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Abstract 31 

Antibody leads must fulfill multiple desirable properties to be clinical candidates. Primarily due to 32 

the low throughput in the experimental procedure, the need for such multi-property optimization 33 

causes the bottleneck in preclinical antibody discovery and development, because addressing one 34 

issue usually causes another. We developed a reinforcement learning (RL) method, named AB-35 

Gen, for antibody library design using a generative pre-trained Transformer (GPT) as the policy 36 

network of the RL agent. We showed that this model can learn the antibody space of heavy chain 37 

complementarity determining region 3 (CDRH3) and generate sequences with similar property 38 

distributions. Besides, when using HER2 as the target, the agent model of AB-Gen was able to 39 

generate novel CDRH3 sequences that fulfill multi-property constraints. 509 generated sequences 40 

were able to pass all property filters and three highly conserved residues were identified. The 41 

importance of these residues was further demonstrated by molecular dynamics simulations, which 42 

consolidated that the agent model was capable of grasping important information in this complex 43 

optimization task. Overall, the AB-Gen method is able to design novel antibody sequences with an 44 

improved success rate than the traditional propose-then-filter approach. It has the potential to be 45 

used in practical antibody design, thus empowering the antibody discovery and development 46 

process. 47 

Keywords: Protein design; Transformer; Reinforcement learning; Generative modeling; 48 

Multi-objective optimization 49 
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Introduction 51 

Antibodies have become an increasingly important therapeutic for many diseases, because of their 52 

capabilities to bind to antigens with high specificity and affinity [1, 2]. To discover antibodies 53 

with high specificity, hybridomas and phage display methods are typically used, which can 54 

discover potential lead candidates. However, the lead-optimization process usually takes up the 55 

majority of the preclinical discovery and development cycle, where the lead candidates discovered 56 

are further optimized with multiple properties, including pharmacokinetics, solubility, viscosity, 57 

expression levels, and immunogenicity [3-5]. This is largely due to the low throughput in the late-58 

stage development, and addressing one issue usually causes another [6]. 59 

In recent years, especially after the success of AlphaFold2 [7], de novo protein design has 60 

gained attention and several methods have been developed to design proteins with certain 61 

structures [8, 9]. For example, RFDesign was proposed to design proteins with specific functions, 62 

such as immunogen, enzyme activity, and protein-protein interaction [10]. These methods are 63 

guided by structure-based constraints and targeted to design novel protein sequences with certain 64 

structure patterns, thus new functions [8, 10, 11]. Though promising, these methods are not 65 

designed to optimize properties that have no clear associations with structures, such as solubility 66 

and viscosity, thus not suitable for the multi-property optimization task in antibody design. 67 

In silico antibody design is an emergent topic with notable progress. A few deep learning 68 

methods have been proposed to generate novel antibody sequences. An auto-regressive dilated 69 

convolutional neural network was trained on ∼1.2 million natural nanobody sequences, and used 70 

to generate complementarity determining region 3 (CDR3) sequences [12]. Their designed library 71 

was filtered from the model-generated sequences and showed better expression than a 1000-fold 72 

larger synthetic library. It demonstrated the power of generative models in learning the space of 73 

antibodies that can be expressed. Another work pretrained a long short-term memory (LSTM) [13] 74 

on 70,000 heavy chain complementarity determining region 3 (CDRH3) sequences and fine-tuned 75 

on molecular docking datasets or with experimentally validated predictors to generate high affinity 76 

sequences against antigens [6, 14]. Besides, Transformers [15] were also used to design antibody 77 

sequences. One work [16] used a Transformer decoder [17] to generate CDRH3 sequences. Their 78 

model was trained on 558M antibody variable region sequences, conditioning on chain type and 79 

species-of-origin, and demonstrated a better design than random baselines. Another work [18] 80 

used a Transformer encoder to separate human and non-human sequences. This model can 81 

separate human and non-human sequences with high accuracy, thus guiding the humanization of 82 

antibody sequences. While these studies showed the power of generative models to learn useful 83 
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information on antibody sequences, none of them aimed at solving the multi-property optimization 84 

problem in antibody design. 85 

In this study, we developed a reinforcement learning (RL) framework, called AB-Gen, to 86 

design antibody libraries that fulfill multi-property constraints. Specifically, we used AB-Gen to 87 

explore the CDRH3 sequence space, which contains the highest diversity in antibodies. More than 88 

75 million CDRH3 sequences were obtained from the Observed Antibody Space (OAS) database 89 

[19] to train a prior model. A generative pre-trained Transformer (GPT) was used as the policy 90 

network of the agent and the prior model was used to initiate it. We trained AB-Gen with two 91 

different settings to illustrate the improvement from the multi-property optimization. In the first 92 

setting, an agent, named Agent_HER2, was trained to only optimize HER2 specificity [6] and in 93 

the second setting, another agent, named Agent_MPO, was trained to optimize multiple desirable 94 

properties, including HER2 specificity, MHC II affinity [20], clearance, and viscosity [4]. From 95 

the results, we showed that the prior model could learn the sequence space of CDRH3s and 96 

generate sequences with similar property distributions to the training dataset. Besides, both 97 

Agent_HER2 and Agent_MPO were capable of generating novel CDRH3 sequences that fulfilled 98 

the predefined property constraints, but Agent_MPO achieved an apparently higher success rate in 99 

generating sequences of desirable properties. Finally, an antibody library targeting HER2 was 100 

designed and highly conserved residues among the generated sequences were found. The 101 

importance of these residues was further validated through molecular dynamics (MD) simulations. 102 

In Herceptin, these residues were found to form hydrogen bonds between HER2 during interaction, 103 

suggesting that the agent model was able to grasp important information in this complex 104 

optimization task. Altogether, these results demonstrate that AB-Gen can be used to design 105 

CDRH3 sequences with multi-property constraints, thus providing a new tool for antibody library 106 

design. 107 

 108 

Method 109 

Dataset 110 

In order to train our prior model to learn the CDRH3 sequence space, the OAS sequences [19] 111 

were retrieved on Jan. 14, 2022, which were numbered with IMGT numbering schema [21]. The 112 

heavy chain data were processed with Pandas [22] to obtain the CDRH3 sequences. The unique 113 

CDRH3 sequences of paired and unpaired heavy chain sequences were collected and sequences 114 

containing ‘X’ were removed. As the CDRH3 of template antibody Herceptin has a length of 13, 115 
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the obtained CDRH3 sequences were filtered with length ranging from 12 to 14 to reduce the 116 

computational cost and ensure a similar length. A final dataset of 75,204,905 unique sequences 117 

were used, with 90% for training and 10% for testing. 118 

Model architecture 119 

An overview of the entire workflow is illustrated in Figure 1. A Transformer decoder prior model 120 

was trained on the CDRH3 sequences from OAS [19]. This prior model was used to initiate the 121 

agent. The agent model was trained through a RL process, with the scoring functions and prior 122 

likelihoods used to calculate the reward. The final agent model was used to generate CDRH3 123 

sequences with desirable properties. 124 

The prior network 125 

A transformer decoder model, GPT-2 [17], was chosen as the prior model, which the agent shared 126 

the same. CDRH3 sequences were tokenized by assigning each amino acid with a unique integer 127 

based on alphabetical ordering, together with start, end, and padding tokens. Tokenized sequences 128 

were used to train the model on a next token prediction task. 129 

The prior GPT model we used was a mini version of GPT-2, with only ˜6 M parameters. The 130 

architecture of the model is shown in the middle of Figure 1. The model comprises eight decoder 131 

blocks, input embedding and positional embedding before the blocks, and a linear layer with layer 132 

normalization before output with a softmax function. Each block contains a masked multi-head 133 

self-attention layer and a fully connected feed-forward layer, with residual connections. Layer 134 

normalization is conducted before the two layers to normalize the inputs, which are vectors of size 135 

256. 136 

The masked multi-head self-attention layer is the core of the GPT model. It is composed of 137 

eight scaled dot-product attention functions and facilitates the model to capture key information in 138 

a sequence. In the dot-product calculation, a query vector � is used to calculate a dot product with 139 

the key vector � and then divided by the key vector length �� . The resulting product value is 140 

passed into a softmax function to get the attention weights, which is dot-producted with a value 141 

vector � to get the final attention. As shown in Equation 1 [15]. 142 

 ������	
���, �, �
 � �
����� ����

���
� � (1) 143 

To train the prior model, cross-entropy loss was used with the AdamW optimizer. The model 144 

was trained for ten epochs on the training dataset with a learning rate of 1 × 10−4. During 145 
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generation, a start token is fed to the model to predict the next token. The generated token is 146 

concatenated with previous tokens to predict the next, until the end token is obtained, or a 147 

maximum length is reached. 148 

 149 

Training the RL agent 150 

The process to generate CDRH3s with desirable properties was framed as a RL problem, as shown 151 

in the right of Figure 1. In this problem, the state is the current amino acid sequence sampled, and 152 

the action is to sample the next amino acid. It is an episodic task, because the scores can only be 153 

evaluated when the full sequence is sampled and evaluated. The GPT model as described in the 154 

previous subsection was used as the policy network of the agent, and reward functions were 155 

calculated from the likelihoods of CDRH3 sequences and the predicted properties. 156 

The REINVENT approach, which has been proven successful for chemical generation [23], 157 

was adapted for CDRH3 generation. The loss function used to train the agent model is defined as 158 

in Equations 2 and 3. First, a CDRH3 sequence A is sampled from the agent model with log 159 

likelihood log � ��
���	
. Then the CDRH3 sequence is passed to the prior model to calculate 160 

prior log likelihoods log � ��
��
��, and evaluated with scoring functions of properties to get the 161 

score ���
 . The score is added to the prior log likelihoods with a coefficient �  to get the 162 

augmented log likelihood log � ��
��� , as shown in Equation 2. Here, prior log likelihood is 163 

added to preserve the rules learnt from CDRH3 sequences. 164 

 log � ��
��� � log � ��
��
�� � σ���
 (2) 165 

Then the loss function is calculated by the squared error between the augmented log 166 

likelihood and agent log likelihood, as shown in Equation 3. 167 

 �
�� � �log � ��
���  log � ��
���	
!� (3) 168 

To train the models, a workstation with two A100 GPUs and 112 CPUs was used. Each A100 169 

GPU has 40 G memory.  170 

 171 

The scoring functions for the agent 172 

To optimize the generation of CDRH3 sequences towards desirable properties, several important 173 

properties were chosen to guide the agent during generation, including specificity, viscosity, 174 

clearance, and immunogenicity. In order to calculate the scores of these properties, Herceptin was 175 

used as the template to graft the generated CDRH3 sequences on. 176 
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For specificity, HER2 was chosen as the target, and an experimentally validated model [6] 177 

was used to get a specificity score. This model is developed based on the most comprehensive 178 

CDRH3 dataset for HER2 specificity and has confirmed to be useful in discovering HER2-179 

specific variants in the experiments. It only takes 10 amino acids of the CDRH3 sequences as 180 

inputs, so Herceptin template was used to complete the other three residues. Sequences with 181 

length other than 13 are assigned with a HER2 specificity score of zero. The score is within the 182 

range of [0, 1]. 183 

Viscosity and clearance were evaluated by the net charge and hydrophobicity index [4]. Increasing 184 

antibody variable fragment net charge (FvNetCharge) and increasing variable fragment charge 185 

symmetry parameter (FvCSP) were reported to be associated with decreased viscosity. However, 186 

for clearance, the optimal FvNetCharge is between 0 and 6.2, and the optimal hydrophobicity 187 

index sum (HISum) of CDRL1, CDRL3 and CDRH3 is less than four [4]. The FvNetCharge, 188 

FvCSP, and HISum were calculated following a previous study [6, 4]. The net charges of variable 189 

regions of the heavy chain (VH) and variable regions of light chain (VL) at the pH of 5.5 were 190 

calculated by summing over charged amino acids and the Henderson-Hasselbalch equation. 191 

FvNetCharge was obtained as the sum of VH and VL net charges, while FvCSP was obtained as 192 

the product of the two charges. VH sequences were obtained by grafting the generated CDRH3 193 

sequences to Herceptin. VL, CDRL1, CDRL3 sequences of Herceptin template were used to 194 

compute these scores. To transform the scores into [0, 1], FvCSP score was transformed with 195 

sigmoid function, as shown in Equation 4, and FvNetCharge and HISum scores were transformed 196 

with a double sigmoid function, as shown in Equation 5. In these equations, " and # are defined as 197 

low and high scores, and $, $1, and $2 are the parameters. 198 

 �	'�
	���, ", #
  �  �

�� �� � � � 
� � 

� � 	



� � 	  

 (4) 199 

 �_s	'�
	���, ", #
  �  �

�� �� � �� � �� �  	
 
 �

�� �� � �
 � �� �  �
 
 (5) 200 

Immunogenicity was evaluated by binding affinity to MHC II. The NetMHCIIpan [20] was used 201 

to scan a reference set of 34 HLA alleles as done previously [6]. A percentage rank is obtained for 202 

each 15-mer peptide, which is the rank of the predicted affinity of the peptide to an allele, relative 203 

to a set of random nature peptides. A higher percentage rank of a 15-mer indicates a lower 204 

likelihood to bind with MHC II, thus a lower predicted immunogenicity. Each generated CDRH3 205 

sequence had a length of 13 and was padded with 10 amino acids on both sides to obtain 19 all 206 

possible 15-mers of the sequence. The minimum percentage rank (minPR) was computed for each 207 

CDRH3 sequence by calculating all 19 15-mers across all 34 HLA alleles. The resulting minPR, 208 
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where larger values mean less immunogenicity, was transformed into the range of [0, 1] using 209 

sigmoid function as shown in Equation 4. 210 

 211 

Evaluation metrics 212 

We defined three basic metrics and one metric in a constrained scenario to assess the models in 213 

our study. Details of the metrics are described below. 214 

Basic metrics 215 

The three basic metrics were used, including uniqueness, novelty, and diversity. The set of input 216 

CDRH3 sequences to be evaluated is denoted by G, the training set is denoted by T, and n is the 217 

total number of sequences in G. Uniqueness is represented as the ratio of the unique sequences 218 

among 10,000 input sequences; novelty is represented as the ratio of the unique sequences in G 219 

but not in T, whereas diversity is represented as the average Levenshtein distance dist(x,y) of any 220 

pair of input CDRH3 sequences x,y, as defined in Equation 6. 221 

 +	,�-�	�. � �

	�	���
∑ �	����, .
�,���  (6) 222 

Metric in a constrained scenario 223 

To evaluate the set of input sequences in a constrained scenario, one additional metric, success 224 

rate was defined. To define the metric, a CDRH3 sequence was defined to be successful by 225 

fulfilling the following thresholds on selected properties. These include (1) HER2 specificity > 226 

0.70, where 0.70 is chosen as threshold to increase the confidence of specificity [6]; (2) 227 

FvNetCharge < 6.2, where 6.2 is the threshold for a good clearance [4]; (3) FvCSP > 6.61, where 228 

6.61 is the FvCSP of Herceptin and greater FvCSP is associated with decreased viscosity [4]; (4) 229 

HISum within the range of [0, 4], where [0, 4] is the optimal range for good clearance [4]; and (5) 230 

minPR > 2.51, where 2.51 is the minPR of Herceptin and a larger minPR indicates a lower 231 

likelihood to bind with MHC II, thus a lower predicted immunogenicity [20]. Then success rate is 232 

defined as the number of successful sequences over that of the input sequences. 233 

 234 

Evaluation settings 235 

Task 1: Learning the rules of CDRH3 sequences 236 

The prior model was trained on ˜67 million CDRH3 sequences from OAS with a length range 237 

from twelve to fourteen. To evaluate the capability of the prior model to learn the rules of CDRH3 238 

sequences, 10,000 sequences were generated from the prior model or randomly sampled from the 239 

training dataset, respectively. The property distributions of these two sets of sequences were 240 
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calculated. Furthermore, the pairwise sequence distance distributions among the training set, 241 

among the prior-generated set, and between the two sets were also calculated. 242 

 243 

Task 2: Generating CDRH3s with high specificity to HER2 244 

An agent model was trained with HER2 specificity as the target to generate CDRH3 sequences 245 

with high specificity to HER2. Because the HER2 specificity model [6] only accepts 10 amino 246 

acids among the CDRH3 sequences with length of 13, the starting ‘SR’ and ending ‘Y’ residues in 247 

Herceptin CDRH3 framework were fixed during generation and not used during specificity 248 

evaluation. During agent training, the maximum length to generate was set as 13 and 64 CDRH3 249 

sequences were generated during each step. The probability score from the HER2 specificity 250 

model was used as the scoring function in Equation 2 to calculate the augmented likelihoods of the 251 

generated sequences. The agent was trained for 3,000 steps, and the model trained after the final 252 

step was named Agent_HER2. 253 

 254 

Task 3: Generating CDRH3s with multiple desirable properties 255 

Another agent model was trained with multiple property predictors to generate CDRH3 sequences 256 

fulfilling multi-property constraints. Similar to the Agent_HER2 model, the maximum sequence 257 

length in generation was set to 13; Herceptin template was used to constrain the starting to be ‘SR’ 258 

and ending to be ‘Y’ in the generated CDRH3 sequences; 64 sequences were generated during 259 

each training step; and the model was trained for 3,000 steps. The main difference is that multiple 260 

property scores were combined as the final scoring function for the augmented likelihood 261 

calculation, including HER2 specificity, FvNetCharge, FvCSP, HISum, and MHC II minPR. 262 

These scores were combined with weighted sum, where HER2 specificity had a higher weight of 263 

3/7 and other four scores were assigned with an equal weight of 1/7 respectively. The agent model 264 

trained after the last step was named Agent_MPO for comparison. 265 

 266 

Design synthetic library to HER2 267 

To design a synthetic library to HER2, 10,000 sequences were sampled from Agent_MPO. 268 

Successful sequences were obtained and further filtered with CamSol (version 2.2) solubility 269 

scores [24] greater or equal to 0.42, which was the score for Herceptin. A final set of 509 CDRH3 270 

sequences were obtained as the potential candidates for MD simulation. 271 
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To show the common patterns of the sequences, a sequence logo of the 509 CDRH3 sequences 272 

was generated. The 509 sequences were aligned with ClustalW [25] and the result of this 273 

alignment was used as the input to WebLogo [26] to create the sequence logo. 274 

 275 

MD simulation analysis of designed antibodies 276 

To elucidate the patterns discovered in the WebLogo of the 509 generated CDRH3 sequences, the 277 

interaction mechanism of Herceptin with HER2 was examined. The structural model was created 278 

based on the crystal structure of human HER2-Herceptin complex (PDB: 1N8Z [27]) and the 279 

missing residues in HER2 were modeled by structural alignment to the crystal structure of HER2 280 

(PDB ID: 6J71 [28]). The HER2-Herceptin Fab complex was then solvated in a dodecahedron box 281 

and counter ions were inserted to ensure the whole system to be neutral. The whole system 282 

contains ∼330,000 atoms and five replicas of 50 ns NVT (T = 298 K) simulations were performed 283 

(see File S1 Sections 4 for details of model construction and MD simulations). 284 

In the MD simulations, the Amber ff14SB force field [29] was used to simulate the protein and 285 

ions, and the first 10 ns in each MD trajectory was removed before performing the subsequent 286 

structural analysis. All the simulations were performed with Gromacs 5.0 [30]. 287 

 288 

Results 289 

Learning observed CDRH3 sequence space with the prior model 290 

In order to train our prior model to learn the CDRH3 sequence space, the unique CDRH3s of 291 

paired and unpaired heavy chain sequences were collected from the OAS database [19]. More than 292 

75 million unique CDRH3 sequences were obtained, and a prior model, GPT, was trained on these 293 

sequences to learn the CDRH3 space. The hyper-parameters were analyzed to find the suitable 294 

values (see File S1 Section 3 for details). 295 

To evaluate the capability of the prior model to learn the CDRH3 space, the property 296 

distributions of generated samples were analyzed. 10,000 sequences were sampled from the prior 297 

model for evaluation and 10,000 sequences randomly sampled from the training dataset were used 298 

as the baseline. The properties include viscosity, clearance, immunogenicity, and sequence 299 

similarity. Viscosity and clearance were evaluated by analyzing antibody variable fragment net 300 

charge (FvNetCharge), variable fragment charge symmetry parameter (FvCSP), and 301 

hydrophobicity index sum (HISum). Immunogenicity was evaluated by analyzing the affinity to 302 

MHC II. The minimum percentage rank of predicted MHC II affinity (MHC II minPR) to 34 303 

human leukocyte antigen (HLA) alleles was used as the metric for distribution analysis. More 304 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.17.533102doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.17.533102
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 

explanation of FvNetCharge, FvCSP, HISum, and MHC II minPR are provided in Methods. 305 

Sequence similarity was evaluated with pairwise distance and cross-pairwise distance. Pairwise 306 

distance is the Levenshtein distance of a pair of sequences in the dataset to evaluate, and cross-307 

pairwise distance is the Levenshtein distance of a pair of sequences with one from the prior and 308 

the other from the baseline. 309 

The distribution curves are shown in Figure 2. The prior and the baseline sequences showed 310 

similar distributions on these properties. Large portions of overlaps between the property 311 

distributions of the prior and baseline are observed in Figure 2A–E. Besides, the distribution of the 312 

cross-pairwise distance is very similar to the pairwise distance distributions, which indicates that 313 

the distance of a pair of sequences from two different sources is not clearly different from that of a 314 

pair of sequences from a single source. Based on these observations, we believe that the GPT prior 315 

model has learned a good distribution of the CDRH3 space. 316 

From an in-depth look at the property values of these two sets of samples, we found that some 317 

of the baseline and prior-generated sequences have desirable values on some of the properties, 318 

including FvNetCharge of less than 6.2, FvCSP of less than 6.61, HISum in the range of [0, 4], 319 

and MHC II minPR greater than 2.51. However, none sequences from both sets of samples have 320 

an HER2 specificity score greater than 0.70, where 0.70 is chosen as threshold to increase the 321 

confidence of HER2 specificity [6], leading to zero success rates of the two models, as shown in 322 

Table 1. 323 

Furthermore, three basic metrics, including uniqueness, novelty, and diversity, were 324 

calculated to evaluate the generative capability of the models. The definitions of the three metrics 325 

are described in Subsection “Basic metrics” and the metric values of the prior and baseline are 326 

shown in Table 1. The prior-generated sequences achieve very high uniqueness (1.000) and 327 

novelty (1.000), while the baseline sequences also have high uniqueness (1.000) but zero novelty, 328 

because all sequences are sampled from the training dataset and none of them is novel. Both the 329 

prior and the baseline have high metric values for diversity (9.754 and 9.930 respectively). 330 

Together, this result shows that the prior model generates CDRH3 sequences with high uniqueness 331 

and diversity, and it is able to generate novel sequences that are not observed in the training 332 

dataset. 333 

 334 

Generating CDRH3s with desired properties through RL 335 

To discover antibodies with high specificity to a target is typically the first and foremost step in 336 

antibody development [3]. However, none of the baseline sequences, which were assumed to 337 
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represent the observed CDRH3 space, showed good specificity to HER2 (with 0.70 used as the 338 

threshold). Similarly, none of the prior sequences, which were generated by a GPT model trained 339 

on the CDRH3 dataset, had good HER2 specificity. 340 

To optimize the CDRH3 generation and generate sequences with desirable properties 341 

targeting HER2, we utilized a RL framework. Details of the framework can be found on Methods. 342 

During the RL process, the likelihood of generating CDRH3s possessing good desirable properties 343 

was increased and that of generating CDRH3s with poor properties was decreased. The prior 344 

likelihood was also used to give feedback to the agent to preserve information of the CDRH3 345 

space learned by the prior model. The hyper-parameter tuning was conducted as described in File 346 

S1 Section 3. 347 

To evaluate the capability of the agent to generate CDRH3 sequences with good desirable 348 

properties, two agent models were trained. One agent model, named Agent_HER2, was trained 349 

with only HER2 specificity as the scoring function and the other agent model, named Agent_MPO, 350 

was trained with multiple property predictors combined as the scoring function to fulfill multiple 351 

requirements in the design of antibody libraries. 352 

The performance of the resulting models is shown in Figure 3 and Figure 4. Figure 3 shows 353 

the property distributions of sequences sampled from the prior model, the Agent_HER2 model, 354 

and the Agent_MPO model. In Figure 3B, we see that averaged HER2 specificity of prior 355 

sequences is zero, while those of sequences from Agent_HER2 or Agent_MPO models have 356 

clearly better HER2 specificity. Agent_HER2 generated sequences with higher averaged HER2 357 

specificity than Agent_MPO. However, the success rate, which considers the ratio of sequences 358 

fulfilled multi-property constraints, of Agent_HER2 (0.038) is much less than that of Agent_MPO 359 

(0. 266), as shown in Table 1. This shows that Agent_MPO is better at generating sequences that 360 

simultaneously fulfill multi-property requirements. 361 

The higher success rate of the Agent_MPO model is mainly contributed by optimized 362 

FvNetCharge and MHC II minPR, as shown in Figure 4. The sequences generated by the 363 

Agent_MPO model have a focused range of the FvNetCharge score, which are better in fulfilling 364 

the constraints (FvNetCharge <= 6.20). The MHC II minPR scores of sequences generated by 365 

Agent_MPO are drastically shifted towards the desired range (minPR >= 2.51). In general, Figure 366 

3 and Figure 4 show that the agents can generate CDRH3 sequences with apparently better 367 

properties than the prior model, and Agent_MPO, which optimized multiple properties, achieves a 368 

clearly better success rate than Agent_HER2, which solely optimized HER2 specificity. 369 

 370 
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Designing a novel antibody library targeting HER2 371 

In our study, we want to employ the power of AB-Gen to design novel antibody libraries, which 372 

have the potential to be used for practical antibody discovery. Ten thousand sequences were 373 

generated by the Agent_MPO. These sequences were filtered with the previous property 374 

constraints in success rate calculation and with CamSol solubility scores [24] greater or equal to 375 

0.42 (0.42 is the score for Herceptin). A final set of 509 CDRH3 sequences were obtained as the 376 

potential library for further analysis. 377 

The edit distances of the designed sequences to the wild-type Herceptin were analyzed as 378 

shown in Figure S1. The maximum edit distance was eight, the minimum was two, and a median 379 

edit distance of six was found. Because the total editing range has a length of ten, a median of 380 

around 60% of the sequences were modified. This indicates that AB-Gen can design novel 381 

sequences, which are not intuitive to design. 382 

To further analyze the common patterns, the sequence logo of 509 generated CDRH3 383 

sequences was created. The sequences were aligned using ClustalW [25] and the alignment was 384 

used to create the sequence logo by WebLogo [26]. The resulting sequence logo is shown in 385 

Figure 5. The beginning two residues of the CDRH3, i.e., S97 and R98, and the tailing residue 386 

Y109 were fixed during generation, thus serving as the reference. From the sequence logo, we 387 

found that G103, Y105 and D108 on the heavy chain of Herceptin are highly conserved among 388 

these sequences, which suggested that these protein residues could play essential roles in the 389 

binding between Herceptin and HER2. 390 

To gain insight into how Herceptin binds with HER2 at the molecular level and potentially 391 

explain the functions of the conserved residues, we performed molecular dynamics (MD) 392 

simulations for the HER2-Herceptin antigen-binding fragment (Fab) system and examined the 393 

molecular interactions in the binding region at the atomic resolution. In the MD simulations, we 394 

observed that Herceptin is mainly interacting with HER2 through hydrogen bonds. Specifically, 395 

the backbone oxygen atom of Herceptin residue G103 could form hydrogen bond with the side 396 

chain of HER2 residue K593 (hydrogen bonding probability = 14.7±1.6%), and the side chain of 397 

Herceptin residue D108 is hydrogen bonded with the hydroxyl group of HER2 residue Y588 398 

(hydrogen bonding probability = 39.5 ± 1.9%). Moreover, the side chain of Herceptin residue 399 

Y105 could form hydrogen bonds with both the backbone oxygen atom (31.5±3.2%) as well as the 400 

side chain oxygen atoms (38.7 ± 7.7%) of HER2 residue D570. These observations have not only 401 

consolidated the observation from sequence logos that G103, Y105 and D108 are important to 402 
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bridge HER2 and Herceptin, but also suggested that hydrogen bonds contribute to the interactions 403 

between HER2 and Herceptin Fab in the binding region. 404 

 405 

Discussion 406 

In this study, we used GPT in combination with reinforcement learning (RL) to design novel 407 

antibody sequences, and obtained a clearly high success rate in generating antibody CDRH3 408 

sequences with multiple desirable properties. To our knowledge, this is the first attempt to 409 

combine GPT with RL to optimize the design of new antibody sequences towards multiple 410 

desirable properties. A readily available tool, named AB-Gen, was developed for antibody library 411 

design, and a set of CDRH3 sequences were designed as a potential library against HER2. 412 

We focused on designing antibody CDRH3s to fulfill multi-property constraints, but this 413 

method can also be used to design large proteins. As the HER2 specificity model used in our study 414 

is only focusing on evaluating the CDRH3 regions which has a length of 13 in IMGT numbering 415 

schema, we focused on designing CDRH3 sequences and the other parts of antibodies were the 416 

same as Herceptin. To apply this method to other proteins, two main inputs are needed, one is the 417 

homology sequences to pre-train the prior model, and another is the property predictor to feedback 418 

to the agent. The homology sequences can be found from sequence databases through homology 419 

search and the main constraint to apply this method is to calculate the scores for desirable 420 

properties to guide the RL framework, such as affinity/specificity, activity, solubility, and stability. 421 

More specifically, the HER2 specificity model used in this study has a good accuracy, however, is 422 

rare for other targets. For targets with no such datasets, antibody–antigen docking platforms 423 

provide alternative solutions [31, 32]. Besides, we believe that with the accumulation of data, deep 424 

learning-based methods would eventually give good property predictors, thus also have the 425 

potential to close this gap. 426 

Compared to the previous method, our multi-parameter optimization achieved an apparent 427 

improvement on the success rate. The previous method obtained the antibody CDRH3 library 428 

sequences through random proposing followed by filtering approach [6] and has a relatively low 429 

hit rate (1.10 × 10−4), which is the ratio of selected sequences over generated sequences. Besides, 430 

this proposing and filtering process has high time and computational costs. However, in this study, 431 

our AB-Gen method can efficiently explore the antibody space and design CDRH3 sequences to 432 

fulfill predefined property constraints. The Agent_MPO model was able to generate sequences 433 

that achieve a hit rate of (5.09 × 10−2). We believe that if all the properties used as the filters could 434 

be added in the scoring functions, the hit rate can be further improved. 435 
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During agent training, generated sequences have to be scored using offline tools to provide 436 

the feedback to the agent. The barrier to add some commonly considered properties as constraints 437 

for generation is that no such offline tools are available to calculate or predict these properties. For 438 

example, CamSol was proposed for antibody solubility prediction and is one of the commonly 439 

used predictors for solubility [24, 33]. But no offline tool is provided, which is required to 440 

optimize this property in our workflow. An offline solubility predictor would be highly 441 

appreciated if the CamSol developers or other peer researchers can provide one. 442 

Efficiency of predictive models is the core factor that influences the speed of design in our 443 

method. During our experiments, we found that NetMHCIIpan [20] was the bottleneck in training 444 

the Agent_MPO models. The inefficient prediction of MHC II affinity potentially due to the 445 

methodology used for NetMHCIIpan, which splits a sequence into 15-mer peptides to calculate 446 

affinity against multiple HLAs. We expect new methods to be developed to improve the efficiency 447 

of such predictions. 448 

In summary, we proposed a novel framework combining GPT and deep reinforcement 449 

learning to design new CDRH3 sequences that can be potential experimental libraries in 450 

experimental studies. Our results illustrate the power of AI to design antibody libraries. With more 451 

predictive tools available to compute antibody properties, this RL framework would hold great 452 

potential to be used for antibody library design, thus empowering the antibody discovery and 453 

development process. 454 

 455 

Code availability 456 

The source code of AB-Gen is freely available at GitHub (https://github.com/SFB-KAUST/ab-457 

gen), BioCode (https://ngdc.cncb.ac.cn/biocode/tools/BT007341), and Zenodo [34]. The filtered 458 

datasets to train the prior model, the pretrained models, and the designed antibody sequences are 459 

also available in the GitHub and Zenodo repositories. 460 
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 615 

 616 

Figure legends 617 

Figure 1  The workflow of AB-Gen 618 

 More than 75 million CDRH3 sequences were obtained from the OAS database to train a 619 

prior model. This prior model was used to initiate the RL agent. The architecture of the prior 620 

model is shown in the middle and the agent model shares the same. The pipeline of the RL 621 

process is shown in the right bottom. In each step, the agent model was used to generate 622 

CDRH3 sequences; the generated sequences were scored with property predictors to get 623 

property scores and evaluated with the prior model to get prior likelihoods; the property 624 

scores and prior likelihoods were combined together to calculate augmented likelihoods, 625 

which were used as the feedback to the agent. The agent model was able to generate 626 

sequences that fulfill multi-property constraints after the training steps. CDRH3, heavy chain 627 

complementarity determining region 3; OAS, Observed Antibody Space; RL, reinforcement 628 

learning; VH, variable regions of the heavy chain; VL, variable regions of light chain. 629 
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 630 

Figure 2  Property distribution of the prior-generated CDRH3 sequences and baseline 631 

sequences  632 

A. Distributions of FvNetCharge, with the higher the better for good viscosity and less than 633 

6.2 needed for good clearance. B. Distributions of FvCSP, with the higher the better for good 634 

viscosity. C. Distributions of HISum, with less than four required for good clearance. D. 635 

Distributions of MHC II minPR, where larger values mean lower likelihood to bind with 636 

MHC II, thus lower immunogenicity. E. Distributions of pairwise distance, that is the 637 

Levenshtein distance of a pair of sequences from a single source dataset. F. Distributions of 638 

cross-pairwise distance, that is the Levenshtein distance of a pair of sequences with one from 639 

the prior and the other from the baseline. The cross-pairwise distribution follows a similar 640 

shape to the pairwise distributions. The prior and baseline follow similar property 641 

distributions, meaning the prior model was able to learn similar distributions to the training 642 

samples. (Herceptin was used as the framework to calculate the properties of the CDRH3 643 

sequences.) FvNetCharge, variable fragment net charge; FvCSP, variable fragment charge 644 

symmetry parameter; HISum, hydrophobicity index sum; MHC II minPR, the minimum 645 

percentage rank to bind with MHC II. 646 

 647 

Figure 3  Property distributions of the model-generated sequences in targeting HER2  648 

 A. Success rate of the baseline, prior and agent models. The sequences of the baseline and 649 

prior have zero success rate; Agent_HER2 achieved a success rate of less than 4%; 650 

Agent_MPO achieved a success rate of up to 26.6%. The high success rate of Agent_MPO 651 

indicates that it can be useful in proposing sequences to fulfill multi-property constraints. B. 652 

Histogram of HER2 specificity. HER2 specificity of prior sampled sequences is zero; most 653 

sequences sampled from both agents have fulfilled the HER2 specificity threshold of 0.70. C. 654 

Distributions of FvNetCharge. For a variant, the scores of FvNetCharge and FvCSP are 655 

correlated. The desirable range of FvNetCharge is less than 6.20 and that of FvCSP is greater 656 

than 6.61. D. Distributions of FvCSP. E. Distributions of HISum, with the desirable range in 657 

[0, 4]. F. Distributions of MHC II minPR, with greater than 2.51 desirable. Agent_MPO 658 

shifted the property distributions towards the desirable ranges. (Herceptin was used as the 659 

framework to calculate the properties of the CDRH3 sequences.) 660 
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 661 

Figure 4  Learning curve of the agent models  662 

A. Learning curves of success rate. Agent_MPO achieved a clearly better success rate after 663 

100 steps than Agent_HER2. B. Learning curves of HER2 specificity. Agent_MPO was 664 

slower than Agent_HER2 on learning good HER2 specificity. Because Agent_MPO was 665 

optimizing multiple properties while Agent_HER2 only optimized HER2 specificity. The 666 

task of Agent_MPO was much harder, thus requiring more time to learn. C. Leaning curves 667 

of FvNetCharge. Agent_MPO was learning to generate sequences to fulfill the FvNetCharge 668 

constraint. D. Leaning curves of FvCSP. Both curves are within the desirable range.  E. 669 

Leaning curves of HISum. Both curves are within the desirable range. F. Leaning curves of 670 

MHC II minPR. Agent_MPO was learning to fulfill the MHC II minPR constraint. 671 

Agent_HER2 could not naturally fulfill the FvNetCharge and MHC II minPR constraints. 672 

(Herceptin was used as the framework to calculate the properties of the CDRH3 sequences.) 673 

 674 

Figure 5  Illustration of the three conserved residues in the designed library  675 

A. The binding pose of Herceptin Fab against HER2. B. The molecular interactions between 676 

Herceptin CDRH3 and HER2. Four hydrogen bonds are formed through the residues G103, 677 

Y105 and D108 in Herceptin and D570 and D593 in HER2. C. The sequence logo of the 509 678 

designed CDRH3 sequences. Residues G103, Y105 and D108 are highly conserved among 679 

these sequences. (S97, R98 and Y109 are from the Herceptin framework; they were fixed 680 

during generation.) 681 

 682 

Table 1  Evaluation of the models on predefined metrics  683 

Model Uniqueness Novelty Diversity Success rate 

Baseline 1.000 0.000 9.930 0.000 

Prior 1.000 0.999 9.754 0.000 

Agent_HER2 0.996 1.000 5.871 0.038 

Agent_MPO 1.000 1.000 6.478 0.266 

Note: Agent_HER2 is the agent model trained with HER2 specificity as the target, and 684 

Agent_MPO is the agent model trained with multiple desirable properties, including HER2 685 

specificity, viscosity, clearance, and immunogenicity. All the models achieved very good 686 
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uniqueness. The prior and agent models achieved very˜ good novelty. The baseline has zero 687 

novelty, as all these sequences are sampled from the training dataset. For diversity, the baseline is 688 

the best, and the prior model is closely on par with it. Agent_MPO achieved a better diversity than 689 

Agent_HER2. For success rate, Agent_MPO is the best (0.266) and much higher than 690 

Agent_HER2 (0.038). (10,000 CDRH3 sequences were sampled from each of the methods. 691 

Herceptin was used as the framework to graft on to calculate the properties.) 692 

 693 

  694 
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 695 

Supplementary material 696 

Figure S1  Property distributions of the designed CDRH3 library. 697 

A. Histogram of the edit distance to wild-type. The edit distances range from two to eight, 698 

with a median distance of six. B. Distribution of HER2 specificity. C. Distribution of 699 

FvNetCharge. D. Distribution of FvCSP. E. Distribution of HISum. F. Distribution of MHC 700 

II minPR. (Herceptin was used as the framework to calculate the properties of the CDRH3 701 

sequences.) 702 

 703 

File S1  Supplementary information 704 

 705 
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