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Abstract

Antibody leads must fulfill multiple desirable properties to be clinical candidates. Primarily due to
the low throughput in the experimental procedure, the need for such multi-property optimization
causes the bottleneck in preclinical antibody discovery and development, because addressing one
issue usually causes another. We developed a reinforcement learning (RL) method, named AB-
Gen, for antibody library design using a generative pre-trained Transformer (GPT) as the policy
network of the RL agent. We showed that this model can learn the antibody space of heavy chain
complementarity determining region 3 (CDRH3) and generate sequences with similar property
distributions. Besides, when using HER2 as the target, the agent model of AB-Gen was able to
generate novel CDRH3 sequences that fulfill multi-property constraints. 509 generated sequences
were able to pass all property filters and three highly conserved residues were identified. The
importance of these residues was further demonstrated by molecular dynamics simulations, which
consolidated that the agent model was capable of grasping important information in this complex
optimization task. Overall, the AB-Gen method is able to design novel antibody sequences with an
improved success rate than the traditional propose-then-filter approach. It has the potential to be
used in practical antibody design, thus empowering the antibody discovery and development

process.

Keywords. Protein design; Transformer; Reinforcement learning; Generative modeling;

Multi-objective optimization
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I ntroduction

Antibodies have become an increasingly important therapeutic for many diseases, because of their
capabilities to bind to antigens with high specificity and affinity [1, 2]. To discover antibodies
with high specificity, hybridomas and phage display methods are typically used, which can
discover potential lead candidates. However, the lead-optimization process usually takes up the
majority of the preclinical discovery and development cycle, where the lead candidates discovered
are further optimized with multiple properties, including pharmacokinetics, solubility, viscosity,
expression levels, and immunogenicity [3-5]. This is largely due to the low throughput in the late-
stage development, and addressing one issue usually causes another [6].

In recent years, especially after the success of AlphaFold2 [7], de novo protein design has
gained attention and several methods have been developed to design proteins with certain
structures [8, 9]. For example, RFDesign was proposed to design proteins with specific functions,
such as immunogen, enzyme activity, and protein-protein interaction [10]. These methods are
guided by structure-based constraints and targeted to design novel protein sequences with certain
structure patterns, thus new functions [8, 10, 11]. Though promising, these methods are not
designed to optimize properties that have no clear associations with structures, such as solubility
and viscosity, thus not suitable for the multi-property optimization task in antibody design.

In silico antibody design is an emergent topic with notable progress. A few deep learning
methods have been proposed to generate novel antibody sequences. An auto-regressive dilated
convolutional neural network was trained on ~1.2 million natural nanobody sequences, and used
to generate complementarity determining region 3 (CDR3) sequences [12]. Their designed library
was filtered from the model-generated sequences and showed better expression than a 1000-fold
larger synthetic library. It demonstrated the power of generative models in learning the space of
antibodies that can be expressed. Another work pretrained a long short-term memory (LSTM) [13]
on 70,000 heavy chain complementarity determining region 3 (CDRH3) sequences and fine-tuned
on molecular docking datasets or with experimentally validated predictors to generate high affinity
sequences against antigens [6, 14]. Besides, Transformers [15] were also used to design antibody
sequences. One work [16] used a Transformer decoder [17] to generate CDRH3 sequences. Their
model was trained on 558M antibody variable region sequences, conditioning on chain type and
species-of-origin, and demonstrated a better design than random baselines. Another work [18]
used a Transformer encoder to separate human and non-human sequences. This model can
separate human and non-human sequences with high accuracy, thus guiding the humanization of

antibody sequences. While these studies showed the power of generative models to learn useful
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g4  information on antibody sequences, none of them aimed at solving the multi-property optimization
85  problem in antibody design.

86 In this study, we developed a reinforcement learning (RL) framework, called AB-Gen, to
g7  design antibody libraries that fulfill multi-property constraints. Specifically, we used AB-Gen to
gg  explore the CDRH3 sequence space, which contains the highest diversity in antibodies. More than
89 75 million CDRH3 sequences were obtained from the Observed Antibody Space (OAS) database
90 [19] to train a prior model. A generative pre-trained Transformer (GPT) was used as the policy
91 network of the agent and the prior model was used to initiate it. We trained AB-Gen with two
92  different settings to illustrate the improvement from the multi-property optimization. In the first
93  setting, an agent, named Agent_ HER2, was trained to only optimize HER2 specificity [6] and in
94  the second setting, another agent, named Agent_ MPO, was trained to optimize multiple desirable
95  properties, including HER2 specificity, MHC Il affinity [20], clearance, and viscosity [4]. From
96 the results, we showed that the prior model could learn the sequence space of CDRH3s and
97  generate sequences with similar property distributions to the training dataset. Besides, both
98  Agent HER2 and Agent_ MPO were capable of generating novel CDRH3 sequences that fulfilled
99  the predefined property constraints, but Agent_MPO achieved an apparently higher success rate in
100  generating sequences of desirable properties. Finally, an antibody library targeting HER2 was
101 designed and highly conserved residues among the generated sequences were found. The
102 importance of these residues was further validated through molecular dynamics (MD) simulations.
103 In Herceptin, these residues were found to form hydrogen bonds between HER2 during interaction,
104  suggesting that the agent model was able to grasp important information in this complex
105 optimization task. Altogether, these results demonstrate that AB-Gen can be used to design

106  CDRH3 sequences with multi-property constraints, thus providing a new tool for antibody library

107 design.
108

109  Method
110  Dataset

111 In order to train our prior model to learn the CDRH3 sequence space, the OAS sequences [19]
112 were retrieved on Jan. 14, 2022, which were numbered with IMGT numbering schema [21]. The
113 heavy chain data were processed with Pandas [22] to obtain the CDRH3 sequences. The unique
114  CDRH3 sequences of paired and unpaired heavy chain sequences were collected and sequences

115 containing ‘X’ were removed. As the CDRH3 of template antibody Herceptin has a length of 13,


https://doi.org/10.1101/2023.03.17.533102
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.17.533102; this version posted March 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

116  the obtained CDRH3 sequences were filtered with length ranging from 12 to 14 to reduce the
117 computational cost and ensure a similar length. A final dataset of 75,204,905 unique sequences

118 were used, with 90% for training and 10% for testing.

119 Modd architecture

120  An overview of the entire workflow is illustrated in Figure 1. A Transformer decoder prior model
121 was trained on the CDRH3 sequences from OAS [19]. This prior model was used to initiate the
122 agent. The agent model was trained through a RL process, with the scoring functions and prior
123 likelihoods used to calculate the reward. The final agent model was used to generate CDRH3

124  sequences with desirable properties.

125 Theprior network

126 A transformer decoder model, GPT-2 [17], was chosen as the prior model, which the agent shared
127 the same. CDRH3 sequences were tokenized by assigning each amino acid with a unique integer
128 based on alphabetical ordering, together with start, end, and padding tokens. Tokenized sequences
129 were used to train the model on a next token prediction task.

130 The prior GPT model we used was a mini version of GPT-2, with only "6 M parameters. The
131 architecture of the model is shown in the middle of Figure 1. The model comprises eight decoder
132 blocks, input embedding and positional embedding before the blocks, and a linear layer with layer
133 normalization before output with a softmax function. Each block contains a masked multi-head
134  self-attention layer and a fully connected feed-forward layer, with residual connections. Layer
135 normalization is conducted before the two layers to normalize the inputs, which are vectors of size
136  256.

137 The masked multi-head self-attention layer is the core of the GPT model. It is composed of
138 eight scaled dot-product attention functions and facilitates the model to capture key information in
139 asequence. In the dot-product calculation, a query vector Q is used to calculate a dot product with
140  the key vector K and then divided by the key vector length d;. The resulting product value is
141 passed into a softmax function to get the attention weights, which is dot-producted with a value

142 vector V to get the final attention. As shown in Equation 1 [15].

. QKT>
— = 1
143 Attention(Q,K,V) = softmax (\/d_k %4 @
144 To train the prior model, cross-entropy loss was used with the AdamW optimizer. The model

145 was trained for ten epochs on the training dataset with a learning rate of 1 x 107*. During
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146 generation, a start token is fed to the model to predict the next token. The generated token is
147  concatenated with previous tokens to predict the next, until the end token is obtained, or a
148 maximum length is reached.

149

150  Training the RL agent

151 The process to generate CDRH3s with desirable properties was framed as a RL problem, as shown
152 inthe right of Figure 1. In this problem, the state is the current amino acid sequence sampled, and
153  the action is to sample the next amino acid. It is an episodic task, because the scores can only be
154  evaluated when the full sequence is sampled and evaluated. The GPT model as described in the
155  previous subsection was used as the policy network of the agent, and reward functions were
156  calculated from the likelihoods of CDRH3 sequences and the predicted properties.

157 The REINVENT approach, which has been proven successful for chemical generation [23],
158 was adapted for CDRH3 generation. The loss function used to train the agent model is defined as
159 in Equations 2 and 3. First, a CDRH3 sequence A is sampled from the agent model with log
160  likelihood logp (A)qgene- Then the CDRH3 sequence is passed to the prior model to calculate
161 prior log likelihoods log p (4) 0 and evaluated with scoring functions of properties to get the
162  score S(A). The score is added to the prior log likelihoods with a coefficient o to get the
163 augmented log likelihood logp (A)qug, @s shown in Equation 2. Here, prior log likelihood is

164  added to preserve the rules learnt from CDRH3 sequences.
165 lng (A)aug = Ing (A)prior + GS(A) (2)

166  Then the loss function is calculated by the squared error between the augmented log

167  likelihood and agent log likelihood, as shown in Equation 3.

2
168 Loss = [lng (A)aug - lng (A)agent] (3)
169 To train the models, a workstation with two A100 GPUs and 112 CPUs was used. Each A100
170 GPU has 40 G memory.

171

172 The scoring functions for the agent

173 To optimize the generation of CDRH3 sequences towards desirable properties, several important
174  properties were chosen to guide the agent during generation, including specificity, viscosity,
175  clearance, and immunogenicity. In order to calculate the scores of these properties, Herceptin was

176  used as the template to graft the generated CDRH3 sequences on.
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177 For specificity, HER2 was chosen as the target, and an experimentally validated model [6]
178 was used to get a specificity score. This model is developed based on the most comprehensive
179 CDRH3 dataset for HER2 specificity and has confirmed to be useful in discovering HER2-
180  specific variants in the experiments. It only takes 10 amino acids of the CDRH3 sequences as
181  inputs, so Herceptin template was used to complete the other three residues. Sequences with
182 length other than 13 are assigned with a HER2 specificity score of zero. The score is within the
183  range of [0, 1].

184  Viscosity and clearance were evaluated by the net charge and hydrophabicity index [4]. Increasing
185  antibody variable fragment net charge (FvNetCharge) and increasing variable fragment charge
186  symmetry parameter (FVCSP) were reported to be associated with decreased viscosity. However,
187  for clearance, the optimal FvNetCharge is between 0 and 6.2, and the optimal hydrophobicity
188  index sum (HISum) of CDRL1, CDRL3 and CDRH3 is less than four [4]. The FvNetCharge,
189  FvCSP, and HISum were calculated following a previous study [6, 4]. The net charges of variable
190  regions of the heavy chain (VH) and variable regions of light chain (VL) at the pH of 5.5 were
191 calculated by summing over charged amino acids and the Henderson-Hasselbalch equation.
192 FvNetCharge was obtained as the sum of VH and VL net charges, while FvCSP was obtained as
193  the product of the two charges. VH sequences were obtained by grafting the generated CDRH3
194  sequences to Herceptin. VL, CDRL1, CDRL3 sequences of Herceptin template were used to
195  compute these scores. To transform the scores into [0, 1], FVCSP score was transformed with
196  sigmoid function, as shown in Equation 4, and FvNetCharge and HISum scores were transformed
197  with a double sigmoid function, as shown in Equation 5. In these equations, [ and h are defined as

198 low and high scores, and k, k1, and k2 are the parameters.

1

199 sigmoid(x,l,h) = —T 4)
Xl
1410 K R=T

d . d l h _ 1 _ 1 5

200 _sigmoid(x,l,h) = 1+10-Klr(x—D  1410-k2+(x- R ()

201 Immunogenicity was evaluated by binding affinity to MHC Il. The NetMHCllIpan [20] was used
202 to scan a reference set of 34 HLA alleles as done previously [6]. A percentage rank is obtained for
203 each 15-mer peptide, which is the rank of the predicted affinity of the peptide to an allele, relative
204 to a set of random nature peptides. A higher percentage rank of a 15-mer indicates a lower
205 likelihood to bind with MHC I1, thus a lower predicted immunogenicity. Each generated CDRH3
206 sequence had a length of 13 and was padded with 10 amino acids on both sides to obtain 19 all
207 possible 15-mers of the sequence. The minimum percentage rank (minPR) was computed for each

208  CDRH3 sequence by calculating all 19 15-mers across all 34 HLA alleles. The resulting minPR,

7
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209 where larger values mean less immunogenicity, was transformed into the range of [0, 1] using
210  sigmoid function as shown in Equation 4.

211

212 Evaluation metrics

213 We defined three basic metrics and one metric in a constrained scenario to assess the models in
214  our study. Details of the metrics are described below.

215  Basic metrics

216  The three basic metrics were used, including uniqueness, novelty, and diversity. The set of input
217 CDRH3 sequences to be evaluated is denoted by G, the training set is denoted by T, and n is the
218 total number of sequences in G. Uniqueness is represented as the ratio of the unique sequences
219  among 10,000 input sequences; novelty is represented as the ratio of the unique sequences in G
220  but not in T, whereas diversity is represented as the average Levenshtein distance dist(x,y) of any
221 pair of input CDRH3 sequences Xy, as defined in Equation 6.

222 Diversity = ﬁzwe(; dist(x,y) (6)

223  Metric in a constrained scenario

224  To evaluate the set of input sequences in a constrained scenario, one additional metric, success
225  rate was defined. To define the metric, a CDRH3 sequence was defined to be successful by
226  fulfilling the following thresholds on selected properties. These include (1) HER2 specificity >
227 0.70, where 0.70 is chosen as threshold to increase the confidence of specificity [6]; (2)
228  FvNetCharge < 6.2, where 6.2 is the threshold for a good clearance [4]; (3) FvCSP > 6.61, where
229  6.61 is the FVvCSP of Herceptin and greater FVCSP is associated with decreased viscosity [4]; (4)
230 HISum within the range of [0, 4], where [0, 4] is the optimal range for good clearance [4]; and (5)
231 minPR > 2.51, where 2.51 is the minPR of Herceptin and a larger minPR indicates a lower
232 likelihood to bind with MHC 11, thus a lower predicted immunogenicity [20]. Then success rate is
233 defined as the number of successful sequences over that of the input sequences.

234

235  Evaluation settings
236 Task 1: Learning the rules of CDRH3 sequences

237 The prior model was trained on "67 million CDRH3 sequences from OAS with a length range
238 from twelve to fourteen. To evaluate the capability of the prior model to learn the rules of CDRH3
239 sequences, 10,000 sequences were generated from the prior model or randomly sampled from the

240  training dataset, respectively. The property distributions of these two sets of sequences were

8
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241 calculated. Furthermore, the pairwise sequence distance distributions among the training set,
242 among the prior-generated set, and between the two sets were also calculated.

243

244  Task 2: Generating CDRH3s with high specificity to HER2

245 An agent model was trained with HER2 specificity as the target to generate CDRH3 sequences
246 with high specificity to HER2. Because the HER2 specificity model [6] only accepts 10 amino
247  acids among the CDRH3 sequences with length of 13, the starting ‘SR’ and ending “Y” residues in
248  Herceptin CDRH3 framework were fixed during generation and not used during specificity
249  evaluation. During agent training, the maximum length to generate was set as 13 and 64 CDRH3
250  sequences were generated during each step. The probability score from the HER2 specificity
251 model was used as the scoring function in Equation 2 to calculate the augmented likelihoods of the
252 generated sequences. The agent was trained for 3,000 steps, and the model trained after the final
253 step was named Agent_ HER2.

254

255  Task 3: Generating CDRH3swith multiple desirable properties

256 Another agent model was trained with multiple property predictors to generate CDRH3 sequences
257  fulfilling multi-property constraints. Similar to the Agent HER2 model, the maximum sequence
258 length in generation was set to 13; Herceptin template was used to constrain the starting to be ‘SR’
259 and ending to be ‘Y’ in the generated CDRH3 sequences; 64 sequences were generated during
260  each training step; and the model was trained for 3,000 steps. The main difference is that multiple
261 property scores were combined as the final scoring function for the augmented likelihood
262 calculation, including HER2 specificity, FvNetCharge, FvCSP, HISum, and MHC Il minPR.
263 These scores were combined with weighted sum, where HER2 specificity had a higher weight of
264  3/7 and other four scores were assigned with an equal weight of 1/7 respectively. The agent model
265  trained after the last step was named Agent_ MPO for comparison.

266

267  Design syntheticlibrary to HER2
268  To design a synthetic library to HER2, 10,000 sequences were sampled from Agent MPO.

269  Successful sequences were obtained and further filtered with CamSol (version 2.2) solubility
270  scores [24] greater or equal to 0.42, which was the score for Herceptin. A final set of 509 CDRH3
271 sequences were obtained as the potential candidates for MD simulation.
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272 To show the common patterns of the sequences, a sequence logo of the 509 CDRH3 sequences
273 was generated. The 509 sequences were aligned with ClustalW [25] and the result of this
274  alignment was used as the input to WebLogo [26] to create the sequence logo.

275

276  MD simulation analysis of designed antibodies

277 To elucidate the patterns discovered in the WebLogo of the 509 generated CDRH3 sequences, the
278  interaction mechanism of Herceptin with HER2 was examined. The structural model was created
279  based on the crystal structure of human HER2-Herceptin complex (PDB: 1N8Z [27]) and the
280  missing residues in HER2 were modeled by structural alignment to the crystal structure of HER2
281 (PDB ID: 6J71 [28]). The HER2-Herceptin Fab complex was then solvated in a dodecahedron box
282 and counter ions were inserted to ensure the whole system to be neutral. The whole system
283  contains ~330,000 atoms and five replicas of 50 ns NVT (T = 298 K) simulations were performed
284  (see File S1 Sections 4 for details of model construction and MD simulations).

285 In the MD simulations, the Amber ff14SB force field [29] was used to simulate the protein and
286 1ons, and the first 10 ns in each MD trajectory was removed before performing the subsequent
287  structural analysis. All the simulations were performed with Gromacs 5.0 [30].

288

280  Results

290  Learning observed CDRH3 sequence space with the prior model

291 In order to train our prior model to learn the CDRH3 sequence space, the unique CDRH3s of
292  paired and unpaired heavy chain sequences were collected from the OAS database [19]. More than
293 75 million unique CDRH3 sequences were obtained, and a prior model, GPT, was trained on these
294  sequences to learn the CDRH3 space. The hyper-parameters were analyzed to find the suitable
295  values (see File S1 Section 3 for details).

296 To evaluate the capability of the prior model to learn the CDRH3 space, the property
297  distributions of generated samples were analyzed. 10,000 sequences were sampled from the prior
298 model for evaluation and 10,000 sequences randomly sampled from the training dataset were used
299  as the baseline. The properties include viscosity, clearance, immunogenicity, and sequence
300  similarity. Viscosity and clearance were evaluated by analyzing antibody variable fragment net
301 charge (FvNetCharge), variable fragment charge symmetry parameter (FvCSP), and
302 hydrophobicity index sum (HISum). Immunogenicity was evaluated by analyzing the affinity to
303  MHC II. The minimum percentage rank of predicted MHC Il affinity (MHC Il minPR) to 34

304  human leukocyte antigen (HLA) alleles was used as the metric for distribution analysis. More

10
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305  explanation of FvNetCharge, FvCSP, HISum, and MHC Il minPR are provided in Methods.
306  Sequence similarity was evaluated with pairwise distance and cross-pairwise distance. Pairwise
307  distance is the Levenshtein distance of a pair of sequences in the dataset to evaluate, and cross-
308  pairwise distance is the Levenshtein distance of a pair of sequences with one from the prior and
309  the other from the baseline.

310 The distribution curves are shown in Figure 2. The prior and the baseline sequences showed
311 similar distributions on these properties. Large portions of overlaps between the property
312 distributions of the prior and baseline are observed in Figure 2A—E. Besides, the distribution of the
313 cross-pairwise distance is very similar to the pairwise distance distributions, which indicates that
314  the distance of a pair of sequences from two different sources is not clearly different from that of a
315 pair of sequences from a single source. Based on these observations, we believe that the GPT prior
316  model has learned a good distribution of the CDRH3 space.

317 From an in-depth look at the property values of these two sets of samples, we found that some
318  of the baseline and prior-generated sequences have desirable values on some of the properties,
319 including FvNetCharge of less than 6.2, FVCSP of less than 6.61, HISum in the range of [0, 4],
320 and MHC Il minPR greater than 2.51. However, none sequences from both sets of samples have
321 an HER?2 specificity score greater than 0.70, where 0.70 is chosen as threshold to increase the
322 confidence of HER2 specificity [6], leading to zero success rates of the two models, as shown in
323 Tablel.

324 Furthermore, three basic metrics, including uniqueness, novelty, and diversity, were
325  calculated to evaluate the generative capability of the models. The definitions of the three metrics
326  are described in Subsection “Basic metrics” and the metric values of the prior and baseline are
327 shown in Table 1. The prior-generated sequences achieve very high uniqueness (1.000) and
328 novelty (1.000), while the baseline sequences also have high uniqueness (1.000) but zero novelty,
329  because all sequences are sampled from the training dataset and none of them is novel. Both the
330  prior and the baseline have high metric values for diversity (9.754 and 9.930 respectively).
331 Together, this result shows that the prior model generates CDRH3 sequences with high uniqueness
332 and diversity, and it is able to generate novel sequences that are not observed in the training
333 dataset.

334

335  Generating CDRH3swith desired propertiesthrough RL

336 To discover antibodies with high specificity to a target is typically the first and foremost step in

337 antibody development [3]. However, none of the baseline sequences, which were assumed to

11
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338 represent the observed CDRH3 space, showed good specificity to HER2 (with 0.70 used as the
339  threshold). Similarly, none of the prior sequences, which were generated by a GPT model trained
340  on the CDRH3 dataset, had good HER2 specificity.

341 To optimize the CDRH3 generation and generate sequences with desirable properties
342  targeting HER2, we utilized a RL framework. Details of the framework can be found on Methods.
343 During the RL process, the likelihood of generating CDRH3s possessing good desirable properties
344 was increased and that of generating CDRH3s with poor properties was decreased. The prior
345  likelihood was also used to give feedback to the agent to preserve information of the CDRH3
346 space learned by the prior model. The hyper-parameter tuning was conducted as described in File
347 S1 Section 3.

348 To evaluate the capability of the agent to generate CDRH3 sequences with good desirable
349  properties, two agent models were trained. One agent model, named Agent HER2, was trained
350 with only HER2 specificity as the scoring function and the other agent model, named Agent_MPO,
351 was trained with multiple property predictors combined as the scoring function to fulfill multiple
352 requirements in the design of antibody libraries.

353 The performance of the resulting models is shown in Figure 3 and Figure 4. Figure 3 shows
354  the property distributions of sequences sampled from the prior model, the Agent HER2 model,
355 and the Agent_ MPO model. In Figure 3B, we see that averaged HER2 specificity of prior
356 sequences is zero, while those of sequences from Agent HER2 or Agent MPO models have
357  clearly better HER2 specificity. Agent HER2 generated sequences with higher averaged HER2
358 specificity than Agent_MPO. However, the success rate, which considers the ratio of sequences
359  fulfilled multi-property constraints, of Agent HER?2 (0.038) is much less than that of Agent_ MPO
360 (0. 266), as shown in Table 1. This shows that Agent_ MPO is better at generating sequences that
361 simultaneously fulfill multi-property requirements.

362 The higher success rate of the Agent MPO model is mainly contributed by optimized
363  FvNetCharge and MHC Il minPR, as shown in Figure 4. The sequences generated by the
364  Agent_MPO model have a focused range of the FvNetCharge score, which are better in fulfilling
365  the constraints (FvNetCharge <= 6.20). The MHC Il minPR scores of sequences generated by
366  Agent_MPO are drastically shifted towards the desired range (minPR >= 2.51). In general, Figure
367 3 and Figure 4 show that the agents can generate CDRH3 sequences with apparently better
368  properties than the prior model, and Agent_ MPO, which optimized multiple properties, achieves a

369  clearly better success rate than Agent_ HER2, which solely optimized HER2 specificity.
370
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371 Designing a novel antibody library targeting HER2

372 In our study, we want to employ the power of AB-Gen to design novel antibody libraries, which
373 have the potential to be used for practical antibody discovery. Ten thousand sequences were
374  generated by the Agent MPO. These sequences were filtered with the previous property
375  constraints in success rate calculation and with CamSol solubility scores [24] greater or equal to
376  0.42 (0.42 is the score for Herceptin). A final set of 509 CDRH3 sequences were obtained as the
377 potential library for further analysis.

378 The edit distances of the designed sequences to the wild-type Herceptin were analyzed as
379 shown in Figure S1. The maximum edit distance was eight, the minimum was two, and a median
380  edit distance of six was found. Because the total editing range has a length of ten, a median of
381 around 60% of the sequences were modified. This indicates that AB-Gen can design novel
382 sequences, which are not intuitive to design.

383 To further analyze the common patterns, the sequence logo of 509 generated CDRH3
384  sequences was created. The sequences were aligned using ClustalW [25] and the alignment was
385  used to create the sequence logo by WebLogo [26]. The resulting sequence logo is shown in
386 Figure 5. The beginning two residues of the CDRH3, i.e., S97 and R98, and the tailing residue
387 Y109 were fixed during generation, thus serving as the reference. From the sequence logo, we
388 found that G103, Y105 and D108 on the heavy chain of Herceptin are highly conserved among
389  these sequences, which suggested that these protein residues could play essential roles in the
390  binding between Herceptin and HER2.

391 To gain insight into how Herceptin binds with HER2 at the molecular level and potentially
392 explain the functions of the conserved residues, we performed molecular dynamics (MD)
393 simulations for the HER2-Herceptin antigen-binding fragment (Fab) system and examined the
394  molecular interactions in the binding region at the atomic resolution. In the MD simulations, we
395  observed that Herceptin is mainly interacting with HER2 through hydrogen bonds. Specifically,
396  the backbone oxygen atom of Herceptin residue G103 could form hydrogen bond with the side
397  chain of HER2 residue K593 (hydrogen bonding probability = 14.7+1.6%), and the side chain of
398 Herceptin residue D108 is hydrogen bonded with the hydroxyl group of HER2 residue Y588
399 (hydrogen bonding probability = 39.5 + 1.9%). Moreover, the side chain of Herceptin residue
400 Y105 could form hydrogen bonds with both the backbone oxygen atom (31.5+3.2%) as well as the
401 side chain oxygen atoms (38.7 = 7.7%) of HER2 residue D570. These observations have not only

402 consolidated the observation from sequence logos that G103, Y105 and D108 are important to
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403  bridge HER2 and Herceptin, but also suggested that hydrogen bonds contribute to the interactions
404  between HER2 and Herceptin Fab in the binding region.

405

406 Discussion

407 In this study, we used GPT in combination with reinforcement learning (RL) to design novel
408  antibody sequences, and obtained a clearly high success rate in generating antibody CDRH3
409  sequences with multiple desirable properties. To our knowledge, this is the first attempt to
410 combine GPT with RL to optimize the design of new antibody sequences towards multiple
411 desirable properties. A readily available tool, named AB-Gen, was developed for antibody library
412 design, and a set of CDRH3 sequences were designed as a potential library against HER2.

413 We focused on designing antibody CDRH3s to fulfill multi-property constraints, but this
414  method can also be used to design large proteins. As the HER2 specificity model used in our study
415 is only focusing on evaluating the CDRH3 regions which has a length of 13 in IMGT numbering
416  schema, we focused on designing CDRH3 sequences and the other parts of antibodies were the
417  same as Herceptin. To apply this method to other proteins, two main inputs are needed, one is the
418  homology sequences to pre-train the prior model, and another is the property predictor to feedback
419  to the agent. The homology sequences can be found from sequence databases through homology
420 search and the main constraint to apply this method is to calculate the scores for desirable
421 properties to guide the RL framework, such as affinity/specificity, activity, solubility, and stability.
422 More specifically, the HER2 specificity model used in this study has a good accuracy, however, is
423  rare for other targets. For targets with no such datasets, antibody—antigen docking platforms
424  provide alternative solutions [31, 32]. Besides, we believe that with the accumulation of data, deep
425  learning-based methods would eventually give good property predictors, thus also have the
426  potential to close this gap.

427 Compared to the previous method, our multi-parameter optimization achieved an apparent
428  improvement on the success rate. The previous method obtained the antibody CDRH3 library
429  sequences through random proposing followed by filtering approach [6] and has a relatively low
430 hit rate (1.10 x 10™%), which is the ratio of selected sequences over generated sequences. Besides,
431 this proposing and filtering process has high time and computational costs. However, in this study,
432 our AB-Gen method can efficiently explore the antibody space and design CDRH3 sequences to
433 fulfill predefined property constraints. The Agent. MPO model was able to generate sequences
434 that achieve a hit rate of (5.09 x 107%). We believe that if all the properties used as the filters could
435  be added in the scoring functions, the hit rate can be further improved.
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436 During agent training, generated sequences have to be scored using offline tools to provide
437  the feedback to the agent. The barrier to add some commonly considered properties as constraints
438  for generation is that no such offline tools are available to calculate or predict these properties. For
439 example, CamSol was proposed for antibody solubility prediction and is one of the commonly
440  used predictors for solubility [24, 33]. But no offline tool is provided, which is required to
441 optimize this property in our workflow. An offline solubility predictor would be highly
442  appreciated if the CamSol developers or other peer researchers can provide one.

443 Efficiency of predictive models is the core factor that influences the speed of design in our
444 method. During our experiments, we found that NetMHClIIpan [20] was the bottleneck in training
445  the Agent_ MPO models. The inefficient prediction of MHC Il affinity potentially due to the
446 methodology used for NetMHCIIpan, which splits a sequence into 15-mer peptides to calculate
447  affinity against multiple HLAs. We expect new methods to be developed to improve the efficiency
448  of such predictions.

449 In summary, we proposed a novel framework combining GPT and deep reinforcement
450  learning to design new CDRH3 sequences that can be potential experimental libraries in
451 experimental studies. Our results illustrate the power of Al to design antibody libraries. With more
452 predictive tools available to compute antibody properties, this RL framework would hold great
453 potential to be used for antibody library design, thus empowering the antibody discovery and

454  development process.
455

156 Code availability

457  The source code of AB-Gen is freely available at GitHub (https://github.com/SFB-KAUST/ab-
458  gen), BioCode (https://ngdc.cncb.ac.cn/biocode/tools/BT007341), and Zenodo [34]. The filtered
459  datasets to train the prior model, the pretrained models, and the designed antibody sequences are

460  also available in the GitHub and Zenodo repositories.
461

462  Author contributions

463  Xiaopeng Xu: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology,
464  Project Administration, Resources, Software, Visualization, Writing — Original Draft Preparation,
465  Writing — Review & Editing. Tiantian Xu: Data Curation, Formal Analysis, Methodology,
466  Visualization, Writing — Original Draft Preparation. Juexiao Zhou: Conceptualization, Software,
467  Visualization, Writing — Review & Editing. Xingyu Liao: Methodology, Resources, Writing —
468 Review & Editing. Ruochi Zhang: Methodology, Resources, Writing — Review & Editing. Yu

15


https://doi.org/10.1101/2023.03.17.533102
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.17.533102; this version posted March 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

469  Wang: Methodology, Resources, Writing — Review & Editing. Lu Zhang: Conceptualization,
470  Supervision, Writing — Original Draft Preparation, Writing — Review & Editing. Xin Gao:
471 Conceptualization, Funding Acquisition, Supervision, Writing — Review & Editing. All authors

472 contributed to the final review of the manuscript and approved the final paper.

473
474 Competing interests

475 Ruochi Zhang and Yu Wang are current employees of Syneron Technology. All the other authors

476  declare no competing interests.
477

478 Acknowledgements

479 This work was supported in part by the Office of Research Administration (ORA), King Abdullah
480  University of Science and Technology (KAUST), Saudi Arabia, under Grant FCC/1/1976-44-01.
481 We acknowledge the assistance from the editor, Dr. Yuxia Jiao, to improve our manuscript

482 and the constructive comments from the reviewers to improve the quality of this work.

483

a8a  ORCID

485  0000-0003-2414-7851 (Xiaopeng Xu)
486  0000-0001-5905-9216 (Tiantian Xu)
487  0000-0002-6739-6236 (Juexiao Zhou)
488 0000-0002-0061-1317 (Xingyu Liao)
489  0000-0001-6541-4050 (Ruochi Zhang)
490  0000-0002-3526-9494 (Yu Wang)

491 0000-0002-8640-1301 (Lu Zhang)

492 0000-0002-7108-3574 (Xin Gao)
493

194 References

495 1] Clifford B Saper. A guide to the perplexed on the specificity of antibodies. Journal of

496 Histochemistry & Cytochemistry, 57(1):1-5, 20009.

497  [2] Weidong Liu and Chuanliu Wu. A mini-review and perspective on multicyclic peptide
498 mimics of antibodies. Chinese Chemical Letters, 29(7):1063-1066, 2018.

499  [3] Steven M Paul, Daniel S Mytelka, Christopher T Dunwiddie, Charles C Persinger, Bernard H
500 Munos, Stacy R Lindborg, and Aaron L Schacht. How to improve r&d productivity: the
501 pharmaceutical industry’s grand challenge. Nature Reviews Drug Discovery, 9(3):203-214,
502 2010.

16


https://doi.org/10.1101/2023.03.17.533102
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.17.533102; this version posted March 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

503 [4] Vikas K Sharma, Thomas W Patapoff, Bruce Kabakoff, Satyan Pai, Eric Hilario, Boyan

504 Zhang, Charlene Li, Oleg Borisov, Robert F Kelley, Ilya Chorny, Joe Z. Zhou, Ken A. Dill,
505 and Trevor E. Swartz. In silico selection of therapeutic antibodies for development: viscosity,
506 clearance, and chemical stability. PNAS, 111(52):18601-18606, 2014.

507 [5] Lijuan Xu, Ye Tu, Jiao Li, Wannian Zhang, Zhibin Wang, Chunlin Zhuang, and Lei Xue.
508 Structure-based optimizations of a necroptosis inhibitor (szm594) as novel protective agents
509 of acute lung injury. Chinese Chemical Letters, 33(5):2545-2549, 2022.

510 [6] Derek M Mason, Simon Friedensohn, C’edric R Weber, Christian Jordi, Bastian Wagner,
511 Simon M Meng, Roy A Ehling, Lucia Bonati, Jan Dahinden, Pablo Gainza, Bruno E. Correia
512 & Sai T. Reddy. Optimization of therapeutic antibodies by predicting antigen specificity from
513 antibody sequence via deep learning. Nature Biomedical Engineering, 5(6):600-612, 2021.
514  [7] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf
515 Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Z'idek, Anna Potapenko,
516 Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie,
517 Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig
518 Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina
519 Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew
520 W. Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate
521 protein structure prediction with alphafold. Nature, 596(7873):583-589, 2021.

522 [8] Po-Ssu Huang, Scott E Boyken, and David Baker. The coming of age of de novo protein
523 design. Nature, 537(7620):320-327, 2016.

524  [9] Xingjie Pan and Tanja Kortemme. Recent advances in de novo protein design: principles,
525 methods, and applications. Journal of Biological Chemistry, 296, 2021.

526  [10] Jue Wang, Sidney Lisanza, David Juergens, Doug Tischer, Joseph L Watson, Karla M Castro,
527 Robert Ragotte, Amijai Saragovi, Lukas F Milles, Minkyung Baek, lvan Anishchenko, Wei
528 Yang, Derrick R Hicks, Marc Exposit, Thomas Schlichthaerle, Jung-Ho Chun, Justas
529 Dauparas, Nathaniel Bennett, Basile I M Wicky, Andrew Muenks, Frank DiMaio, Bruno
530 Correia, Sergey Ovchinnikov, and David Baker. Scaffolding protein functional sites using
531 deep learning. Science, 377(6604):387-394, 2022.

532 [11] Ivan Anishchenko, Samuel J Pellock, Tamuka M Chidyausiku, Theresa A Ramelot, Sergey
533 Ovchinnikov, Jingzhou Hao, Khushboo Bafna, Christoffer Norn, Alex Kang, Asim K Bera, ,
534 Frank DiMaio, Lauren Carter, Cameron M. Chow, Gaetano T. Montelione, and David Baker.
535 De novo protein design by deep network hallucination. Nature, 600(7889):547-552, 2021.

536  [12] Jung-Eun Shin, Adam J Riesselman, Aaron W Kollasch, Conor McMahon, Elana Simon,
537 Chris Sander, Aashish Manglik, Andrew C Kruse, and Debora S Marks. Protein design and
538 variant prediction using autoregressive generative models. Nature Communications, 12(1):1-
539 11, 2021.

540  [13] Sepp Hochreiter and Ju'rgen Schmidhuber. Long short-term memory. Neural Computation,
541 9(8):1735-1780, 1997.

sa2  [14] Rahmad Akbar, Philippe A Robert, C'edric R Weber, Michael Widrich, Robert Frank, Milena

543 Pavlovi ¢, Lonneke Scheffer, Maria Chernigovskaya, Igor Snapkov, Andrei Slabodkin, Brij
544 Bhushan Mehta, Enkelejda Miho, Fridtjof Lund-Johansen, Jan Terje Andersen, Sepp
545 Hochreiter, Ingrid Hobaek Haff, Gunter Klambauer, Geir Kjetil Sandve, and Victor Greiff. In
546 silico proof of principle of machine learning-based antibody design at unconstrained scale. In
547 MADbs, volume 14, page 2031482. Taylor & Francis, 2022.

17


https://doi.org/10.1101/2023.03.17.533102
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.17.533102; this version posted March 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

548  [15] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
549 L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural
550 Information Processing Systems, pages 5998-6008, 2017.

551 [16] Richard W Shuali, Jeffrey A Ruffolo, and Jeffrey J Gray. Generative language modeling for
552 antibody design. bioRxiv, 2021.

553  [17] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and llya Sutskever.

554 Language models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

555  [18] David Prihoda, Jad Maamary, Andrew Waight, Veronica Juan, Laurence Fayadat-Dilman,
556 Daniel Svozil, and Danny A Bitton. Biophi: a platform for antibody design, humanization,
557 and humanness evaluation based on natural antibody repertoires and deep learning. In MADbs,
558 volume 14, page 2020203. Taylor & Francis, 2022.

559  [19] Tobias H Olsen, Fergus Boyles, and Charlotte M Deane. Observed antibody space: a diverse
560 database of cleaned, annotated, and translated unpaired and paired antibody sequences.
561 Protein Science, 2021.

562  [20] Birkir Reynisson, Bruno Alvarez, Sinu Paul, Bjoern Peters, and Morten Nielsen. Netmhcpan-
563 4.1 and netmhciipan4.0: improved predictions of mhc antigen presentation by concurrent
564 motif deconvolution and integration of ms mhc eluted ligand data. Nucleic Acids Research,
565 48(W1):W449-W454, 2020.

566  [21] Marie-Paule Lefranc, Christelle Pommi’e, Manuel Ruiz, V'eronique Giudicelli, Elodie
567 Foulquier, Lisa Truong, Val'erie Thouvenin-Contet, and G’erard Lefranc. Imgt unique
568 numbering for immunoglobulin and t cell receptor variable domains and ig superfamily v-like
569 domains. Developmental & Compar ative Immunology, 27(1):55-77, 2003.

570  [22] Wes McKinney. Pandas: a foundational python library for data analysis and statistics. Python
571 for High Performance and Scientific Computing, 14(9):1-9, 2011.

572 [23] Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-
573 novo design through deep reinforcement learning. Journal of Cheminformatics, 9(1):1-14,
574 2017.

575  [24] Pietro Sormanni, Francesco A Aprile, and Michele Vendruscolo. The camsol method of
576 rational design of protein mutants with enhanced solubility. Journal of Molecular Biology,
577 427(2):478-490, 2015.

578  [25] Julie D Thompson, Toby J Gibson, and Des G Higgins. Multiple sequence alignment using
579 clustalw and clustalx. Current Protocolsin Bioinformatics, (1):2-3, 2003.

580 [26] Gavin E Crooks, Gary Hon, John-Marc Chandonia, and Steven E Brenner. Weblogo: a
581 sequence logo generator. Genome Research, 14(6):1188-1190, 2004.

582 [27] Hyun-Soo Cho, Karen Mason, Kasra X Ramyar, Ann Marie Stanley, Sandra B Gabelli, Dan
583 W Denney, and Daniel J Leahy. Structure of the extracellular region of her2 alone and in
584 complex with the herceptin fab. Nature, 421(6924):756—-760, 2003.

585  [28] Zhenyi Wang, Liansheng Cheng, Gongrui Guo, Baoyun Cheng, Siyi Hu, Hongmin Zhang,
586 Zhongliang Zhu, and Liwen Niu. Structural insight into a matured humanized monoclonal
587 antibody hua2l against her2-overexpressing cancer cells. Acta Crystallographica Section D:
588 Structural Biology, 75(6):554-563, 2019.

589  [29] James A Maier, Carmenza Martinez, Koushik Kasavajhala, Lauren Wickstrom, Kevin E
590 Hauser, and Carlos Simmerling. Ff14sb: improving the accuracy of protein side chain and

18


https://doi.org/10.1101/2023.03.17.533102
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.17.533102; this version posted March 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

591 backbone parameters from ff99sb. Journal of Chemical Theory and Computation,
592 11(8):3696-3713, 2015.

593 [30] Mark James Abraham, Teemu Murtola, Roland Schulz, Szila'rd Pa’ll, Jeremy C Smith, Berk
594 Hess, and Erik Lindahl. Gromacs: High performance molecular simulations through multi-
595 level parallelism from laptops to supercomputers. SoftwareX, 1:19-25, 2015.

596  [31] Philippe A. Robert, Rahmad Akbar, Robert Frank, Milena Pavlovi¢, Michael Widrich, Igor
597 Snapkov, Andrei Slabodkin, Maria Chernigovskaya, Lonneke Scheffer, Eva Smorodina,
598 Puneet Rawat, Brij Bhushan Mehta, Mai Ha Vu, Ingvild Frgberg Mathisen, Aurél Prész,
599 Krzysztof Abram, Alex Olar, Enkelejda Miho, Dag Trygve Tryslew Haug, Fridtjof Lund-
600 Johansen, Sepp Hochreiter, Ingrid Hobaek Haff, Ginter Klambauer, Geir Kjetil Sandve, and
601 Victor Greiff. Unconstrained generation of synthetic antibody-antigen structures to guide
602 machine learning methodology for real-world antibody specificity prediction. BioRxiv, 2022.
603  [32] Richard A Norman, Francesco Ambrosetti, Alexandre MJJ Bonvin, Lucy J Colwell, Sebastian
604 Kelm, Sandeep Kumar, and Konrad Krawczyk. Computational approaches to therapeutic
605 antibody design: established methods and emerging trends. Briefings in Bioinformatics,
606 21(5):1549-1567, 2020.

607  [33] Rahmad Akbar, Habib Bashour, Puneet Rawat, Philippe A Robert, Eva Smorodina, Tudor-
608 Stefan Cotet, Karine Flem-Karlsen, Robert Frank, Brij Bhushan Mehta, Mai Ha Vu, Talip
609 Zengin, Jose Gutierrez-Marcos, Fridtjof Lund-Johansen, Jan Terje Andersen, and Victor
610 Greiff. Progress and challenges for the machine learning-based design of fit-for-purpose
611 monoclonal antibodies. In MAbs, volume 14, page 2008790. Taylor & Francis, 2022.

612  [34] Xiaopeng Xu, Tiantian Xu, Juexiao Zhou, Xingyu Liao, Ruochi Zhang, Yu Wang, Lu Zhang,
613 and Xin Gao. Antibody library design with transformer and deep reinforcement learning —
614 source code and data (v1.1). Zenodo. https://doi.org/10.5281/zenodo.7657016. February 2023.
615

616

617 Figurelegends
618 Figurel Theworkflow of AB-Gen

619  More than 75 million CDRH3 sequences were obtained from the OAS database to train a
620  prior model. This prior model was used to initiate the RL agent. The architecture of the prior
621 model is shown in the middle and the agent model shares the same. The pipeline of the RL
622  process is shown in the right bottom. In each step, the agent model was used to generate
623 CDRH3 sequences; the generated sequences were scored with property predictors to get
624  property scores and evaluated with the prior model to get prior likelihoods; the property
625  scores and prior likelihoods were combined together to calculate augmented likelihoods,
626  which were used as the feedback to the agent. The agent model was able to generate
627  sequences that fulfill multi-property constraints after the training steps. CDRH3, heavy chain
628  complementarity determining region 3; OAS, Observed Antibody Space; RL, reinforcement

629  learning; VH, variable regions of the heavy chain; VL, variable regions of light chain.
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630

631  Figure 2 Property distribution of the prior-generated CDRH3 sequences and baseline

632 sequences

633 A. Distributions of FvNetCharge, with the higher the better for good viscosity and less than
634 6.2 needed for good clearance. B. Distributions of FvCSP, with the higher the better for good
635  viscosity. C. Distributions of HISum, with less than four required for good clearance. D.
636  Distributions of MHC Il minPR, where larger values mean lower likelihood to bind with
637  MHC Il, thus lower immunogenicity. E. Distributions of pairwise distance, that is the
638  Levenshtein distance of a pair of sequences from a single source dataset. F. Distributions of
639  Ccross-pairwise distance, that is the Levenshtein distance of a pair of sequences with one from
640  the prior and the other from the baseline. The cross-pairwise distribution follows a similar
641  shape to the pairwise distributions. The prior and baseline follow similar property
642  distributions, meaning the prior model was able to learn similar distributions to the training
643  samples. (Herceptin was used as the framework to calculate the properties of the CDRH3
644  sequences.) FvNetCharge, variable fragment net charge; FVCSP, variable fragment charge
645  symmetry parameter; HISum, hydrophobicity index sum; MHC Il minPR, the minimum

646  percentage rank to bind with MHC II.

647
648  Figure 3 Property distributionsof the model-generated sequencesin targeting HER2

649  A. Success rate of the baseline, prior and agent models. The sequences of the baseline and
650  prior have zero success rate; Agent HER2 achieved a success rate of less than 4%;
651  Agent_MPO achieved a success rate of up to 26.6%. The high success rate of Agent. MPO
652  Indicates that it can be useful in proposing sequences to fulfill multi-property constraints. B.
653  Histogram of HER2 specificity. HER2 specificity of prior sampled sequences is zero; most
654  sequences sampled from both agents have fulfilled the HER2 specificity threshold of 0.70. C.
655  Distributions of FvNetCharge. For a variant, the scores of FvNetCharge and FvCSP are
656  correlated. The desirable range of FvNetCharge is less than 6.20 and that of FVCSP is greater
657  than 6.61. D. Distributions of FVvCSP. E. Distributions of HISum, with the desirable range in
658 [0, 4]. F. Distributions of MHC Il minPR, with greater than 2.51 desirable. Agent_ MPO
659  shifted the property distributions towards the desirable ranges. (Herceptin was used as the

660  framework to calculate the properties of the CDRH3 sequences.)
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Figure4 Learning curve of the agent models

A. Learning curves of success rate. Agent_ MPO achieved a clearly better success rate after
100 steps than Agent HER2. B. Learning curves of HER2 specificity. Agent. MPO was
slower than Agent_ HER2 on learning good HER2 specificity. Because Agent MPO was
optimizing multiple properties while Agent HER2 only optimized HER2 specificity. The
task of Agent. MPO was much harder, thus requiring more time to learn. C. Leaning curves
of FvNetCharge. Agent_ MPO was learning to generate sequences to fulfill the FvNetCharge
constraint. D. Leaning curves of FvCSP. Both curves are within the desirable range. E.
Leaning curves of HISum. Both curves are within the desirable range. F. Leaning curves of
MHC Il minPR. Agent MPO was learning to fulfill the MHC Il minPR constraint.
Agent_ HER2 could not naturally fulfill the FvNetCharge and MHC Il minPR constraints.

(Herceptin was used as the framework to calculate the properties of the CDRH3 sequences.)

Figure5 lllustration of the three conserved resduesin the designed library

A. The binding pose of Herceptin Fab against HER2. B. The molecular interactions between
Herceptin CDRH3 and HER2. Four hydrogen bonds are formed through the residues G103,
Y105 and D108 in Herceptin and D570 and D593 in HER2. C. The sequence logo of the 509
designed CDRH3 sequences. Residues G103, Y105 and D108 are highly conserved among

these sequences. (S97, R98 and Y109 are from the Herceptin framework; they were fixed

during generation.)

Table1l Evaluation of the models on predefined metrics

Modéd Uniqueness Novelty Diversity Successrate
Baseline 1.000 0.000 9.930 0.000

Prior 1.000 0.999 9.754 0.000
Agent_HER2 0.996 1.000 5.871 0.038
Agent_MPO 1.000 1.000 6.478 0.266

Note: Agent HER2 is the agent model trained with HER2 specificity as the target, and
Agent_MPO is t