and ATM in mitotic checkpoint activation (Fig. 2g).
194 Altogether, our data support a role for Polθ in sensing mitotic DSBs to slow down cell
195 cycle progression and allow DNA repair.

196

197 **Polθ is phosphorylated by PLK1 in mitosis**

198 We next sought to elucidate the regulation of mitotic Polθ activity. The mitotic
199 kinases CDK1 and PLK1⁴⁰ restrict DSB repair through the phosphorylation of several
200 NHEJ and HR factors, such as 53BP1 and BRCA2^{3,4,41}. A 53BP1 mutant (T1609A,
201 S1618A), which cannot be phosphorylated by PLK1, escapes negative regulation
202 and forms IR-induced foci in mitosis^{4,39}. Interestingly, we found that, this unrestrained
203 53BP1 foci formation abolished Polθ foci formation in mitosis (Extended Data Fig.
204 6a). This suggests a competition between the two pathways and PLK1 as a mediator
205 of pathway choice. We also observed a colocalization between Polθ and PLK1 foci
206 (Extended Data Fig. 6b). Together, these prompted us to test a potential
207 phosphorylation of Polθ by PLK1 in mitosis.

208 To investigate this, we immunoprecipitated (IP) Polθ and assessed
209 phosphorylation by immunoblot analysis (using pan phospho antibodies). We
210 observed a phosphorylation signal corresponding to the size of Polθ when IP was
211 performed from mitotic cell extracts. In contrast, this signal was completely absent
212 from asynchronous cells, suggesting that Polθ is only phosphorylated in mitosis (Fig.
213 3a and Extended Data Fig. 6c,d). Importantly, this phosphorylation signal was
214 abolished when cells were treated with two different PLK1 inhibitors (PLK1i),
215 indicating that PLK1 is responsible for Polθ phosphorylation in mitosis (Fig. 3a and
216 Extended Data Fig. 6d). Furthermore, *in vitro* incubation of Polθ-

217 immunoprecipitations with purified recombinant PLK1 enzyme in the presence of
218 radioactive ATP confirmed a direct phosphorylation of Polθ by PLK1 (Extended Data
219 Fig. 6e).

220 In order to identify the Polθ residues phosphorylated by PLK1, we performed
221 quantitative mass spectrometry (MS)-based phosphorylation analysis of Polθ in
222 mitosis with or without PLK1i. This analysis found 5 sites phosphorylated by PLK1,
223 including a predicted PLK1 phosphorylation site^{42,43} (Fig. 3b and Table 4). We next
224 applied nuclear magnetic resonance (NMR) spectroscopy to a recombinant peptide
225 (Polθ F1) containing two predicted phosphorylation sites undetectable by MS. NMR
226 analysis of the Polθ fragment purified from *E. coli* identified 5 serines as
227 phosphorylated by PLK1 *in vitro* (Fig. 3c and Extended Data Fig. 6f). The fast kinetics
228 of Polθ phosphorylation observed by NMR suggests that Polθ is a preferential
229 substrate for PLK1 (Fig. 3d). All phosphorylation sites were conserved in evolution,
230 even though they are located within the large, central, non-conserved region of Polθ.
231 This is particularly striking for 4 phosphorylation sites, that are clustered in a region
232 highly conserved within vertebrates, thus indicating a crucial function for these
233 residues (Extended Data Fig. 6g and Table 5).

234

235 **Polθ phosphorylation by PLK1 controls mitotic DSB repair**

236 Next, to assess the functional consequences of Polθ phosphorylation by
237 PLK1, we mutated all serines that are conserved canonical phosphorylation sites,
238 and serines identified by MS and NMR, to alanines and complemented *POLQ*^{-/-} cells
239 with either WT or non-phosphorylatable (PhD) Polθ (Fig. 3e and Table 5). We found
240 that while PhD-Polθ shows no defect in interphase foci formation, it fails be recruited
241 to RS-induced DSBs in mitosis (Fig. 3f and Extended Data Fig. 7a, Video 7).

242 Similarly, PLK1 inhibition prevented Pol θ foci formation in mitosis but not in
243 interphase (Extended Data Fig. 7b,c). In addition, Pol θ filament structures were
244 abolished in PhD-Pol θ expressing cells (Extended Fig. 7d). To evaluate the role of
245 Pol θ phosphorylation on mitotic DSB repair, we determined the kinetics of γ H2AX
246 foci resolution after IR in mitosis in *POLQ*^{-/-} cells complemented with either WT- or
247 PhD-Pol θ . Importantly, expression of WT-Pol θ but not PhD-Pol θ rescued the
248 accumulation of mitotic DSBs observed in *POLQ*^{-/-} cells (Fig. 3g). Altogether, our data
249 shows that PLK1 acts as a positive regulator of mitotic DSB repair by Pol θ , contrary
250 to its inhibitory role of HR and NHEJ.

251 TOPBP1 has 9 BRCT repeats, and several of these repeats interact with
252 phosphorylated peptides⁴⁴. We have shown that, TOPBP1 and Pol θ colocalize
253 perfectly in mitosis, and that, TOPBP1 controls Pol θ recruitment to mitotic DSBs.
254 Furthermore, all identified phosphorylation sites on Pol θ are within a region that is
255 disordered (as predicted by AlphaFold⁴⁵), and thus accessible for mediating protein-
256 protein interactions (Extended Data Fig. 7e). Based on these observations, we
257 speculate that TOPBP1 recruits Pol θ in mitosis, by binding, through its BRCT
258 domains, to phosphorylated residues of Pol θ .

259

260 **Pol θ forms nuclear bodies (NBs) in G1**

261 The persistence of unreplicated DNA can result in the formation of 53BP1
262 nuclear bodies (53BP1 NBs) and micronuclei (MN) in the next G1 phase⁴⁶. 53BP1
263 NBs represent a second opportunity to repair these lesions, in case MiDas proves
264 insufficient. We found that, similarly to 53BP1, Pol θ formed large, replication stress-
265 induced nuclear bodies (Pol θ NBs) and localized to some MN in G1 (Fig. 4a,b and
266 Extended Data Fig. 8a-c). Pol θ NBs were frequently associated with γ H2AX, but
267 poorly co-localized with 53BP1 (Fig. 4a and Extended Data Fig. 8a,b). By following

268 each Pol θ NB from formation to resolution by time lapse microscopy, we found that, in
269 contrast to 53BP1 NBs which are resolved in S phase⁴⁷, Pol θ NBs were resolved in
270 G1 (Extended Data Fig. 8d and Video 8). In addition, *POLQ*^{-/-} cells exhibited elevated
271 levels of 53BP1 NBs, and, conversely, 53BP1 knockdown increased Pol θ NB
272 formation (Extended Data Fig. 8e-h). Taken together, our data suggests that mitotic
273 Pol θ repair and MiDas act as parallel pathways to mitigate replication stress and
274 repair unresolved lesions in mitosis or during the next G1.

275

276 **Pol θ phosphorylation in mitosis is required for genome integrity and HR-
277 deficient cell survival**

278 Finally, we evaluated the importance of Pol θ function in mitosis in maintaining
279 genome integrity and HR-deficient cell survival. To that end, we used the mAID
280 system to deplete Pol θ specifically in mitosis in WT and *BRCA2*^{-/-} cells (Extended
281 Fig. 8i). We found that mitotic Pol θ depletion led to an increased number of
282 unrepaired mitotic DSBs, as measured by γ H2AX foci in mitosis and MN in the next
283 G1 phase (Fig. 4c and Extended Fig. 8j,k). We also found that Pol θ depletion in
284 mitosis killed *BRCA2*^{-/-} without affecting the survival of WT cells (Fig. 4d and
285 Extended Fig. 9a). Taken together, our data highlights the crucial role of mitotic Pol θ
286 repair in maintaining genome integrity and HR-deficient cell survival.

287 Further strengthening this notion, we found that expression of the PhD-Pol θ
288 mutant, which cannot be phosphorylated by PLK1, failed to rescue mitotic defects
289 occurring upon *POLQ* loss. While the expression of WT-Pol θ rescued mitotic DSB
290 accumulation, MN formation and synthetic lethality with *BRCA2* loss, the expression
291 of PhD-Pol θ did not rescue these phenotypes of *POLQ*^{-/-} cells (Fig. 4e-g). When
292 challenged with RS, live microscopy revealed that *POLQ*^{-/-} cells expressing PhD-Pol θ

293 showed an increased frequency of mitotic catastrophe and MN formation, together
294 with an absence of Polθ NBs (Extended Data Fig. 9b-d and Videos 7 and 9). This
295 indicates that PLK1-mediated regulation of mitotic Polθ repair is essential for its
296 proper functioning.

297 Finally, we speculated that Polθ might be acting as part of a larger complex to
298 repair mitotic DSBs. PARP is a known factor in alt-EJ repair that mediates Polθ
299 recruitment to DSBs in interphase⁴⁸. Interestingly, we found that Polθ recruitment to
300 mitotic DSBs was abolished by PARP inhibitor (PARPi) treatment, similarly to what
301 was reported in interphase cells^{18,19} (Extended Data Fig. 9e). One hour of PARPi
302 treatment in mitotic *BRCA2*^{-/-} cells induced the formation of DSBs, chromosomal
303 abnormalities and was sufficient to kill *BRCA2*^{-/-} but not WT cells, similarly to Polθ
304 depletion (Extended Data Fig. 9f-h). Our data suggest that PARP, together with Polθ,
305 enables mitotic DSB repair, a pathway crucial for HRD cell survival.

306 Taken together, this work explains how phosphorylation by the mitotic kinase
307 PLK1 controls DSB repair activity in mitosis. PLK1 phosphorylation restricts the
308 classical DSB repair pathways HR and NHEJ, but our work reveals that it enables
309 mitotic DSB repair by Polθ. In the absence of mitotic Polθ repair, HR-deficient cells
310 experience extreme genomic instability, leading to cell death, thus explaining the
311 synthetic lethal relationship between Polθ and HR (Fig. 4h and Extended Fig. 9i).

312

313 **Abbreviations**

314 Neg., negative. Pos., positive. Noc., Nocodazole. IF., immunofluorescence. Nb.,
315 number.

316

317 **References**

318

319 1. Hustedt, N. & Durocher, D. The control of DNA repair by the cell cycle. *Nat.*
320 *Cell Biol.* **19**, 1–9 (2017).

321 2. Scully, R., Panday, A., Elango, R. & Willis, N. A. *DNA double-strand break*
322 *repair-pathway choice in somatic mammalian cells. Nature Reviews Molecular*
323 *Cell Biology* **20**, 698–714 (Nat Rev Mol Cell Biol, 2019).

324 3. Esashi, F. *et al.* CDK-dependent phosphorylation of BRCA2 as a regulatory
325 mechanism for recombinational repair. *Nat. 2005* **434**, 598–604
326 (2005).

327 4. Orthwein, A. *et al.* Mitosis Inhibits DNA Double-Strand Break Repair to Guard
328 Against Telomere Fusions. *Science* **189**, 189–93 (2014).

329 5. Terasawa, M., Shinohara, A. & Shinohara, M. Canonical Non-Homologous End
330 Joining in Mitosis Induces Genome Instability and Is Suppressed by M-phase-
331 Specific Phosphorylation of XRCC4. *PLoS Genet.* **10**, (2014).

332 6. Yousefzadeh, M. J. & Wood, R. D. DNA polymerase POLQ and cellular
333 defense against DNA damage. **12**, 1–9 (2013).

334 7. Deckbar, D. *et al.* Chromosome breakage after G2 checkpoint release. *J. Cell*
335 *Biol.* **176**, 749–755 (2007).

336 8. Le Beau, M. M. *et al.* Replication of a common fragile site, FRA3B, occurs late
337 in S phase and is delayed further upon induction: Implications for the
338 mechanism of fragile site induction. *Hum. Mol. Genet.* **7**, 755–761 (1998).

339 9. Zeman, M. K. & Cimprich, K. A. *Causes and consequences of replication*
340 *stress. Nature Cell Biology* **16**, 2–9 (Nat Cell Biol, 2014).

341 10. Feng, W. & Jasin, M. BRCA2 suppresses replication stress-induced mitotic and
342 G1 abnormalities through homologous recombination. *Nat. Commun.* **8**, (2017).

343 11. Leimbacher, P. A. *et al.* MDC1 Interacts with TOPBP1 to Maintain
344 Chromosomal Stability during Mitosis. *Mol. Cell* **74**, 571-583.e8 (2019).

345 12. Adam, S. *et al.* The CIP2A-TOPBP1 axis safeguards chromosome stability and
346 is a synthetic lethal target for BRCA-mutated cancer. *Nat. cancer* **2**, 1357–1371
347 (2021).

348 13. Ceccaldi, R., Rondinelli, B. & D'Andrea, A. D. Repair Pathway Choices and
349 Consequences at the Double-Strand Break. *Trends Cell Biol.* **26**, 52–64
350 (2016).

351 14. Schimmel, J. *et al.* Templated Insertions: A Smoking Gun for Polymerase
352 Theta-Mediated End Joining. *Trends Genet.* **35**, 632–644 (2019).

353 15. Chan, S. H., Yu, A. M. & McVey, M. Dual roles for DNA polymerase theta in
354 alternative end-joining repair of double-strand breaks in Drosophila. *PLoS*
355 *Genet.* **6**, e1001005 (2010).

356 16. Roerink, S. F. *et al.* Polymerase theta-mediated end joining of replication-
357 associated DNA breaks in *C. elegans*. *Genome Res.* **24**, 954–62 (2014).

358 17. Yousefzadeh, M. J. *et al.* Mechanism of Suppression of Chromosomal
359 Instability by DNA Polymerase POLQ. *PLoS Genet.* **10**, (2014).

360 18. Ceccaldi, R. *et al.* Homologous-recombination-deficient tumours are dependent
361 on PolQ-mediated repair. *Nature* **518**, 258–262 (2015).

362 19. Mateos-Gomez, P. A. *et al.* Mammalian polymerase θ promotes alternative
363 NHEJ and suppresses recombination. *Nature* **518**, 254–257 (2015).

364 20. Zhou, J. *et al.* A first-in-class polymerase theta inhibitor selectively targets
365 homologous-recombination-deficient tumors. *Nat. Cancer* **2**, 598–610 (2021).

366 21. Zatreanu, D. *et al.* Polθ inhibitors elicit BRCA-gene synthetic lethality and
367 target PARP inhibitor resistance. *Nat. Commun.* **2021** *12*, 1–15 (2021).

368 22. Kais, Z. *et al.* FANCD2 Maintains Fork Stability in BRCA1/2-Deficient Tumors
369 and Promotes Alternative End-Joining DNA Repair. *Cell Rep.* **15**, 2488–2499
370 (2016).

371 23. Mateos-Gomez, P. A. *et al.* The helicase domain of Polθ counteracts RPA to
372 promote alt-NHEJ. *Nat. Struct. Mol. Biol.* **24**, 1116–1123 (2017).

373 24. Carvajal-Garcia, J., Crown, K. N., Ramsden, D. A. & Sekelsky, J. DNA
374 polymerase theta suppresses mitotic crossing over. *PLoS Genet.* **17**, 1–18
375 (2021).

376 25. Minocherhomji, S. *et al.* Replication stress activates DNA repair synthesis in
377 mitosis. *Nature* **528**, 286–290 (2015).

378 26. Giunta, S., Belotserkovskaya, R. & Jackson, S. P. DNA damage signaling in
379 response to double-strand breaks during mitosis. *J. Cell Biol.* **190**, 197–207
380 (2010).

381 27. Heijink, A. M., Krajewska, M. & Van Vugt, M. a T. M. The DNA damage
382 response during mitosis. *Mutat. Res. - Fundam. Mol. Mech. Mutagen.* **750**, 45–
383 55 (2013).

384 28. Peterson, S. E. *et al.* Cdk1 uncouples CtIP-dependent resection and Rad51
385 filament formation during M-phase double-strand break repair. *J. Cell Biol.* **194**,
386 705–720 (2011).

387 29. Wang, H. *et al.* PLK1 targets CtIP to promote microhomology-mediated end
388 joining. *Nucleic Acids Res.* **46**, 10724–10739 (2018).

389 30. Deng, L. *et al.* Mitotic CDK Promotes Replisome Disassembly, Fork Breakage,
390 and Complex DNA Rearrangements. *Mol. Cell* **73**, 915-929.e6 (2019).

391 31. Llorens-Agost, M. *et al.* POLθ-mediated end joining is restricted by RAD52 and
392 BRCA2 until the onset of mitosis. *Nat. Cell Biol.* **23**, 1095–1104 (2021).

393 32. Heijink, A. M. *et al.* Sister chromatid exchanges induced by perturbed
394 replication can form independently of BRCA1, BRCA2 and RAD51. *Nat. Commun.* **13**, (2022).

395 33. Carvajal-Garcia, J. *et al.* Mechanistic basis for microhomology identification
396 and genome scarring by polymerase theta. *Proc. Natl. Acad. Sci. U. S. A.* **117**,
397 8476–8485 (2020).

398 34. Yu, A. M. & McVey, M. Synthesis-dependent microhomology-mediated end
399 joining accounts for multiple types of repair junctions. *Nucleic Acids Res.* **38**,
400 5706–5717 (2010).

401 35. Kent, T., Chandramouly, G., Mcdevitt, S. M., Ozdemir, A. Y. & Pomerantz, R.
402 T. Mechanism of Microhomology-Mediated End-Joining Promoted by Human
403 DNA Polymerase Theta. *Nat Struct Mol Biol* **22**, 230–237 (2015).

404 36. Koole, W. *et al.* A Polymerase Theta-dependent repair pathway suppresses
405 extensive genomic instability at endogenous G4 DNA sites. *Nat. Commun.* **5**,
406 3216 (2014).

407 37. Eun, M. K. & Burke, D. J. DNA damage activates the SAC in an ATM/ATR-
408 dependent manner, independently of the kinetochore. *PLoS Genet.* **4**, 1–9
409 (2008).

410 38. Eliezer, Y., Argaman, L., Kornowski, M., Roniger, M. & Goldberg, M. Interplay
411 between the DNA damage proteins MDC1 and ATM in the regulation of the
412 spindle assembly checkpoint. *J. Biol. Chem.* **289**, 8182–8193 (2014).

413 39. Royou, A., Gagou, M. E., Karess, R. & Sullivan, W. BubR1- and Polo-Coated
414 DNA Tethers Facilitate Poleward Segregation of Acentric Chromatids. *Cell* **140**,
415 235–245 (2010).

416 40. Jallepalli, P. V. & Lengauer, C. Chromosome segregation and cancer: cutting

418 through the mystery. *Nat. Rev. Cancer* **1**, 109–117 (2001).

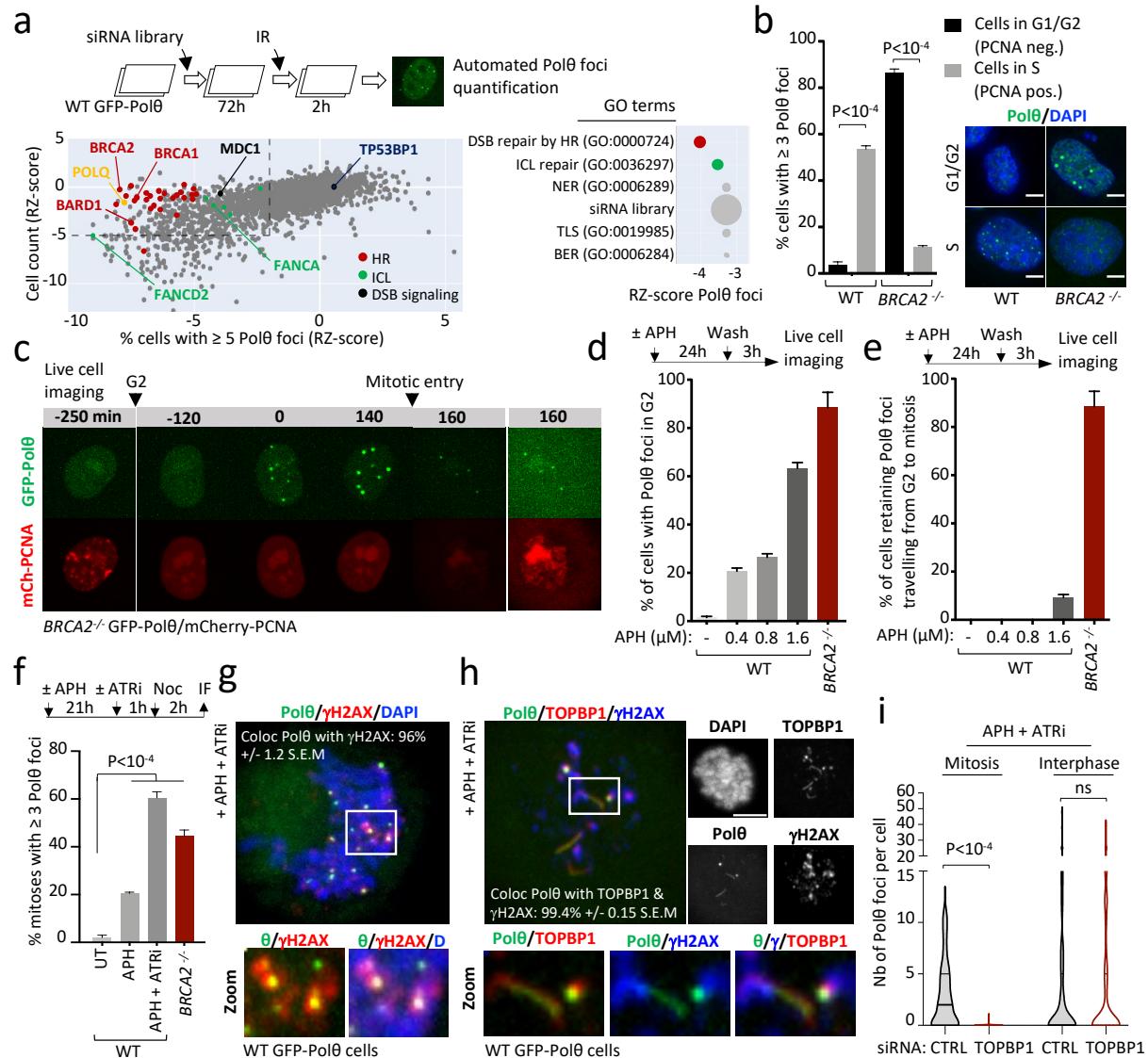
419 41. Lee, D.-H. H. *et al.* Dephosphorylation Enables the Recruitment of 53BP1 to
420 Double-Strand DNA Breaks. *Mol. Cell* **54**, 1–14 (2014).

421 42. Alexander, J. *et al.* Spatial Exclusivity Combined with Positive and Negative
422 Selection of Phosphorylation Motifs Is the Basis for Context-Dependent Mitotic
423 Signaling. *Sci. Signal.* **4**, ra42 (2011).

424 43. Kettenbach, A. N. *et al.* Rapid Determination of Multiple Linear Kinase
425 Substrate Motifs by Mass Spectrometry. *Chem. Biol.* **19**, 608–618 (2012).

426 44. Wardlaw, C. P., Carr, A. M. & Oliver, A. W. TopBP1: A BRCT-scaffold protein
427 functioning in multiple cellular pathways. *DNA Repair (Amst.)* **22**, 165–174
428 (2014).

429 45. Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold.
430 *Nat. 2021* **5967873** **596**, 583–589 (2021).

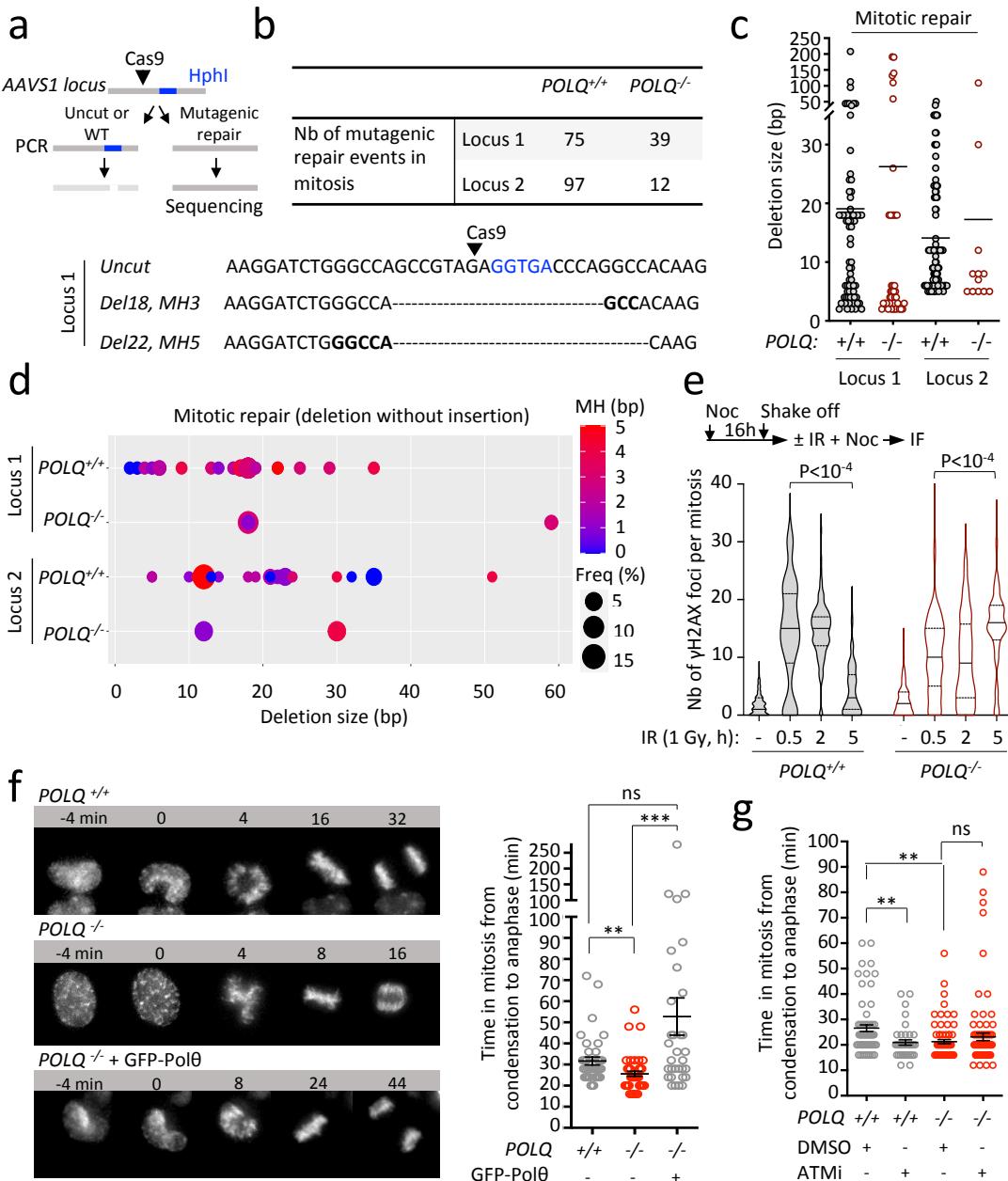

431 46. Lukas, C. *et al.* 53BP1 nuclear bodies form around DNA lesions generated by
432 mitotic transmission of chromosomes under replication stress. *Nat. Cell Biol.*
433 **13**, 243–53 (2011).

434 47. Spies, J. *et al.* 53BP1 nuclear bodies enforce replication timing at under-
435 replicated DNA to limit heritable DNA damage. *Nat. Cell Biol.* **2019** **21**,
436 487–497 (2019).

437 48. Audebert, M., Salles, B. & Calsou, P. Involvement of poly(ADP-ribose)
438 polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA
439 double-strand breaks rejoining. *J. Biol. Chem.* **279**, 55117–26 (2004).

440

441

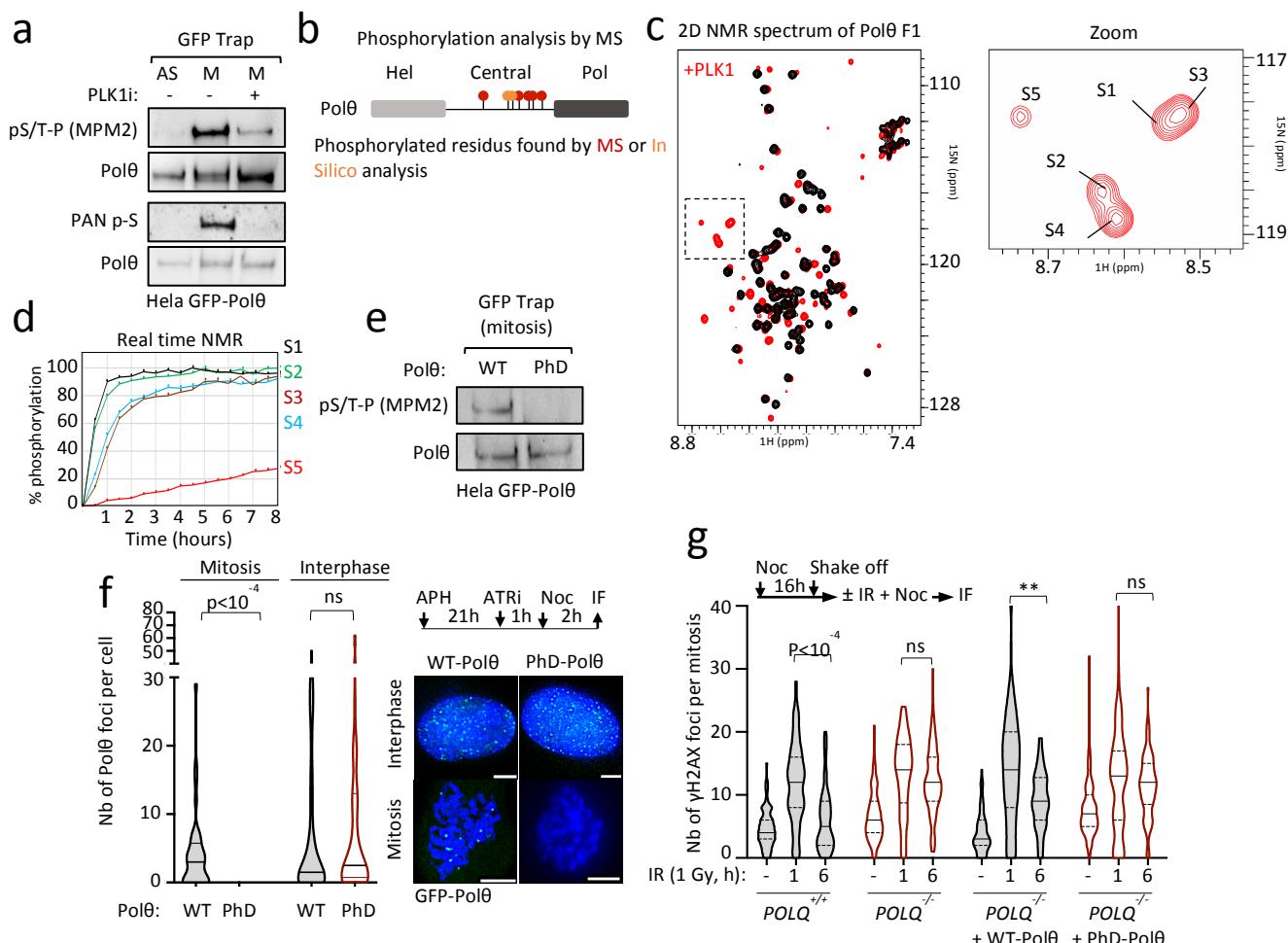


442

443 **Figure 1. Polθ has HR-dependent and -independent functions in different cell**
 444 **cycle phases. a, siRNA screen for IR-induced Polθ foci formation. Schematic of the**
 445 **screen is shown on top. siRNAs against indicated targets were plotted as Robust Z-**
 446 **score (RZ-score) according to cell survival (y axis) and Polθ foci formation (x axis).**
 447 **For each siRNA, median RZ-score of each of the three replicate experiments is**
 448 **shown. Arrows show the strongest RZ-score of indicated gene. Enriched GO terms of**
 449 **biological processes, identified among all targets are shown on the right. HR =**
 450 **Homologous Recombination, ICL = Interstrand Crosslink repair, NER = Nucleotide**
 451 **Excision Repair, TLS = Translesion Synthesis and BER = Base Excision Repair. b,**

452 Cell cycle distribution of Polθ foci in wild-type (WT) and *BRCA2*^{-/-} cells. **c**,
453 Representative images of live microscopy analysis of *BRCA2*^{-/-} cells expressing GFP-
454 Polθ and mCherry-PCNA. (n > 200 cells per condition). **d**, Quantification of Polθ foci
455 in G2 in WT and *BRCA2*^{-/-} cells upon indicated doses of aphidicolin (APH).
456 Schematic of the experiment is shown on top. (n > 75 cells per condition). **e**,
457 Quantification of cells retaining Polθ foci while travelling from G2 to mitosis. **f**,
458 Quantification of Polθ foci in mitotic cells upon indicated treatment (APH: 0.4 μ M, 24
459 h). **g, h**, Representative images, and quantification of Polθ foci (g) and filaments (h)
460 colocalization with γ H2AX and TOPBP1 in mitosis. **i**, Quantification of Polθ foci
461 formation upon indicated treatment in interphase or mitotic cells. (n > 50 mitotic cells
462 and > 100 interphase cells per condition). Scale bars represent 5 μ m. Data represent
463 at least three biological replicates. Data show mean +/- S.E.M., except violin plots (i)
464 showing median with quartiles. Asterisks indicate statistically significant values (*P
465 <0.05; **P <10⁻², ***P <10⁻³).

466

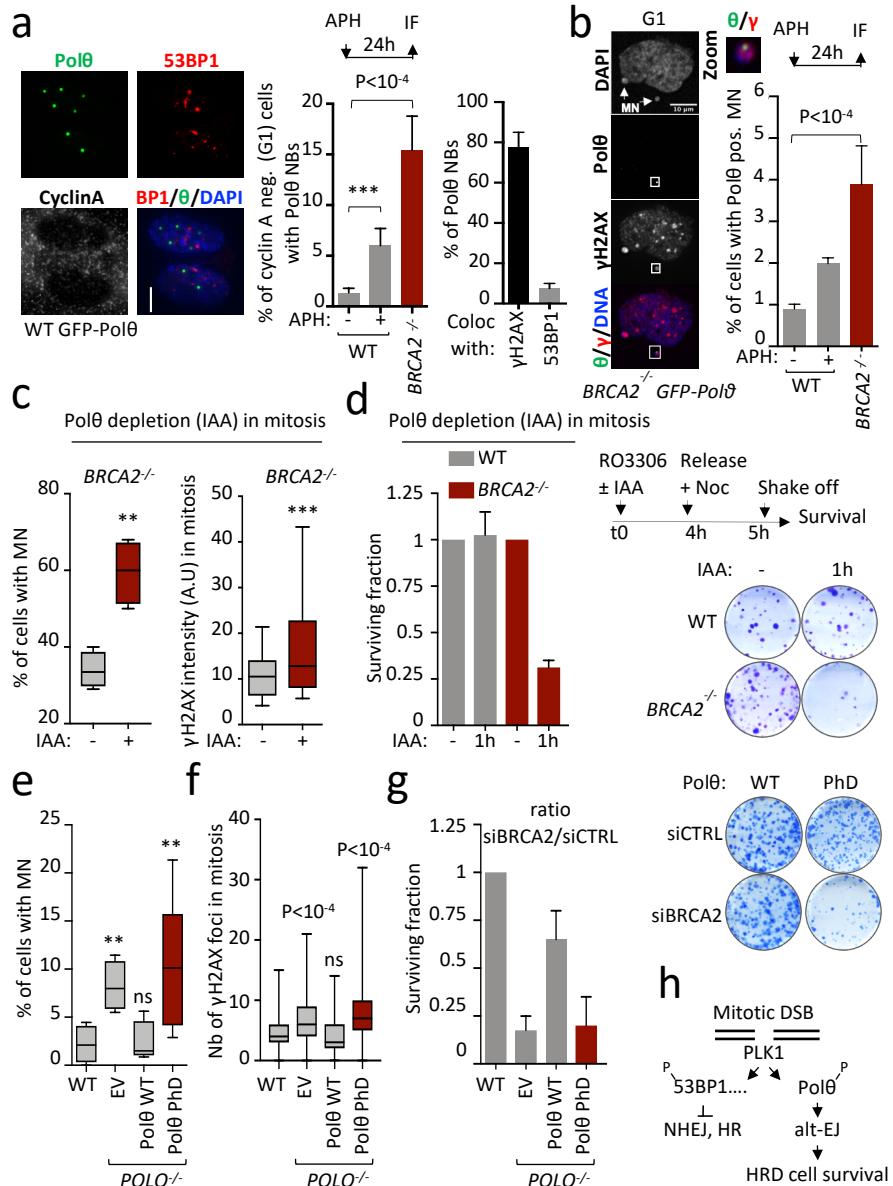

467

468 **Figure 2. Polθ repairs DSBs in mitosis and controls mitotic timing. a,**
469 Experimental workflow. **b**, Table recording the total number of mitotic DNA repair
470 events identified following CRISPR-Cas9 induced-cleavage in indicated cell lines.
471 Representative repaired DNA sequences. Deletions (Del) and microhomologies (MH)
472 size are indicated. At repair junction, MH are indicated in bold and Hph1 recognition
473 site in blue letters. **c**, Deletion size of mitotic DNA repair events identified in WT and
474 *POLQ*^{-/-} cells. Each dot represents a mitotic DNA repair event. **d**, Graph showing the
475 frequency, deletion size and microhomology (MHS) use of mitotic DNA repair events

476 identified in WT and *POLQ*^{-/-} cells. Events with deletions size < 60 bp are
477 represented. **e**, Quantification of γ H2AX foci at different time points after radiation (1
478 Gy) in mitosis. (n > 80 mitotic cells per condition). **f, g**, Representative images and
479 quantification of mitotic duration in indicated cell lines labeled with SiR-DNA and
480 treated with the ATM inhibitor (ATMi) when indicated. (n > 40 mitotic cells per
481 condition). Scale bars represent 5 μ m. Data represent at least three biological
482 replicates. Data show mean +/- S.E.M., except violin plots (e) showing median with
483 quartiles. Asterisks indicate statistically significant values (*P <0.05; **P <10⁻², ***P
484 <10⁻³).

485

486



487

Figure 3. Polθ is phosphorylated by PLK1 in mitosis. **a**, Immunoblot analyses following immunoprecipitations of Polθ-GFP from asynchronous (AS) and mitotic cells. **b**, Scheme depicting PLK1 phosphorylation sites on Polθ identified by quantitative mass spectrometry (red) and *in silico* analysis (orange). **c**, Superposition of the 2D NMR ^1H - ^{15}N SO-FAST HMQC spectra recorded on an ^{15}N , ^{13}C labeled Polθ fragment (Polθ F1), before (black) and after (red) incubation with PLK1. A zoom shows the spectral region containing the NMR signals of phosphorylated residues. **d**, Phosphorylation kinetics, as monitored by real-time NMR. Intensities of the NMR peaks corresponding to phosphorylated residues shown in (c) were measured on a series of SO-FAST HMQC spectra recorded on the Polθ fragment incubated with PLK1 and plotted as a function of time. **e**, Immunoblot analyses following

499 immunoprecipitation of WT- or PhD-Polθ from mitotic cells. **f**, Representative images
500 and quantification of Polθ foci in cells expressing WT- or PhD-Polθ. **g**, Quantification
501 of γH2AX foci at indicated time points after radiation (1 Gy) in mitosis in indicated cell
502 lines. Scale bars represent 5 μm. Data (f, g) represent at least three biological
503 replicates. Data show mean +/- S.E.M., except violin plots (g, i) showing median with
504 quartiles. Asterisks indicate statistically significant values (*P <0.05; **P <10⁻², ***P
505 <10⁻³).

506

507

508 **Figure 4. Polθ function in mitosis maintains genome stability and HR-deficient**
 509 **cell survival.** **a**, Representative images and quantification of Polθ nuclear bodies
 510 (Polθ NBs) in cyclin A-negative (G1) cells. Colocalization of Polθ NBs with indicated
 511 proteins. **b**, Representative images and quantification of Polθ positive micronuclei
 512 (MN). **c**, Quantification of micronuclei (MN) and γH2AX intensity upon Polθ depletion
 513 in mitosis. Polθ depletion is achieved by indole-3-acetic acid (IAA) treatment
 514 (degron). **d**, Experimental workflow, representative images and quantification of 14-
 515 days clonogenic survival assays upon depletion of Polθ (IAA treatment) in mitosis. **e**,

516 **f, g**, Quantification of micronuclei (MN) (e), γ H2AX foci (f), and cell survival in *POLQ*^{-/-}
517 cells complemented with WT- or PhD-Pol θ . **h**, Model for function of Pol θ in mitosis.
518 Scale bars represent 5 μ m. Data represent at least three biological replicates. Data
519 show mean +/- S.E.M., except box plots (c, e, f) showing median with minimum and
520 maximum values. Asterisks indicate statistically significant values (*P <0.05; **P <10⁻², ***P <10⁻³).
521

522