

1 A syntelog-based pan-genome provides insights into rice 2 domestication and de-domestication

3 Dongya Wu,^{1,2,3,#} Lingjuan Xie,^{2,#} Yanqing Sun,² Yujie Huang,^{2,4} Lei Jia,² Chenfeng
4 Dong,² Enhui Shen,^{1,2} Chu-Yu Ye,^{1,2} Qian Qian,^{4,*} Longjiang Fan^{1,2,*}

5 ¹ Hainan Institute of Zhejiang University, Sanya 572025, China

6 ² Institute of Crop Science, Zhejiang University, Hangzhou 310058, China

7 ³ Center for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou,
8 310058, China

9 ⁴ State Key Laboratory of Rice Biology, China National Rice Research Institute,
10 Hangzhou 310006, China

11 * Correspondence:

12 Qian Qian (qianqian188@hotmail.com); Longjiang Fan (fanlj@zju.edu.cn)

13 #these authors contribute equally.

14 **Abstract**

15 Asian rice is one of the world's most widely cultivated crops. Large-scale
16 resequencing analyses have been undertaken to explore the domestication and
17 de-domestication genomic history of Asian rice, but the evolution of rice is still under
18 debate. Here, we construct a syntelog-based rice pan-genome by integrating and
19 merging 74 high-accuracy genomes based on long-read sequencing, encompassing all
20 ecotypes and taxa of *Oryza sativa* and *Oryza rufipogon*. Analyses of syntelog groups
21 illustrate subspecies divergence in gene presence-and-absence and haplotype
22 composition and identify massive genomic regions putatively introgressed from
23 ancient *Geng/japonica* to ancient *Xian/indica* or its wild ancestor, including almost all
24 well-known domestication genes and a 4.5-Mb centromere-spanning block,
25 supporting a single domestication event in rice. Genomic comparisons between weedy
26 and cultivated rice highlight the contribution from wild introgression to the
27 emergence of de-domestication syndromes in weedy rice. This work highlights the
28 significance of inter-taxa introgression in shaping diversification and divergence in
29 rice evolution and provides an exploratory attempt by utilizing the advantages of
30 pan-genomes in evolutionary studies.

31 **Key words**

32 Rice pan-genome; syntelog; domestication; de-domestication; introgression

33 **Introduction**

34

35 As one of the most important calorie sources, Asian rice (*Oryza sativa*), which is
36 considered to be domesticated from its wild progenitor (*Oryza rufipogon*), is widely
37 grown worldwide. Despite its indispensable roles in food supply and fundamental
38 studies about plant biology, the origination, domestication, and subsequent
39 diversification of rice have been under debate for decades, although a considerable
40 amount of archaeological and genetic evidence has been proposed to infer the
41 evolutionary trajectory of rice (Molina et al., 2011; Huang et al., 2012; Civán et al.,
42 2015; Gross and Zhao, 2014; Choi et al., 2017; Carpentier et al., 2019; Zhang et al.,
43 2021). Multiple taxa or groups in classification, recurrent artificial hybridization
44 during breeding, long-distance dispersal by global trade and other factors have
45 hindered our understanding of rice evolution. The most disputed issue is whether
46 domestication events have happened only once or independently multiple times.
47 Regardless, many domestication- and improvement-related genes have been identified
48 to underlie domestication syndromes, such as plant architecture (*Prog1*), grain
49 shattering (*sh4*), awn length (*An-1* and *LABA1*), pericarp color (*Rc*) and dormancy
50 (*Sdr4*) (Chen et al., 2019). Recently, the issue of rice feralization or de-domestication
51 has attracted great attention in both agricultural production and basic biology because
52 the de-domesticated ecotype of rice (weedy rice, *Oryza sativa* ssp. *spontanea*) has
53 severely threatened rice yield and quality as a commonly seen weed in paddy fields.
54 The genetic resources of weedy rice also show potential for use in enhancing abiotic
55 stress adaptation in rice breeding (Sun et al., 2022). How atavism occurs in rice is an
56 intriguing biological question that has further extended and complicated the
57 evolutionary history of rice (Wu et al., 2021). Previous studies have suggested that the
58 genomes of weedy rice were mostly derived from local cultivated rice by recurrent
59 and independent de-domestication events and that genetic introgression from wild rice
60 may have contributed to weediness (Song et al., 2014; Li et al., 2017; Qiu et al., 2017;
61 Sun et al., 2019; Qiu et al., 2020).

62

63 Pan-genomic studies have been conducted in a wide range of crops, including rice
64 (Zhao et al., 2018; Wang et al., 2018b; Qin et al., 2021; Zhou et al., 2020; Zhang et al.,
65 2022; Shang et al., 2022). By comparing *de novo* assemblies, large SVs have been
66 discovered, underlying important traits that could not be explained by small-scale
67 variations. How to utilize pan-genomes in evolutionary studies has been relatively
68 little explored. Here, we integrate high-accuracy rice genomes covering all ecotypes
69 and taxa and high-depth resequenced genomes of wild rice to revisit the origin,
70 domestication, diversification and de-domestication processes of rice based on a
71 syntelog-based pangenome. Whole-genome mosaic haplotype maps intuitively reveal
72 massive introgression footprints of domesticated genomic blocks from the proto-GJ
73 (initial domesticates of subspecies *Geng/japonica*) to XI (subspecies *Xian/indica*)
74 ancestor, strongly supporting the hypothesis of single domestication in rice. Structural
75 variations between weedy and cultivated rice indicate that the introgression events
76 from wild progenitors to different cultivated rice groups probably underlie the parallel

77 convergence in weedy traits (e.g. pericarp and hull color). Briefly, our study
78 comprehensively investigates the complex relationship among different rice taxa and
79 ecotypes from a pan-genome view and highlights the significance of genomic
80 introgression in both rice domestication and de-domestication.

81

82

83 **Results**

84

85 **High-quality rice genome assemblies**

86

87 To fully capture the genomic diversity and dynamics in rice domestication,
88 improvement and further feralization, we created a panel of high-quality rice genome
89 assemblies, including newly generated assemblies of 11 weedy and one cultivated
90 accession, using PacBio HiFi mode with an average sequencing depth of 32.4×.
91 Contigs were anchored on chromosomes using a reference-guided approach, and Hi-C
92 interaction confirmed the order and orientation accuracy for four accessions
93 ([Supplementary Fig. 1](#)). The average contig N50 of the newly assembled genomes
94 was 19.16 Mb (from 10.95 Mb to 30.43 Mb), and the LAI score was on average 21.71
95 (from 20.2 to 23.9), equivalent to those of previous assemblies using PacBio CLR
96 mode or Nanopore sequencing ([Supplementary Fig. 2a](#)). Averagely, 97.32% of the
97 4896 core conserved Poales genes (BUSCO) were assembled ([Supplementary Table](#)
98 [1](#)). The whole-genome synteny against the reference assembly Nipponbare and
99 gapless assembly MH63RS3 (Song et al., 2021) suggested high completeness
100 ([Supplementary Fig. 3](#)).

101

102 Before adopting more assemblies into the construction of the rice pan-genome, we
103 systematically evaluated the base-level accuracy and assembly completeness on rice
104 genomes, including recently released assemblies (Qin et al., 2021; Zhou et al., 2020;
105 Zhang et al., 2022). The *k*-mer-based assembly validation results revealed higher
106 assembly consensus quality values (QVs) for HiFi assemblies generated in this study
107 (average QV = 44.16) than those for previous assemblies ([Fig. 1a; Supplementary Fig.](#)
108 [4a](#)). We quantified the assembly accuracy by calling homozygous single nucleotide
109 polymorphisms (SNPs) and short insertions and deletions (InDels) by mapping
110 available NGS reads for each accession against its own assembly. At the single-base
111 level, averagely the HiFi assemblies showed fewer errors than the PacBio CLR mode
112 and Nanopore sequencing ([Fig. 1a; Supplementary Fig. 4b](#)). In terms of InDels, HiFi
113 assemblies showed no obvious differences from CLR mode assemblies, but there
114 were fewer InDels in HiFi than in Nanopore assemblies. The annotation of the
115 potential assembly errors for each accession suggested high (stop loss and gain, start
116 loss, and frame-shift variants) and moderate effects (inframe insertion/deletion and
117 missense variants) in the predicted gene models ([Supplementary Fig. 4b](#)). The low
118 assembly quality at the base level directly interferes with the accuracy of haplotype
119 inference, especially for Nanopore-based assemblies despite further polishing using
120 short reads; thus, the recently released Nanopore-based assemblies of cultivated rice

121 were excluded. Given that the available assemblies for wild rice using PacBio
122 sequencing were only for W2014 (Ma et al., 2020) and IRGC106162 (Xie et al.,
123 2020), nine Nanopore-based wild assemblies (Shang et al., 2022) were adopted.
124 Finally, 11 wild, 51 cultivated and 12 weedy rice assemblies were used in the
125 following pan-genomic analysis ([Supplementary Table 1](#)).
126 Phylogeny based on 11.6 million whole-genome SNPs of the 74 genomes revealed
127 four *aromatic* (aro), four tropical (trp), two subtropical (subtrp) and 13 temperate (tmp)
128 accessions in the GJ subspecies ($n = 23$ in total) and four *aus*, three XI2, seven XI3,
129 ten XI1A and 16 XI1B accessions in the XI subspecies ($n = 40$) ([Fig. 1b](#)).
130 Whole-genomic features, e.g., genome size, number of annotated genes, and
131 transposon element size and proportion, were significantly differentiated between XI
132 and GJ ([Supplementary Fig. 2b](#)). The wild population includes two accessions from
133 Or-3 (generally considered to be the ancestral group of GJ), four from Or-2, three
134 from Or-1 (ancestral group of XI), and two from Or-4 ([Fig. 1b](#)). The
135 representativeness of the 74 genomes regarding diversity was validated by a kinship
136 analysis using a global panel of approximately seven thousand rice accessions
137 ([Supplementary Fig. 5](#)), suggesting that the rice genomes used have covered all major
138 taxa and all ecotypes. This provides a good opportunity to revisit the evolutionary
139 trajectory of rice from a pan-genome view.

140

141

142 Syntelog-based pan-genome of rice

143

144 Compared to variation maps obtained by mapping whole-genome resequencing short
145 reads against one reference genome, *de novo* assemblies provide accurate and
146 complete haplotype-resolved genetic and predicted protein sequences as well as
147 genomic coordinates along chromosomes. To incorporate positional information, we
148 constructed a synteny-based pan-genome by clustering approximately 3.10 million
149 genes from the 74 rice genomes with SynPan ([see Methods](#)). Pairwise alignments for
150 each pair of genomes were performed first to identify inter-individual syntelogs
151 (syntenic orthologs) and merged together. Compared to the fast aligner Diamond
152 (Buchfink et al., 2021), which is designed for high-performance analysis of big
153 sequence data, pairwise alignment using BLASTP identified more syntelogs between
154 two genomes, with an average addition of 669.1 pairs per genome alignment
155 ([Supplementary Fig. 6](#)). Therefore, the syntelog datasets based on the BLASTP
156 approach were used in the pan-genome construction.

157

158 First, a coalescence-free kinship was built based on pairwise whole-genome synteny
159 ([Fig. 1b](#)). Generally, the affinity measured by whole-genome synteny among
160 accessions is linearly correlated with that using identity-by-descent (Pearson's
161 correlation = 0.886, P value < 2.2e-16) ([Fig. 1c](#)). For GJ groups (aro, trp, subtrp and
162 tmp), each group showed a closer relationship to the other GJ groups, and Or-3 was
163 the closest wild-type group. For XI groups, *aus* exhibited apparent differences from
164 the other XI groups (XI2, XI3, XI1A and XI1B) in genomic arrangements ([Fig. 1b](#)).

165 Although *aus* is sister to other XI groups and nested within wild group Or-1 in the
166 phylogenetic tree (Fig. 1b), the kinship between *aus* and Or-1 measured by synteny
167 was distant and even larger than that between *aus* and Or-4 (the basal wild outgroup),
168 which implied that the wild ancestor of *aus* is distinct from that of the other XI groups
169 (Supplementary Fig. 7a). Notably, some XI accessions suggested closer affinity with
170 GJ, which reflected the inter-subspecies hybridization in modern breeding (e.g., Y58S
171 and its offspring J4115) (Fig. 1b; Supplementary Fig. 7b). Y58S is an XI-type
172 photothermosensitive genic-male-sterile (PTGMS) line with the characteristics of
173 high-light-efficiency use and disease and stress resistance, and it is widely used for
174 the breeding of two-line hybrid rice varieties, especially super hybrids. The GJ
175 accession Lemont is one of the parental lines used in the breeding of Y58S (China
176 Rice Data Center, <https://ricedata.cn/>).

177

178 Based on whole-genome synteny, 175,528 syntelog groups (SGs) were clustered, with
179 13,908 core (present in the genomes of all accessions), 14,423 soft-core (present in
180 the genomes of >90% accessions), 62,425 dispensable (present in the genomes of less
181 than 90% of all but at least two accessions) and 84,772 private SGs (only present in a
182 single genome) (Fig. 2a; Supplementary Fig. 8a). The SG size is 1.62 times larger
183 than the number of orthogroups or ortholog groups (OGs) clustered by the Markov
184 clustering (MCL) algorithm ($n = 67,080$ when the inflation parameter is 1.5, including
185 15,749 core, 11,725 soft-core, 18,901 dispensable and 20,705 private OGs). Even
186 though the inflation parameter was set as 2.5, the OG size increased to $n = 72,226$,
187 which included only 41.1% of the SG size (Supplementary Fig. 9). In a perfect
188 ortholog group, one gene from one genome is expected, despite individual-specific
189 duplication. The MCL method does not perform well in distinguishing paralogs
190 against orthologs, especially in the core and soft-core groups (Supplementary Fig. 8b).
191 By taking advantage of the genomic coordinates of genes in assemblies, the SGs
192 provide a more precise and accurate ortholog classification.

193

194 Approximately 34.5%, 34.9%, 27.7% and 2.8% of genes were assigned to core,
195 soft-core, dispensable and private SGs, respectively (Supplementary Fig. 10a). Protein
196 domains could be identified using InterProScan (Jones et al., 2014) in a total of 81.5%
197 and 68.9% of core and soft-core genes, which is nearly twice as high as 36.9% and
198 28.7% for dispensable and private genes, respectively (Supplementary Fig. 10b).
199 Protein domain gain-and-loss variation was found within a single SG, indicating
200 functional diversification in rice evolution. In total, 1.10% of core genes from 14.1%
201 of core SGs suggested domain gain-and-loss, and these percentages were lower than
202 those for soft-core and dispensable types (2.0% of soft-core genes in 19.5% of
203 soft-core SGs and 5.0% of dispensable genes in 18.9% of dispensable SGs)
204 (Supplementary Fig. 10c). For example, two adjacent genes, *Sam* and *SaF*, encode a
205 ubiquitin-like modifier E3 ligase-like protein and an F-box protein, respectively, and
206 their interactions are responsible for XI-GJ hybrid male sterility (Long et al., 2008).
207 The SGs of *Sam* and *SaF* were both soft-core genes present in 68 and 72 genomes,
208 respectively. The domains of all *SaF* syntelogs are completely annotated, while the

209 domains of 29 syntelogs from *SaM* SG were not found, which suggested the dynamics
210 domain gain-and-loss in conserved SGs.

211
212 Only 49.5% ($n = 86,974$) and 61.3% ($n = 107,565$) of SGs were present in the GJ and
213 XI subspecies, respectively, indicating the large genomic diversity of wild accessions
214 and genetic bottlenecks due to artificial selection or genetic drift (Fig. 2a). In total,
215 4,662 SGs showed presence-and-absence (PAV) frequency biases between GJ and XI,
216 with a frequency difference greater than 0.6, including 1,918 SGs absent from the
217 reference genome Nipponbare. For example, the key genes in a casbene-derived
218 diterpenoid biosynthetic gene cluster DGC7 on chromosome 7 suggested differential
219 PAVs between GJ and XI, where *CYP71Z21*, *TPS28* and *CYP71Z2* were almost
220 absent in XI but fixed in GJ (Fig. 2b), which may be related to the differential
221 responses of subspecies to biotic stress (Zhan et al., 2020). *RePRP1* and *RePRP2* are
222 functionally redundant suppressors of root cell expansion (Tseng et al., 2013). Both
223 *RePRP1* and *RePRP2* were present in GJ accessions, while only *RePRP2* was found
224 in most XI and wild accessions, which implied that the copies of RePRP genes may
225 underlie the differential root development in different subspecies (Fig. 2b).

226

227

228 **Rice pan-NLRome**

229

230 Pan-genomes provide an opportunity to uncover the diversity of highly variable gene
231 families, such as those encoding nucleotide-binding leucine-rich repeat (NLR)
232 proteins related to disease resistance, across species (so-called pan-NLRome). A total
233 of 37,079 NLR genes in 74 rice genomes were identified, ranging from 452 (W2014
234 from wild group Or-4) to 532 (FH838 from group XI1B) NLRs per genome. Distinct
235 from the NLR composition in the *Arabidopsis thaliana* pan-NLRome, no TIR-NLR
236 (TNL) genes were found in the rice genomes. Rice NLRs were categorized into three
237 types: CNL (including CC-NB-LRR or CC-NB), NL (including NB-LRR or NBS)
238 and null (NLR genes identified by syntelogs whose encoding proteins contain no
239 canonical NBS domain). The sizes of NLRs in cultivated and weedy genomes were
240 both significantly larger than those in the wild group ($P = 2.8e-5$ and $4.3e-5$, Student's
241 *t* test) (Supplementary Fig. 11a), which could be the consequence of
242 disease-resistance gene aggregation during domestication and improvement. However,
243 the relatively low assembly quality of the wild genomes may also be related to this
244 difference, considering that the completeness of assemblies was significantly
245 correlated with the NLR size (Pearson's correlation = 0.53, *P* value = 9.7e-7)
246 (Supplementary Fig. 11d). At the subspecies level, although NLR gene numbers were
247 similar between XI and GJ, the XI genomes contained more NLs than those in GJ (P
248 = 4.3e-10, Student's *t* test), and GJ had more CNLs ($P = 3.6e-6$, Student's *t* test)
249 (Supplementary Fig. 11b). Null NLRs without canonical NBS domains were more
250 abundant in GJ than in XI ($P = 1.6e-10$, Student's *t* test), implying that more NLRs in
251 GJ may degenerate functionally by losing domains (Supplementary Fig. 11b).

252

253 Adopting the definition by Wang et al. (2019) of an NLR cluster containing more than
254 two NLR genes distributed within a 300-kb genomic region, 43.2%-59.9% of NLR
255 genes in rice were located in such clusters, where GJ showed more clusters in both
256 numbers and proportions across all NLRs than XI ([Supplementary Fig. 11c](#)).
257 Head-to-head pairing of NLR genes is highly associated with disease resistance in
258 plants, with one NLR acting in effector recognition (known as a sensor) and the other
259 acting in signaling activation (known as a helper). We found 28 to 54 such paired
260 NLRs per genome. A total of 6,008 NLRs encoded at least one non-canonical NLR
261 domain (NBS, LRR and CC), also known as the integrated domain (ID), representing
262 116 distinct Pfam domains and 16.2% of the total NLRs, which was much higher than
263 that in *Arabidopsis thaliana* (5.0%). We identified 480 distinct architectures in the
264 pan-NLRome, of which only 67 were found in the Nipponbare reference genome
265 (IRGSP v1.0). Fewer than 3% of architectures, 12, correspond only to different
266 configurations of the canonical CC, NBS and LRR domains, even though they
267 accounted for the majority (83.8%) of NLRs.
268

269 As expected, the haplotype diversity of NLR SGs was significantly higher than that of
270 non-NLR SGs ([Fig. 2c](#)). In total, 0.64% ($n = 238$) of all NLRs were present in only
271 one accession, representing 238 private SGs, while the remaining 10,878 (29.3%),
272 14,760 (39.8%) and 11,203 (30.2%) NLRs grouped into 147 core, 208 soft-core and
273 407 dispensable SGs, respectively. Although the NLR syntelogs among individuals
274 were well defined by genome synteny, within a single SG, the functional types (CNL,
275 NL or null) and structural types (e.g., in clusters or pairs) were diversified,
276 particularly for the core NLR SGs ([Supplementary Fig. 12a](#)). Nucleotide diversity for
277 NLRs in core and soft-core SGs was lower than that in dispensable SGs but was not
278 significant. Tajima's D values, which indicate balancing and purifying selection,
279 showed no significant differences across different NLR classes, with all classes
280 containing extremes in both directions ([Supplementary Fig. 12b](#)).
281
282

283 Rice origin based on the mosaic genomic map of syntelog haplotypes

284

285 Although whole-genome single nucleotide variants provide a comprehensive variation
286 landscape in genome evolution, millions of markers could be somewhat redundant
287 because of synonymous mutations. Here, we used the predicted amino acid sequences
288 of genes to dissect the genomic ancestry of each gene in all rice genomes, given that
289 the protein sequences function directly and are degenerated with high tolerance to
290 synonymous mutations. Haplotypes were first assigned for each of the 49,438 SGs
291 whose syntelog members were present in at least ten genomes. The haplotype
292 complexity for each SG based on protein sequences was highly reduced compared
293 with those using full-length gene sequences and coding sequences, as indicated by
294 haplotype diversity (the average haplotype differences between any two members
295 from a single SG), haplotype N100 (total number of unique haplotype sequences) and
296 N90 (the least haplotype number that needs to be included for covering 90% of

297 sequences in an SG) ([Supplementary Fig. 13a](#); [Supplementary Fig. 14a](#)). The
298 haplotype number and diversity were higher for core and soft-core SGs than
299 dispensable SGs. On average, 11.2 haplotypes were found for each SG, where
300 haplotype numbers for core ($n = 12.0$) and soft-core SGs ($n = 12.8$) were higher than
301 that for dispensable SGs ($n = 9.5$). Specifically, 147 core SGs were extremely
302 conserved with the fully identical protein sequences of housekeeping genes involved
303 in fundamental biological processes, such as *LEA5* in late embryogenesis (He et al.,
304 2012), *eIF-4A* and *Os-eIF6;1* in translation initiation (Kato et al., 2010), *OsFd1* in
305 photosynthesis (He et al., 2020) and *OsAtg8* in autophagy (Izumi et al., 2015). As
306 expected, the haplotype diversity of XI was significantly higher than that of GJ, with
307 average haplotype diversity values of 0.578, 0.362 and 0.441 for all rice accessions,
308 GJ and XI, respectively ([Supplementary Fig. 13b](#)).

309
310 Using a semi-supervised approach, haplotypes were reassigned by comparing their
311 abundance in different groups for each SG, labeled as hapI to hapV, hapR (all other
312 rare haplotypes) and absence (represented by red, blue, orange, yellow, green, dark
313 gray and light gray blocks in [Fig. 3a](#) and [Supplementary Fig. 15](#)) to represent the
314 ancestral sources of rice haplotypes ([Supplementary Fig. 13b](#)). Apparently, the
315 whole-genome haplotype maps visually reflected the shared haploblocks at the
316 individual and group levels. For example, mosaic genomes of SN265, DHX2 and
317 02428 from the GJ tmp group and Y58S, J4115 and FH838 from the XI1B group
318 suggested large introgressed regions from the other subspecies ([Fig. 3a](#);
319 [Supplementary Fig. 15](#)). Haplotypes in two Mb-level genomic regions at the head of
320 chromosomes 6 and 7 showed that only XI1B in XI groups was shared with GJ, which
321 was consistent with the fact that group XI1B was mainly composed of modern
322 cultivars that were frequently bred by utilizing genetic resources from other
323 subspecies ([Supplementary Fig. 15](#)).
324

325 As observed from the mosaic genomic map, *aus* showed obvious differences from the
326 other XI groups; thus, the *aus* group was excluded from XI in the following analyses
327 ([Fig. 3](#); [Supplementary Fig. 15](#)). We used inter-subspecies diversity to quantify
328 haplotype divergence (HDG) between GJ and XI ([Supplementary Fig. 13a](#)). The
329 average haplotype divergence between GJ and XI was 0.667, and 46.0% of SGs ($n =$
330 22,745) suggested high haplotype divergence with $HDG > 0.8$, indicating great
331 divergence between subspecies at the translation level. Most (14/21) well-known
332 improvement genes (Chen et al., 2019) showed high divergence, such as *DEP1* (HDG
333 = 1.000), *Sd1* (0.940), *TAC1* (0.930), *GS5* (0.913), *GW6a* (0.925), *TGW6* (0.962),
334 *GW7* (0.954), *GW8* (0.976), *Ghd7* (0.963), *Ghd8* (0.984), *Hd1* (0.979), *NRT1.1B*
335 (0.977), *DRO1* (0.850), and *Chalk5* (0.933), implying independent selection for yield-
336 and flowering-related genes in the improvement of XI and GJ. Notably, 720 SGs
337 showed weak divergence with $HDG < 0.2$, including essential domestication genes
338 *Prog1* (HDG = 0.025), *GAD1* (0.110) and *sh4* (0.155). The SGs with low divergence
339 ($HDG < 0.5$) were clustered into local genomic blocks, with a total length of 23.38
340 Mb (6.24% of Nipponbare assembly) in 73 blocks, including 2,786 SGs (6.90% of all

341 SGs in Nipponbare), implying putative genomic introgression between XI and GJ (Fig.
342 3a and 3b; [Supplementary Fig. 15](#); [Supplementary Tables 2 and 3](#)). Typically, a total
343 of 18 blocks were beyond 300 kb, and the largest three blocks were on chromosomes
344 5, 8 and 4, spanning over 4.48, 2.22 and 1.75 Mb, respectively. Introgression and
345 incomplete lineage sorting (ILS) would both result in haplotype similarity and low
346 divergence between sequences from two lineages. To distinguish introgression from
347 ILS, which is more randomly distributed along chromosomes (Wu et al., 2022b;
348 Edelman et al., 2019), we tested the significance of lowly divergent SG clustering by
349 100000-times random sampling. The significant nonrandom distribution of the lowly
350 divergent SGs in these blocks implied that inter-subspecies introgression caused low
351 GJ-XI divergence, rather than ILS (Fig. 3c; [Supplementary Fig. 15](#)). Additionally, as
352 expected, the relative divergence indicated by the synonymous substitution rate (K_s)
353 between XI and GJ genes in putative introgression blocks was significantly lower than
354 that of genes in adjacent genomic regions ([Supplementary Fig. 16](#)).
355

356 Most domestication genes (9/10) underlying key domestication syndromes (Chen et
357 al., 2019) were found in the introgression blocks ([Supplementary Fig. 15](#);
358 [Supplementary Table 2](#)). On chromosome 4, four introgressed blocks larger than 300
359 kb were found, including domestication genes *LABA1* and *An-1* responsible for awn
360 presence-and-absence and length in blocks 4#1 and 4#2 (Luo et al., 2013; Hua et al.,
361 2015), *sh4* for grain shattering in block 4#3 (Li et al., 2006), and *Bh4* for hull color in
362 block 4#4 (Zhu et al., 2011)(Fig. 3a). On chromosome 5, *GW5* from block 5#3 is a
363 QTL for grain width and weight (Liu et al., 2017). On chromosome 7, *Prog1* was
364 located in block 7#1, underlying the transition from prostrate plant architecture to
365 erectness during domestication (Jin et al., 2008). *GAD1*, encoding a secreted awn
366 development-related peptide, and *IPA1*, which is considered a typical improvement
367 gene controlling ideal plant architecture and immunity, were both located in block 8#1
368 on chromosome 8 (Jiao et al., 2010; Wang et al., 2018a). Interestingly, except for *IPA1*,
369 no other improvement and diversification genes were found in the introgression
370 blocks, which suggested that introgression events occurred in the initial period of
371 domestication ([Supplementary Table 2](#)).The largest introgression block, 5#1, with a
372 length of 4.48 Mb, spanned the centromere region on chromosome 5 ([Supplementary](#)
373 [Fig. 15](#)). Although more than three hundred genes were annotated in this region, no
374 known domestication-related genes were found. The presence of block 5#1 with low
375 divergence between XI and GJ was probably due to suppressed recombination over
376 the centromere region rather than linkage by key domestication genes, which provides
377 an ideal clue to subspecies introgression.
378

379 We further utilized 184 wild genomes with high whole-genome sequencing depth
380 (averagely $>8\times$), encompassing four groups Or-1 to Or-4, to confirm the
381 introgression and trace the spread routes of domestication haplotypes ([Supplementary](#)
382 [Fig. 17](#)). Totally the introgression inference in 64 blocks (96.2% in genomic length)
383 were supported by phylogeny ([Supplementary Table 3](#)). Phylogenetic trees of these
384 blocks (including all 18 blocks longer than 300 kb) indicated that GJ and XI

385 accessions were nested within the Or-3 group of wild rice, indicating that Or-3 was
386 the shared wild progenitor group of GJ and XI in most introgression blocks, and that
387 the domesticated alleles in XI were likely to be derived from proto-GJ by
388 introgression with local wild rice from Or-1 (Fig. 3d; Supplementary Table 3).
389 Notably, between the major clade of domestication haplotypes and the Or-3 clade,
390 wild accessions from the Or-1 or Or-2 group were commonly observed (Fig. 3d),
391 which implied that these haplotypes contained relict ancient domesticated alleles,
392 although some introgression events from cultivated to wild rice were observed. We
393 speculate that a gene pool under early domestication was introduced into South Asia
394 and partially maintained in the genomes of present Or-1 or Or-2 wild rice.

395
396 Statistical ABBA-BABA tests were also performed to confirm the introgression
397 inference. In a total of 57 blocks (21.2Mb in length), high f_d values were observed in
398 the models with introgression direction from tmp(GJ) to XI groups (Supplementary
399 Figs. 18 and 19). Thus combining haplotype inference, phylogeny, and ABBA-BABA
400 test, 65 blocks (22.6 Mb in length) were finally determined as introgression regions
401 from GJ to XI (Supplementary Table 3). Auxin related pathways were significantly
402 enriched (Supplementary Table 4). Besides well-known domestication genes related
403 awn presence, shattering, and tiller angle, many seed dormancy or germination related
404 genes were observed in introgression blocks (Supplementary Table 5). Block 3#5
405 from chromosome 3 included a seed dormancy-related gene *OsG*, which has been
406 parallelly selected in multiple crop families (Wang et al., 2018a), and *qLTG3-1*, a
407 major quantitative trait locus controlling low-temperature germinability (Fujino et al.,
408 2008). *OsC1*, which regulates hull pigmentation and pre-harvest sprouting, was
409 located in block 6#3 on chromosome 6. Yield related genes include at least *HOX3*
410 (1#2), *SPL6* (3#6), *GPA3* (3#6), *OsNAC2* (4#4), *D11* (4#7) and *FZP* (7#5).

411
412 We noticed that the *aus* group exhibited differences from the GJ and XI groups in
413 most blocks (e.g., 1#1, 2#2 and 5#1). Phylogenetic analysis revealed that XI and *aus*
414 belonged to two separate subclades, although both were nested within Or-1 group
415 (Supplementary Fig. 17a). There were 32 blocks where the closest wild group to *aus*
416 was Or-3, similar to XI and GJ, while in the other 24 and 8 blocks, the Or-1 and Or-4
417 groups were the wild progenitors of *aus*, respectively (Fig. 3e). In ABBA-BABA
418 analysis, only 23 blocks showed gene flow signals from GJ to *aus* (Supplementary Fig.
419 18; Supplementary Table 3). Therefore, the *aus* group shared some domesticated
420 alleles, suggesting that the introgression from proto-GJ or Or-3 to XI probably
421 occurred after the divergence between XI and *aus*, and some domesticated alleles or
422 blocks were subsequently transferred from XI to *aus* (e.g., 4#1) (Supplementary Fig.
423 15). Combining the evidence from whole-genome pairwise synteny (Fig. 1b), the *aus*
424 group differs from other XI groups and has a novel evolutionary process.

425
426

427 Structural variations during rice de-domestication

428

429 Previous studies have found a 0.5-Mb de-domestication genomic island on
430 chromosome 7 from 6.0 Mb to 6.5 Mb that plays essential roles in rice feralization
431 (Qiu et al., 2020). Within this region, the key gene *Rc* regulating the red pericarp and
432 a cluster of seed storage-related genes (six *RAL* and three *LtpL* genes) contribute to
433 the fitness of weedy rice. The genomic synteny in this region was investigated
434 between weedy and cultivated rice. Although weedy rice originated independently and
435 repeatedly from cultivated rice, the genomic landscape of XI weedy accessions in this
436 region showed distinct patterns against their corresponding closest cultivated genomes
437 (Fig. 4a). This weedy pattern was prevalent in the genomes of wild accessions.
438 Notably, a remarkable 10-kb translocation (including one gene encoding an RNA
439 polymerase II transcription subunit) was found in all XI weedy rice when aligned to
440 the Nipponbare assembly but was absent from all XI cultivated rice (except cultivar
441 IRGC34749 with a red pericarp) and all GJ accessions (except Basmati1) (Fig. 4a).
442 This translocation was found in 7 of 11 wild accessions. Thus, it was speculated that
443 genomic introgression of the de-domestication genomic island from wild rice
444 contributed to the feralization of XI cultivated rice and the emergence of XI weedy
445 rice. A phylogenetic tree based on SNPs around the *Rc* region further supported the
446 introgression and suggested that the Or-1 group from Southeast Asia was the ancestral
447 progenitor of the de-domestication genomic island in XI weedy rice (Fig. 4b). For GJ
448 weedy rice, no obvious signals of wild introgression in this de-domestication island
449 were found (Fig. 4a). However, from the phylogeny of *Rc*, weedy accessions were
450 clustered together and nested within some Or-3 wild accessions, which implied that
451 Or-3 may be the donor of the *Rc* haplotype underlying the red pericarp (Fig. 4b).
452 However, it should be noted that some cultivated rice also showed a red pericarp (e.g.,
453 LJ from GJ), suggesting another potential origin from local landraces of red rice.
454

455 To gain insight into detailed structural variations during de-domestication, we
456 compared the genomic sequences between weedy accessions and their closest
457 corresponding cultivated accessions based on phylogeny (Fig. 1b). Given that
458 de-domestication occurred recently (Qiu et al., 2020; Sun et al., 2019), no large
459 chromosome rearrangements were observed from genome synteny, except for the
460 comparison between Tetep and PI653432, owing to the low assembly quality of Tetep
461 (Supplementary Fig. 20). On average, 73,111 small insertions and deletions (InDels,
462 ≤ 50 bp) and 2,810 large structural variants (SVs, >50 bp) were identified in ten
463 weed-cultivar pairs, spanning genomic regions from 2.2 to 13.8 Mb in total
464 (Supplementary Fig. 21). The number of structural variants was lower for the GJ
465 weedy-cultivated pairs than for the XI and *aus* pairs. This could be a result of the
466 recent origin of GJ weedy rice but more ancient origin of XI and *aus* (Qiu et al., 2020)
467 and more introgression from other taxa or (sub)-species into XI and *aus* cultivated
468 rice. The XI cultivar NJ11 and its weedy descendant CX20 were reported as a typical
469 case of recent de-domestication events (Qiu et al., 2020). When the HiFi-based
470 genome assemblies were compared, a minimum number of SVs ($n = 1,299$) were
471 detected, where six SVs larger than 100 kb were close to peri-centromeric regions,
472 and the largest SV spanned 823 kb and harbored 66 genes on chromosome 7

473 (Supplementary Fig. 22). *OsGWD1*, which is involved in transitory starch degradation
474 in source tissues and is also a positive regulator of rice seed germination, was lost in
475 the weedy CX20 genome, which may be related to the difference in rice quality
476 between cultivated and weedy rice (Wang et al., 2021). Additionally, we noticed the
477 absence of the rice blast resistance gene *Pid2* in weedy CX20. Compared with NJ11,
478 equivalent insertions ($n = 19,340$ for small insertions and $n = 666$ for large insertions)
479 and deletions ($n = 19,410$ for small deletions and $n = 633$ for large deletions) were
480 found in CX20, spanning a total gain-and-loss length of 2.91 and 2.97 Mb,
481 respectively. Gene Ontology analysis suggested that SV-associated genes were
482 enriched in the biological process of reproductive system development (adjusted $P =$
483 0.00065).

484
485 Despite the independent and recurrent de-domestication events observed from the
486 phylogeny, we found 3,614 SGs in which at least one SV was detected in at least four
487 de-domestication lineages from six groups (tmp, aus, XI2, XI3, XI1A and XI1B),
488 implying potential convergent genetic mechanisms underlying feralization. Within
489 them, a 14-bp PAV in *Rc* was identified in all XI and GJ weedy lineages (Wu et al.,
490 2021). SVs were found in other domestication-related genes regulating seed shattering,
491 hull color and seed dormancy or germination, of which most were located in
492 regulatory and intron regions (Supplementary Table 6). For shattering, a 2-bp
493 insertion in exon 1 of *sh4* and a 12-bp deletion in exon 1 and a 146-bp deletion in
494 exon 6 of *SHAT1* were found in the *aus* and XI weedy genomes. Despite *Rc*'s role in
495 regulating seed dormancy and germination, SVs or InDels in *OsC1* and *Sdr4* were
496 also found in the GJ and XI weedy genomes, respectively (Fig. 4c; Supplementary
497 Table 6). *OsC1*, a rice R2R3-MYB transcriptional regulator that interacts with *Rc* and
498 *OsVPI*, plays an important role in regulating preharvest sprouting tolerance in red
499 pericarp rice (Wang et al., 2020). Two different variants in *OsC1* were found in GJ
500 weedy accessions, which were a 983-bp deletion resulting in incompleteness of exon2
501 and loss of exon 3 in accession 18WR-118 from Korea and 13-65 from Italy and a
502 3-bp insertion combined with a 2-bp deletion in accessions YCW03 and WR04-6
503 from China, which led to MYB domain loss (Fig. 4c; Supplementary Fig. 23). Brown
504 hull, which is mainly regulated by *Bh4*, is also a characteristic of feralization for some
505 weedy rice (Zhu et al., 2011). A 22-bp insertion in *Bh4* was found in both the GJ
506 weedy genome (WR04-6) and the *aus* weedy genome (PI653439), which
507 corresponded to their seed hull phenotypes (Fig. 4d; Supplementary Fig. 23). The
508 22-bp PAV was under selection during rice domestication (Zhu et al., 2011). The
509 phylogeny of *Bh4* confirmed that the 22-bp PAV in weedy rice was likely derived
510 from different groups of wild rice (Or-1 for *aus* PI653439 and Or-3 for GJ WR04-6).
511 The results also revealed that the brown or black hull color in weedy and cultivated
512 rice was due to wild introgression (Supplementary Fig. 24). Briefly, although
513 structural differences could be found between weedy and cultivated rice, almost no
514 single causative mutation could explain the convergent phenotypic change for all
515 different weedy rice groups, with the only exceptional being *Rc* for red pericarp and
516 seed dormancy; in other words, weedy rice from different groups may have

517 experienced independent evolution after the acquisition of *Rc* from wild rice or local
518 landraces of red rice.

519

520

521 Discussion

522

523 Two major competing hypotheses (single domestication or multiple domestication)
524 have been proposed to describe the origin of different subspecies of cultivated Asian
525 rice according to previous archaeological and genetic evidence (Molina et al. 2011;
526 Huang et al., 2012; Civáň et al., 2015; Choi et al., 2017; Choi and Purugganan, 2018;
527 Wang et al., 2018b; Carpentier et al., 2019; Zhang et al., 2021). There is no dispute
528 that rice subspecies have different wild progenitors at whole-genome level, especially
529 for XI and GJ, which means subspecies have multiple origins for most genomic
530 regions (Huang et al., 2012). However, the sources of domestication alleles are
531 debated. For well-known domestication genes, phylogeny analysis has supported
532 single domestication (e.g. *Prog1*, *sh4*, *LABA1*, *Bh4*, *OsC1*) (Huang et al., 2012; Choi
533 and Purugganan, 2018), while some wild accessions with domesticated alleles were
534 located within cultivated rice, which is also observed in this study (Fig. 3d). Gene
535 flow from cultivated to wild rice could be used to explained the sporadic distribution
536 of wild rice within cultivated sub-trees (Wang et al., 2017). However, some studies
537 interpreted these as ancestral domesticated alleles in wild rice prior to domestication
538 and highlighted possibility of independent acquisition of domestication alleles from
539 wild populations (Civáň and Brown, 2017; Civáň and Brown, 2018). To this point of
540 view, this inference seems not reasonable. If these wild alleles emerged before
541 domestication, their phylogenetic positions would not been within cultivated
542 accessions.

543

544 Wang et al. (2018b) analyzed haplotypes of nine domestication and improvement
545 genes using about 3000 rice genomes, found that many XI domesticated alleles were
546 absent in GJ and hence concluded as a support for the hypothesis of independent
547 domestication in XI, rather than GJ-to-XI introgression. This conclusion is somewhat
548 arbitrary. Firstly, the filtering and selection to variants will somewhat impact the
549 haplotype inference. Second, the method using haplotype-wise genetic distance has
550 simplified the identification criterion of introgression and is not reliable as phylogeny
551 approaches, or ABBA-BABA test. Third, the effects by genetic drift should be taken
552 into consideration. Cultivated rice genomes we have sampled and sequenced now are
553 only a subset of ancestral proto-GJ or proto-XI genetic pool, and can not fully
554 represent the diversity in domestication. GJ has suffered a dramatic genetic bottleneck
555 around three thousand years ago, while XI shows no obvious decline in effective
556 population size in the last few thousand years (Qiu et al., 2020; Gutaker et al., 2020).
557 Here, in our phylogeny analysis on putative introgression blocks, some Or-1 or Or-2
558 accessions were located between domestication clade and Or-3 clade, as relict alleles
559 of proto-GJ and genomic footprints of ancient introgression, which are absent in
560 current GJ gene pool but present in wild Or-1 or Or-2 (Fig. 3d). Therefore, the genetic

561 drift played unneglectable roles in the presence of non-GJ domesticated alleles in XI,
562 and the hypothesis of GJ-origin of domesticated alleles in XI can not be rejected just
563 based on haplotype presence or absence. Indeed, the non-GJ alleles in XI
564 domestication genes have been observed in this study. *Rc* (HDG=0.803), *An-1* (0.886)
565 and *GW5* (0.875) have high haplotype divergence between XI and GJ, but the
566 genomic regions they are located in showed robust introgression signals, supported by
567 haplotype similarity or sharing, phylogeny and ABBA-BABA tests ([Supplementary](#)
568 [Tables 2 and 3](#)). Haplotype analysis on a specific gene only sometimes will mislead
569 because of gene diversifying after domestication, and additional approaches should be
570 performed to verify inference in the meantime.

571
572 By taking advantage of 74 high-quality rice genomes, we revisited the origin of
573 different rice subspecies and groups from a pan-genome view ([Fig. 5](#)). Different from
574 previous studies using selective sweep and nucleotide diversity to infer domestication
575 genomic regions and then reconstruct their evolutionary trajectory (Huang et al., 2012;
576 Civáň et al., 2015), we investigated the core issues of the dispute, whether
577 introgression from GJ to XI has happened and whether the introgressed blocks
578 harbored domesticated alleles. Compared to whole-genome resequencing, genome
579 assembly enables us to analyze high-throughput full-length sequences of genetic
580 elements, which eliminates systematic errors caused by read mapping and sequencing
581 depth. By comparing the absolute differences among predicted protein sequences to
582 assign haplotypes, we compressed the variations within a gene, which provided us
583 with a visual landscape of haplotype similarity among taxa in each syntelog group.
584 Similar approaches using haplotypes of single genes or blocks has been adopted in
585 recent studies (Zhang et al., 2021; Wang et al., 2022). A haplotype map based on
586 SNPs from coding regions was constructed for 3,010 cultivated and 15 wild rice
587 accessions (Zhang et al., 2021). The inferred proto-ancestors of different groups
588 correlated strongly with wild rice from the same geographic regions, which was
589 considered to support a multi-domestication model of rice. However, in spite of
590 extremely insufficient number in wild rice, the whole-genome haplotype similarity
591 among populations can not indicate how domesticated alleles come from, thus the
592 data present in Zhang et al. (2020) could not lead to the conclusion of multi-origin
593 domestication model in rice. Here, by comparing the identity of predicted protein
594 sequences and the frequency of each haplotype in different groups, we assigned
595 ancestral or dominant haplotypes for each SG and determined a total of >20 Mb
596 genomic regions as putative introgression blocks, which avoided potential
597 mis-assignment by hard thresholds used in conventional clustering based on genetic
598 distance or phylogenetic relationship ([Supplementary Fig. 13b](#)). Such an ancestral
599 genomic haploblock dissection method has also been employed in tracing the origin
600 of polyploid wheat, and mosaic genomic graphs have suggested dispersed emergence
601 and protracted domestication in wheat (Wang et al., 2022). In the shared haplotype
602 blocks between GJ and XI, the majority of their phylogenetic trees, combined with the
603 relatively low divergence or genetic distances within these regions between XI and GJ,
604 supported the introgression of domestication genes from proto-GJ to Or-1 wild group.

605 Interestingly, the low-recombination centromere region of chromosome 5, which
606 suggested clear genomic affinity between subspecies, remained a relict footprint of
607 ancient introgression (Supplementary Fig. 15). Statistical ABBA-BABA tests using
608 high-depth sequencing wild genomes and larger genome sampling also confirmed the
609 reliability of putative introgression blocks (Supplementary Fig. 18).

610
611 Utilizing domestication alleles from other geo-isolated populations or species has
612 facilitated the generation of local domesticates. In wheat, dispersal domestication
613 events generated domesticated alleles or haplotypes for different genes in different
614 locations. Genomic introgression among different populations or species by human
615 activities has gathered domestication alleles of different genes together, leading to the
616 emergence and popularity of hexaploid wheat (Wang et al., 2022). Here, our results
617 strongly confirmed the previous hypothesis that genomic introgression of
618 domestication alleles from proto-GJ to wild Or-1 led to the emergence of XI (Fig. 5).
619 Despite limited sampling of the *aus* type, we inferred that the ancestral wild
620 population of *aus* was different from that of XI, although they were both clustered
621 within the Or-1 wild group. Genomic introgression from local wild rice and
622 domesticated XI rice may have led to the birth of *aus* rice. More genomes and detailed
623 analysis in the future will uncover the complex evolutionary process of the *aus* group.
624

625 De-domestication is an atavistic process in domesticates that has been studied in crops
626 (e.g., rice, wheat and sunflower) and livestock (e.g., chicken and dog) (Wu et al.,
627 2021). How de-domestication evolves in rice genomes has been investigated in recent
628 years (Song et al., 2014; Li et al., 2017; Sun et al., 2019; Qiu et al., 2020). A genomic
629 island on chromosome 6 that potentially contributes to rice de-domestication
630 syndromes (mainly red pericarp and seed dormancy or germination) has been defined
631 (Li et al., 2017; Qiu et al., 2020). Here, our analysis combining both structural
632 comparison and phylogenetic analysis highlighted the influences of wild introgression
633 on the emergence of weedy rice, despite independent introgression events for GJ and
634 XI (Fig. 5). For the brown hull of some weedy accessions, the causative structural
635 mutation was indicated to be derived from the corresponding wild groups Or-1 and
636 Or-3 for XI and GJ, respectively. Although pairwise whole-genome comparison
637 identified thousands of structural variants between weedy and cultivated rice,
638 structural convergence in different weedy-cultivated lineages was seldom observed,
639 which implied the recurrent independent emergence of weedy traits. The mechanism
640 underlying high shattering in weedy rice was still not well resolved from the view of
641 structural variation in known domestication genes (except *sh4* and *SHAT1* for
642 shattering). Given that our known shattering-related genes are almost all transcription
643 factors, variations in other regulatory elements or even epigenetic factors may lead to
644 high shattering in weedy rice. Overall, genomic introgression plays an indispensable
645 role throughout the entire evolutionary trajectory of rice, from initial domestication,
646 improvement, modern breeding and feralization.

647

648

649 **Materials and Methods**

650

651 **Genome sequencing and assembly**

652 To capture the genetic diversity from all ecotypes of rice, we collected 11 accessions
653 of weedy rice from seven countries based on their phylogeny with cultivated rice and
654 geographic positions; we also included one XI cultivar NJ11, or Nanjing 11, which is
655 presumed to be the direct ancestor of weedy rice in the Yangtze River Basin (Qiu et al.,
656 2020). Genomic DNA samples were extracted from young leaves of the 12 rice
657 accessions, and their genomes were sequenced by PacBio HiFi mode according to the
658 instructions from the manufacturer. For each accession, the sequencing depth of HiFi
659 subreads ranged from 21.6× for accession 13-65 to 45.0× for accession YZ-2, with an
660 average of 32.4×. Following the standard protocol, Hi-C libraries of four accessions
661 (NJ11, CX20, YCW03 and 18XHB-83) were constructed using fresh young leaves
662 digested with the 4-cutter restriction enzyme MboI. Hi-C libraries were sequenced on
663 an Illumina HiSeq 4000 platform with 2×150-bp paired reads.

664 The genomes were first assembled using hifiasm (v0.15.1-r334, default parameters)
665 (Cheng et al., 2020). For each accession, HiFi subreads were mapped against the
666 corresponding assembly using minimap2 (Li, 2018), and Purge_dups was applied to
667 purge duplicates and remove redundant sequences according to the mapping depth
668 (Guan et al., 2020). We further used Racon (v1.4.0) to polish the assemblies with HiFi
669 subreads for three rounds under default parameters (Vaser et al., 2017). Contigs less
670 than 10 kb were removed from the final version. For each accession, contigs were
671 anchored into pseudochromosomes by using a reference-guiding approach RaGOO
672 (Alonge et al., 2019). By aligning contigs against the Nipponbare assembly using
673 minimap2, the contigs were ordered and oriented along 12 chromosomes with no
674 further chimeric splitting.

675 Previously released rice assemblies based on third-generation sequencing platforms
676 were collected, including PacBio (Du et al., 2017; Sun et al., 2019; Wang et al., 2019;
677 Ma et al., 2020; Xie et al., 2020; Zhou et al., 2020; Qin et al., 2021; Song et al., 2021)
678 and Nanopore sequencing (Choi et al., 2020; Read et al., 2020; Shang et al., 2022;
679 Zhang et al., 2022). Before adopting assemblies in the construction of the rice
680 pangenome, we first systematically evaluated the assembly qualities and ruled out
681 assemblies that did not meet our criteria.

682

683 **Quality assessment of rice genome assemblies**

684 We first assessed the quality of our 12 newly assembled rice genomes. Synteny
685 against the reference assembly Nipponbare and gapless assembly MH63 (Song et al.,
686 2021) confirmed their high completeness. The paired Hi-C reads of four accessions
687 (YCW03, 18XHB-83, CX20 and NJ11) were cleaned using NGSQC toolkit (Patel and
688 Jain, 2012) and then mapped to the corresponding assembly using Bowtie2 (v2.3.5.1)
689 (Langmead and Salzberg, 2012). After retaining high-quality and validated paired
690 reads (mapping quality ≥ 30 , edit distance ≤ 5 , number of mismatches in the
691 alignment ≤ 3 , number of gap opens ≤ 2 and number of gap extensions ≤ 2),
692 chromosome interaction maps were plotted by AllHiC_plot (Zhang et al., 2020), and

693 they revealed high accuracy in contig ordering and orientation ([Supplementary Fig. 1](#)).
694
695 Genome assemblies of *Oryza sativa* and *Oryza rufipogon* based on third-generation
696 sequencing (through May 2022) were collected ([Supplementary Table 1](#)). DXCWR
697 (Ma et al., 2020) was excluded considering its low contig N50 of less than 200 kb.
698 IRGC109232 (Zhao et al., 2018) was removed due to the abnormal size of the
699 assembly obtained from the public database. Eleven assemblies in Zhang et al. (2022)
700 were randomly selected from 75 newly generated genomes and used in subsequent
701 quality assessment. Five indices were applied to evaluate the genome quality of all
702 rice assemblies ([Supplementary Fig. 2a](#)). Assembly continuity was evaluated by
703 contig N50 and the long-terminal repeat assembly index (LAI), which was revealed
704 by the assembly completeness of long-terminal-repeat (LTR) retrotransposons (Ou et
705 al., 2018). The LTR elements of each assembly were identified by RepeatMasker and
706 RepeatModeler (<http://repeatmasker.org/>). BUSCO (v4.1.2) metrics were calculated to
707 evaluate the completeness by using dataset poales_odb10 containing 4896 genes
708 (Simao et al., 2015). As expected, assemblies based on long-read sequencing
709 performed well on the above quality indices ([Supplementary Fig. 2a](#)). Hence, in
710 addition to the above evaluations at the whole-genome level, base-resolution accuracy
711 and completeness were measured by the consensus quality value (QV) and the
712 number of homozygous variants called by self-short-read mapping. Reference-free
713 QVs were calculated by Merqury (Rhie et al., 2020) and yak
714 (<https://github.com/lh3/yak>) by comparing *k*-mers derived from unassembled,
715 high-accuracy sequencing reads to a genome assembly. Homozygous variants (SNPs
716 and InDels) called with short reads by self-mapping are regarded as potential
717 assembly errors. Raw short-read data were first cleaned by NGSQC-toolkit and
718 mapped against the corresponding assembly by Bowtie2. Variants were detected using
719 GATK (v3.7, default parameters) (McKenna et al., 2010) and annotated by SnpEff
720 (v3.6) to profile their potential effects on the prediction of amino acid sequences and
721 further gene functions (Cingolani et al., 2012). Variants with high effects (including
722 stop loss and gain, start loss, frame-shift variant) and moderate effects (including
723 in-frame insertion/deletion, missense variant) will directly impact the reliability of
724 gene haplotypes and downstream haplotype analysis. The assembly quality of wild
725 accessions from Shang et al. (2022) and one weedy accession (YCW03) were not
726 assessed at the base level due to the unavailability of NGS data. Assemblies with low
727 base-level quality were removed for cultivated rice, mainly including Nanopore
728 sequencing-based genomes, except three accessions (DomSufid, Basmati334 and JHU)
729 from aromatic and tropical groups of GJ (*O. sativa* ssp. *japonica*), which were kept to
730 balance the sampling of each group. For wild genomes, only two accessions, W2014
731 from Ma et al. (2020) and IRGC106162 from Xie et al. (2020), sequenced using the
732 PacBio platform were available. Thus, nine assemblies in different wild groups from
733 Shang et al. (2022) sequenced by the Nanopore platform were adopted for analysis.
734

735 **Phylogenetic relationship of rice assemblies**

736 Together with the 12 new assemblies in this study, a total of 75 rice assemblies,

737 including 11 wild accessions (*O. rufipogon*), 12 weedy accessions (*O. sativa* ssp.
738 *spontanea*), 51 cultivated accessions (*O. sativa*) and an African cultivated rice
739 outgroup (*Oryza glaberrima*) accession CG14, were used in this study. We first
740 confirmed their phylogenetic relationship and assigned them to taxonomic groups
741 using whole-genome SNPs. The assemblies were aligned against the reference
742 assembly Nipponbare using nucmer implemented in the MUMmer package (v4.0.0)
743 (Marçais et al., 2018), and called SNPs were used to build their phylogeny by
744 FastTreeMP with 1000 bootstrap replicates (Price et al., 2009). According to their
745 phylogeny and prior knowledge of the 74 *Oryza sativa* and *Oryza rufipogon*
746 accessions, each accession was assigned to groups. Briefly, the subspecies GJ (*O.*
747 *sativa* ssp. *japonica*, $n = 23$ in total) includes four *aromatic* (aro), four tropical (trp),
748 two subtropical (subtrp) and 13 temperate (tmp) accessions; subspecies XI (*O. sativa*
749 ssp. *indica*, $n = 40$) includes four *aus*, three XI2, seven XI3, ten XI1A and 16 XI1B
750 accessions. The wild population (*O. rufipogon*, $n = 11$) includes two accessions from
751 Or-3, four from Or-2, three from Or-1, and two from Or-4. Genotype data for
752 approximately seven thousand rice accessions used in the principal component
753 analysis (PCA) were adopted from a previous study (Wu et al., 2022a). PCA and IBD
754 (Identity-by-descent) calculation were performed using Plink (v1.9) with a pruned
755 subset of SNPs based on linkage disequilibrium (10 SNPs in each 50-kb sliding
756 window with pairwise Pearson's correlation efficient r^2 less than 0.5) (Chang et al.,
757 2015).

758

759 **Genome annotation**

760 In total, 75 rice assemblies (including African rice CG14 as an outgroup) were
761 annotated in a unified pipeline. First, transposon elements (TEs) were identified by
762 using the Extensive *de novo* TE Annotator (EDTA) approach
763 (<https://github.com/oushujun/EDTA>) (Su et al., 2021). For each accession, gene
764 models were predicted on the repeat-masked genome using an approach integrating
765 *ab initio* predictions and homology-based prediction. For *ab initio* prediction,
766 Augustus (Stanke et al., 2006) and Fgenesh (Salamov and Solovyev, 2000) were
767 performed with default parameters. For homology-based prediction, previously
768 predicted protein sequences of the Nipponbare (IRGSP v1.0), gapless MH63RS3 and
769 ZS97RS3 assemblies (Song et al., 2021) and over 30 other well-annotated assemblies
770 (Qin et al., 2021) were used to search putative protein-coding gene models with
771 GMAP for each accession (Wu and Watanabe, 2005). The predictions were integrated
772 into non-redundant consensus gene models using EVidenceModeler (v1.1.1) (Haas et
773 al., 2008). Short gene models (less than 50 amino acids) and gene models with
774 homology to sequences in Repbase (e -value $\leq 1e-5$, identity $\geq 30\%$, coverage $\geq 25\%$)
775 were further removed from the final annotation. The protein domains of all predicted
776 coding gene models were inferred using InterProScan (v5.24-63.0) (Zdobnov and
777 Apweiler, 2001).

778

779 **Pan-genome construction using MCL**

780 A Markov Clustering (MCL) approach OrthoFinder (v2.4.1) was applied to cluster all

781 the predicted gene models of 74 rice genomes (African rice accession CG14 was
782 excluded) with default parameters (diamond all-versus-all *e*-value < 1e-5 and inflation
783 parameter = 1.5) (Emms and Kelly, 2019). Finally, over 3.10 million predicted genes
784 were clustered into 67,080 orthogroups (OGs). Increasing the inflation parameter can
785 be used to achieve higher precision at the cost of lower recall and have a larger size of
786 OGs. Conversely, a smaller value of the inflation parameter could achieve higher
787 recall at the cost of lower precision and produce smaller sized OGs, which easily
788 clusters paralogs together (Emms and Kelly, 2019). Thus, three additional inflation
789 parameters (I = 1.8, 2.0 and 2.5) were set to profile the effects on clustering
790 (Supplementary Fig. 9). Clustered gene families were categorized into core (present in
791 all genomes, *n* = 74), soft-core (present in at least 90% of genomes, *n* = 67 to 73),
792 dispensable (present in more than one but less than 90% of genomes, *n* = 2 to 66) and
793 private (only present in one genome) on the basis of the number of rice accessions in
794 which they were identified.

795

796 **Pan-genome construction using synteny**

797 Given that the MCL approach does not efficiently and accurately distinguish paralogs
798 from orthologs with high sequence similarity, we utilized the availability of genomic
799 coordinates of gene models to build the synteny-based pan-genome. Pairwise all-to-all
800 alignments using protein sequences were performed for all 74 genomes. Aligner
801 Diamond runs much faster for large protein sequence data than BLASTP (Buchfink et
802 al., 2021). We compared the recall performance between BLASTP and Diamond in
803 detecting syntelogs between genomes (Supplementary Fig. 6). Diamond was run for
804 each pair under three modes (default, sensitive and ultra-sensitive). The alignments
805 were filtered to keep only the best hits, and DAGchainer (Haas et al., 2004) was used
806 to detect syntenic genomic regions and syntelogs (parameters: -Z 12 -D 200000 -g 1
807 -A 5). No differences were observed among the three Diamond modes in the number
808 of detected syntelogs (Supplementary Fig. 6). BLASTP was performed under default
809 parameters, and syntelogs were identified using the same pipeline. The BLASTP
810 approach searched more syntelogs, and thus, the syntelogs were used in downstream
811 pan-genome construction (Supplementary Fig. 6). Instead of a reciprocal best hit
812 search, the roles of reference and query in a pairwise BLASTP search sometimes
813 result in differences due to individual-specific tandem duplicates, and such
814 individual-specific tandem duplicates were considered as a single gene in the final
815 pan-genome. Pairwise syntelog information was merged together with Nipponbare as
816 an initial framework one by one using SynPan
817 (<https://github.com/dongyawu/PangenomeEvolution>). If a gene from an additional
818 genome was syntenic to a previously merged pan-genome, this gene was assigned to
819 an existing SG. If a gene from an additional genome was not syntenic to any gene in
820 the merged iterative pan-genome, a new SG was created. In total, 74 genomes were
821 merged together as a synteny-based pan-genome, including 175,528 SGs. The SGs
822 were further categorized as core, soft-core, dispensable and private following the
823 criteria used in OG categorization.

824

825 **Construction of the rice NL Rome**

826 To capture the diversity of NLRs in rice, we integrated multiple software predictions
827 and gene synteny in rice genomes to obtain a comprehensive and complete rice
828 NL Rome. The NB-ARC domain was first predicted using hmmsearch (HMMER
829 v3.1b2) against the Pfam database (v30.0) with a threshold *e*-value less than 1e-5. The
830 LRR domains were predicted with NLR-parser (v3.0) (Steuernagel et al., 2015) by
831 searching for motifs 9, 11 and 19; the coil domains were predicted by searching for
832 motifs 16 and 17; and the TIR domains were predicted by searching for motifs 13, 15
833 and 18. All putative NLR types from genome-wide protein sequences were also
834 determined using RGAugury (Li et al., 2016). After the NLR genes for each genome
835 were identified by domain prediction, the NLR genes were mapped back to the
836 SG-based pangenome to involve NLR syntelogs lacking canonical domains and find a
837 more comprehensive and extensive NLR inventory. NLR genes were defined to have
838 at least one NB-ARC, TIR, or CCR (RPW8) canonical domain. LRR or CC motifs
839 alone were not considered sufficient for NLR identification. Finally, NLRs in rice
840 genomes were identified and categorized as CNLs (containing CC, NB-ARC, and
841 LRR domains), CNs (containing CC and NB-ARC domains) and NLs (containing
842 only canonical NB-ARC domains). Noncanonical architectures of some NLRs have
843 additional integrated domains (IDs), while canonical architectures contain only
844 NB-ARC (Pfam accession PF00931), TIR (PF01582), RPW8 (PF05659), or LRR
845 (PF00560, PF07725, PF13306, PF13855) domains or CC motifs. For ID identification,
846 we used the genome protein sequences as the input for InterProScan, and annotations
847 were processed with in-house scripts to obtain ID information. There are currently
848 several known cases in which two NLR genes are required to affect the resistance
849 function, with one protein in the pair acting in effector recognition and the other
850 acting in signaling activation. Since all known functional pairs are present in
851 head-to-head arrangement in the rice genome, we identified head-to-head NLR pairs
852 by searching for NLR genes near each other and no more than 10 kb away. Multiple
853 sequence alignment was performed using coding sequences by MAFFT (v7.490)
854 (Katoh & Standley, 2013), and the nucleotide diversity and Tajima's *D* value for all
855 members in each SG were calculated using DnaSP (v6) (Rozas et al., 2017).

856

857 **Haplotype diversity and ancestral haplotype assignment**

858 We used the average pairwise haplotype difference to measure the haplotype diversity
859 in one population and the divergence between two populations ([Supplementary Fig.](#)
860 [13a](#)). The haplotype number (defined as N100) for each SG was determined by
861 counting the unique sequences of all predicted proteins. To exclude rare haplotypes,
862 haplotype N90 was defined as the least haplotype number that needs to be included
863 for covering 90% of sequences in each SG. To understand the haplotype-aware origin
864 of genes from different rice groups, we inferred the ancestral haplotype composition
865 for each SG by determining the dominant haplotype in each rice group and assigning
866 ancestral haplotype IDs for all genes in a group priority-based referring strategy
867 ([Supplementary Fig. 13b](#)). Group information is prior based on whole-genome
868 phylogeny or population structure. We labeled five haplotype IDs (hapI to hapV) to

869 represent the dominant haplotypes of groups tmp, XI1A, XI1B, *aus* and XI3 in order,
870 presented by red, blue, orange, yellow, and green in [Fig. 4a](#) and [Supplementary Fig.](#)
871 [15](#), respectively. HapI was first defined as the most dominant sequence in group tmp.
872 If the dominant haplotype in the current group was defined by a former group, the
873 haplotype ID was skipped and set as missing. For example, if the dominant haplotype
874 in XI1A was the same as that in tmp (hapI), hapII was then not defined. The
875 frequency of a dominant haplotype within a group should be at least three. All other
876 rare haplotypes were compressed as hapR in gray to simplify the ancestral haplotype
877 graphs. Gene absence is represented by white blocks. Different group priority orders
878 have no influences on the calculation of haplotype diversity and divergence but only
879 change the ancestral haplotype graphs ([Supplementary Fig. 13c](#)).

880

881 **Inter-subspecies introgression blocks**

882 As observed from the ancestral haplotype landscape, haplotypes in some large
883 genomic regions were shared between XI and GJ. We used inter-population haplotype
884 divergence (HDG) to quantify haplotype sharing by calculating the average
885 differences in haplotypes from the two populations ([Supplementary Fig. 13a](#)). We
886 merged adjacent SGs whose divergence values between tmp and XI (excluding *aus*)
887 were less than 0.5 into lowly divergent blocks between subspecies as candidate
888 introgression blocks. At least 10 SGs were required within a single introgression
889 block. To examine the significance of the nonrandom clustered distribution of these
890 lowly divergent SGs in blocks, we randomly sampled the same number of SGs as
891 lowly divergent SGs observed on each chromosome and calculated the density of
892 sampled SGs in sliding windows of every 10 SGs. A total of 100 thousand random
893 samplings were replicated, and the *P* values were determined by counting the
894 sampling times where the density of sampled SGs was higher than that observed for
895 each window. *P* = 0.01 was empirically set as a cutoff value. Assuming that the low
896 divergence in the detected blocks was caused by inter-subspecies introgression after
897 their divergence, the divergence time between GJ and XI should be younger in the
898 identified blocks than in their neighboring regions. We used the synonymous
899 substitution rate (K_s) to measure the relative divergence time between GJ and XI, free
900 from selection. Significantly lower K_s values were observed in the majority of 18
901 large blocks (>300 kb) than in their flanking regions ([Supplementary Fig. 16](#)).

902

903 **Phylogeny of introgression blocks**

904 To investigate the origin and gene flow of the 73 candidate introgression blocks, we
905 utilized recently released genomic sequences of 184 wild accessions with high
906 sequencing depth (8 \times on average, much higher than <2 \times on average in a previously
907 used wild population)(Zheng et al., 2022; Huang et al., 2012). Raw sequencing reads
908 were first cleaned using NGSQC toolkit and mapped against the reference assembly
909 Nipponbare (IRGSP v1.0) using Bowtie2. Assemblies of two wild rice accessions
910 (W1943 and DWCWR) from group Or-3 were added. Combing the 77 assemblies and
911 184 wild genomes, high-quality SNPs were called following a previous pipeline (Qiu
912 et al., 2020). The population structure was first surveyed by PCA using Plink (v1.9)

913 (Chang et al., 2015) and the phylogeny was produced by FastTreeMP with 1000
914 bootstrap replicates based on 6.85 million high-quality SNPs (minor allele frequency
915 of 0.02 and maximum missing rate of 0.1). Four wild groups were identified: Or-1,
916 Or-2, Or-3 and Or-4. The SNPs in each introgression block were extracted and used to
917 build the phylogeny using IQ-TREE (v1.6.12) with the best substitution model
918 TIM2e+R2 determined by ModelFinder implemented in IQ-TREE (Nguyen et al.,
919 2015) and FastTreeMP with 1000 bootstrap replications, where the African cultivated
920 rice accession CG14 was set as the outgroup. To avoid over-interpretation, the
921 phylogeny in which the wild accessions were not obviously and empirically clustered
922 into four groups, as defined by the whole-genome SNPs, was discarded.
923

924 **ABBA-BABA test**

925 The availability of population-level whole-genome high-depth sequencing data of
926 wild rice from four groups (Or-1, Or-2, Or-3 and Or-4), enables us to perform
927 comprehensive statistical *D* tests, which is widely used and robust in gene flow
928 detection (Green et al., 2010; Wu et al., 2022b). We randomly selected genomes of
929 XI1A rice accessions ($n = 100$), XI1B ($n = 100$), XI2 ($n = 80$), XI3 ($n = 100$) and *aus*
930 ($n = 60$) from 3K RGP (Wang et al., 2018). We employed f_d statistic to indicate the
931 introgression from GJ to XI in sliding genomic windows (Martin et al., 2015). Under
932 a given quartet topology ((P1, P2), P3, O), positive f_d statistic values indicate the
933 introgression from P3 to P2, zero represents no introgression, and negative f_d statistic
934 values have no biological meaning and thus are converted to zero. We estimated the f_d
935 statistic values under topology ((Or-1, X), tmp, Or-4), where X is Or-2, XI1A, XI1B,
936 XI2, XI3 and *aus* in topology T1 to T6, respectively (Supplementary Fig. 18). T1 is
937 set as a background control in detecting introgression. To eliminate the influence of
938 modern breeding where inter-subspecies hybridization is frequently performed on
939 ancient introgression inference, we used genomes of only landraces in each group to
940 repeat the f_d calculation, where tmp, XI1A, XI2, XI3, and *aus* included 47, 24, 21, 52
941 and 32 landrace accessions. Generally, no obvious differences are observed between
942 introgression block determination using all and landrace accessions only
943 (Supplementary Fig. 19). Python scripts are available at
944 https://github.com/simonhmartin/genomics_general. Parameters are set as “window
945 size: 20 kb, step size: 2 kb, minimum good sites per window: 50, and minimum
946 proportion of samples genotyped per site: 0.4”. The final putative introgression
947 regions were determined by integrating evidences from haplotype divergence,
948 phylogeny and ABBA-BABA tests. The functional enrichment analysis was
949 performed using ShinyGO (v0.77) (Ge et al., 2020).

950

951 **Structural variations in de-domestication**

952 To gain a more detailed understanding of structural variations in de-domestication, we
953 compared the genome assemblies of weedy and cultivated rice. It has been found that
954 the sensitivity of detecting deletions is higher than that of insertions, and we adopted a
955 pairwise genome alignment strategy as mentioned previously in Jayakodi et al. (2020).
956 Each pair contains a weedy accession and a cultivar accession, which compose a

957 monophyly in the phylogenetic tree, and the genome assembly of cultivated rice was
958 considered a query or reference genome. Nucmer in the MUMmer package was used
959 to obtain the results of these two alignments (Marçais et al., 2018), and then PAVs
960 (presence-and-absence variants, including insertions and deletions) were called using
961 Assemblytics (v.1.2.1) (Nattestad & Schatz, 2016). The structural PAVs were
962 classified as InDels (<50 bp) and SVs (≥ 50 bp). Only deletions were kept in both
963 alignments and converted into PAVs according to the reference genome in each pair.
964 Genes located in or intersected with each PAV were obtained, as well as
965 corresponding gene annotations. The variations in domestication genes and their
966 flanking regions (15 kb for *qSH1* and 2 kb for other genes) were manually
967 investigated, and the causative mutations during the domestication process were
968 checked. To validate the reliability of structural variations in domestication or
969 improvement genes (e.g., *OsC1* and *Bh4*), HiFi subreads of weedy rice were mapped
970 against themselves and corresponding cultivated assemblies to check the local
971 alignments using IGV (Thorvaldsdóttir et al., 2013). To infer the source of the
972 causative mutation in *Bh4* in weedy accessions, the *Bh4* phylogeny based on SNPs
973 was analyzed.

974
975 The 73 rice genome assemblies were aligned against the Nipponbare reference
976 genome using the nucmer program implemented in the MUMmer package with the
977 default parameter, and only the best position of each query on the reference was
978 preserved. The alignments from 6.0 to 6.5 Mb on chromosome 7 in the Nipponbare
979 assembly were extracted for visualization by synteny plots and comparison among
980 wild, cultivated and weedy assemblies. To validate the candidate introgression event
981 inferred from the synteny plots, SNPs around the *Rc* gene (including its flanking 2-kb
982 regions) were extracted and used in phylogeny construction by FastTreeMP under the
983 GTR+CAT model with 1000-times bootstrapping.

984
985 **Data and code availability**
986 All the PacBio HiFi subreads for 12 rice accessions and Hi-C data for four rice
987 accessions generated in this study have been deposited in NGDC
988 (<https://ngdc.cncb.ac.cn/>) under the accession code PRJCA012143. The newly
989 generated assemblies for 12 accessions and the annotations (including GFF, CDS
990 sequences and predicted protein sequences) for all 74 rice accessions can be found
991 under project accession PRJCA012309 in NGDC. The raw resequencing data of
992 previously published wild accessions can be downloaded from NCBI under accession
993 number PRJNA657701. The VCF file of SNPs from all 75 assemblies and an
994 additional 184 wild rice accessions with high sequencing depth is available at Zenodo
995 (10.5281/zenodo.7196576). The gene re-annotations, NLR annotations and Pfam
996 annotations for all 75 rice accessions are deposited at Zenodo
997 (10.5281/zenodo.7248110). The in-house scripts used in this study have been
998 deposited in GitHub (<https://github.com/dongyawu/PangenomeEvolution>).
999

1001 **Reference**

1002

1003 Alonge, M., Soyk, S., Ramakrishnan, S., Wang, X., Goodwin, S., Sedlazeck, F.J.,
1004 Lippman, Z.B., and Schatz, M.C. (2019). RaGOO: fast and accurate
1005 reference-guided scaffolding of draft genomes. *Genome Biol* 20.

1006 Buchfink, B., Reuter, K., and Drost, H. (2021). Sensitive protein alignments at
1007 tree-of-life scale using diamond. *Nat Methods* 18:366-368.

1008 Carpentier, M.C., Manfroi, E., Wei, F.J., Wu, H.P., Lasserre E., Llauro C., Debladis E.,
1009 Akakpo R., Hsing Y.I. and Panaud O. (2019) Retrotranspositional landscape of
1010 Asian rice revealed by 3000 genomes. *Nat Commun* 10, 24.

1011 Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., and Lee, J.J. (2015)
1012 Second-generation PLINK: rising to the challenge of larger and richer datasets.
1013 *Gigascience* 4:7.

1014 Chen, E., Huang, X., Tian, Z., Wing, R.A., and Han, B. (2019). The genomics of
1015 *Oryza* species provides insights into rice domestication and heterosis. *Annu Rev
1016 Plant Biol* 70:639-665.

1017 Cheng, H., Concepcion, G.T., Feng, X., Zhang, H., and Li, H. (2021).
1018 Haplotype-resolved *de novo* assembly using phased assembly graphs with
1019 hifiasm. *Nat Methods* 18:170-175.

1020 Choi, J.Y., Lye, Z.N., Groen, S.C., Dai, X., Rughani, P., Zaaijer, S., Harrington, E.D.,
1021 Juul, S., and Purugganan, M.D. (2020). Nanopore sequencing-based genome
1022 assembly and evolutionary genomics of circum-basmati rice. *Genome Biol* 21.

1023 Choi, J.Y., Platts, A.E., Fuller, D.Q., Hsing, Y., Wing, R.A., and Purugganan, M.D.
1024 (2017). The rice paradox: multiple origins but single domestication in Asian rice.
1025 *Mol Biol Evol* 34(4):969-979.

1026 Choi J.Y., and Purugganan M.D. (2018) Multiple origin but single domestication led
1027 to *Oryza sativa*. *G3* 8(3):797-803.

1028 Cingolani, P., Platts, A., Wang, L.L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu,
1029 X., and Ruden, D.M. (2014). A program for annotating and predicting the effects
1030 of single nucleotide polymorphisms, snpeff. *Fly* 6:80-92.

1031 Civáň, P., Craig, H., Cox, C.J., and Brown, T.A. (2015). Three geographically separate
1032 domestications of Asian rice. *Nat Plants* 1:15164.

1033 Civáň, P., and Brown, T.A. (2017). Origin of rice (*Oryza sativa* L.) domestication
1034 genes. *Genet Resour Crop Evol.* 64(6):1125-1132.

1035 Civáň, P., and Brown, T.A. (2018). Misconceptions regarding the role of introgression
1036 in the origin of *Oryza sativa* subsp. *indica*. *Front Plant Sci.* 9:1750.

1037 Du, H., Yu, Y., Ma, Y., Gao, Q., Cao, Y., Chen, Z., Ma, B., Qi, M., Li, Y., and Zhao, X.,
1038 et al. (2017). Sequencing and *de novo* assembly of a near complete *indica* rice
1039 genome. *Nat Commun* 8.

1040 Edelman, N.B., Frandsen, P.B., Miyagi, M., Clavijo, B., Davey, J., Dikow, R.B.,
1041 Garcia-Accinelli, G., Van Belleghem, S.M., Patterson, N., and Neafsey, D.E., et
1042 al. (2019). Genomic architecture and introgression shape a butterfly radiation.
1043 *Science* 366:594-599.

1044 Emms, D.M., and Kelly, S. (2019). OrthoFinder: phylogenetic orthology inference for

1045 comparative genomics. *Genome Biol* 20(1):238.

1046 Fujino, K., Sekiguchi, H., Matsuda, Y., Sugimoto, K., Ono, K., and Yano, M. (2008).
1047 Molecular identification of a major quantitative trait locus, *qltg3-1*, controlling
1048 low-temperature germinability in rice. *Proc Natl Acad Sci U S A*
1049 105:12623-12628.

1050 Ge, S.X., Jung, D., and Yao, R. (2020). ShinyGO: a graphical gene-set enrichment
1051 tool for animals and plants. *Bioinformatics* 36(8):2628-2629.

1052 Green, R.E., Krause, J., Briggs, A.W., Maricic, T., Stenzel, U., Kircher, M., Patterson,
1053 N., Li, H., Zhai, W., Fritz, M.H., et al. (2010). A draft sequence of the Neandertal
1054 genome. *Science* 328(5979):710-722.

1055 Gross, B.L., and Zhao, Z. (2014). Archaeological and genetic insights into the origins
1056 of domesticated rice. *Proc Natl Acad Sci U S A* 111:6190-6197.

1057 Guan, D., McCarthy, S.A., Wood, J., Howe, K., Wang, Y., and Durbin, R. (2020).
1058 Identifying and removing haplotypic duplication in primary genome assemblies.
1059 *Bioinformatics* 36:2896-2898.

1060 Gutaker, R.M., Groen, S.C., Bellis, E.S., Choi, J.Y., Pires, I.S., Bocinsky, R.K.,
1061 Slayton, E.R., Wilkins, O., Castillo, C.C., Negrão, S., et al. (2020). Genomic
1062 history and ecology of the geographic spread of rice. *Nat Plants* 6(5):492-502.

1063 Haas, B.J., Delcher, A.L., Wortman, J.R., and Salzberg, S.L. (2004). DAGchainer: a
1064 tool for mining segmental genome duplications and synteny. *Bioinformatics*
1065 20(18):3643-3646.

1066 Haas, B.J., Salzberg, S.L., Zhu, W., Pertea, M., Allen, J.E., Orvis, J., White, O., Buell,
1067 C.R., and Wortman, J.R. (2008). Automated eukaryotic gene structure annotation
1068 using EVidenceModeler and the program to assemble spliced alignments.
1069 *Genome Biol* 9(1):R7.

1070 He, L., Li, M., Qiu, Z., Chen, D., Zhang, G., Wang, X., Chen, G., Hu, J., Gao, Z., and
1071 Dong, G., et al. (2020). Primary leaf-type ferredoxin 1 participates in
1072 photosynthetic electron transport and carbon assimilation in rice. *The Plant
1073 Journal* 104:44-58.

1074 He, S., Tan, L., Hu, Z., Chen, G., Wang, G., and Hu, T. (2012). Molecular characterization
1075 and functional analysis by heterologous expression in *E. coli* under diverse
1076 abiotic stresses for *OsLEA5*, the atypical hydrophobic LEA protein from *Oryza
1077 sativa* L. *Mol Genet Genomics* 287(1):39-54.

1078 Hua, L., Wang, D.R., Tan, L., Fu, Y., Liu, F., Xiao, L., Zhu, Z., Fu, Q., Sun, X., and
1079 Gu, P., et al. (2015). *LABA1*, a domestication gene associated with long, barbed
1080 awns in wild rice. *The Plant Cell* 27:1875-1888.

1081 Huang, X., Kurata, N., Wei, X., Wang, Z., Wang, A., Zhao, Q., Zhao, Y., Liu, K., Lu,
1082 H., and Li, W., et al. (2012). A map of rice genome variation reveals the origin of
1083 cultivated rice. *Nature* 490:497-501.

1084 Izumi, M., Hidema, J., Wada, S., Kondo, E., Kurusu, T., Kuchitsu, K., Makino, A.,
1085 and Ishida, H. (2015). Establishment of monitoring methods for autophagy in
1086 rice reveals autophagic recycling of chloroplasts and root plastids during energy
1087 limitation. *Plant Physiol* 167:1307-1320.

1088 Jayakodi, M., Padmarasu, S., Haberer, G., Bonthala, V.S., Gundlach, H., Monat, C.,

1089 Lux, T., Kamal, N., Lang, D., and Himmelbach, A., et al. (2020) The barley
1090 pan-genome reveals the hidden legacy of mutation breeding. *Nature*
1091 588(7837):284-289.

1092 Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z.,
1093 and Zhu, X., et al. (2010). Regulation of *OsSPL14* by OsmiR156 defines ideal
1094 plant architecture in rice. *Nat Genet* 42:541-544.

1095 Jin, J., Huang, W., Gao, J., Yang, J., Shi, M., Zhu, M., Luo, D., and Lin, H. (2008).
1096 Genetic control of rice plant architecture under domestication. *Nat Genet*
1097 40:1365-1369.

1098 Jones, P., Binns, D., Chang, H.Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H.,
1099 Maslen, J., Mitchell, A., and Nuka, G., et al. (2014). Interproscan 5:
1100 genome-scale protein function classification. *Bioinformatics* 30:1236-1240.

1101 Kato, Y., Konishi, M., Shigyo, M., Yoneyama, T., and Yanagisawa, S. (2010).
1102 Characterization of plant eukaryotic translation initiation factor 6 (*eif6*) genes:
1103 the essential role in embryogenesis and their differential expression in
1104 *Arabidopsis* and rice. *Biochem Bioph Res Co* 397:673-678.

1105 Katoh, K., and Standley, D.M. (2013) MAFFT multiple sequence alignment software
1106 version 7: improvements in performance and usability. *Mol Biol Evol*
1107 30(4):772-780.

1108 Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with bowtie 2.
1109 *Nat Methods* 9:357-359.

1110 Li, C., Zhou, A., and Sang, T. (2006). Rice domestication by reducing shattering.
1111 *Science* 311:1932-1936.

1112 Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences.
1113 *Bioinformatics* 34:3094-3100.

1114 Li, L., Li, Y., Jia, Y., Caicedo, A.L., and Olsen, K.M. (2017). Signatures of adaptation
1115 in the weedy rice genome. *Nat Genet* 49:811-814.

1116 Li, P., Quan, X., Jia, G., Xiao, J., Cloutier, S., and You, F.M. (2016). RGAugury: a
1117 pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants.
1118 *BMC Genomics* 17(1):852

1119 Liu, J., Chen, J., Zheng, X., Wu, F., Lin, Q., Heng, Y., Tian, P., Cheng, Z., Yu, X., and
1120 Zhou, K., et al. (2017). *GW5* acts in the brassinosteroid signalling pathway to
1121 regulate grain width and weight in rice. *Nat Plants* 3.

1122 Long, Y., Zhao, L., Niu, B., Su, J., Wu, H., Chen, Y., Zhang, Q., Guo, J., Zhuang, C.,
1123 and Mei, M., et al. (2008). Hybrid male sterility in rice controlled by interaction
1124 between divergent alleles of two adjacent genes. *Proc Natl Acad Sci U S A*
1125 105:18871-18876.

1126 Luo, J., Liu, H., Zhou, T., Gu, B., Huang, X., Shangguan, Y., Zhu, J., Li, Y., Zhao, Y.,
1127 and Wang, Y., et al. (2013). *An-1* encodes a basic helix-loop-helix protein that
1128 regulates awn development, grain size, and grain number in rice. *The Plant Cell*
1129 25:3360-3376.

1130 Ma, X., Fan, J., Wu, Y., Zhao, S., Zheng, X., Sun, C., and Tan, L. (2020).
1131 Whole-genome *de novo* assemblies reveal extensive structural variations and
1132 dynamic organelle-to-nucleus DNA transfers in African and Asian rice. *The Plant*

Journal 104:596-612.

Marçais, G., Delcher, A.L., Phillippy, A.M., Coston, R., Salzberg, S.L., and Zimin, A. (2018). Mummer4: a fast and versatile genome alignment system. *PloS Comput Biol* 14:e1005944.

Martin, S.H., Davey, J.W., and Jiggins, C.D. (2015). Evaluating the use of ABBA-BABA statistics to locate introgressed loci. *Mol Biol Evol*. 32(1):244-57.

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., and Daly, M., et al. (2010). The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. *Genome Res* 20:1297-1303.

Molina, J., Sikora, M., Garud, N., Flowers, J.M., Rubinstein, S., Reynolds, A., Huang, P., Jackson, S., Schaal, B.A., and Bustamante, C.D., et al. (2011). Molecular evidence for a single evolutionary origin of domesticated rice. *Proc Natl Acad Sci U S A* 108:8351-8356.

Nattestad, M., and Schatz, M.C. (2016) Assemblies: a web analytics tool for the detection of variants from an assembly. *Bioinformatics*. 32(19):3021-3023.

Nguyen, L.T., Schmidt, H.A., von Haeseler, A., and Minh, B.Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol* 32(1):268-274.

Ou, S., and Jiang, N. (2018). LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. *Plant Physiol* 176:1410-1422.

Patel, R.K., and Jain, M. (2012). NGS QC toolkit: a toolkit for quality control of next generation sequencing data. *PloS One* 7:e30619.

Price, M.N., Dehal, P.S., and Arkin, A.P. (2009). FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. *Mol Biol Evol* 26:1641-1650.

Qin, P., Lu, H., Du, H., Wang, H., Chen, W., Chen, Z., He, Q., Ou, S., Zhang, H., and Li, X., et al. (2021). Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. *Cell* 184:3542-3558.

Qiu, J., Jia, L., Wu, D., Weng, X., Chen, L., Sun, J., Chen, M., Mao, L., Jiang, B., and Ye, C., et al. (2020). Diverse genetic mechanisms underlie worldwide convergent rice feralization. *Genome Biol* 21.

Qiu, J., Zhou, Y., Mao, L., Ye, C., Wang, W., Zhang, J., Yu, Y., Fu, F., Wang, Y., and Qian, F., et al. (2017). Genomic variation associated with local adaptation of weedy rice during de-domestication. *Nat Commun* 8.

Read, A.C., Moscou, M.J., Zimin, A.V., Pertea, G., Meyer, R.S., Purugganan, M.D., Leach, J.E., Triplett, L.R., Salzberg, S.L., and Bogdanove, A.J. (2020) Genome assembly and characterization of a complex zfBED-NLR gene-containing disease resistance locus in Carolina Gold Select rice with Nanopore sequencing. *PLoS Genet* 16(1):e1008571.

Rhie, A., Walenz, B.P., Koren, S., and Phillippy, A.M. (2020). Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. *Genome Biol* 21(1):245.

1177 Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P.,
1178 Ramos-Onsins, S.E., and Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence
1179 polymorphism analysis of large data sets. *Mol Biol Evol* 34(12):3299-3302.

1180 Salamov, A.A., and Solovyev, V.V. (2000) *Ab initio* gene finding in *Drosophila*
1181 genomic DNA. *Genome Res* 10(4):516-522.

1182 Shang, L., Li, X., He, H., Yuan, Q., Song, Y., Wei, Z., Lin, H., Hu, M., Zhao, F., and
1183 Zhang, C., et al. (2022). A super pan-genomic landscape of rice. *Cell Res*
1184 32:878-896.

1185 Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., and Zdobnov, E.M.
1186 (2015). BUSCO: assessing genome assembly and annotation completeness with
1187 single-copy orthologs. *Bioinformatics* 31:3210-3212.

1188 Song, B., Chuah, T., Tam, S.M., and Olsen, K.M. (2014). Malaysian weedy rice
1189 shows its true stripes: wild *Oryza* and elite rice cultivars shape agricultural weed
1190 evolution in southeast Asia. *Mol Ecol* 23:5003-5017.

1191 Song, J., Xie, W., Wang, S., Guo, Y., Koo, D., Kudrna, D., Gong, C., Huang, Y., Feng,
1192 J., and Zhang, W., et al. (2021). Two gap-free reference genomes and a global
1193 view of the centromere architecture in rice. *Mol Plant* 14:1757-1767.

1194 Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., and Morgenstern, B. (2006)
1195 AUGUSTUS: *ab initio* prediction of alternative transcripts. *Nucleic Acids Res*
1196 34:W435-9.

1197 Steuernagel, B., Jupe, F., Witek, K., Jones, J.D., and Wulff, B.B. (2015). NLR-parser:
1198 rapid annotation of plant NLR complements. *Bioinformatics* 31(10):1665-1667.

1199 Su, W., Ou S., Hufford, M.B., and Peterson, T. (2021) A tutorial of EDTA: Extensive
1200 De Novo TE Annotator. *Methods Mol Biol* 2250:55-67.

1201 Sun, J., Ma, D., Tang, L., Zhao, M., Zhang, G., Wang, W., Song, J., Li, X., Liu, Z.,
1202 and Zhang, W., et al. (2019). Population genomic analysis and *de novo* assembly
1203 reveal the origin of weedy rice as an evolutionary game. *Mol Plant* 12:632-647.

1204 Sun, J., Zhang, G., Cui, Z., Cui Z., Kong X., Yu X., Gui R., Han Y., Li Z., and Lang
1205 H., et al. (2022) Regain flood adaptation in rice through a 14-3-3 protein
1206 OsGF14h. *Nat Commun* 13, 5664 (2022).

1207 Tanabe, S., Ashikari, M., Fujioka, S., Takatsuto, S., Yoshida, S., Yano, M., Yoshimura,
1208 A., Kitano, H., Matsuoka, M., and Fujisawa, Y, et al. (2005) A novel cytochrome
1209 P450 is implicated in brassinosteroid biosynthesis via the characterization of a
1210 rice dwarf mutant, *dwarf11*, with reduced seed length. *Plant Cell* 17(3):776-790.

1211 Thorvaldsdóttir, H., Robinson, J.T., and Mesirov, J.P. (2013) Integrative Genomics
1212 Viewer (IGV): high-performance genomics data visualization and exploration.
1213 *Brief Bioinform* 14(2):178-192.

1214 Tseng, I., Hong, C., Yu, S., and Ho, T.D. (2013). Abscisic acid- and stress-induced
1215 highly proline-rich glycoproteins regulate root growth in rice. *Plant Physiol*
1216 163:118-134.

1217 Vaser, R., Sović, I., Nagarajan, N., and Šikić, M. (2017). Fast and accurate *de novo*
1218 genome assembly from long uncorrected reads. *Genome Res* 27:737-746.

1219 Wang, H., Vieira, F.G., Crawford, J.E., Chu, C., and Nielsen, R. (2017). Asian wild
1220 rice is a hybrid swarm with extensive gene flow and feralization from

1221 domesticated rice. *Genome Res.* 27(6):1029-1038.

1222 Wang, J., Deng, Q., Li, Y., Yu, Y., Liu, X., Han, Y., Luo, X., Wu, X., Ju, L., and Sun, J.,
1223 et al. (2020). Transcription factors *Rc* and *OsVPI* coordinately regulate
1224 preharvest sprouting tolerance in red pericarp rice. *J Agr Food Chem*
1225 68:14748-14757.

1226 Wang, L., Zhao, L., Zhang, X., Zhang, Q., Jia, Y., Wang, G., Li, S., Tian, D., Li, W.,
1227 and Yang, S. (2019). Large-scale identification and functional analysis of NLR
1228 genes in blast resistance in the Tetep rice genome sequence. *Proc Natl Acad Sci*
1229 U S A 116:18479-18487.

1230 Wang, M., Li, W., Fang, C., Xu, F., Liu, Y., Wang, Z., Yang, R., Zhang, M., Liu, S.,
1231 and Lu, S., et al. (2018a). Parallel selection on a dormancy gene during
1232 domestication of crops from multiple families. *Nat Genet* 50:1435-1441.

1233 Wang, W., Mauleon, R., Hu, Z., Chebotarov, D., Tai, S., Wu, Z., Li, M., Zheng, T.,
1234 Fuentes, R.R., Zhang, F., et al. (2018b). Genomic variation in 3,010 diverse
1235 accessions of Asian cultivated rice. *Nature* 557:43-49.

1236 Wang, Z., Wang, W., Xie, X., Wang, Y., Yang, Z., Peng, H., Xin, M., Yao, Y., Hu, Z.,
1237 and Liu, J., et al. (2022). Dispersed emergence and protracted domestication of
1238 polyploid wheat uncovered by mosaic ancestral haplotype inference. *Nat*
1239 *Commun* 13.

1240 Wang, Z., Wei, K., Xiong, M., Wang, J.D., Zhang, C.Q., Fan, X.L., Huang, L.C., Zhao,
1241 D.S., Liu, Q.Q., and Li, Q.F. (2021) Glucan, Water-Dikinase 1 (*GWD1*), an ideal
1242 biotechnological target for potential improving yield and quality in rice. *Plant*
1243 *Biotechnol J* 19(12):2606-2618.

1244 Wu, D., Lao, S., and Fan, L. (2021). De-domestication: an extension of crop evolution.
1245 *Trends Plant Sci* 26:560-574.

1246 Wu, D., Qiu, J., Sun, J., Song, B., Olsen, K.M., and Fan, L. (2022a). Weedy rice, a
1247 hidden gold mine in the paddy field. *Mol Plant* 15:566-568.

1248 Wu, D., Shen E., Jiang, B., Feng, Y., Tang, W., Lao, S., Jia, L., Lin, H.Y., Xie, L., and
1249 Weng, X., et al. (2022b) Genomic insights into the evolution of *Echinochloa*
1250 species as weed and orphan crop. *Nat Commun* 13(1):689.

1251 Wu, T.D., and Watanabe, C.K. (2005) GMAP: a genomic mapping and alignment
1252 program for mRNA and EST sequences. *Bioinformatics* 21(9):1859-75.

1253 Xie, X., Du, H., Tang, H., Tang, J., Tan, X., Liu, W., Li, T., Lin, Z., Liang, C., and Liu,
1254 Y. (2021). A chromosome-level genome assembly of the wild rice *Oryza*
1255 *rufipogon* facilitates tracing the origins of Asian cultivated rice. *Science China*
1256 *Life Sciences* 64:282-293.

1257 Zhan, C., Lei, L., Liu, Z., Zhou, S., Yang, C., Zhu, X., Guo, H., Zhang, F., Peng, M.,
1258 and Zhang, M., et al. (2020). Selection of a subspecies-specific diterpene gene
1259 cluster implicated in rice disease resistance. *Nat Plants* 6:1447-1454.

1260 Zhang, F., Wang, C., Li, M., Cui, Y., Shi, Y., Wu, Z., Hu, Z., Wang, W., Xu, J., and Li,
1261 Z. (2021). The landscape of gene-cds-haplotype diversity in rice: properties,
1262 population organization, footprints of domestication and breeding, and
1263 implications for genetic improvement. *Mol Plant* 14:787-804.

1264 Zhang, F., Xue, H., Dong, X., Li, M., Zheng, X., Li, Z., Xu, J., Wang, W., and Wei, C.

1265 (2022). Long-read sequencing of 111 rice genomes reveals significantly larger
1266 pan-genomes. *Genome Res* 32(5):853-863.

1267 Zhang, X., Zhang, S., Zhao, Q., Ming, R., and Tang, H. (2019). Assembly of
1268 allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data.
1269 *Nat Plants* 5:833-845.

1270 Zhao, Q., Feng, Q., Lu, H., Li, Y., Wang, A., Tian, Q., Zhan, Q., Lu, Y., Zhang, L.,
1271 Huang, T., et al. (2018). Pan-genome analysis highlights the extent of genomic
1272 variation in cultivated and wild rice. *Nat Genet* 50:278-284.

1273 Zheng, X., Pang, H., Wang, J., Yao, X., Song, Y., Li, F., Lou, D., Ge, J., Zhao, Z., and
1274 Qiao, W., et al. (2022). Genomic signatures of domestication and adaptation
1275 during geographical expansions of rice cultivation. *Plant Biotechnol J*
1276 20(1):16-18.

1277 Zhou, Y., Chebotarov, D., Kudrna, D., Llaca, V., Lee, S., Rajasekar, S., Mohammed,
1278 N., Al-Bader, N., Sobel-Sorenson, C., and Parakkal, P., et al. (2020). A platinum
1279 standard pan-genome resource that represents the population structure of Asian
1280 rice. *Sci Data* 7(1):113.

1281 Zhu, B., Si, L., Wang, Z., Jingjie Zhu, Y.Z., Shangguan, Y., Lu, D., Fan, D., Li, C., Lin,
1282 H., and Qian, Q., et al. (2011). Genetic control of a transition from black to
1283 straw-white seed hull in rice domestication. *Plant Physiol* 155:1301-1311.

1284 Zdobnov, E.M., and Apweiler, R. (2001). InterProScan—an integration platform for the
1285 signature-recognition methods in InterPro. *Bioinformatics* 17(9):847-848.

1286 **Acknowledgements**

1287 We thank Peng Qin (Sichuan Agricultural University) and Jian Sun (Shenyang
1288 Agricultural University) for providing rice seeds. We thank Lianguang Shang (AGIS,
1289 Chinese Academy of Agricultural Sciences) for providing the genome assemblies of
1290 nine wild rice accessions. We thank Jie Qiu (Shanghai Normal University) for his
1291 constructive suggestions. This work is supported by National Natural Science
1292 Foundation of China (31971865) and Department of Science and Technology of
1293 Zhejiang Province (2022C02032 and 2020C02002) to L.F. and China National
1294 Postdoctoral Program for Innovative Talents (BX20220269) to D.W.

1295

1296 **Author contributions**

1297 L.F. and Q.Q. conceived and supervised the study. D.W., L.J. and C.D. assembled and
1298 annotated the genomes. D.W. and L.J. collected previously released assemblies of rice
1299 genomes. Y.H. and L.X. evaluated the quality of rice assemblies. D.W., L.X. and Y.H.
1300 constructed the rice syntelog-based pan-genome and analyzed the ancestral
1301 haplotypes. L.X. carried out the analysis of NLR genes. Y.S. and L.X. performed the
1302 analysis of structural variations. L.F., C.Y. and Q.Q. discussed the results. D.W., Y.S.
1303 and L.X. wrote the manuscript and L.F. and C.Y. revised it. All authors discussed the
1304 results and commented on the manuscript.

1305

1306 **Competing interests**

1307 The authors declare no competing interests.

1308

1309 **Additional information**

1310 The supplementary material is available online.

1311 **Figure legends**

1312

1313 **Figure 1. Quality assessment of rice genome assemblies and their relationship**
1314 **based on phylogeny and synteny.** (a) Consensus quality values and number of
1315 homozygous SNPs based on self-mapping for genomes in four pan-genome projects.
1316 (b) The relationship among rice genomes measured by genetic distance (IBD,
1317 identity-by-descent) based on SNPs and synteny based on gene orders.

1318

1319 **Figure 2. Syntelog-based pan-genome of rice and differential gene PAVs in**
1320 **subspecies.** (a) Number of syntelog groups (SGs) represented in all 74 rice genomes
1321 versus the number of genomes. The subspecies pan-genome compositions for GJ and
1322 XI were extracted from the whole rice pan-genome. The numbers of core, soft-core,
1323 dispensable, private and absent SGs were counted. (b) Frequency differences in gene
1324 presence between GJ and XI along chromosome 7. Each dot represents one SG. The
1325 gene PAV profiling of the antimicrobial diterpenoid biosynthetic gene cluster DGC7
1326 and tandem duplicates *RePRP2.1* and *RePRP2.2*, suppressors of root cell expansion,
1327 is shown.

1328

1329 **Figure 3. Syntelog-based ancestral haplotypes suggest widespread genomic**
1330 **introgression in rice evolution.** (a) Ancestral haplotype landscape of SGs on
1331 chromosome 4. An SNP-based phylogeny of rice groups is illustrated on the left. For
1332 each SG, seven blocks with different colors represent different haplotypes of
1333 predicted protein sequences. Candidate introgression regions are numbered by
1334 genomic length and marked by gray blocks. The centromere position information of
1335 chromosome 4 is obtained from the Rice Genome Annotation Project and indicated by
1336 a red triangle. Functionally important genes are annotated within each block, and
1337 domestication genes are highlighted in red. (b) Haplotype divergence between XI and
1338 GJ for all SGs on chromosome 4. (c) Significance test on the non-random distribution
1339 of clustered SGs in introgression blocks by sampling 100,000 replicates. The
1340 horizontal red dashed line represents a *P* value of 0.01. (d) Phylogeny analysis of four
1341 large introgression blocks (length greater than 300 kb) indicates a single origin of
1342 domestication alleles from the Or-3 wild group. Four wild groups are highlighted in
1343 different colors. (e) Final putative introgression blocks from proto-GJ to XI, combining
1344 the evidence from haplotype divergence, phylogeny and ABBA-BABA tests. (f)
1345 Complex genomic contributions from wild groups to the emergence of *aus* group
1346 revealed by the phylogenetic trees in 64 introgression blocks.

1347

1348 **Figure 4. Structural variations in rice de-domestication.** (a) Dot plots comparing
1349 all 74 assemblies against the de-domestication genomic island (from 6.0 to 6.5 Mb)
1350 on chromosome 7 of Nipponbare. The predominant translocations in wild and weedy
1351 accessions are highlighted by red boxes. The pink seed icons behind the accession IDs
1352 represent red or brown pericarp. (b) Phylogeny revealed by SNPs in the *Rc* region
1353 indicates introgression from Or-1 and Or-3 to XI and GJ, respectively. Labels with
1354 green, red, yellow and blue represent accessions from Or-4, Or-3, Or-2 and Or-1,

1355 respectively. Blue dots represent weedy accessions. The numbers on each branch
1356 indicate bootstrap values of less than 90%, based on 1000 replicates. **(c)** Structural
1357 variations in *OsCI* between the weedy and cultivated GJ accessions. Black rectangles
1358 represent exons. **(d)** Structural variations in *Bh4* between weedy and cultivated
1359 accessions and their seed appearances.

1360

1361 **Figure 5. A brief schematic illustration of Asian rice evolution.** The evolutionary
1362 scenario highlights that complex introgression events have contributed indispensably
1363 to rice domestication and de-domestication.

1364 **Supplementary Information**

1365

1366 **Supplementary Table 1.** Meta information of 75 rice genome assemblies used in this
1367 study.

1368 **Supplementary Table 2.** Haplotype divergence between XI and GJ for domestication
1369 and improvement genes

1370 **Supplementary Table 3.** Putative introgression blocks identified by haplotype
1371 divergence between GJ and XI and validation by phylogeny and ABBA-BABA tests

1372 **Supplementary Table 4.** Gene functional enrichment in final putative introgression
1373 blocks

1374 **Supplementary Table 5.** Cloned genes in the putative introgression blocks

1375 **Supplementary Table 6.** Structural variations between each pair of weedy and
1376 cultivated accessions in agronomy-related genes

1377

1378 **Supplementary Fig. 1** Hi-C interaction heatmaps for each chromosome from four
1379 rice accessions (a, YCW03; b, 18XHB-83; c, CX20; d, NJ11).

1380 **Supplementary Fig. 2** Statistical information of the rice genomes used in this study.
1381 (a) Assembly (size), annotation (gene number, TE size and proportion) and quality
1382 assessment (contig N50, BUSCO and LAI) of rice genomes. (b) Differences in
1383 genomic features between subspecies GJ and XI. In the boxplots, the horizontal line
1384 shows the median value, and the whiskers show the 25% and 75% quartile values of
1385 each genomic feature. *P* values were calculated by Student's *t* test.

1386 **Supplementary Fig. 3** Dot plots of newly generated rice assemblies in this study
1387 against the reference assembly Nipponbare (IRGSP) and gapless assembly
1388 MH63RS3.

1389 **Supplementary Fig. 4** Assembly quality assessment in base accuracy. (a) QVs for
1390 rice genomes in four rice pan-genome projects using yak (<https://github.com/lh3/yak>).
1391 (b) The number and annotation to SNPs and InDels for each genome by mapping
1392 NGS short reads against their own assembly.

1393 **Supplementary Fig. 5** PCA reveals the representativeness and diversity of genome
1394 assemblies used in this study. The first two principle components are shown. Filled
1395 circles indicate the assemblies used in this study. Green, blue and red represent wild,
1396 cultivated and weedy assemblies, respectively.

1397 **Supplementary Fig. 6** Performance of BLASTP and Diamond (under different
1398 modes) in syntelog identification. (a) The BLASTP approach identifies more
1399 syntelogs than Diamond. (b) Syntelog number between accession 02428 and other
1400 accessions identified using BLASTP and Diamond.

1401 **Supplementary Fig. 7** Pairwise synteny reveals evolutionary signatures in groups
1402 and individuals. (a) Syntelog numbers between rice groups. (b) Syntelog numbers
1403 between each accession and other accessions from the GJ and XI (including *aus*)
1404 subspecies. In the boxplots, the horizontal line shows the median value, and the
1405 whiskers show the 25% and 75% quartile values of syntelog numbers.

1406 **Supplementary Fig. 8** Comparison of MCL and synteny-based clustering. (a) A brief
1407 scheme illustrating MCL ortholog clustering and syntelog clustering. (b) Group size

1408 comparison using synteny-based clustering (SynPan) and MCL clustering
1409 (OrthoFinder).

1410 **Supplementary Fig. 9** Benchmarking analysis on the influences of inflation
1411 parameters in the MCL clustering in rice genomes. (a) The OG numbers shared by
1412 different sizes of rice genomes under different inflation parameters. (b) Gene counts
1413 in OGs shared by different sizes of genomes. (c) Average gene number per OG under
1414 different inflation parameters.

1415 **Supplementary Fig. 10** Composition and features of the rice syntelog-based
1416 pangenome. (a) Pan-gene composition (core, soft-core, dispensable and private) of the
1417 rice pan-genome. (b) Proportions of domain-annotated genes in four categories of the
1418 rice pan-genome. (c) Percentage of SGs (blue) and genes (red) with domain
1419 gain-and-loss.

1420 **Supplementary Fig. 11** Comparison of NLR genes in rice genomes from different
1421 ecotypes and subspecies. (a) Distribution of different NLR genes in wild, cultivated
1422 and weedy accessions. (b) Distribution of different NLR genes in wild rice, XI and GJ.
1423 (c) Clustered NLRs in wild rice, XI and GJ. *P* values are calculated using Wilcoxon
1424 test. (d) Relationship between genome assembly completeness (as indicated by LAI)
1425 and NLR size. In the boxplots, the horizontal line shows the median value, and the
1426 whiskers show the 25% and 75% quartile values of NLR sizes.

1427 **Supplementary Fig. 12** Genomic features of NLRs in rice genomes. (a) Dynamics of
1428 domain architectures in the rice NLRome. CNL, NL and null (no canonical
1429 architectures) are defined as three NLR architecture types in rice. Multiple types are
1430 observed for most SGs. (b) Nucleotide diversity and selection of NLRs from core,
1431 soft-core and dispensable SGs. In the boxplots, the horizontal line shows the median
1432 value, and the whiskers show the 25% and 75% quartile values of *Pi* and Tajima's *D*.
1433 Significance *P* values are performed using Wilcoxon test. *, *P* < 0.05.

1434 **Supplementary Fig. 13** Haplotype analysis on rice syntelogs. (a) Definition of
1435 haplotype diversity and divergence. Haplotype diversity and divergence represent
1436 average haplotype differences among sequences in a syntelog group within one group
1437 and among two groups, respectively, where X_i and X_j are the presence count of
1438 haplotype i and haplotype j in group X , and $\sum X$ is the total sequence count within a
1439 syntelog group. (b) Brief scheme illustrating the assignment and visualization of
1440 ancestral haplotypes for each genome. A group priority-based referring strategy is
1441 used to assign ancestral haplotypes. Group information is prior based on
1442 whole-genome phylogeny or population structure. The most dominant sequence in
1443 syntelogs from Group 1 is set as HapI. If the most dominant sequence from Group 2 is
1444 not HapI, then define HapII, otherwise HapII is skipped. If the most dominant
1445 sequence from Group 3 is neither HapI nor HapII, then define HapIII, otherwise
1446 HapIII is skipped. By analogy, dominant haplotypes are determined and colored for
1447 each syntelog group. Rare haplotypes are named as HapR colored by dark gray. In this
1448 study, the group priority order is set as tmp > XI1A > XI1B > aus > XI3. Different
1449 orders have no influences on the calculation of haplotype diversity and divergence. (c)
1450 mosaic graphs of ancestral haplotypes in chromosome 1 across 74 rice genomes with
1451 different priority orders, tmp > XI1A > XI1B > aus > XI3, XI1B > XI1A > tmp >

1452 *aus* > XI3 and XI1A > XI1B > tmp > *aus* > XI3. For each window, the same color
1453 indicates the same haplotype and dark and light gray indicates rare haplotypes and
1454 syntelog absence.

1455 **Supplementary Fig. 14** Genetic diversity measured by full-length gene, coding
1456 region, and predicted protein sequences in rice genomes. (a) Comparison of diversity
1457 measured by haplotype N100, N90 and haplotype diversity using full-length
1458 nucleotide sequences, coding sequences and predicted protein sequences. In the
1459 boxplots, the horizontal line shows the median value, and the whiskers show the 25%
1460 and 75% quartile values of each diversity indice. (b) Haplotype diversity in GJ and XI,
1461 compared to all rice genomes.

1462 **Supplementary Fig. 15** Ancestral haplotype landscape on chromosome 1 to
1463 chromosome 12. Putative introgression blocks are shown in gray rectangles and
1464 numbered. Haplotype divergence and *P* values (scaled by -log10) of non-random
1465 distribution significance tests are shown along each chromosome. Red dashed lines
1466 represent thresholds to determine introgression blocks.

1467 **Supplementary Fig. 16** Synonymous substitution rates (K_s) of genes in putative
1468 introgression blocks and their neighboring left and right regions. Three replicates (a, b,
1469 and c) between the GJ and XI genomes were performed. In the boxplots, the
1470 horizontal line shows the median value, and the whiskers show the 25% and 75%
1471 quartile values of K_s . *P* values are calculated using Wilcoxon test.

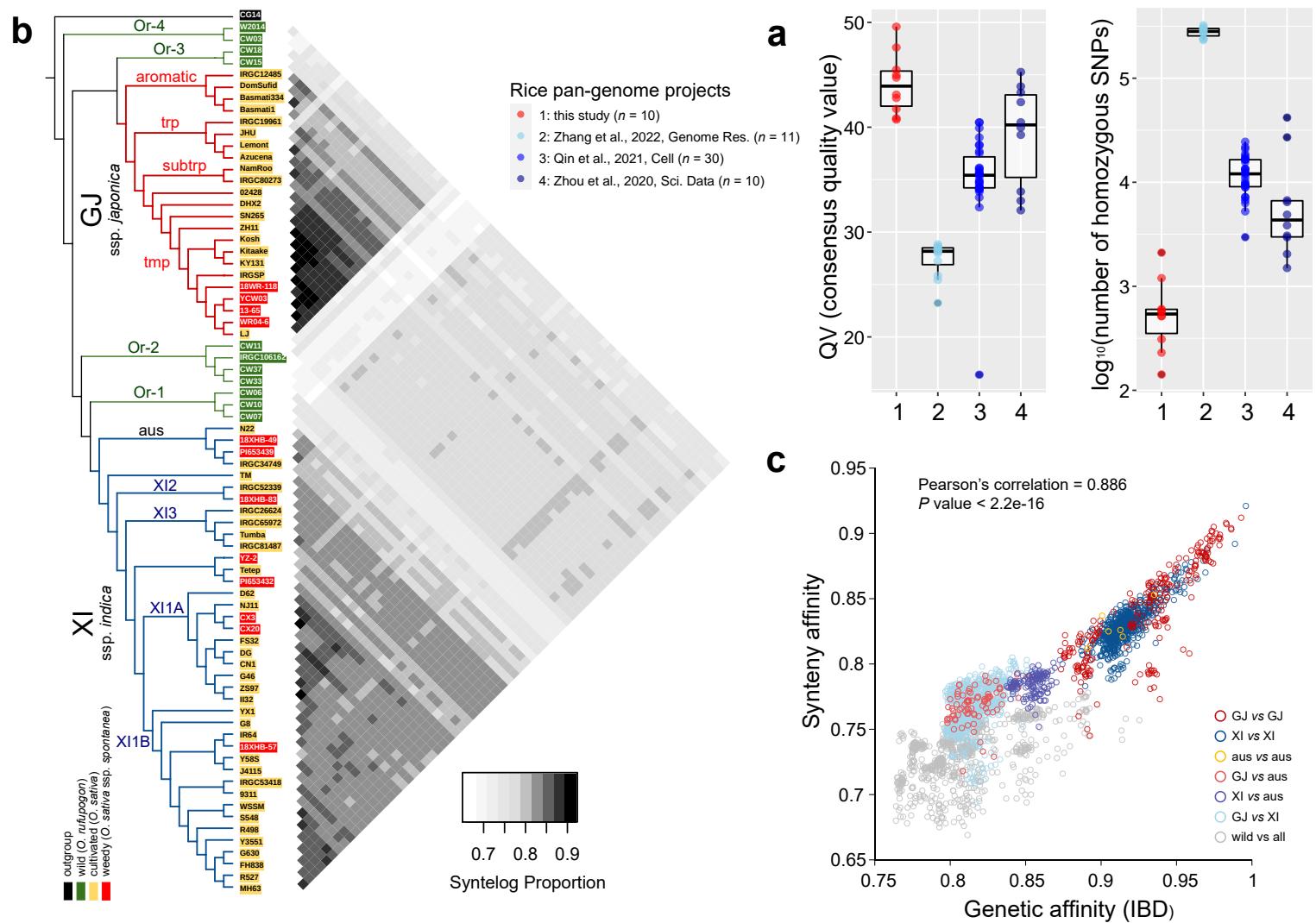
1472 **Supplementary Fig. 17** Population structure of wild rice accessions used in this study.
1473 (a) Phylogenetic tree of *Oryza rufipogon* and *Oryza sativa*. Four wild groups (Or-1,
1474 Or-2, Or-3 and Or-4) are indicated in different colors. (b) PCA plots of the first three
1475 principle components, where “W”, “J” and “I” represent wild, GJ and XI accessions.
1476 (c) Geographical sources of wild accessions in different groups used in this study.

1477 **Supplementary Fig. 18** Introgression f_d distributions of ABBA-BABA test on
1478 chromosome 1 to chromosome 12 in topology T1 to T6, where P1 is Or-1 ($n = 37$), P3
1479 is tmp (GJ, $n = 100$), O/outgroup is Or-4 ($n = 25$), and P2 was set as Or-2 ($n = 42$),
1480 XI1A ($n = 100$), XI1B ($n = 100$), XI2 ($n = 80$), XI3 ($n = 100$) and *aus* ($n = 60$),
1481 respectively. T1 was set as a background control in introgression detection. Genomic
1482 positions of putative introgression regions are indicated by gray rectangles and
1483 detailed coordinates are provided in Supplementary Table 3. Blocks larger than 300kb
1484 are highlighted in red and blocks not supported by f_d are underlined.

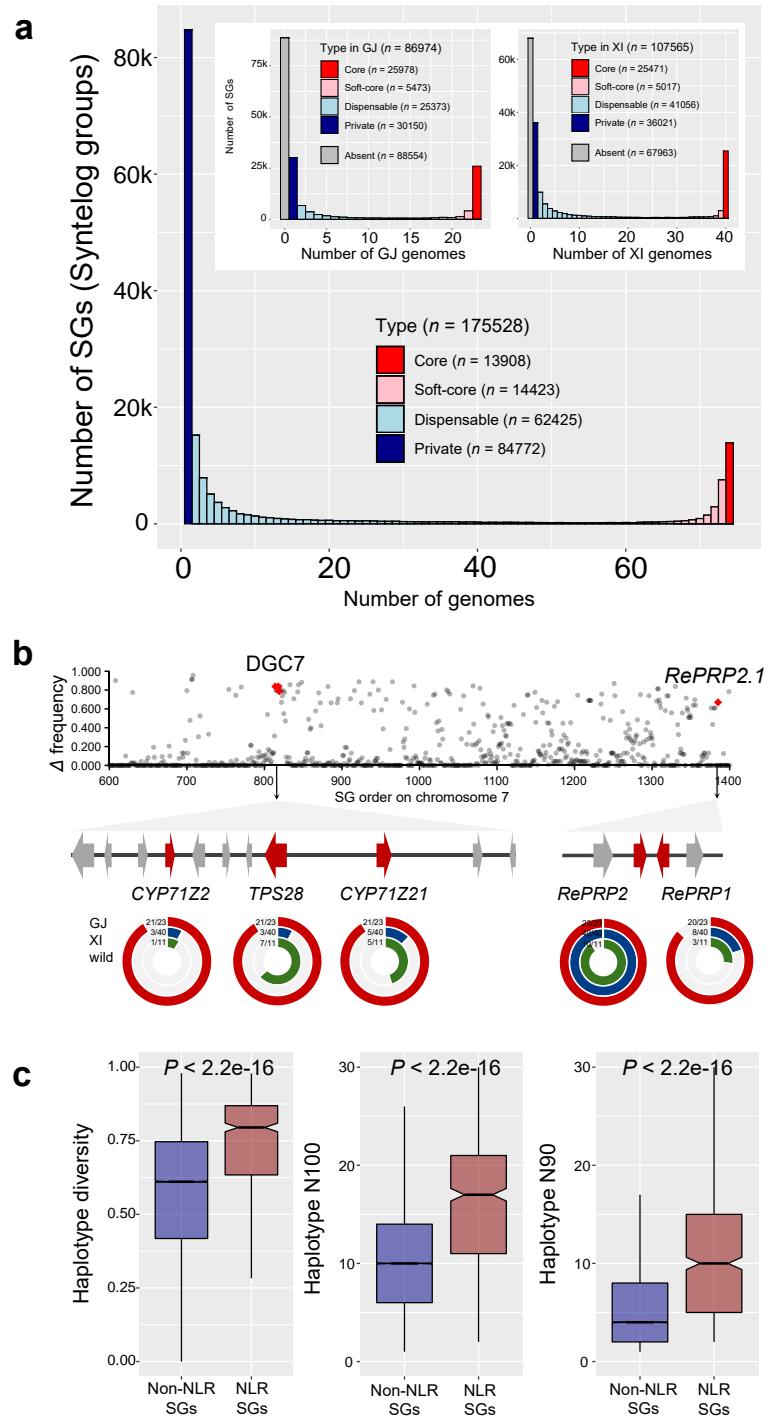
1485 **Supplementary Fig. 19** Comparison of f_d using all genomes and landraces only under
1486 different topologies on chromosome 1. (a) f_d distribution along chromosome 1. Group
1487 tmp, XI1A, XI2, XI3, and *aus* include 47, 24, 21, 52 and 32 landrace accessions,
1488 respectively. (b) Comparison of f_d on chromosome 1 in T2 vs T12, T4 vs T14, and T5
1489 vs T15.

1490 **Supplementary Fig. 20** Genome synteny between each weedy rice assembly and the
1491 corresponding phylogenetically closest cultivated rice assembly.

1492 **Supplementary Fig. 21** Summary of structural variations between weedy and
1493 cultivated rice genomes.


1494 **Supplementary Fig. 22** Structural variations (>50 bp) between assemblies of cultivar
1495 accession NJ11 and weedy rice accession CX20 on 12 chromosomes. The largest six

1496 SVs (numbered from 1 to 6) are zoomed in and annotated, including four insertions (1,
1497 2, 5 and 6) and two deletions (3 and 4) in CX20.


1498 **Supplementary Fig. 23** The Integrative Genomics Viewer (IGV) snapshots show the
1499 structural variations in *OsC1* and *Bh4* between weedy and cultivated rice.

1500 **Supplementary Fig. 24** Phylogeny of *Bh4* in rice and morphology of rice seed hulls.
1501 Bootstrap values less than 0.90 are indicated on branches.

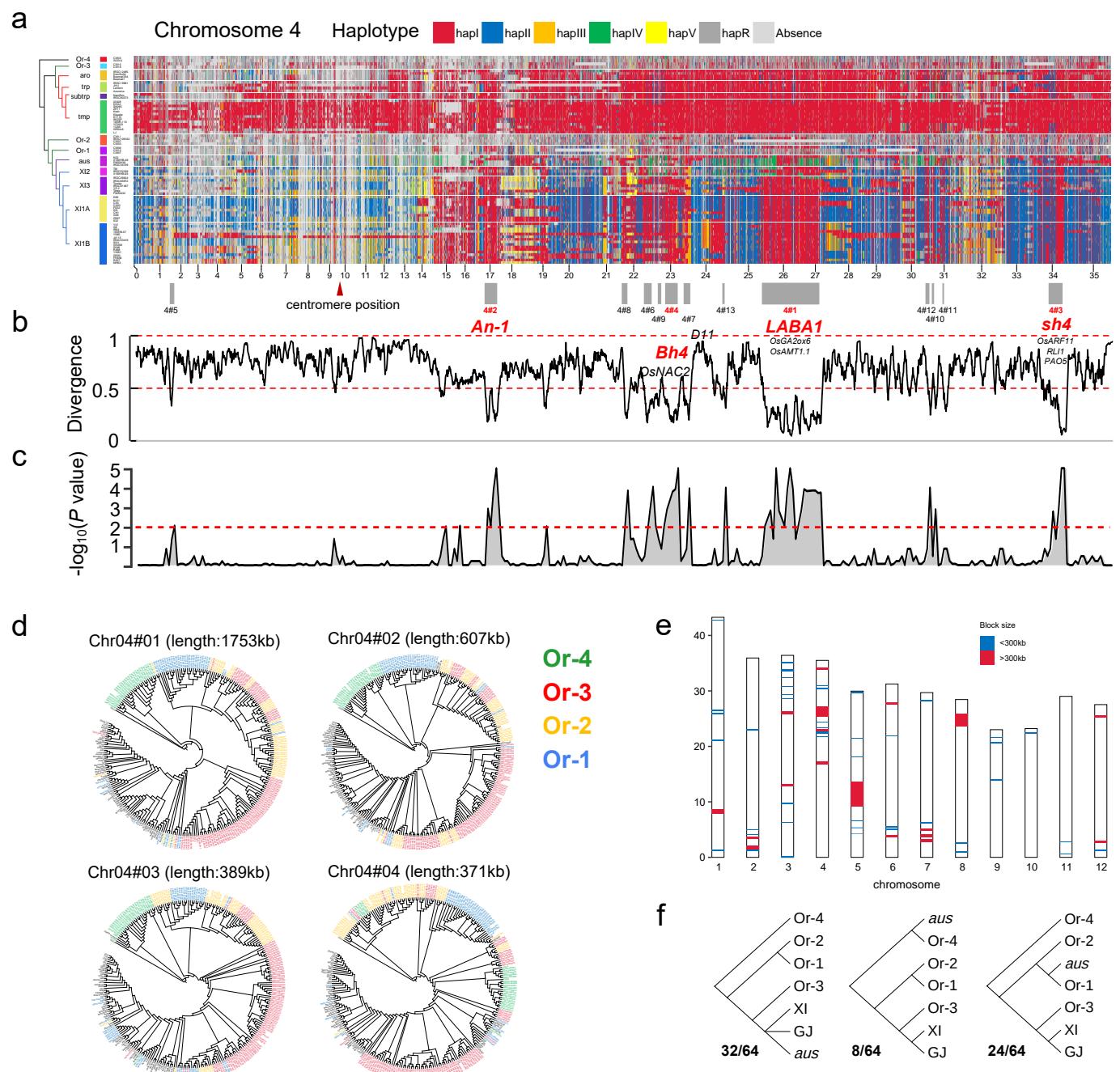

Figure 1

Figure 2

Figure 3

Figure 4

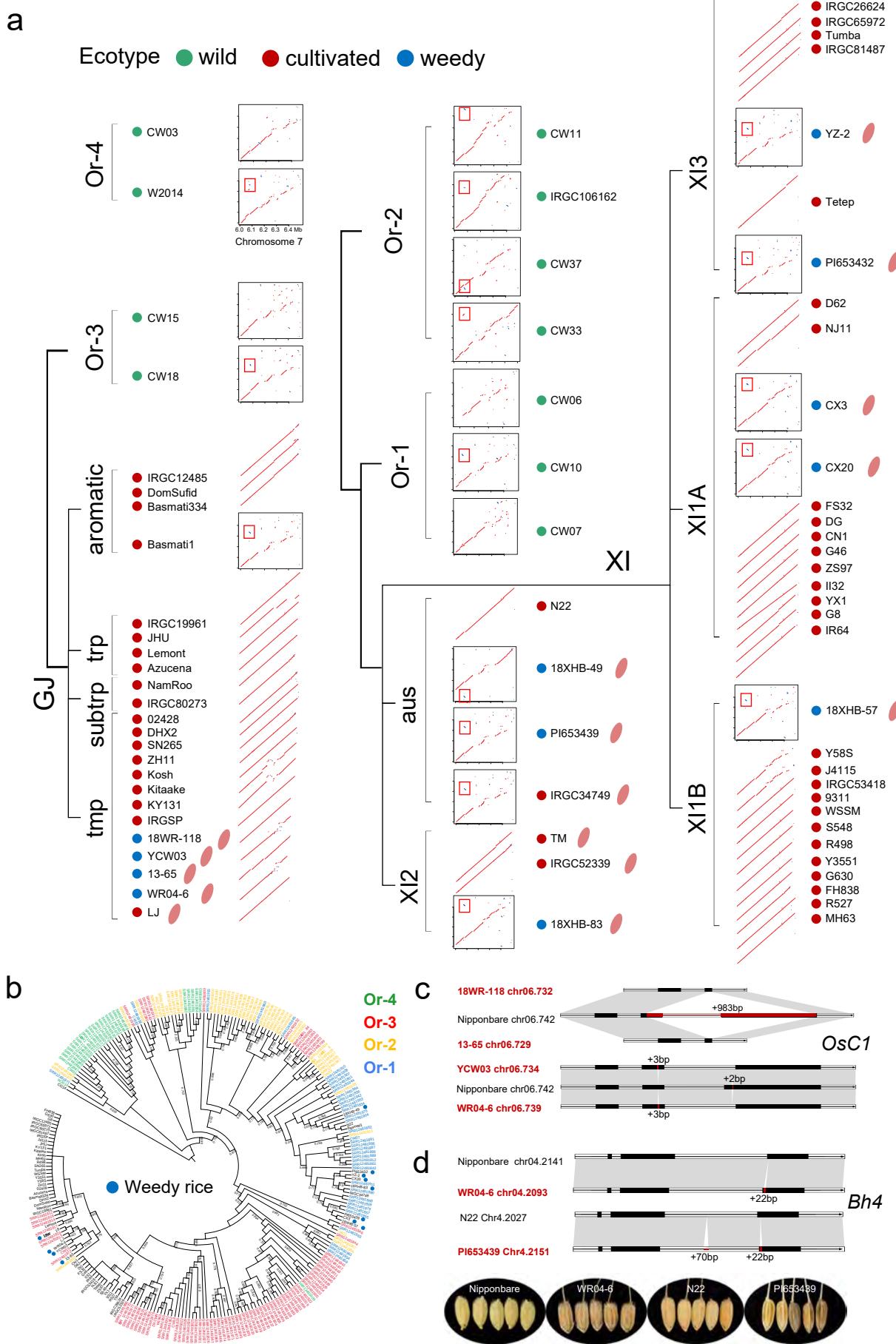
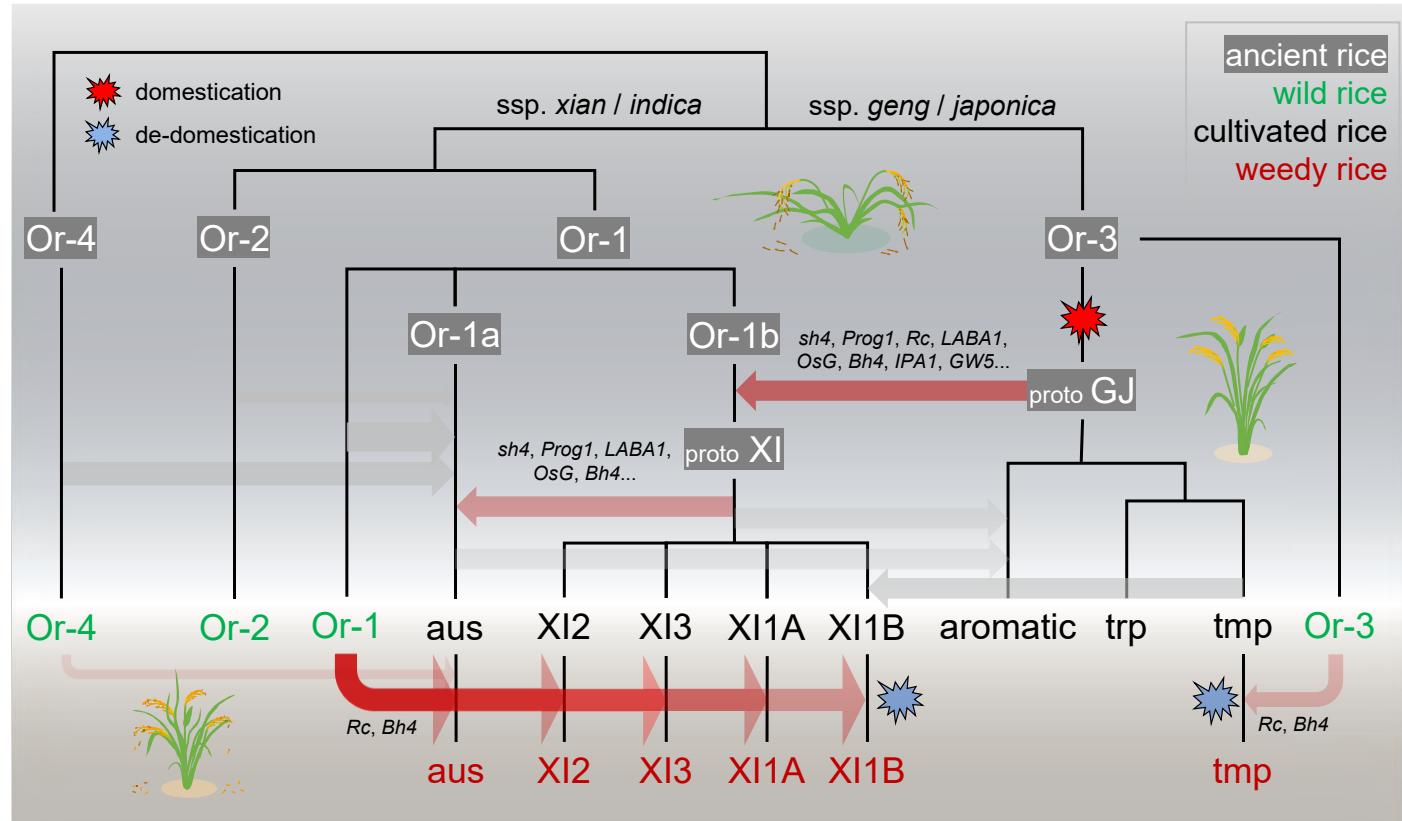



Figure 5

