

1 **Overcoming donor variability and risks associated with fecal
2 microbiota transplants through bacteriophage-mediated treatments**

3 Torben Sølbeck Rasmussen^{1*}, Xiaotian Mao¹, Sarah Forster¹, Sabina Birgitte Larsen¹,
4 Alexandra Von Münchow², Kaare Dykær Tranæs¹, Anders Brunse³, Frej Larsen¹, Josue
5 Leonardo Castro Mejia¹, Signe Adamberg⁴, Axel Kornerup Hansen², Kaarel Adamberg⁴,
6 Camilla Hartmann Friis Hansen², Dennis Sandris Nielsen^{1*}

7 ¹ Section of Food Microbiology, Gut Health, and Fermentation, Dept. of Food Science,
8 University of Copenhagen, Rolighedsvej 26 4th, 1958 Frederiksberg, Denmark

9 ² Section of Experimental Animal Models, Dept. of Veterinary and Animal Sciences,
10 University of Copenhagen, Ridebanevej 9 1st, 1871 Frederiksberg, Denmark

11 ³ Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal
12 Sciences, University of Copenhagen, Dyrlægevej 68, 1870 Frederiksberg, Denmark

13 ⁴ Department of Chemistry and Biotechnology, Tallinn University of Technology,
14 Akadeemia tee 15, 12618 Tallinn, Estonia

15 *Corresponding authors. Email: torben@food.ku.dk (+45 35328073) / dn@food.ku.dk
16 (+45 35333287), Rolighedsvej 26 4th, 1958 Frederiksberg, Denmark

17 **ABSTRACT**

18 **Background:** Fecal microbiota transplantation (FMT) and fecal virome transplantation
19 (FVT, sterile filtrated donor feces) have been effective in treating recurrent *Clostridioides*
20 *difficile* infections, possibly through bacteriophage-mediated modulation of the gut
21 microbiome. However, challenges like donor variability, costly screening, coupled with
22 concerns over pathogen transfer (incl. eukaryotic viruses) with FMT or FVT hinders their
23 wider clinical application in treating less acute diseases.

24 **Methods:** To overcome these challenges, we developed methods to broaden FVT's
25 clinical application while maintaining efficacy and increasing safety. Specifically, we
26 employed the following approaches: 1) Chemostat-fermentation to reproduce the
27 bacteriophage FVT donor component and remove eukaryotic viruses (FVT-ChP), 2)
28 solvent-detergent treatment to inactivate enveloped viruses (FVT-SDT), and 3) pyronin-
29 Y treatment to inhibit RNA-virus replication (FVT-PyT). We assessed the efficacy of these
30 processed FVTs in a *C. difficile* infection mouse model and compared them with untreated
31 FVT (FVT-UnT), FMT, and saline.

32 **Results:** FVT-SDT, FVT-UnT, and FVT-ChP reduced the incidence of mice reaching the
33 humane endpoint (0/8, 2/7, and 3/8, respectively) compared to the FMT, FVT-PyT, and
34 saline control (5/8, 7/8, and 5/7, respectively) and significantly reduced the load of
35 colonizing *C. difficile* cells and toxin A/B levels. There was a potential elimination of *C.*
36 *difficile* colonization, with 7 out of 8 mice treated with FVT-SDT testing negative with
37 qPCR. In contrast, all other treatments exhibited the continued presence of *C. difficile*.
38 Moreover, the results were supported by changes in the gut microbiome profiles, cecal
39 cytokine levels and histopathological findings. Assessment of viral engraftment following
40 FMT/FVT treatment and host-phage correlations analysis suggested that transfer of
41 phages likely were an important contributing factor associated with treatment efficacy.

42 **Conclusions:** This proof-of-concept study show that specific modifications to FVT hold
43 promise in addressing challenges related to donor variability and infection risks. Two
44 strategies lead to treatments significantly limiting *C. difficile* colonization in mice, with
45 solvent/detergent treatment and chemostat-propagation emerging as promising
46 approaches.

47

48 **BACKGROUND**

49 During the past decade, it has become evident that various diseases are associated with
50 gut microbiome dysbiosis [1,2], including recurrent *Clostridioides difficile* infections (rCDI)
51 [3,4]. Fecal microbiota transplantation (FMT) from a healthy donor to rCDI patients has
52 proven highly effective in curing the disease, with a success rate exceeding 90% [5,6].
53 However, FMT faces challenges such as expensive and labor-intensive donor screening
54 [7], donor variability in term of treatment efficacy and reproducibility [7,8], and safety
55 concerns since no screening methods can definitively exclude the transfer of pathogenic
56 microorganisms from the donor. The importance of the latter was highlighted when two
57 patients in the United States experienced severe bacterial infections after FMT, resulting
58 in one fatality [9]. Subsequent safety alerts from the U.S. Food & Drug Administration
59 have warned against potential severe adverse effects associated with the transfer of
60 pathogenic microorganisms during FMT [10,11].

61 Interestingly, two independent studies [12,13] successfully treated rCDI patients using
62 0.45 µm sterile filtered donor feces (containing mainly viruses, but possibly also a limited
63 fraction of intact bacteria), a method often referred to as fecal virome transplantation
64 (FVT). The efficacy of FVT was comparable to other clinical studies using FMT
65 (containing bacteria, etc.), suggesting that the gut virome may play an important role
66 when treating rCDI with FMT [12,13]. The gut virome is predominantly composed of
67 bacteriophages (phages), which are host-specific bacterial viruses, but also include
68 eukaryotic and archaeal viruses [14]. The concept of applying FVT from a healthy
69 phenotype to a symptomatic phenotype has been further investigated in preclinical
70 studies. For instance, FVT influenced the composition of the murine gut microbiome
71 following initial perturbation with antibiotics [15]. Additionally, FVT treatment from lean
72 donors alleviated symptoms of metabolic syndrome in three different diet-induced obesity
73 murine models [16–18], and FVT from term piglets prevented the development of
74 necrotizing enterocolitis in a preterm piglet model [19]. FVT has the advantage over FMT
75 in that it significantly diminishes the transfer of viable bacteria, and FVT has recently been
76 demonstrated to be less intrusive for both the gut microbial structure and linked to a
77 reduced likelihood of causing harm to the jejunum in broiler chickens compared to FMT
78 [20]. In addition to the viruses, these FVT preparations would also be expected to contain

79 a certain level of bacterial spores and cells with sizes that allow them to pass through the
80 0.45 μ m filter membrane pores, fecal metabolites, and extracellular vesicles of which
81 contributions to the observed effects following FVT [12,13,15–21] are yet to be elucidated.
82 Furthermore, the sterile filtration process commonly used in FVT does not eliminate the
83 risk of transferring eukaryotic viruses, which previously have been detected in specific
84 pathogen-free mice [22]. While it is possible to screen donor feces for known pathogenic
85 viruses, recent studies have revealed that the human gastrointestinal tract harbors
86 hundreds of eukaryotic viruses with unknown functions [14,23,24]. Most of these viruses
87 are likely harmless to the human host, but it cannot be ruled out that they may contribute
88 to later disease development, as exemplified by the human papillomavirus, which turned
89 out as a significant risk factor for cervical cancer years after infection [25]. Therefore,
90 there are good reasons to minimize the transfer of active eukaryotic viruses when
91 applying FVT to alleviate conditions associated with gut microbiome dysbiosis,
92 particularly when treating individuals with compromised immune systems. In contrast,
93 phages do not actively infect and replicate in eukaryotic cells and are believed to be key
94 players in the successful treatment of gut-related diseases using FVT/FMT
95 [13,16,19,26,27], but the underlying mechanisms are yet poorly understood. FMT and
96 FVT hold the potential to revolutionize treatments for many gut-related diseases, but their
97 widespread use is unlikely due to safety concerns and donor variability. Our objective
98 was, therefore, that we could develop different methodologies that mitigate these
99 challenges while maintaining treatment efficacy. To generate FVTs “free” of eukaryotic
100 viruses, we exploited the fundamental differences in characteristics between eukaryotic
101 viruses and phages. The majority of eukaryotic viruses are enveloped RNA viruses
102 [28,29] and rely on eukaryotic hosts for replication. In contrast, the majority of phages are
103 non-enveloped DNA viruses [28,30] that require bacterial hosts for replication. A
104 solvent/detergent method was applied to inactivate enveloped viruses (FVT-SDT),
105 pyronin-Y was used to inhibit replication of RNA viruses (FVT-PyT), and a chemostat
106 propagated virome (FVT-ChP) was processed to remove the majority of eukaryotic
107 viruses by dilution. Chemostat propagation furthermore has the advantage, that it in
108 principle allows producing more product from the same inoculum, hence increasing
109 reproducibility. These differently processed fecal viromes were evaluated in a C57BL/6J

110 mouse *C. difficile* infection model [31] and compared with a saline solution, FMT
111 (previously shown to effectively treat *C. difficile* infection in preclinical studies [32]), and
112 untreated donor-filtrated feces (FVT-UnT).

113 This proof-of-concept study represents an important first step towards developing safer
114 and more consistent therapeutic approaches that can effectively target a wide range of
115 gut-related diseases [12,13,16,19,33–35], and potentially supplement FMT with phage-
116 mediated therapies.

117

118 **METHODS**

119 **Study design**

120 The *C. difficile* infection model was based on Chen et al. [31] and accommodated the
121 ARRIVE Essential10 guidelines [36]. Forty-eight female C57BL/6J (JAX) mice, 8 weeks
122 old, were obtained from Charles River Laboratories (European distributor of JAX mice)
123 and housed at the AAALAC accredited animal facilities of the Department of Experimental
124 Medicine (AEM, University of Copenhagen, Denmark) in Innovive disposable IVC cages
125 that were replaced once per week. The cages were provided water, food (Altromin 1324
126 chow diet, Brogaarden, Lyng, Denmark), bedding, cardboard housing, nesting material,
127 felt pad, and biting stem. Upon arrival, the mice were ear tagged, randomly (simple
128 randomization) assigned from the vendor transfer-cages to the IVC cages with 4 mice
129 each and acclimatized for one week (Fig. 1). An antibiotic mixture (kanamycin 0.4 mg/mL,
130 gentamicin 0.035 mg/mL, colistin 850 U/mL, metronidazole 0.215 mg/mL, and
131 vancomycin 0.045 mg/mL) was prepared in the drinking water and provided to the mice
132 through the IVCs for 3 days, and the water was replaced with clean antibiotic-free drinking
133 water for 2 days. Subsequently, the mice received an intraperitoneal injection of
134 clindamycin (2 mg/mL) diluted in sterile 0.9 % (w/v) NaCl water (based on the average
135 body weight of the mice, around 20 g). The mixture and therapeutic doses of antibiotics
136 were performed according to the animal model described by Chen et al. [31]. The aim of
137 the antibiotic treatment was to initiate a gut microbiome dysbiosis that increases the
138 colonization ability of *C. difficile*. A similar sequence of events is also often observed when
139 patients are infected with *C. difficile* during hospitalization after especially prolonged and
140 intense antibiotic treatments [37,38]. Twenty-four hours later, the mice were orally

141 inoculated with 1.21×10^4 CFU of *C. difficile* VPI 10463 (CCUG 19126) via oral gavage.
142 The mice were then divided into six different treatment groups (n = 8): saline (positive
143 control), FMT, FVT-UnT (untreated FVT), FVT-ChP (chemostat propagated virome), FVT-
144 SDT (solvent/detergent treated FVT for inactivating enveloped viruses), FVT-PyT (FVT
145 treated with pyronin-Y for inactivation of RNA viruses). The respective treatments were
146 administered orally by gavage in two doses of 0.15 mL each (FVT solutions were
147 normalized to 2×10^9 Virus-like particles (VLP)/mL), at 18 hours and 72 hours after *C.*
148 *difficile* inoculation (Fig. 1). The sample size of 8 mice per group was chosen based on
149 previous experiments [16,21] knowingly that the *C. difficile* infection would cause animals
150 being euthanized at different time points, which thereby could challenge the comparability
151 of the different timepoints and affect the statistical power. The reasoning was to
152 accommodate the 3Rs principles (replacement, reduction, and refinement [39]) to reduce
153 the number of animals, due to the severity level of the animal model [31], and that the
154 chosen number of animals were sufficient to assess the potential treatment efficacy of the
155 different processed FVTs. Also, the exclusion of a negative control group (i.e. mice not
156 infected with *C. difficile*) was due to comparable data being available from the original
157 study describing the model [31], again reducing the number of animals needed for the
158 experiment. Treatments and handling of cages (cage 1-12) were performed in the order
159 as Saline, FMT, FVT-UnT, FVT-ChP, FVT-SDT, FVT-PyT (cage 1-6) and repeated with
160 cage 7-12 in same group order. All handling was divided between four authors (TSR, SF,
161 KDT, and AVM) and animal care takers to avoid confounders. All inoculations/treatments
162 by oral gavage were performed blinded by experienced animal caretakers at AEM. One
163 mouse from the saline treated group (control) was euthanized immediately after oral
164 gavage of *C. difficile*, as the culture was accidentally administered via the trachea, and
165 one mouse from the FVT-UnT group was euthanized 1 week after the 2nd FVT treatment
166 due to malocclusions that had led to malnutrition. This reduced these groups (Saline and
167 FVT-UnT) to n = 7 in both the analysis of survival probability and cytokine profile. Blinded
168 monitoring of the animal health status was performed after *C. difficile* infection to
169 determine if the mice had reached the humane endpoint, leading to immediate
170 euthanization when necessary. The frequency of the health monitoring was adjusted to
171 the current health status of the mice and ranged from every 4th hour (day and night) for

172 the first 3 days after *C. difficile* infection, to every 8-12 hours the following 4 days, and
173 finally every 24 hours per day for the remaining 2 weeks of recovery. The monitoring was
174 supervised blindedly by the study veterinarian (author AVM). The following qualitative
175 parameters were used: physical activity level (i.e., decreased spontaneous or provoked
176 activity), consistency of feces (watery or normal), body posture (hunching or normal), and
177 whether their fur was kept clean or not. The mice were scored on a scale of 0-2: 0
178 (healthy), 1 (mild symptoms), and 2 (clear symptoms). Mice with a score of 2 that showed
179 no improvement in the above parameters during the subsequent checkup were
180 euthanized. Four authors (TSR, SF, KDT, and AVM) participated in health monitoring,
181 euthanization, tissue and feces sampling. Author TSR was aware of the group allocations
182 at all time points to ensure the correct treatments (but limited participation in health
183 monitoring), while authors SF, KDT, and AVM were blinded at all time points. Fecal pellets
184 were sampled whenever possible at different time points until the mice were euthanized
185 (Fig. 1). Mouse body weights were measured at day 0, 8, 15, 16, 18, 23, 30, and 35 (Fig.
186 S1). At the time of euthanization, samples of the intestinal content from the cecum and
187 colon were taken. A portion of the cecum tissue was fixed in 10 % neutral-buffered
188 formalin (Sarstedt) for histological analysis and stored at room temperature. Another part
189 of the cecum tissue, along with the intestinal content, was preserved for cytokine analysis
190 and stored at -80 °C until use.

191

192 ***Clostridioides difficile* inoculum**

193 *Clostridioides difficile* VPI 10463 (CCUG 19126), originating from a human infection, was
194 used as infectious agent as in the mouse *C. difficile* infection model described by Chen
195 et al. [31]. The bacteria were cultured in brain-heart-infusion supplement (BHIS) medium
196 [40] with 0.02 %(w/v) 1,4-dithiothreitol (Fisher Scientific) and 0.05 %(w/v) L-cysteine
197 (Fisher Scientific), grown at 37 °C in Hungate tubes (SciQuip), and handled anaerobically
198 as previously described [41]. For solid media, 1.5 %(w/v) agar (Fischer Scientific) was
199 added. Optical density (OD_{600nm}) of bacterial cultures was measured with a Genesys30
200 Visible spectrophotometer (Fischer Scientific). *C. difficile* primarily synthesize its toxins
201 during the stationary phase [42], thus the *C. difficile* culture in its early exponential phase
202 was used as inoculum to minimize transfer of toxins. The *C. difficile* inoculum used for the

203 infection was prepared as follows: a single colony of *C. difficile* was transferred to a
204 Hungate tube containing 10 mL BHIS medium and incubated overnight at 37 °C. Then
205 150 µL of the *C. difficile* overnight culture was transferred to a new Hungate tube
206 containing 10 mL BHIS medium, incubated for 3.5 hours and its OD_{600nm} was measured.
207 A bacterial calibration curve (OD_{600nm} vs. CFU/mL) of *C. difficile* VPI 10463 was used to
208 dilute the culture to the desired concentration (~1 x 10⁵ CFU/mL). This constituted the *C.*
209 *difficile* inoculum. The exact cell concentration of the *C. difficile* inoculum (1.21 x 10⁵
210 CFU/mL) was evaluated with CFU counts on BHIS agar plates (Fig. S2A-D).

211

212 **Host-phage pairs**

213 The bacteria were grown in media and at a temperature suitable for each strain (Table
214 S1). Five phages representing different characteristics (genome, size, and structure),
215 along with their bacterial hosts, were included to assess the influence of pyronin-Y and
216 solvent/detergent treatment on phage activity; *Lactococcus* phage C2 (host: *Lactococcus*
217 *lactic* DSM 4366), coliphage T4 (host: *Escherichia coli* DSM 613), coliphage phiX174
218 (host: *E. coli* DSM 13127), coliphage MS2, (host: *E. coli* DSM 5695), and *Pseudomonas*
219 phage phi6 (host: *Pseudomonas* sp. DSM 21482). Solid media were supplemented with
220 1.5 % (w/v) agar (Thermo Fisher Scientific) for plates and 0.7 % (w/v) for soft agar. An end
221 concentration of 10 mM MgCl₂ and 10 mM CaCl₂ was supplemented to media during
222 phage propagation. Plaque activity of phages was evaluated by spot testing where 100
223 µL bacterial culture was mixed with 4 mL soft agar (temperature at 49 °C), poured to an
224 agar plate, and 10 µL of a phage suspension (dilution series) was deposited on the
225 surface of the solidified soft agar, followed by incubation according to the specific bacterial
226 strain (Table S1).

227

228 **Fluorescence microscopy**

229 Virus-like particle (VLP) counts were evaluated of all fecal viromes (FVT-UnT, FVT-SDT,
230 FVT-ChP, and FVT-PyT, Fig. S2E) by epifluorescence microscopy using SYBR Gold
231 staining (Thermo Scientific) as described online
232 dx.doi.org/10.17504/protocols.io.bx6cp praw. The viral concentration was normalized using
233 SM buffer to 2 x 10⁹ VLP/mL per treatment.

234

235 **Origin and preparation of intestinal donor material**

236 A total of 54 male C57BL/6N mice were purchased for the purpose of harvesting intestinal
237 content for downstream FVT/FMT applications. Upon arrival, the mice were five weeks
238 old and obtained from three vendors: 18 C57BL/6NTac mice from Taconic (Denmark), 18
239 C57BL/6NRj mice from Janvier (France), and 18 C57BL/6NCrl mice from Charles River
240 (Germany). We have previously experienced that a high viral diversity can be obtained
241 by mixing the intestinal content from the same mouse strains from three different vendors,
242 and that this approach effectively affected the gut microbiome composition of recipient
243 mice [16,21,43]. The potential importance of high viral diversity on treatment outcome has
244 also previously been suggested in relation to FMT treated *C. difficile* patients [44], and
245 viral diversity have been reported to be positively correlated with donor phage
246 engraftment in a human trial using FMT to treat metabolic syndrome [27]. The mice were
247 earmarked upon arrival, randomly (simple randomization) assigned according to vendor
248 to 3 cages with 6 mice each, and housed at the AAALAC accredited facilities at the
249 Section of Experimental Animal Models, University of Copenhagen, Denmark, following
250 previously described conditions [43]. They were provided with *ad libitum* access to a low-
251 fat diet (LF, Research Diets D12450J) for a period of 13 weeks until they reached 18
252 weeks of age, which was the planned termination point. Unfortunately, malocclusions
253 resulted in malnutrition for two C57BL/6NRj mice, and they were euthanized before the
254 intended termination date. All mice were euthanized by cervical dislocation, and samples
255 of intestinal content (not feces pellets) from the cecum and colon were collected and
256 suspended in 500 μ L of autoclaved anoxic PBS-buffer (137 mM NaCl, 2.7 mM KCl, 10
257 mM Na₂HPO₄, 1.8 mM KH₂PO₄). Subsequently, all samples were stored at -80 °C. In
258 order to preserve the viability of strict anaerobic bacteria, 6 mice from each vendor (a total
259 of 18 mice) were sacrificed and immediately transferred to an anaerobic chamber (Coy
260 Laboratory) containing an atmosphere of approximately 93 % N₂, 2 % H₂, and 5 % CO₂,
261 maintained at room temperature. The samples collected from these mice within the
262 anaerobic chamber were used for FMT and anaerobic chemostat cultivation to produce
263 the FVT-ChP. The intestinal content from the remaining 34 mice was sampled under
264 aerobic conditions and used to generate the fecal virome for downstream processing of

265 the FVT-UnT, FVT-SDT, and FVT-PyT treatments. A flow diagram illustrating the
266 aforementioned processes is provided (Fig. S3). An anaerobic growth test was performed
267 for all FVT inoculums to evaluate the level of residual viable bacterial cells or spores
268 (Table S2). It was conducted by spreading 50 μ L of undiluted FVT on non-selective Gifu
269 Anaerobe Medium (GAM, Himedia) 1.5 %(w/v) agar plates inside an anaerobic chamber.
270 Two replicates of each FVT were incubated at 37 °C in an anaerobic jar containing an
271 anaerobic sachet (AnaeroGen, Thermo Fisher Scientific) outside the anaerobic chamber
272 for 14 days before CFU counting was performed.

273

274 Untreated fecal virome (FVT-UnT)

275 For processing FVT solutions [16], thawed intestinal content from the cecum and colon
276 was suspended in 29 mL autoclaved SM-buffer (100 mM NaCl, 8 mM MgSO₄·7H₂O, 50
277 mM Tris-HCl with pH 7.5), followed by homogenization in BagPage+ 100 mL filter bags
278 (Interscience) with a laboratory blender (Seward) at maximum speed for 120 seconds.
279 The filtered and homogenized suspension was subsequently centrifuged using a
280 centrifuge 5920R (Eppendorf) at 4,500 x g for 30 minutes at 4 °C. The fecal supernatant
281 was sampled for further processing of FVT solutions, while the pellet was resuspended
282 in PBS buffer for bacterial DNA extraction. The fecal supernatant was filtered through a
283 0.45 μ m Minisart High Flow PES syringe filter (Sartorius) to remove bacteria and other
284 larger particles. This step of the FVT preparation does not definitively exclude that
285 extracellular vesicles, bacterial cells, and spores can pass through the 0.45 μ m filters.
286 Ultrafiltration was performed to concentrate the fecal filtrate using Centriprep Ultracel YM-
287 30K units (Millipore) that by its design constitute of an inner and outer tube. The permeate
288 in the inner tube was discarded several times during centrifugation at 1,500 x g at 20 °C
289 until approximately 0.5 mL was left in the outer tube, which at this point was considered
290 as a fecal virome. The 30 kDa filter from the Centriprep Ultracel YM-30K units was
291 removed with a sterile scalpel and added to the fecal virome to allow viral particles to
292 diffuse overnight at 4 °C. In order to trace back the origin of specific bacterial or viral taxa,
293 the fecal viromes were mixed based on cages, taking into account the coprophagetic
294 behavior of mice [45]. The ultrafiltration of FVT-UnT, -ChP, -SDT, and -PyT is expected
295 to remove the vast majority of metabolites below 30 kDa [46,47]. These fecal viromes

296 were mixed into one final mixture from mice of all three vendors representing the
297 “untreated fecal virome”, FVT-UnT, which was immediately stored at -80 °C. The
298 remaining fecal viromes were stored at 4 °C prior to downstream processing to inactivate
299 the eukaryotic viruses in the fecal viromes by either dissolving the lipid membrane of
300 enveloped viruses with solvent/detergent treatment or inhibit replication of RNA viruses
301 with pyronin-Y.

302 **Solvent/detergent treated fecal virome (FVT-SDT)**

303 The solvent/detergent treatment is commonly used to inactivate enveloped viruses, as
304 most eukaryotic viruses possess an envelope, while non-enveloped viruses, including
305 phages, are not affected by this treatment [48,49]. Following the guidelines set by the
306 World Health Organization (WHO) [50] and Horowitz et al. [48] for the clinical use of
307 solvent/detergent-treated plasma, the fecal viromes were subjected to incubation in a
308 solution containing 1 %(w/v) tri(n-butyl) phosphate (TnBP) and 1 %(w/v) Triton X-100 at
309 30 °C for 4 hours. It is important to note that the majority of inactivation typically occurs
310 within the first 30-60 minutes of the solvent/detergent treatment [50]. The removal of
311 TnBP and Triton X-100 was performed according to the method described by Treščec et
312 al. [51]. In brief, the applied volume of Amberlite XAD-7 in the column was set to 150 %
313 of the theoretical binding capacity to ensure a sufficient removal of TnBP and Triton X-
314 100. The resin column was equilibrated with 0.01 M phosphate buffer (Na₂HPO₄ and
315 NaH₂PO₄) pH 7.1 containing 0.5 M NaCl until OD_{280nm} was < 0.02. Each solvent/detergent
316 treated fecal virome (mixed by cage) was added separately to the column and OD_{280nm}
317 was measured to follow the concentration of proteins (expected viral particles and other
318 metabolites > 30 kDa) and until OD_{280nm} was < 0.02. A 0.01 M phosphate buffer containing
319 1 M NaCl was used to release potential residual particles from the resin [51]. The removal
320 of the solvent/detergent agents from the fecal viromes yielded approx. 100 mL viral-flow-
321 through from the column which was concentrated to 0.5 mL using Centriprep Ultracel YM-
322 30K units as described in the previous section. The final product constituted the FVT-SDT
323 treatment and was stored at -80 °C until use.

324 **Pyronin-Y treated fecal virome (FVT-PYT)**

325 Pyronin-Y (Merck) is a strong red-colored fluorescent compound. It has been reported to
326 exhibit efficient binding to single-stranded and double-stranded RNA (ss/dsRNA), while

327 its binding to single-stranded and double-stranded DNA (ss/dsDNA) is less effective
328 [52,53]. Initial screening was conducted to determine the optimal conditions for viral
329 inactivation using various concentrations of pyronin-Y, different incubation times, and
330 temperatures for RNA and DNA phages. The fecal filtrate was treated with 100 µM
331 pyronin-Y and incubated at 40 °C overnight to inactivate viral particles containing RNA
332 genomes. To remove the pyronin-Y molecules that were not bound to particles, the
333 pyronin-Y-treated fecal filtrate suspensions were diluted in 50 mL SM-buffer and
334 subsequently concentrated to 0.5 mL using ultrafiltration with Centriprep Ultracel YM-30K
335 units. This process was repeated three times, resulting in a transparent appearance of
336 the pyronin-Y treated fecal filtrate, which constituted the FVT-PyT treatment and was
337 stored at -80 °C until use.

338 **Fecal microbiota transplantation (FMT)**

339 The mouse intestinal content that was sampled anoxically (Fig. S3) was diluted 1:20 in
340 an anoxic cryoprotectant consisting of PBS-buffer and 20 %(v/v) glycerol and stored at
341 -80 °C until administration.

342 **Chemostat propagated fecal virome (FVT-ChP)**

343 The preparation of the chemostat propagated virome was performed as described
344 previously [54]. Briefly, anaerobic handled mouse cecum content was utilized for
345 chemostat propagation. The culture medium was formulated to resemble the low-fat (LF)
346 diet (Research Diets D12450J) provided to the donor mice as their feed (Table S3), and
347 growth conditions such as temperature (37 °C) and pH (6.4) were set to simulate the
348 environmental conditions present in the mouse cecum. The end cultures, which
349 underwent fermentation with a slow dilution rate (0.05 volumes per hour), exhibited a
350 microbial composition that resembled the initial microbial composition profile of the donor
351 [54]. These batches were combined to form the FVT-ChP treatment and were stored at
352 -80 °C until use.

353

354 **Cytokine analysis**

355 Pre-weighted cecum tissue was homogenized in 400 µL lysis-buffer (stock solution: 10
356 mL Tris lysis-buffer, 100 µL phosphatase inhibitor 1, 100 µL phosphatase inhibitor 2, and

357 200 μ l protease inhibitor) (MSD inhibitor pack, Meso Scale Discovery) using a FastPrep
358 Bead Beater Homogenizer (MP Biomedicals), and centrifuged (8,000 x g; 4 °C; 5
359 minutes). Samples were diluted 1:2 and analyzed for IFN- γ , GM-CSF, IL-15, IL-6, IL-10,
360 KC/GRO, MIP-2, TNF- α IL-17A/F, and IL-22 in a customized metabolic group 1 U-PLEX
361 (MSD) according to manufacturer's instructions. Samples were analyzed using the MESO
362 QuickPlex SQ 120 instrument (Meso Scale Discovery) and concentrations were
363 extrapolated from a standard curve using Discovery Workbench v.4.0 (Meso Scale
364 Discovery) software. Measurements out of detection range were assigned the value of
365 lower (set to 0) or upper detection limit. The cytokine analysis was performed by a blinded
366 investigator.

367

368 **Histology and cytotoxicity assay**

369 Formalin-fixed, paraffin-embedded cecum tissue sections were stained with hematoxylin
370 and eosin for histopathological evaluation by a blinded investigator (author AB). A
371 composite score was assigned, taking into account the following pathological features: 1)
372 immune cell infiltration, 2) submucosal edema or hemorrhage, 3) epithelial injury, each
373 with a range of severity/extent as follows: 0: none, 1: mild, 2: moderate, 3: severe) for a
374 cumulative pathology grade between 0 and 9 [16]. Cecum tissue samples with
375 mechanical damage were excluded for the analysis.

376 The RIDASCREEN *C. difficile* Toxin A/B ELISA kit (r-biopharm) was used to measure the
377 toxin concentrations in the mice feces by following the instructions of the manufacturer.
378 The OD_{450nm} was measured with a Varioskan Flash plate reader (Thermo Fisher
379 Scientific).

380

381 **qPCR measuring *C. difficile* abundance**

382 *C. difficile* in the fecal samples was enumerated using quantitative real-time polymerase
383 chain reaction (qPCR) with species-specific primers (C.Diff_ToxA_Fwd: 5'-TCT ACC ACT
384 GAA GCA TTA C-3', C.Diff_ToxA_Rev: 5'-TAG GTA CTG TAG GTT TAT TG-3' [55])
385 purchased from Integrated DNA Technologies. Standard curves were based on a dilution
386 series of total DNA extracted from a monoculture of *C. difficile* VPI 10463. The qPCR
387 results were obtained using the CFX96 Touch Real-Time PCR Detection System (Bio-

388 Rad Laboratories) and the reagent RealQ plus 2x Master Mix Green low Rox (Amplicon)
389 as previously described [56].

390

391 **Pre-processing of fecal samples for separation of viruses and bacteria**

392 Fecal samples from three different time points were included to investigate gut
393 microbiome changes over time: baseline (before antibiotic treatment), before *C. difficile*
394 infection (after antibiotic treatment), and at termination or at euthanization. This
395 represented in total 142 fecal samples. Separation of the viruses and bacteria from the
396 fecal samples generated a fecal pellet and fecal supernatant by centrifugation and 0.45
397 µm filtering as described previously [43], except the volume of fecal homogenate was
398 adjusted to 5 mL using SM-buffer.

399

400 **Bacterial DNA extraction, sequencing and data pre-processing**

401 The DNeasy PowerSoil Pro Kit (Qiagen) was used to extract bacterial DNA from the fecal
402 pellet by following the instructions of the manufacturer. The final purified DNA was stored
403 at -80 °C and the DNA concentration was determined using Qubit HS Assay Kit
404 (Invitrogen) on the Qubit 4 Fluorometric Quantification device (Invitrogen). The bacterial
405 community composition was determined by Illumina NextSeq-based high-throughput
406 sequencing of the 16S rRNA gene V3-region, as previously described [43]. Quality control
407 of reads, de-replicating, purging from chimeric reads and constructing Zero-radius
408 Operational Taxonomic Units (zOTU) was conducted with the UNOISE pipeline [57] and
409 taxonomy assigned with Sintax [58] using the EZtaxon for 16S rRNA gene database [59].
410 zOTU represents unique sequence variants where only sequence alignments with 100 %
411 similarity are merged into the same zOTU. Code describing this pipeline can be accessed
412 in https://github.com/jcame/Fastq_2_zOTUtable. The average sequencing depth after
413 quality control (Accession: PRJEB58777, available at ENA) for the fecal 16S rRNA gene
414 amplicons was 60,719 reads (min. 11,961 reads and max. 198,197 reads).

415

416 **Viral RNA/DNA extraction, sequencing and data pre-processing**

417 The sterile filtered fecal supernatant was concentrated using Centrisart centrifugal filters
418 with a filter cut-off at 100 kDa (Sartorius) by centrifugation at 1,500 x g at 4 °C

419 (dx.doi.org/10.17504/protocols.io.b2qaqdse). The fecal supernatant (140 µL) was treated
420 with 5 units of Pierce Universal Nuclease (ThermoFisher Scientific) for 10 minutes at room
421 temperature prior to viral DNA extraction to remove free DNA/RNA molecules. The viral
422 DNA/RNA was extracted from the fecal supernatants using the Viral RNA mini kit
423 (Qiagen) as previously described [43,60]. Reverse transcription was executed with
424 SuperScript IV VILO Master mix by following the instructions of the manufacturer and
425 subsequently cleaned with DNeasy blood and tissue kit (Qiagen) by only following step
426 3-8 in the instructions from the manufacturer. In brief, the DNA/cDNA samples were mixed
427 with ethanol, bound to the silica filter, washed two times, and eluted with 40 µL elution-
428 buffer. Multiple displacement amplification (MDA, to include ssDNA viruses) using
429 GenomiPhi V3 DNA amplification kit (Cytiva) and sequencing library preparation using
430 the Nextera XT kit (Illumina) was performed at previously described [43], and sequenced
431 using the Illumina NovaSeq platform at the sequencing facilities of Novogene
432 (Cambridge, UK). The average sequencing depth of raw reads (Accession: PRJEB58777,
433 available at ENA) for the fecal viral metagenome was 17,384,372 reads (min. 53,960
434 reads and max. 81,642,750 reads). Using Trimmomatic v0.35, raw reads were trimmed
435 for adaptors and low quality sequences (<95 % quality, <50nt) were removed. High-
436 quality reads were de-replicated and checked for the presence of PhiX control using
437 BBMap (bbduk.sh) (<https://www.osti.gov/servlets/purl/1241166>). Virus-like particle-
438 derived DNA sequences were subjected to within-sample *de novo* assembly-only using
439 Spades v3.13.1 and contigs with a minimum length of 2,200 nt, were retained. Contigs
440 from all samples were pooled and dereplicated by chimera-free species-level clustering
441 at ~95 % identity using the script described in [61], and available at
442 <https://github.com/shiraz-shah/VFCs>. Contigs were classified as viral by VirSorter2 [62]
443 ("full" categories | dsDNAphage, ssDNA, RNA, Lavidaviridae, NCLDV | viral quality = 1),
444 VIBRANT [63] (High-quality | Medium-quality | Complete), CheckV [64] (High-quality |
445 Medium-quality | Complete), and VirBot [65]. Any contigs not classified as viral by any of
446 the 4 software's were discarded. The taxonomical categories of "Other," "Unclassified
447 virus," and "Unknown" that are used in the different figures are different entities. "Other"
448 encompasses all remaining low abundance taxa not depicted in the plot. "Unknown"
449 refers to contigs that may be viruses but lack specific data records confirming their viral

450 origin, and "Unclassified virus" represents viruses that have been identified as having viral
451 origin but could not be further classified. Taxonomy was inferred by blasting viral ORFs
452 against a database of viral proteins created from the following: VOGDB v217 (vogdb.org),
453 NCBI (downloaded 14/10/2023), COPSAC [61], and an RNA phage database [66],
454 selecting the best hits with a minimum e-value of $10e^{-6}$. Phage-host predictions were done
455 with IPhoP [67], which utilizes a combination of different host predictors. Following
456 assembly, quality control, and annotations, reads from all samples were mapped against
457 the viral (high-quality) contigs (vOTUs) using bowtie2 [68] and a contingency table of
458 contig-length and sequencing-depth normalized reads, here defined as vOTU-table (viral
459 contigs). Code describing this pipeline can be accessed in
460 <https://github.com/frejlarsen/vapline3>. Mock phage communities (phage C2, T4, phiX174,
461 MS2, and Phi6, Table S1) were used to both spike the FVT inoculums and as positive
462 controls (normalized to $\sim 10^6$ PFU/mL for each phage) for virome sequencing to validate
463 the sequencing protocol's ability to include the different genome types of ssDNA, dsDNA,
464 ssRNA, and dsRNA.

465

466 **Bioinformatics of bacterial and viral sequences and statistical analysis**

467 The dataset was first cleaned to remove zOTU's/viral contigs found in less than 5 % of
468 the samples. Despite this, the resulting dataset retained over 99.8 % of the total reads. R
469 version 4.3.2 was used for subsequent analysis and presentation of data. A minimum
470 threshold of sequencing reads for the bacteriome and virome analysis was set to 2,200
471 reads and 15,000 reads, respectively. The main packages used were phyloseq [69],
472 vegan [70], DESeq2 [71], ampvis2 [72], ggpubr, psych, igraph, ggraph, pheatmap,
473 ComplexHeatmap, and ggplot2. Potential contaminations of viral contigs were removed
474 by read count detected in negative controls through R package microDecon [73] (runs =
475 1, regressions = 1), and 35.1% of entries were removed. Cumulative sum scaling (CSS)
476 was applied for the analysis of β -diversity. CSS normalization was performed using the R
477 software using the metagenomeSeq package. α -diversity analysis (Shannon diversity-
478 index) was based on raw read counts for bacteriome analysis, while the virome read
479 counts were normalized on the basis of transcripts per million (TPM), and statistics were
480 based on ANOVA. β -diversity was represented by Bray-Curtis dissimilarity and statistics

481 were based on PERMANOVA. DESeq2 was used to identify differential abundant taxa on
482 the summarized bacterial species level and viral contigs (vOTUs) level. The correlation
483 heatmap between bacterial zOTUs and viral contigs (vOTUs) were calculated using
484 pairwise Spearman's correlations and FDR corrected. Cytokine levels, toxin levels, *C.*
485 *difficile* abundance, and histology data were analyzed in R using linear models with saline
486 as control group, while the log rank test was used to compare the survival distributions
487 and FDR was used for corrections with multiple testing. Comparisons of means where
488 used to calculate differences in PFU counts
489 (https://www.medcalc.org/calc/comparison_of_means.php).

490

491

492

493

494 **RESULTS**

495 We here hypothesized that different methodologies could be applied to overcome the
496 challenges of donor variability and infection risks of eukaryotic viruses that are associated
497 with FVT/FMT, while maintaining the treatment efficacy that previously have been
498 reported for FVT/FMT treated recurrent *C. difficile* infection (rCDI) patients [5,12,13]. To
499 produce “eukaryotic virus-free” fecal viromes, we developed methodologies that utilized
500 fundamental differences in characteristics between eukaryotic viruses and phages: The
501 majority of eukaryotic viruses are enveloped RNA viruses [28,29] and require eukaryotic
502 hosts for replication, while the majority of phages are non-enveloped DNA viruses [28,30]
503 and require bacterial hosts for replication. A solvent/detergent method was applied to
504 inactivate enveloped viruses (FVT-SDT), pyronin-Y was used to inhibit replication of RNA
505 viruses (FVT-PyT), and a chemostat propagated virome (FVT-ChP) was created to
506 remove the majority of eukaryotic viruses by dilution [54]. These differently processed
507 fecal viromes were as a proof-of-concept tested in a murine *C. difficile* infection model
508 (Fig. 1) and compared with a saline solution (sham treatment), FMT, and untreated FVT
509 (FVT-UnT). All treatments originated from the same intestinal donor content (and not from
510 fecal pellets).

511

512 **Evaluation of methodologies applicability to inactivate enveloped and RNA viruses**

513 The applicability of the solvent/detergent and pyronin-Y treatments to inactivate
514 eukaryotic viruses while maintaining phage activity was tested by using phages
515 representing different characteristics, such as enveloped (phi6) vs. non-enveloped
516 (phiX174, T4, and C2) phage structure and ss/dsDNA (phiX174, T4, C2) vs. ss/dsRNA
517 (MS2, phi6) genomes (Fig. 2A & 2B). The solvent/detergent treatment completely
518 inactivated phage activity (as determined by plaque-forming units (PFU)/mL) of the
519 enveloped phage phi6 from 10^9 PFU/mL to below the detection limit ($p < 0.0001$). The
520 activity of the non-enveloped phages phiX174 and T4 were largely unaffected with less
521 than $0.1 \log_{10}$ decrease, whereas, phage C2 showed a $1 \log_{10}$ decrease in PFU/mL ($p <$
522 0.0001 , Fig. 2A). Pyronin-Y was used to inactivate the replication of viruses harboring
523 RNA genomes. Based on numerous combinations of pyronin-Y concentrations,
524 temperatures, and incubation time, an overnight incubation at 40°C with $100 \mu\text{M}$ pyronin-

525 Y was chosen. This treatment reduced the ssRNA phage MS2 with 5 log₁₀ PFU/mL (p <
526 0.0001) and dsRNA phage phi6 with more than 4 log₁₀ PFU/mL (p < 0.0001) at 20 °C.
527 Phi6 showed to be temperature sensitive since incubation at 40 °C alone inactivated (p <
528 0.0001) this enveloped phage. The plaque forming ability of phages C2 (dsDNA), T4
529 (dsDNA), and phiX174 (ssDNA) was unfortunately also affected by the pyronin-Y
530 treatment at 40 °C, with a decrease of 1, 2.5, and 5 log₁₀ PFU/mL (p < 0.0005, Fig. 2B),
531 respectively. Thus, it would be expected that a notable fraction of the phages in the FVT
532 will be inactivated using the pyronin-Y treatment. In a parallel study we showed that the
533 chemostat propagation of fecal viromes led to a clear reduction in terms of relative
534 abundance of eukaryotic viruses [54].

535

536 **Fecal viromes maintained high treatment efficacy after inactivation of enveloped
537 viruses**

538 As a main endpoint parameter, the treatment efficacy of the FMT/FVTs, specifically
539 preventing the mice from reaching the humane endpoint, was assessed in a murine *C.*
540 *difficile* infection model (Fig. 1). The survival probability rate associated with the different
541 treatments was evaluated using a Kaplan-Meier estimate (Fig. 3A) and compared to the
542 mice treated with saline (2/7 mice). The analysis revealed a significantly improved survival
543 rate (8/8 mice, p = 0.03) for mice treated with FVT-SDT, while the FVT-UnT (5/7 mice)
544 and FVT-ChP (5/8 mice) treated mice showed tendencies (p = 0.24) of numerical, but
545 non-significant, improvements of their survival rate. On the other hand, the FVT-PyT
546 treated mice and, unexpectedly, the FMT treatment showed no improvement in survival
547 rate (1/8 and 3/8 mice, respectively).

548 The pathological score (Fig. 3B, & Fig. S4A-J) and the levels of 10 pro- and anti-
549 inflammatory cytokines of the cecum tissue were evaluated of both the mice that reached
550 the humane endpoint and the mice that survived until study termination, which made it
551 difficult to statistically evaluate these measures of the different sampling time points. The
552 cecal histopathology and cytokine profiles therefore generally reflected whether the mice
553 survived (with low or no inflammatory response when measured at study termination,
554 marked with a circle) or were euthanized (with a high inflammatory response, marked with
555 a cross) due to *C. difficile* infection (Fig. 3C-L). Thus, these measures were included to

556 evaluate the animal's disease status/recovery at termination or euthanization as well as
557 the different FVT/FMT treatment abilities to increase the chances for the animals of not
558 reaching the humane endpoint. However, a decrease in the average pathological score
559 and cytokine levels supported the qualitative health evaluations (Fig. S4B-G) and the
560 treatment efficacy associated with the improved survival rate of FVT-UnT, -SDT, and -
561 ChP treated mice compared to the saline control, FMT, and FVT-PyT (Fig. 3B & Fig. S4A).
562 The average pathological score at 6.7 of the saline treatment was in line with the original
563 published *C. difficile* infection mouse model that reported a pathological score at 7.0 for
564 *C. difficile* infected mice, compared to mice not infected with *C. difficile* that showed a
565 score at 1.3 [31]. Overall, the FVT-SDT appeared as the superior treatment to prevent
566 severe infections of *C. difficile*, since all 8 out of 8 mice did not reach the humane
567 endpoint.

568

569 **Successful treatments impede *C. difficile* colonization and subsequent disease 570 development**

571 *C. difficile* abundance in feces was quantified using qPCR (Fig. 4A-C) to evaluate the
572 infectious load at different time points. No *C. difficile* was detected before inoculation with
573 *C. difficile* (Fig. 4A). The FVT-SDT treated mice exhibited an average of $2 \log_{10}$ lower *C.*
574 *difficile* abundance ($p = 0.001$) (gene copies per gram feces) compared to the saline
575 treated mice before the 2nd treatment, and the FVT-UnT ($p = 0.013$) and FVT-ChP ($p =$
576 0.039) treatments resulted in a $1.5 \log_{10}$ lower abundance. This suggested that these
577 three treatments effectively impeded *C. difficile* colonization in the gut. In contrast, the
578 FMT and FVT-PyT treated mice had similar *C. difficile* abundance as the saline treated
579 group. A possible clearance of *C. difficile* colonization was observed at study termination,
580 as 7/8 FVT-SDT treated mice tested negative for *C. difficile*, while all other treatments
581 showed persistency of *C. difficile* (Fig. 4C). The levels of the *C. difficile* associated toxin
582 A/B were measured using an ELISA-based assay, which showed similar patterns as the
583 qPCR data (Fig. 4D-F). Just before the 2nd treatment, the toxin A/B levels in the FVT-SDT
584 treated mice were significantly lower than those in the saline group ($p < 0.05$), and only 2
585 mice in the FVT-SDT group exhibited detectable toxin A/B. In contrast, toxin A/B was
586 detected in all mice in the other FMT/FVT treatments and control (Fig. 4E). At termination,

587 toxin A/B could not be detected in any of the FVT-SDT treated mice but was detected in
588 a fraction of mice in the other treatment groups (Fig. 4F). The decrease in the abundance
589 of *C. difficile*, the causing pathogenic agent (Fig. 4A-C), along with the diminished levels
590 of toxin A/B (Fig. 4D-F) observed in the FVT-UnT, -SDT, and -ChP groups in comparison
591 to mice treated with saline, aligns with the corresponding higher survival rates (Fig. 3A).
592 This suggests a supportive relationship between reduced pathogen presence and toxin
593 levels with improved overall chances of survival.

594

595 **Fecal virome treated with solvent/detergent supports recovery of the bacterial
596 community in a dysbiotic gut microbiome**

597 The gut microbiome analysis included three time points; baseline (before antibiotics),
598 before *C. difficile* infection (after antibiotic treatment), and at planned termination or if the
599 mice reached the humane endpoint prior study termination. The latter posed the inherent
600 comparability challenge by the time difference between the euthanized mice and the mice
601 that survived the infection (Fig. S5). Thus, these gut microbiome profiles reflected whether
602 the mice survived the infection or were euthanized. Despite this, we deliberately included
603 the gut microbiome data for all three time points to facilitate a comparative analysis for
604 answering the following two main questions: 1) Did the different FVT/FMT treatments
605 contribute to the restoration of the gut microbiome relative to baseline? 2) Which
606 significant changes characterized the gut microbiome at the time of the euthanized and
607 survived mice compared with the time point before the *C. difficile* infection? To do so, we
608 verified that there were no initial differences ($p > 0.3$) in the bacterial and viral gut
609 microbiome profiles at both baseline (before antibiotics) and before *C. difficile* infection
610 (after antibiotic treatment) between the mice that were later either euthanized or survived
611 the *C. difficile* infection (Fig. 5 & Fig. S6). The antibiotic intake through the drinking water
612 was similar across the cages (Table S4). The overall bacterial composition (Bray-Curtis
613 dissimilarity) and diversity (Shannon diversity index) were significantly different ($p < 0.05$)
614 between the different time points (Fig. 5A-B), however the mice that survived the infection
615 tended to be more similar to baseline, compared with the time before *C. difficile* infection
616 and the euthanized mice. The bacterial taxonomic profile of the mice that had survived
617 the infection was dominated by *lactobacilli*, *Prevotella*, *Clostridium sensu stricto*,

618 *Bacteroides*, *Lachnospiraceae*, *Bifidobacterium*, *Akkermansia*, *Porphyromonadaceae*,
619 *Desulfovibrio*, *Parabacteroides*, and *Turicibacter*, which were also the dominant taxa in
620 the mice at baseline (Fig. 5C-D), suggesting partial restoration of the gut microbiome
621 profile in mice that survived the *C. difficile* infection. The bacterial taxonomic profile of the
622 mice that were euthanized due to reaching the humane endpoint was consistently
623 dominated by *Escherichia/Shigella*, *Enterococcus*, *Clostridioides*, *Bacteroides*,
624 *Parasutterella*, and *Parabacteroides* (Fig. 5C-D). Except for the genus *Clostridioides*,
625 these taxa were also among the more abundant before *C. difficile* infection, which
626 indicated that the treatments at this time point had not restored the gut microbiome
627 sufficiently after the antibiotic treatment. Two mice treated with FVT-PyT were colonized
628 with 5-30% relative abundance of *Salmonella* spp. (Fig. S7), which may have contributed
629 to increased disease severity leading to euthanasia of these two mice. The potential
630 bacterial engraftment from the FMT inoculum to the FMT treated mice were analyzed at
631 16S rRNA gene amplicon level. The FMT treated mice that survived the infection were
632 associated with a relative abundance of approx. 65 % that was also found in the FMT
633 inoculum, compared with a relative abundance of approx. 15 % in the euthanized mice
634 (Fig. S8A). This potential bacterial engraftment from the FMT inoculum was amongst
635 others represented by *Clostridium sensu stricto* (Fig. 5C-D).

636 The viral composition and diversity of the mice that survived the infection were
637 significantly different ($p < 0.05$) compared with the baseline, before *C. difficile* infection
638 (Fig. 6A-B). The dominant viral taxa in all groups at all time points represented *Morgan*-,
639 *Astro*-, *Alpa*-, *Mads*-, *Alma*-, and *Inesviridae*, while more than 60 % of the viral relative
640 abundance could not be taxonomically assigned (Fig. 6C-E). The viral engraftment from
641 the FVTs were also investigated at the viral metagenome level (viral contigs). Except for
642 the FVT-UnT, the FMT/FVT treated mice that survived the infection were engrafted with
643 a higher relative abundance of viral contigs that were also found in the different FMT/FVT
644 inoculums, compared with the euthanized mice (Fig. S8B). This observation further
645 indicated that the transfer of phages is likely associated with the treatment efficacy.

646 Differential abundance testing was used to characterize the most significant gut
647 microbiome changes of both the bacterial and viral component (relative abundance $> 1\%$
648 and $p < 0.05$) from the time before *C. difficile* infection (after antibiotic treatment) until the

649 mice were euthanized or survived until the study termination (Fig. 7A-C). The mice that
650 survived had significantly increased ($p < 0.05$) their relative abundance of bacterial taxa
651 belonging to *Turicibacter*, *Clostridium sensu stricto*, *Akkermansia*, and *Clostridioides*, and
652 a decrease in *Parasutterella*, *Parabacteroides*, *Enterococcus*, *Escherichia*, and
653 *Bacteroides thetaiotaomicron* relative to before they were infected with *C. difficile* (Fig.
654 7A). The increase in *Clostridioides* is likely due to the persistence of *C. difficile* in the mice
655 which also was detected by the quantitative analysis of *C. difficile* (Fig. 4C). The
656 euthanized mice had significantly increased ($p < 0.05$) their relative abundance of
657 especially *Clostridioides* (15 log₂ fold change), *Akkermansia*, and *Bacteroides* and a
658 decrease in *Turicibacter*, *lactobacilli*, and *Parasutterella*, relative to before they were
659 infected with *C. difficile* (Fig. 7B).

660 With regard to the phages (Fig. 7D-F), the surviving mice were characterized by an
661 increase in viruses (*Vincent*-, *Sonia*-, *Rigmor*-, *Morgan*-, *Freja*-, *Ella*-, and
662 *Christianviridae*) belonging to the viral order of *Crassvirales* and *Tubulavirales* relative to
663 before they were infected with *C. difficile* (Fig. 7D). Whereas the euthanized mice mainly
664 had increased their relative abundance of phages (*Nora*-, *Ines*-, *Gokusho*-, and
665 *Alpaviridae*) belonging to the order *Petitvirales* (Fig. 7E). The viral metagenomes were
666 used to predict potential bacterial hosts (Fig. 7G-I) with a recently developed machine
667 learning framework that utilizes six different host prediction approaches [67]. Compared
668 with the time point before *C. difficile* infection, the mice that survived the infection were
669 characterized by a significant increase in ($p < 0.05$) of phages predicted to infect
670 *Prevotella*, *Phocaeicola*, *Paraprevotella*, *Paramuribaculum*, *Duncaniella*, and *Bacteroides*
671 members, and a decrease in vira predicted to infect *Tumebacillus*, *Staphylococcus*,
672 *Schaedlerella*, *Roseburia*, *Lactococcus*, *Fictibacillus*, *Faecalibacterium*, *Enterococcus*,
673 *Clostridium*, *Blautia*, *Mucispirillum*, *Pantoea*, *Acinetobacter*, and *Akkermansia* (Fig. 7G).
674 In contrast, the mice that were euthanized showed only an increase in phages predicted
675 to infect *Prevotella*, *Bacteroides*, and *Agathobacter* and a decrease in *Tumebacillus*,
676 *Lactococcus*, *Clostridium*, *Paramuribaculum*, *Corynebacterium*, *Arachnia*, and
677 *Akkermansia* (Fig. 7H). The overall host-phage relations between the relative abundance
678 ($> 0.1\%$, $p < 0.05$) of bacterial zOTUs and viral contigs were assessed using Spearman's
679 correlations which showed clear clustering patterns (Fig. S9).

680 A bacterial and viral cluster A representing the taxa of *Enterococcus spp.*, *Salmonella*,
681 *Clostridioides difficile*, *Escherichia fergusonii*, *Clostridium cocleatum*, *Bacteroides*
682 *thetaiotamicron*, and *Parasutterella* positively correlated with mainly unknown viruses.
683 Another bacterial and viral cluster B representing the taxa of *Prevotella*, *lactobacilli*,
684 *Turicibacter*, *Clostridium spp.*, *Porphyromonadaceae*, *Lachnospiraceae*, *Bacteroides*,
685 *Bifidobacterium*, and *Coriobacteriaceae* were positive correlated also with mainly
686 unknown viruses. The bacterial genera in cluster B were associated with the mice that
687 survived the infection, hence the unknown phages in this cluster may represent phages
688 that had positively impacted the restoration of the GM compared with baseline. However,
689 due to the limited viral classification it was not possible to detect clear evidence of specific
690 host-phage relations that were driving the observed curative effects of FVT-UnT, -SDT,
691 and -ChP.
692 Based on the above, it could be hypothesized that phages transferred along with the FVT-
693 SDT treatment may have contributed to increased gut microbiome resilience against the
694 *C. difficile* infection after the antibiotic treatment, and thereby impacting the mice's ability
695 to fight off the *C. difficile* infection. However, it remains uncertain whether the gut
696 microbiome profile of the surviving mice has been similar in gut microbiome composition
697 to that of the euthanized mice at a certain point of the *C. difficile* infection.
698 The eukaryotic viral profile was similar among the different FVT inoculates and constituted
699 0.1-3.0% of the total relative abundance and mainly represented RNA viruses (Fig. S10).
700 However, it is important to note that the taxonomic resolution of eukaryotic viruses was
701 insufficient to differentiate between treatments or outcomes in relation to the relative
702 abundance of eukaryotic viruses (Fig. S10). It should also be emphasized that inactivation
703 by dissolving the viral envelope or inhibiting replication of viruses in the FVT inoculums
704 does not exclude the detection of viruses through sequencing and the metavirome
705 analysis of FVT-SDT and –PyT can therefore not be used for validation whether specific
706 viruses are inactivated or not.

707

708 **DISCUSSION**

709 Here, we have developed methodologies to address the challenges of donor variability
710 and risk of transferring pathogenic microorganisms when using FMT or FVT for treating

711 gut-related diseases. A *C. difficile* infection mouse model was used as proof-of-concept.
712 Inactivation of enveloped viruses through solvent/detergent treatment emerged as the
713 superior method to modify fecal viromes while preserving treatment efficacy against *C.*
714 *difficile* infection. The systemic inflammatory response observed during *C. difficile*
715 infection is driven by *C. difficile* toxins that increase gut tissue permeability [74,75],
716 making the gut more susceptible to other microbial infections [76]. Therefore, transferring
717 untreated fecal donor viromes (including intact eukaryotic viruses) may result in additional
718 inflammation due to microbes translocating through the damaged intestinal tissue. The
719 majority of eukaryotic viruses are enveloped [28,29]. Hence, considering the promising
720 prevention efficacy of *C. difficile* infection in the FVT-SDT group, treating fecal viromes
721 with solvent/detergent prior to transfer to patients may be particularly relevant for
722 diseases that are characterized by increased gut tissue permeability [76].
723 The lowest survival rate was observed with the RNA targeting compound pyronin-Y.
724 During the initial evaluation of pyronin-Y's ability to inactivate RNA phages, it became
725 evident that DNA phages were also affected. The pyronin-Y treatment may have caused
726 a reduction in phage activity, which could have impacted the efficacy of the treatment.
727 This would align with several studies emphasizing the importance of high phage titers for
728 successful treatment outcomes [77–80] and phages may play an important role in
729 restoring gut microbiome balance following FMT or FVT [13,15–17,19,26,44,81].
730 FMT is linked to a treatment efficacy above 90 % in preclinical [32] and clinical *C. difficile*
731 infection studies [5], however, the survival rate of FMT-treated mice was unexpectedly
732 observed as similar to the saline group. The structure of the animal model does not allow
733 us to assess whether this observation has biological relevance or represents a by-chance
734 finding. Instead, we speculate in two potential explanations. First, the FMT inoculum
735 contained approximately 20 % of *Clostridium sensu stricto* spp., which has been
736 associated with *C. difficile*-positive calves [82] and to diarrhea in pigs [83]. The relatively
737 high abundance of *Clostridium sensu stricto* spp. in the FMT inoculum may have
738 counteracted the curative effects typically associated with FMT [13,32]. While the FMT
739 and FVT inocula originated from the same donor material, the removal of bacteria during
740 FVT processing may explain the higher survival rates observed with FVT-UnT, -ChP, and
741 -SDT compared to FMT. This also suggests that even unsuitable fecal donor material for

742 FMT could potentially be suitable for FVT, thus FVT-based treatments may have the
743 potential to increase the probability in finding eligible donors, that have been reported as
744 a challenging element of clinical FMT studies [7]. Secondly, a particularly controversial
745 speculation could be that our FMT suspension was handled, sampled, and prepared
746 anoxically inside an anaerobic chamber and stored/suspended in anoxic glycerol/PBS
747 solutions. This is in strong contrast to the preparation of traditional FMT [84], which
748 typically exposes the donor material to oxygen throughout the various preparation steps,
749 from sampling to the final FMT product. It is well-acknowledged that the bacterial gut
750 microbiome component mainly consists of strict and facultative anaerobes [85]. c of donor
751 materials used for FMT unintentionally kills a vast number of oxygen-sensitive bacteria,
752 reducing the load and diversity of viable bacterial cells. This, in turn, may decrease the
753 chance of additional infections or other microbes translocating through damaged
754 intestinal tissue that potentially could cause additional inflammation and tissue damage.
755 In contrast, it would be expected that our anoxically handled FMT had a higher load and
756 diversity of viable strict anaerobic bacteria [86,87], which may have counteracted the
757 effect of the transferred enteric phages. However, it requires further studies to either
758 confirm or reject this speculation.

759
760 Mice treated with FVT-UnT, -ChP, and -SDT showed a significant decrease in *C. difficile*
761 abundance compared to those treated with saline, FMT, and FVT-PyT. We believe that
762 phages transferred along with the FMT/FVT play a role in allowing commensal bacteria
763 associated with a healthy state to compete with the infectious *C. difficile* strain, as well as
764 commensal bacteria that can act as opportunistic pathogens. This was supported by
765 phage engraftment from the FMT/FVT that was associated with mice surviving the
766 infection and a cluster of unknown viruses that were positively correlated with bacteria
767 reflecting a restored gut microbiome. However, the precise mechanisms underlying the
768 gut microbiome modulating effects of FVT remain poorly understood. Nonetheless,
769 several studies have established that the phage donor profile to some extent can be
770 transmissible to the gut of patients suffering from *C. difficile* infections through FMT
771 [13,44,81]. Our prior work demonstrated that FVT from lean mice could induce a shift in
772 the gut microbiome composition of obese mice, resembling that of lean individuals [16].

773 Additionally, we recently illustrated how FVT originating from donors with a relatively high
774 abundance of *A. muciniphila* could significantly elevate the relative abundance of the
775 endogenous *A. muciniphila* in recipient mice [21], and another study showed that
776 autochthonously transferred FVT protected against stress-associated behavior in mice
777 [33]. These observations from independent research groups imply that the phenotypic
778 traits of FVT donors may be transferred to recipients, possibly driven by the inclination of
779 phages to establish ecosystems similar to their origins. This process may involve
780 cascading events [26], as illustrated in a gnotobiotic mouse model where phage infections
781 indirectly influenced the bacterial balance [88]. Consequently, the more complex viral
782 community of FVT could similarly impact the bacterial ecosystem that influence the
783 metabolome resulting in systemic changes, as seen in our previous study [16]. While the
784 notion of such effects may seem counterintuitive given the commonly held belief in the
785 strain-specific nature of phages, a recent study proposed that phages could interact with
786 distantly related microbial hosts [89]. Phage satellites have also been suggested to
787 contribute to broader host ranges [90,91]. Furthermore, the transfer of potentially
788 beneficial metabolic genes from temperate phages to their bacterial hosts may enhance
789 host competitiveness and contribute to overall microbiota changes [92,93]. These findings
790 align with recent research demonstrating the significant influence of nutritional and host
791 environments on the community ecology [94], suggesting that cascading events initiated
792 by FVT could catalyze changes in the host environment. Beyond the bacteria-phage
793 relations, the role of the immune system in gut health should not be underestimated.
794 Recent evidence suggests that phages interact with the immune system through
795 mechanisms like TLR3 and TLR9 [95,96] or other mechanisms resulting in the uptake by
796 mammalian cells [97,98] A recent review has summarized the current understanding of
797 phage immunogenicity, highlighting parallels with eukaryotic viruses [99,100]. Thus,
798 stimulation of the immune system may represent another mechanism behind the effects
799 of FVT.

800 While there were good indications that phages were a key component in the observed
801 effects associated with the FVT-UnT, - SDT, and -ChP treated mice, it remains possible
802 that metabolites or entities with a molecular size above 30 kDa (size cut-off of applied
803 ultrafilter) may have contributed to the observed effects. These molecules could for

804 instance be metabolites from lactobacilli [101], and *Akkermansia* spp. (pasteurized cell
805 cultures) [102], bacteriocins with antimicrobial properties affecting the gut microbiome
806 composition [103,104] or extracellular vehicles which have been shown to affect immune
807 regulation during pregnancy [105,106], and may be involved in the etiology of
808 inflammatory bowel diseases [107]. However, considering that most metabolites have a
809 size less than 30 kDa [46,47], long-term colonization of donor phages in FMT studies
810 [81,108,109], phages being associated to the treatment outcome of recurrent *C. difficile*
811 infection [44,81], no reported effects of heat-treated FVT controls [15,110], and studies
812 reporting beneficial effects of FVT in different etiology regimes [12,13,15,16,19] it
813 suggests that the viral component of FVT constitute an important role. In addition, it could
814 be speculated that the solvent-detergent treatment (FVT-SDT) likely have dissolved a
815 certain fraction of lipid-based extracellular vesicles, and thereby further diminished their
816 potential role in the treatment outcome using FVT-SDT.

817 The FVT preparation protocol does not remove microorganisms or other entities that can
818 pass through the applied 0.45 μm filtration. Bacterial endospores exhibit a size range,
819 with some as small as 0.25 μm , although their typical dimensions surpass 0.8 μm
820 [111,112]. Similarly, certain bacterial species within the taxa of *Mycoplasma*,
821 *Pelagibacter*, and *Actinobacteria* can attain sizes as small as 0.2 μm [113–118], while
822 most bacteria generally range in length from 1 to 10 μm [119]. Hence, the use of a 0.45
823 μm sterile filtration is anticipated to eliminate the vast majority of bacterial cells and
824 spores. This was supported by both the notably low colony-forming unit (CFU) counts
825 observed in the FVTs under the investigated conditions (Table S2), and the 16S rRNA
826 gene profile of the FVTs showing low read counts and/or no gut-associated bacteria in 3
827 out of 4 FVTs (Fig. S11). Choosing a smaller pore size like 0.22 μm can minimize
828 contamination of bacteria but will cause in exclusion of large viruses and phages [120]
829 and have been shown to negatively affect the abundance of common phages [121]. Thus,
830 making 0.22 μm filtration an undesirable solution for FVT preparation. The abundance
831 and significance of nano-sized bacteria in gut health remains sparsely investigated [122].
832 We can therefore neither confirm nor definitively rule out that these bacteria potentially
833 have influenced the treatment outcomes of the FVTs.

834

835 The application of multiple displacement amplification (MDA) for 1.5 – 2.0 hours has been
836 reported to compromise quantitative analysis of metagenomes by overestimating the
837 abundance of ssDNA sequences [123,124], however, it has recently been shown that
838 decreasing the time of whole genome amplification to 0.5 hours accommodate this bias
839 to a level where it remain valid to compare inter-sample relative abundance of viruses
840 [61]. The taxonomical classification of eukaryotic viruses mainly detected RNA viruses
841 while only one DNA virus was detected. This would be in accordance with eukaryotic
842 viruses being dominated by RNA viruses [28,29]. Phages are generally species or strain
843 specific [14], but the limited bacterial taxonomical resolution, that are associated with 16S
844 rRNA gene amplicon sequencing, restricts predicted host-phage correlations to the genus
845 level of the bacteria.

846 A recent study showed that *C. difficile* senses the mucus layer since it moves towards the
847 mucin glycan components due to chemotaxis, and that mucin-degrading bacteria like
848 *Akkermansia muciniphila*, *Bacteroides thetaiotaomicron*, and *Ruminococcus torque* allow
849 *C. difficile* to grow when co-cultured in culture media containing purified MUC2 but without
850 glucose, despite *C. difficile* lacks the glycosyl hydrolases needed for degrading mucin
851 glycans [125]. Interestingly, co-existence of these bacterial taxa may explain why the
852 euthanized mice tended to lose most of the commensal bacteria like *Prevotella*,
853 *lactobacilli*, *Turicibacter*, and *Bifidobacterium*, while *Akkermansia* and *Bacteroidetes*
854 persisted. Preventive use of frequent administration of high doses of *A. muciniphila* has
855 been shown to alleviate *C. difficile* infection associated symptoms in a similar mouse
856 model [126], which together points in the direction of a co-existence rather than a
857 symbiosis between *C. difficile* and mucin-degrading bacteria.

858 The high mortality rate associated with the included *C. difficile* VPI 10463 strain makes it
859 valuable for assessing the main endpoint parameter of survival probability related to
860 various FVTs. Euthanizing animals that reached the humane endpoint at different time
861 points had naturally an impact on the statistical power and introduced challenges in
862 evaluating time-dependent parameters such as cytokine profiles, histopathology, and
863 comparable time series analysis of gut microbiome recovery. On the contrary, it is
864 possible that if the surviving mice exhibited comparable histology, *C. difficile* abundance,
865 cytokine profiles, toxin levels, and gut microbiome profiles they would have reached the

humane endpoint at a similar time point as the euthanized mice. The animal model was designed as such to adhere to the 3Rs principles [39] (replacement, reduction, and refinement) by limiting the number of mice per group to 8 instead of employing several termination points for all treatment groups. In addition, the group size was evaluated as sufficient for screening the survival probability associated with the different FMT/FVT treatments. It would have provided additional insights of the role of phages in the FVT treatment of the *C. difficile* infection if UV and/or heat-treated FVT controls were included in the design of the animal model. However, due to the severity of the *C. difficile* infection model applied, it would not accommodate the principle of 3Rs (reduce) [39] to include additional animals considering that two previous studies have shown no effect of heat-treated FVT controls [15,110]. Thus, it would be extremely relevant to include such controls in future studies using animal models causing less severity in disease development.

As an alternative to phage-based therapies to restore a dysbiotic gut microbiome, a recent bacterial consortium (SER-109) has been approved by the FDA to treat rCDI [127,128], which highlights the potential of also using defined bacterial consortia in modulation of the gut microbiome. The treatment efficacy of SER-109 was found to be 28 % percentage points (88 %) increased compared with placebo (60 %) [127], while regular FMT in another study shows 57 % percentage points (90 %) enhanced treatment efficacy compared with placebo (33 %) [5]. This suggested that FMT may still be the preferred treatment strategy for rCDI depending on the patient group. Furthermore, the role on treatment outcome of induced prophages originating from the bacteria in the SER-109 consortium remains to be addressed. Additional studies are therefore necessary to be conducted for comparing phage-based treatments with FMT and bacterial consortia like SER-109.

A major challenge of *C. difficile* infection is the risk of recurrent infections [6]. It is therefore interesting to note that 7/8 FVT-SDT treated mice showed non-detectable of *C. difficile* at termination, indicating a decrease in the risk of recurrent infections when treated with a solvent/detergent modified fecal virome. The inherent challenges of variability and reproducibility in fecal donor material exist for both FMT and FVT [7,8]. Two independent studies have demonstrated how propagation of fecal inoculum in a chemostat-

897 fermentation holds the potential for reproducing the enteric viral component [54,129].
898 Interestingly, the treatment efficacy and decrease in *C. difficile* infection-associated
899 symptoms were also pronounced in mice treated with the chemostat propagated enteric
900 virome. Therefore, it could be argued that the solvent/detergent methodology of fecal
901 viromes, already approved by WHO as a safe procedure for treating blood plasma [50],
902 holds the potential to complement FMT in the treatment of *C. difficile* infection in the short-
903 term perspective. In the long-term perspective, a cost-effective, standardized, and
904 reproducible chemostat propagated enteric phageome for *C. difficile* infection treatment
905 may also have tremendous potential for phage-mediated treatment of other diseases
906 associated with gut dysbiosis.

907 **CONCLUSION**

908 The hypothesis of this proof-of-concept study was that different modifications of FVT had
909 the potential to address the challenges of donor variability and infections risks that are
910 associated with FVT/FMT. Especially two FVT modification strategies showed a
911 significant effect in limiting the colonization of *C. difficile* in the infected mice and thereby
912 increased their chance of survival. Inactivation of enveloped viruses through
913 solvent/detergent treatment of the FVT appeared as a superior method to address the
914 infection risks while preserving treatment efficacy against *C. difficile* infection. Also the
915 chemostat propagated FVT showed promising potential as a methodology to address
916 both donor variability and the infection risks, thus, overall confirming our initial hypothesis.
917 Due to the natural limitations associated with the simplicity of the study, these results
918 encourage additional preclinical studies to further validate the translatability and relevance
919 of applying these concepts of FVT treatments in clinical settings.

920 **DECLARATIONS**

921 **Animal ethical approval**

922 All procedures involving handling of animals included in the *C. difficile* infection model
923 (license ID: 2021-15-0201-00836) and donor animals (license ID: 2012-15-2934-00256)
924 were approved and conducted in accordance with Directive 2010/63/EU and the Danish
925 Animal Experimentation Act.

926 **Availability of data and material**

927 All data associated with this study are present in the paper or the Supplementary
928 Materials. All sequencing datasets are available in the ENA database under accession
929 number PRJEB58777.

930 **Competing interests**

931 All authors declare no financial or personal conflicts of interest.

932 **Funding**

933 Funding was provided by: The Lundbeck Foundation with grant ID: R324-2019-1880
934 under the acronym “SafeVir”. The Novo Nordisk Foundation with grant ID: NNF-
935 20OC0063874 under the acronym “PrePhage”.

936 **Author contributions**

937 Conceptualization: TSR, DSN

938 Methodology: TSR, XM, SF, FL, SBL, KDT, AVM (veterinarian, supervising the health
939 status monitoring), AB (scored histology images), JLKM, SA, KA, CHFH

940 Investigation: TSR, XM, SF, FL, AB, AVM, CHFH, AKH, DSN

941 Visualization: TSR, AB, XM

942 Funding acquisition: TSR, DSN

943 Project administration: TSR, DSN

944 Supervision: DSN, AKH

945 Writing – original draft: TSR

946 Writing – review & editing: All authors critically revised and approved the final version of
947 the manuscript.

948 **Acknowledgement**

949 We would like to express our gratitude to the staff of veterinarians and animal caretakers
950 at the Department of Experimental Medicine (AEM, University of Copenhagen, Denmark)
951 for their cooperation in housing, handling, and monitoring the mice. We would also like to
952 extend our thanks to PhD Casper Normann Nurup for his assistance in the initial setup of
953 the column chromatography, and to lab trainee Mariam Al-Batool Samir S Bagi for
954 performing the ELISA assay. We would also like to acknowledge the Food & Health Open
955 Innovation project (FOODHAY), granted by the Danish Ministry of Education and
956 Research, for funding the qPCR equipment (Bio-Rad Laboratories CFX96) used in this

957 study. Lastly, we are grateful for the funding bodies that financially have supported our
958 work.

959 **List of supplementary materials**

960 Fig. S1 to S11, Table S1 to S4, ARRIVE-E10 form.

961

962 **REFERENCES**

- 963 1 Vijay A, Valdes AM. Role of the gut microbiome in chronic diseases: a narrative review.
964 *Eur J Clin Nutr.* 2022;76:489–501.
- 965 2 Degruttola AK, Low D, Mizoguchi A, et al. Current understanding of dysbiosis in disease
966 in human and animal models. *Inflamm Bowel Dis.* 2016;22:1137–50.
- 967 3 Vasilescu I-M, Chifiriuc M-C, Pircalabioru GG, et al. Gut dysbiosis and *Clostridioides*
968 *difficile* infection in neonates and adults. *Front Microbiol.* 2022;12.
- 969 4 Dawkins JJ, Allegretti JR, Gibson TE, et al. Gut metabolites predict *Clostridioides difficile*
970 recurrence. *Microbiome.* 2022;10.
- 971 5 Baunwall SMD, Andreasen SE, Hansen MM, et al. Faecal microbiota transplantation for
972 first or second *Clostridioides difficile* infection (EarlyFMT): a randomised, double-blind,
973 placebo-controlled trial. *Lancet Gastroenterol Hepatol.* 2022;7:1083–91.
- 974 6 Mullish BH, Quraishi MN, Segal JP, et al. The use of faecal microbiota transplant as
975 treatment for recurrent or refractory *Clostridium difficile* infection and other potential
976 indications: joint British Society of Gastroenterology (BSG) and Healthcare Infection
977 Society (HIS) guidelines. *Gut.* 2018;67:1920–41.
- 978 7 Kassam Z, Dubois N, Ramakrishna B, et al. Donor screening for fecal microbiota
979 transplantation. *New England Journal of Medicine.* 2019;381:2070–2.
- 980 8 Wilson BC, Vatanen T, Cutfield WS, et al. The super-donor phenomenon in fecal
981 microbiota transplantation. *Front Cell Infect Microbiol.* 2019;9:1–11.
- 982 9 U.S. Food & Drug Administration. Important safety alert regarding use of fecal microbiota
983 for transplantation and risk of serious adverse reactions due to transmission of multi-drug
984 resistant organisms. 2019. <https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/important-safety-alert-regarding-use-fecal-microbiota-transplantation-and-risk-serious-adverse> (accessed 13 June 2023)
- 987 10 U.S. Food & Drug Administration. Safety alert regarding use of fecal microbiota for
988 transplantation and additional safety protections pertaining to monkeypox virus. 2022.
- 989 11 U.S. Food & Drug Administration. Safety alert regarding use of fecal microbiota for
990 transplantation and risk of serious adverse events likely due to transmission of
991 pathogenic organisms. 2020. <https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/safety-alert-regarding-use-fecal-microbiota-transplantation-and-risk-serious-adverse-events-likely> (accessed 23 May 2023)
- 994 12 Kao DH, Roach B, Walter J, et al. Effect of lyophilized sterile fecal filtrate vs lyophilized
995 donor stool on recurrent *Clostridium difficile* infection (rCDI): Preliminary results from a
996 randomized, double-blind pilot study. *J Can Assoc Gastroenterol.* 2019;2:101–2.
- 997 13 Ott SJ, Waetzig GH, Rehman A, et al. Efficacy of sterile fecal filtrate transfer for treating
998 patients with *Clostridium difficile* infection. *Gastroenterology.* 2017;152:799–811.e7.
- 999 14 Cao Z, Sugimura N, Burgermeister E, et al. The gut virome: A new microbiome
1000 component in health and disease. *EBioMedicine.* 2022;81:104113.
- 1001 15 Draper LA, Ryan FJ, Dalmasso M, et al. Autochthonous faecal viral transfer (FVT)
1002 impacts the murine microbiome after antibiotic perturbation. *BMC Biol.* 2020;18:173.

1003 16 Rasmussen TS, Mentzel CMJ, Kot W, *et al.* Faecal virome transplantation decreases
1004 symptoms of type 2 diabetes and obesity in a murine model. *Gut*. 2020;69:2122–30.
1005 17 Mao X, Larsen SB, Zachariassen LSF, *et al.* Transfer of modified fecal viromes alleviates
1006 symptoms of non-alcoholic liver disease and improve blood glucose regulation in an
1007 obesity mouse model. *bioRxiv* 2023. doi: 10.1101/2023.03.20.532903
1008 18 Borin JM, Liu R, Wang Y, *et al.* Fecal virome transplantation is sufficient to alter fecal
1009 microbiota and drive lean and obese body phenotypes in mice. *Gut Microbes*. 2023;15.
1010 19 Brunse A, Deng L, Pan X, *et al.* Fecal filtrate transplantation protects against necrotizing
1011 enterocolitis. *ISME J.* 2022;16:686–94.
1012 20 Feng H, Xiong J, Liang S, *et al.* Fecal virus transplantation has more moderate effect
1013 than fecal microbiota transplantation on changing gut microbial structure in broiler
1014 chickens. *Poult Sci.* 2023;103282.
1015 21 Rasmussen TS, Mentzel CMJ, Danielsen MR, *et al.* Fecal virome transfer improves
1016 proliferation of commensal gut *Akkermansia muciniphila* and unexpectedly enhances the
1017 fertility rate in laboratory mice. *Gut Microbes*. 2023;15.
1018 22 Rasmussen TS, Jakobsen RR, Castro-Mejía JL, *et al.* Inter-vendor variance of enteric
1019 eukaryotic DNA viruses in specific pathogen free C57BL/6N mice. *Res Vet Sci.*
1020 2021;136:1–5.
1021 23 Lim ES, Zhou Y, Zhao G, *et al.* Early life dynamics of the human gut virome and bacterial
1022 microbiome in infants. *Nat Med.* 2015;21:1228–34.
1023 24 Jansen D, Matthijnssens J. The emerging role of the gut virome in health and
1024 inflammatory bowel disease: Challenges, covariates and a viral imbalance. *Viruses*.
1025 2023;15.
1026 25 Doorbar J, Egawa N, Griffin H, *et al.* Human papillomavirus molecular biology and
1027 disease association. *Rev Med Virol.* 2015;25:2–23.
1028 26 Rasmussen TS, Koefoed AK, Jakobsen RR, *et al.* Bacteriophage-mediated manipulation
1029 of the gut microbiome - promises and presents limitations. *FEMS Microbiol Rev.*
1030 2020;44:507–21.
1031 27 Zuppi M, Vatanen T, Wilson BC, *et al.* Phages modulate bacterial communities in the
1032 human gut following fecal microbiota transplantation. *Res Sq* 2024. doi: 10.21203/rs.3.rs-
1033 3883935/v1
1034 28 Koonin E V., Dolja V V., Krupovic M. Origins and evolution of viruses of eukaryotes: The
1035 ultimate modularity. *Virology*. 2015;479–480:2–25.
1036 29 Rey FA, Lok S-M. Common features of enveloped viruses and implications for
1037 immunogen design for next-generation vaccines. *Cell*. 2018;172:1319–34.
1038 30 Sausset R, Petit MA, Gaboriau-Routhiau V, *et al.* New insights into intestinal phages.
1039 *Mucosal Immunol.* 2020;13:205–15.
1040 31 Chen X, Katchar K, Goldsmith JD, *et al.* A mouse model of *Clostridium difficile*-associated
1041 disease. *Gastroenterology*. 2008;135:1984–92.
1042 32 Seekatz AM, Theriot CM, Molloy CT, *et al.* Fecal microbiota transplantation eliminates
1043 *Clostridium difficile* in a murine model of relapsing disease. *Infect Immun.* 2015;83:3838–
1044 46.
1045 33 Ritz NL, Draper LA, Bastiaanssen TFS, *et al.* The gut virome is associated with stress-
1046 induced changes in behaviour and immune responses in mice. *Nat Microbiol.*
1047 2024;9:359–76.
1048 34 Larsen C, Andersen AB, Sato H, *et al.* Transplantation of fecal filtrate to neonatal pigs
1049 reduces post-weaning diarrhea: A pilot study. *Front Vet Sci.* 2023;10.
1050 35 Offersen SM, Mao X, Spiegelhauer MR, *et al.* Fecal virome is sufficient to reduce
1051 necrotizing enterocolitis. *ResearchSquare* 2024. doi: 10.21203/rs.3.rs-3856457/v1
1052 36 Percie du Sert N, Hurst V, Ahluwalia A, *et al.* The ARRIVE guidelines 2.0: Updated
1053 guidelines for reporting animal research. *Br J Pharmacol.* 2020;177:3617–24.

1054 37 Gouliouris T, Brown NM, Aliyu SH. Prevention and treatment of *Clostridium difficile*
1055 infection. *Clinical Medicine*. 2011;11:75–9.

1056 38 Perić A, Rančić N, Dragojević-Simić V, et al. Association between antibiotic use and
1057 hospital-onset *Clostridioides difficile* infection in University Tertiary Hospital in Serbia,
1058 2011–2021: An ecological analysis. *Antibiotics*. 2022;11.

1059 39 MacArthur Clark J. The 3Rs in research: a contemporary approach to replacement,
1060 reduction and refinement. *Br J Nutr*. 2018;120:S1–7.

1061 40 Edwards AN, McBride SM. Isolating and purifying *Clostridium difficile* spores. *Methods*
1062 *Mol Biol*. 2016;1476:117–28.

1063 41 Rasmussen TS, Streidl T, Hitch TCA, et al. *Sporofaciens musculi* gen. nov., sp. nov., a
1064 novel bacterium isolated from the caecum of an obese mouse. *Int J Syst Evol Microbiol*.
1065 2019;71.

1066 42 Darkoh C, DuPont HL, Norris SJ, et al. Toxin synthesis by *Clostridium difficile* is regulated
1067 through quorum signaling. *mBio*. 2015;6:e02569.

1068 43 Rasmussen TS, de Vries L, Kot W, et al. Mouse vendor influence on the bacterial and
1069 viral gut composition exceeds the effect of diet. *Viruses*. 2019;11:435.

1070 44 Zuo T, Wong SH, Lam K, et al. Bacteriophage transfer during faecal microbiota
1071 transplantation in *Clostridium difficile* infection is associated with treatment outcome. *Gut*.
1072 2017;67:gutjnl-2017-313952.

1073 45 Bibiloni R. Rodent models to study the relationships between mammals and their
1074 bacterial inhabitants. *Gut Microbes*. 2012;3:536–43.

1075 46 Muthubharathi BC, Gowripriya T, Balamurugan K. Metabolomics: small molecules that
1076 matter more. *Mol Omics*. 2021;17:210–29.

1077 47 Kim SJ, Kim SH, Kim JH, et al. Understanding metabolomics in biomedical research.
1078 *Endocrinology and Metabolism*. 2016;31:7–16.

1079 48 Horowitz B, Bonomo R, Prince AM, et al. Solvent/detergent-treated plasma: a virus-
1080 inactivated substitute for fresh frozen plasma. *Blood*. 1992;79:826–31.

1081 49 Remy MM, Alfter M, Chiem M-N, et al. Effective chemical virus inactivation of patient
1082 serum compatible with accurate serodiagnosis of infections. *Clin Microbiol Infect*.
1083 2019;25:907.e7-907.e12.

1084 50 WHO Health Product Policy and Standards Team. Guidelines on viral inactivation and
1085 removal procedures intended to assure the viral safety of human blood plasma products.
1086 2004;WHO-TRS924-Annex4-1-82. <https://www.who.int/publications/m/item/WHO-TRS924-Annex4> (accessed 2 January 2023)

1088 51 Trescic A, Simić M, Branović K, et al. Removal of detergent and solvent from solvent-
1089 detergent-treated immunoglobulins. *J Chromatogr A*. 1999;852:87–91.

1090 52 Darzynkiewicz Z, Kapuscinski J, Carter SP, et al. Cytostatic and cytotoxic properties of
1091 pyronin Y: relation to mitochondrial localization of the dye and its interaction with RNA.
1092 *Cancer Res*. 1986;46:5760–6.

1093 53 Kapuscinski J, Darzynkiewicz Z. Interactions of pyronin Y(G) with nucleic acids.
1094 *Cytometry*. 1987;8:129–37.

1095 54 Adamberg S, Rasmussen TS, Larsen SB, et al. Reproducible chemostat cultures to
1096 eliminate eukaryotic viruses from fecal transplant material. *bioRxiv* 2023. doi:
1097 10.1101/2023.03.15.529189

1098 55 Gillers S, Atkinson CD, Bartoo AC, et al. Microscale sample preparation for PCR of *C.*
1099 *difficile* infected stool. *J Microbiol Methods*. 2009;78:203–7.

1100 56 Ellekilde M, Krych L, Hansen CHF, et al. Characterization of the gut microbiota in leptin
1101 deficient obese mice - Correlation to inflammatory and diabetic parameters. *Res Vet Sci*.
1102 2014;96:241–50.

1103 57 Edgar RC. Updating the 97% identity threshold for 16S ribosomal RNA OTUs.
1104 *Bioinformatics*. 2018;34:2371–5.

1105 58 Edgar R. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS
1106 sequences. *bioRxiv* 2016. doi: 10.1101/074161

1107 59 Kim O-S, Cho Y-J, Lee K, *et al.* Introducing EzTaxon-e: a prokaryotic 16S rRNA gene
1108 sequence database with phylotypes that represent uncultured species. *Int J Syst Evol
1109 Microbiol.* 2012;62:716–21.

1110 60 Conceição-Neto N, Yinda KC, Van Ranst M, *et al.* NetoVIR: Modular approach to
1111 customize sample preparation procedures for viral metagenomics. *The Human Virome.
1112 Methods in Molecular Biology.* 2018:85–95.

1113 61 Shah SA, Deng L, Thorsen J, *et al.* Expanding known viral diversity in the healthy infant
1114 gut. *Nat Microbiol.* 2023;8:986–98.

1115 62 Guo J, Bolduc B, Zayed AA, *et al.* VirSorter2: a multi-classifier, expert-guided approach to
1116 detect diverse DNA and RNA viruses. *Microbiome.* 2021;9:37.

1117 63 Kieft K, Zhou Z, Anantharaman K. VIBRANT: automated recovery, annotation and
1118 curation of microbial viruses, and evaluation of viral community function from genomic
1119 sequences. *Microbiome.* 2020;8:90.

1120 64 Nayfach S, Camargo AP, Schulz F, *et al.* CheckV assesses the quality and completeness
1121 of metagenome-assembled viral genomes. *Nat Biotechnol.* 2021;39:578–85.

1122 65 Chen G, Tang X, Shi M, *et al.* VirBot: an RNA viral contig detector for metagenomic data.
1123 *Bioinformatics.* 2023;39.

1124 66 Neri U, Wolf YI, Roux S, *et al.* Expansion of the global RNA virome reveals diverse
1125 clades of bacteriophages. *Cell.* 2022;185:4023-4037.e18.

1126 67 Roux S, Camargo AP, Coutinho FH, *et al.* iPhoP: An integrated machine learning
1127 framework to maximize host prediction for metagenome-derived viruses of archaea and
1128 bacteria. *PLoS Biol.* 2023;21:e3002083.

1129 68 Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods.*
1130 2012;9:357–9.

1131 69 McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis
1132 and graphics of microbiome census data. *PLoS One.* 2013;8:e61217.

1133 70 Dixon P. VEGAN, a package of R functions for community ecology. *Journal of Vegetation
1134 Science.* 2003;14:927–30.

1135 71 Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for
1136 RNA-seq data with DESeq2. *Genome Biol.* 2014;15:550.

1137 72 Andersen KS, Kirkegaard RH, Karst SM, *et al.* ampvis2: an R package to analyse and
1138 visualise 16S rRNA amplicon data. *bioRxiv* 2018. doi: 10.1101/299537

1139 73 McKnight DT, Huerlimann R, Bower DS, *et al.* microDecon: A highly accurate read-
1140 subtraction tool for the post-sequencing removal of contamination in metabarcoding
1141 studies. *Environmental DNA.* 2019;1:14–25.

1142 74 Moore R, Pothoulakis C, LaMont JT, *et al.* *C. difficile* toxin A increases intestinal
1143 permeability and induces Cl⁻ secretion. *Am J Physiol.* 1990;259:G165-72.

1144 75 Rao K, Erb-Downward JR, Walk ST, *et al.* The systemic inflammatory response to
1145 *Clostridium difficile* infection. *PLoS One.* 2014;9:e92578.

1146 76 Camilleri M. Leaky gut: mechanisms, measurement and clinical implications in humans.
1147 *Gut.* 2019;68:1516–26.

1148 77 Sarker SA, Sultana S, Reuteler G, *et al.* Oral phage therapy of acute bacterial diarrhea
1149 with two coliphage preparations: a randomized trial in children from Bangladesh.
1150 *EBioMedicine.* 2016;4:124–37.

1151 78 Jault P, Leclerc T, Jennes S, *et al.* Efficacy and tolerability of a cocktail of bacteriophages
1152 to treat burn wounds infected by *Pseudomonas aeruginosa* (PhagoBurn): a randomised,
1153 controlled, double-blind phase 1/2 trial. *Lancet Infect Dis.* 2019;19:35–45.

1154 79 Duan Y, Llorente C, Lang S, *et al.* Bacteriophage targeting of gut bacterium attenuates
1155 alcoholic liver disease. *Nature.* 2019;575:505–11.

1156 80 Nale JY, Spencer J, Hargreaves KR, *et al.* Bacteriophage combinations significantly
1157 reduce *Clostridium difficile* growth *in vitro* and proliferation *in vivo*. *Antimicrob Agents
1158 Chemother.* 2016;60:968–81.

1159 81 Fujimoto K, Kimura Y, Allegretti JR, *et al.* Functional restoration of bacteriomes and
1160 viromes by fecal microbiota transplantation. *Gastroenterology.* 2021;160:2089-2102.e12.

1161 82 Redding LE, Berry AS, Indugu N, *et al.* Gut microbiota features associated with
1162 *Clostridioides difficile* colonization in dairy calves. *PLoS One.* 2021;16:e0251999.

1163 83 Zhu J-J, Gao M-X, Song X-J, *et al.* Changes in bacterial diversity and composition in the
1164 faeces and colon of weaned piglets after feeding fermented soybean meal. *J Med
1165 Microbiol.* 2018;67:1181–90.

1166 84 Perez E, Lee CH, Petrof EO. A practical method for preparation of fecal microbiota
1167 transplantation. *Methods in Molecular Biology.* 2016;1476:259–67.

1168 85 Hugon P, Dufour J-C, Colson P, *et al.* A comprehensive repertoire of prokaryotic species
1169 identified in human beings. *Lancet Infect Dis.* 2015;15:1211–9.

1170 86 Bénard M V., Arretxe I, Wortelboer K, *et al.* Anaerobic feces processing for fecal
1171 microbiota transplantation improves viability of obligate anaerobes. *Microorganisms.*
1172 2023;11:2238.

1173 87 Papanicolas LE, Choo JM, Wang Y, *et al.* Bacterial viability in faecal transplants: Which
1174 bacteria survive? *EBioMedicine.* 2019;41:509–16.

1175 88 Hsu BB, Gibson TE, Yeliseyev V, *et al.* Dynamic modulation of the gut microbiota and
1176 metabolome by bacteriophages in a mouse model. *Cell Host Microbe.* 2019;25:803-
1177 814.e5.

1178 89 Hwang Y, Roux S, Coclet C, *et al.* Viruses interact with hosts that span distantly related
1179 microbial domains in dense hydrothermal mats. *Nat Microbiol.* 2023;8:946–57.

1180 90 Barcia-Cruz R, Goudenege D, Moura de Sousa JA, *et al.* Phage inducible chromosomal
1181 minimalist island (PICMI), a family of satellites of marine virulent phages. *bioRxiv* 2023.
1182 doi: 10.1101/2023.07.18.549517

1183 91 Eppley JM, Biller SJ, Luo E, *et al.* Marine viral particles reveal an expansive repertoire of
1184 phage-parasitizing mobile elements. *Proceedings of the National Academy of Sciences.*
1185 2022;119.

1186 92 Wittmers F, Needham DM, Hehenberger E, *et al.* Genomes from uncultivated
1187 Pelagiphages reveal multiple phylogenetic clades exhibiting extensive auxiliary metabolic
1188 genes and cross-family multigene transfers. *mSystems.* 2022;7.

1189 93 Heyerhoff B, Engelen B, Bunse C. Auxiliary metabolic gene functions in pelagic and
1190 benthic viruses of the Baltic sea. *Front Microbiol.* 2022;13.

1191 94 Weiss AS, Niedermeier LS, von Stremmel A, *et al.* Nutritional and host environments
1192 determine community ecology and keystone species in a synthetic gut bacterial
1193 community. *Nat Commun.* 2023;14:4780.

1194 95 Sweere JM, Van Belleghem JD, Ishak H, *et al.* Bacteriophage trigger antiviral immunity
1195 and prevent clearance of bacterial infection. *Science (1979).* 2019;363:eaat9691.

1196 96 Gogokhia L, Bahrke K, Bell R, *et al.* Expansion of bacteriophages is linked to aggravated
1197 intestinal inflammation and colitis. *Cell Host Microbe.* 2019;25:285-299.e8.

1198 97 Bichet MC, Chin WH, Richards W, *et al.* Bacteriophage uptake by mammalian cell layers
1199 represents a potential sink that may impact phage therapy. *iScience.* 2021;24:102287.

1200 98 Bichet MC, Adderley J, Avellaneda-Franco L, *et al.* Mammalian cells internalize
1201 bacteriophages and use them as a resource to enhance cellular growth and survival.
1202 *PLoS Biol.* 2023;21:e3002341.

1203 99 Champagne-Jorgensen K, Luong T, Darby T, *et al.* Immunogenicity of bacteriophages.
1204 *Trends Microbiol.* 2023;31:1058–71.

1205 100 Kan L, Barr JJ. A mammalian cell's guide on how to process a bacteriophage. *Annu Rev
1206 Virol.* 2023;10:183–98.

1207 101 Teame T, Wang A, Xie M, *et al.* Paraprobiotics and postbiotics of probiotic lactobacilli,
1208 their positive effects on the host and action mechanisms: A review. *Front Nutr.* 2020;7.

1209 102 Depommier C, Everard A, Druart C, *et al.* Supplementation with *Akkermansia muciniphila*
1210 in overweight and obese human volunteers: a proof-of-concept exploratory study. *Nat*
1211 *Med.* 2019;25:1096–103.

1212 103 Dabour N, Zihler A, Kheadr E, *et al.* *In vivo* study on the effectiveness of pediocin PA-1
1213 and *Pediococcus acidilactici* UL5 at inhibiting *Listeria monocytogenes*. *Int J Food*
1214 *Microbiol.* 2009;133:225–33.

1215 104 Umu ÖCO, Bäuerl C, Oostindjer M, *et al.* The potential of class II bacteriocins to modify
1216 gut microbiota to improve host health. *PLoS One.* 2016;11:e0164036.

1217 105 Abrahams VM, Straszewski-Chavez SL, Guller S, *et al.* First trimester trophoblast cells
1218 secrete Fas ligand which induces immune cell apoptosis. *Mol Hum Reprod.* 2004;10:55–
1219 63.

1220 106 Hedlund M, Stenqvist A-C, Nagaeva O, *et al.* Human placenta expresses and secretes
1221 NKG2D ligands via exosomes that down-modulate the cognate receptor expression:
1222 evidence for immunosuppressive function. *The Journal of Immunology.* 2009;183:340–
1223 51.

1224 107 Leonetti D, Reimund J-MM, Tesse A, *et al.* Circulating microparticles from Crohn's
1225 disease patients cause endothelial and vascular dysfunctions. *PLoS One.*
1226 2013;8:e73088.

1227 108 Broecker F, Russo G, Klumpp J, *et al.* Stable core virome despite variable microbiome
1228 after fecal transfer. *Gut Microbes.* 2017;8:214–20.

1229 109 Draper LA, Ryan FJ, Smith MK, *et al.* Long-term colonisation with donor bacteriophages
1230 following successful faecal microbial transplantation. *Microbiome.* 2018;6:1–9.

1231 110 Reyes A, Wu M, McNulty NP, *et al.* Gnotobiotic mouse model of phage-bacterial host
1232 dynamics in the human gut. *Proceedings of the National Academy of Sciences.*
1233 2013;110:20236–41.

1234 111 Wolken WAM, Tramper J, van der Werf MJ. What can spores do for us? *Trends*
1235 *Biotechnol.* 2003;21:338–45.

1236 112 Colas de la Noue A, Natali F, Fekraoui F, *et al.* The molecular dynamics of bacterial
1237 spore and the role of calcium dipicolinate in core properties at the sub-nanosecond time-
1238 scale. *Sci Rep.* 2020;10:8265.

1239 113 Marshall WF, Young KD, Swaffer M, *et al.* What determines cell size? *BMC Biol.*
1240 2012;10:101.

1241 114 Young M, Artsatbanov V, Beller HR, *et al.* Genome sequence of the fleming strain of
1242 *Micrococcus luteus*, a simple free-living actinobacterium. *J Bacteriol.* 2010;192:841–60.

1243 115 Ghuneim L-AJ, Jones DL, Golyshin PN, *et al.* Nano-sized and filterable bacteria and
1244 archaea: Biodiversity and function. *Front Microbiol.* 2018;9.

1245 116 Hahn MW, Lünsdorf H, Wu Q, *et al.* Isolation of novel ultramicrobacteria classified as
1246 *Actinobacteria* from five freshwater habitats in Europe and Asia. *Appl Environ Microbiol.*
1247 2003;69:1442–51.

1248 117 Cazanave C, Manhart LE, Bébérard C. *Mycoplasma genitalium*, an emerging sexually
1249 transmitted pathogen. *Med Mal Infect.* 2012;42:381–92.

1250 118 López-Pérez M, Haro-Moreno JM, Iranzo J, *et al.* Genomes of the 'Candidatus
1251 *Actinomarinales*' order: Highly streamlined marine epipelagic *Actinobacteria*. *mSystems.*
1252 2020;5.

1253 119 Volland J-M, Gonzalez-Rizzo S, Gros O, *et al.* A centimeter-long bacterium with DNA
1254 contained in metabolically active, membrane-bound organelles. *Science* (1979).
1255 2022;376:1453–8.

1256 120 Berg M, Roux S. Extreme dimensions - how big (or small) can tailed phages be? *Nat Rev*
1257 *Microbiol.* 2021;19:407.

1258 121 Castro-Mejía JL, Muhammed MK, Kot W, *et al.* Optimizing protocols for extraction of
1259 bacteriophages prior to metagenomic analyses of phage communities in the human gut.
1260 *Microbiome*. 2015;3:64.

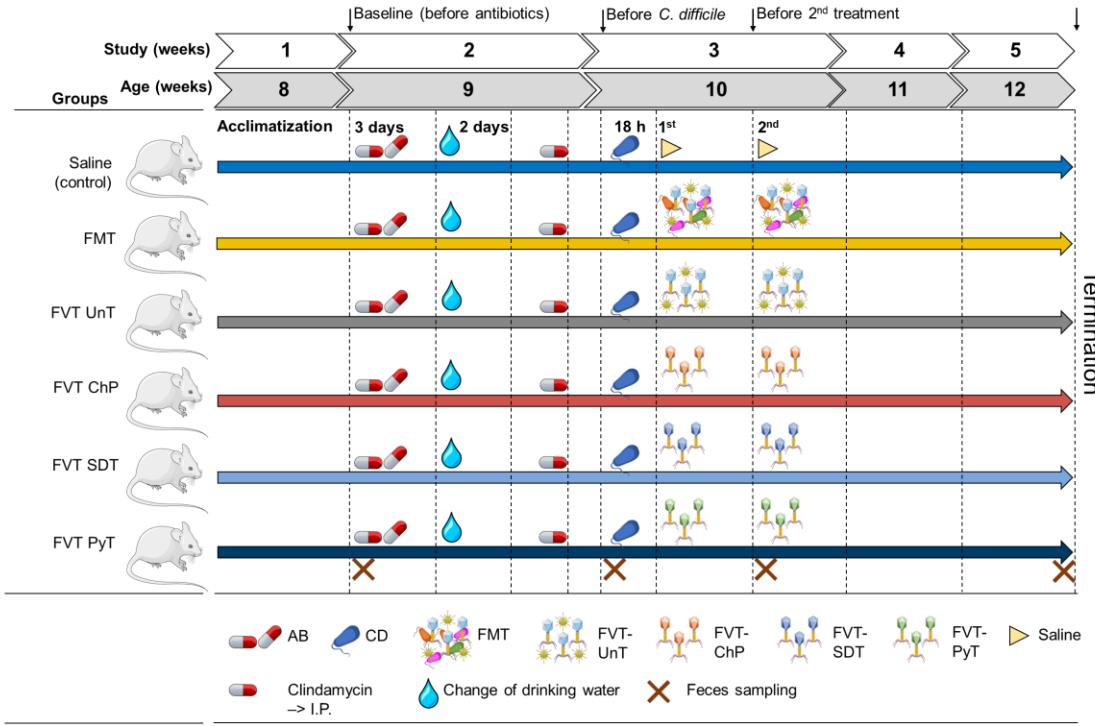
1261 122 Binda C, Lopetuso LR, Rizzatti G, *et al.* *Actinobacteria*: A relevant minority for the
1262 maintenance of gut homeostasis. *Digestive and Liver Disease*. 2018;50:421–8.

1263 123 Marine R, McCarren C, Vorrasane V, *et al.* Caught in the middle with multiple
1264 displacement amplification: the myth of pooling for avoiding multiple displacement
1265 amplification bias in a metagenome. *Microbiome*. 2014;2:3.

1266 124 Yilmaz S, Allgaier M, Hugenholtz P. Multiple displacement amplification compromises
1267 quantitative analysis of metagenomes. *Nat Methods*. 2010;7:943–4.

1268 125 Engevik MA, Engevik AC, Engevik KA, *et al.* Mucin-degrading microbes release
1269 monosaccharides that chemoattract *Clostridioides difficile* and facilitate colonization of
1270 the human intestinal mucus layer. *ACS Infect Dis*. 2021;7:1126–42.

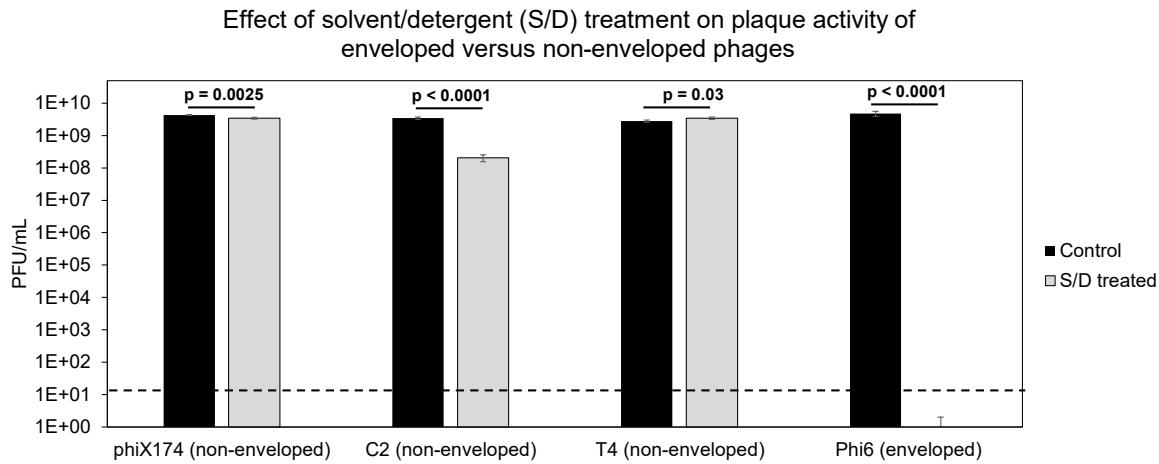
1271 126 Wu Z, Xu Q, Gu S, *et al.* *Akkermansia muciniphila* ameliorates *Clostridioides difficile*
1272 infection in mice by modulating the intestinal microbiome and metabolites. *Front
1273 Microbiol*. 2022;13:841920.


1274 127 Feuerstadt P, Louie TJ, Lashner B, *et al.* SER-109, an oral microbiome therapy for
1275 recurrent *Clostridioides difficile* infection. *New England Journal of Medicine*.
1276 2022;386:220–9.

1277 128 Khanna S, Sims M, Louie TJ, *et al.* SER-109: An oral investigational microbiome
1278 therapeutic for patients with recurrent *Clostridioides difficile* infection (rCDI). *Antibiotics*.
1279 2022;11:1234.

1280 129 Santiago-Rodriguez TM, Ly M, Daigneault MC, *et al.* Chemostat culture systems support
1281 diverse bacteriophage communities from human feces. *Microbiome*. 2015;3:58.

1282


1283

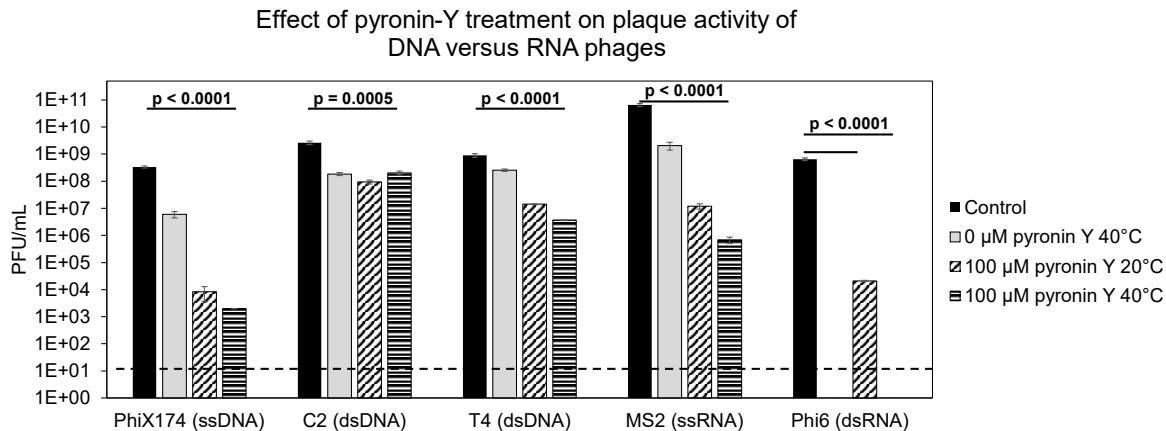
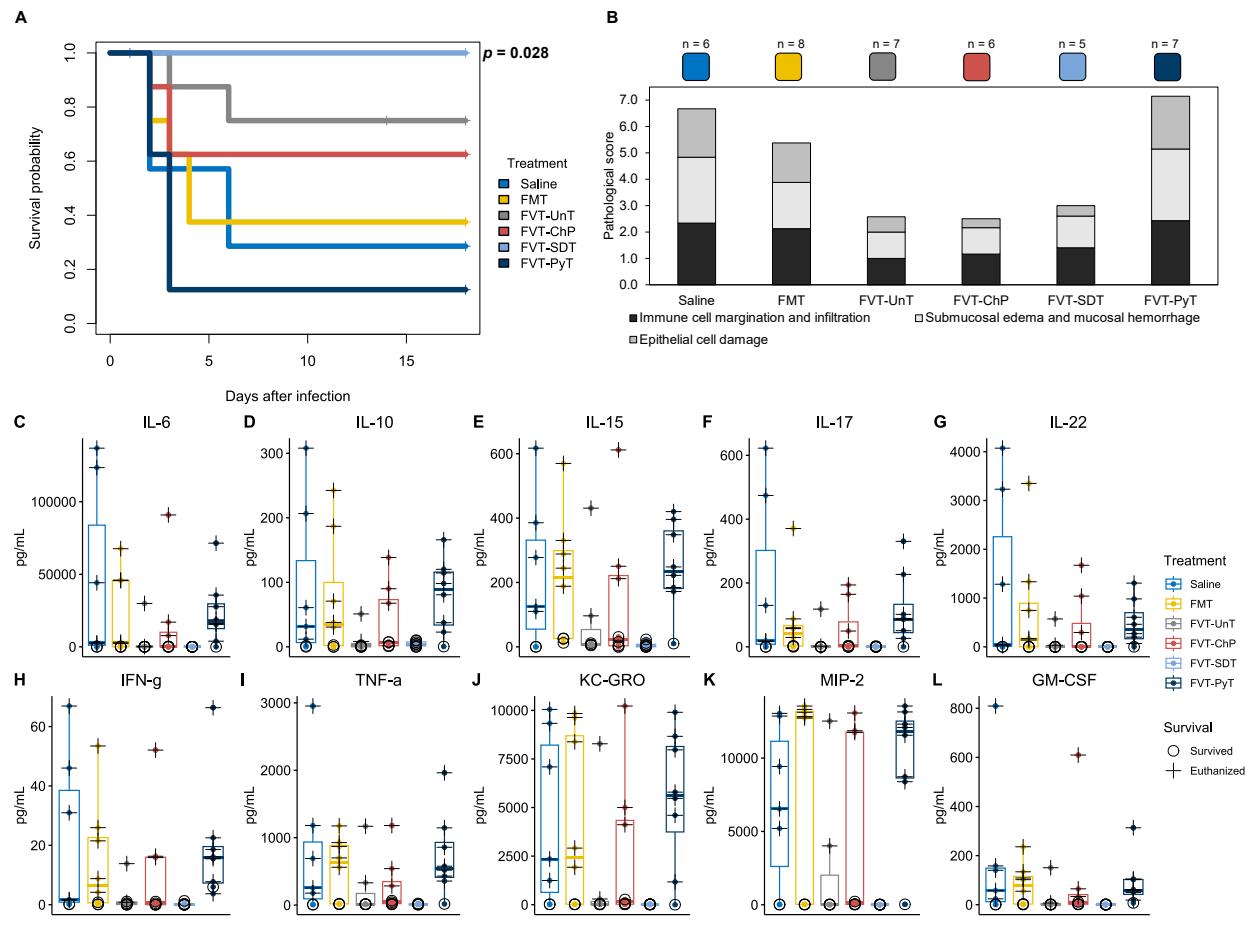
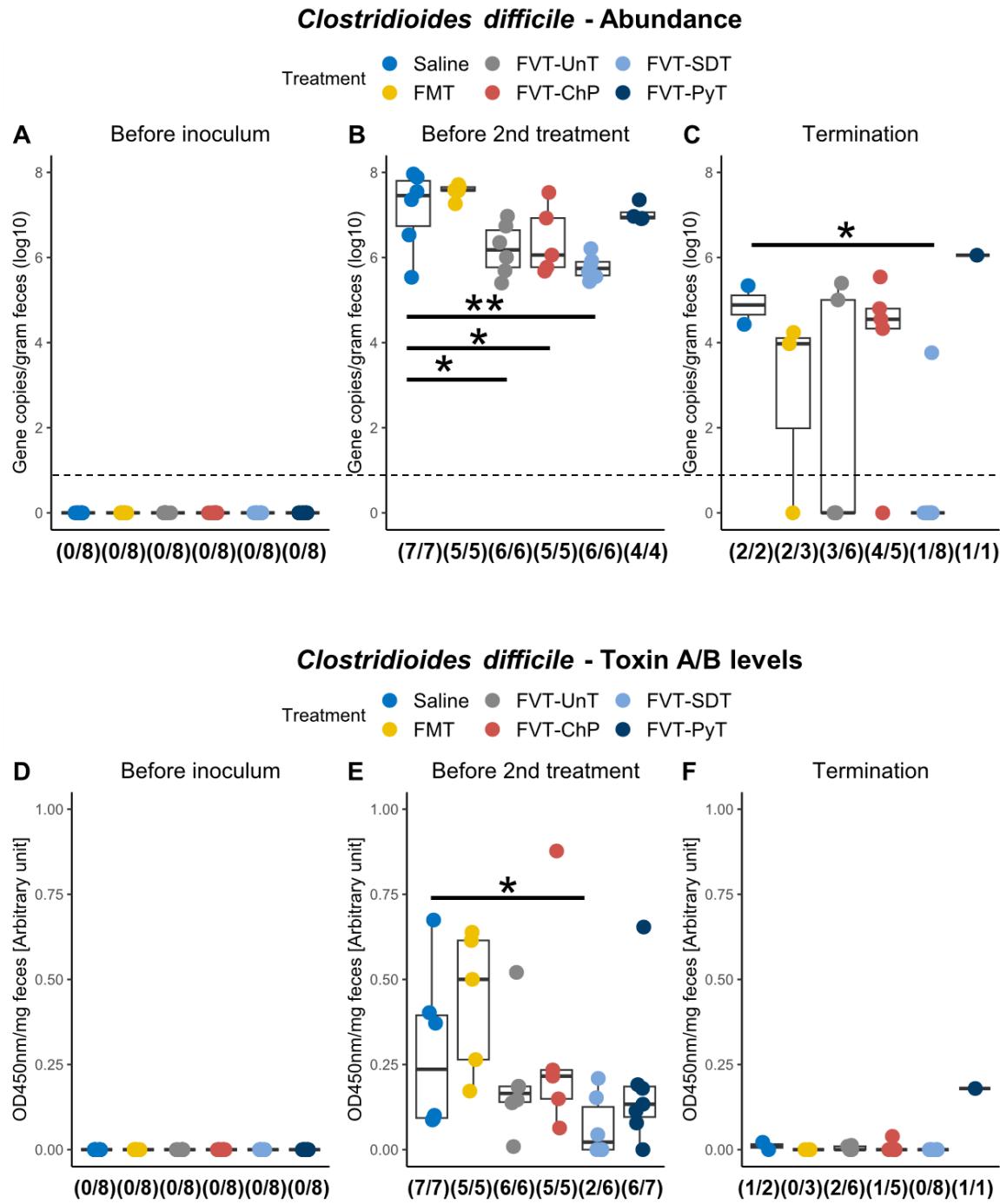

1284

Fig. 1: Overview of the animal model. The mice were initially treated with an antibiotic mixture in their drinking water, intraperitoneal (I.P.) injection of clindamycin, and then inoculated with *C. difficile* (~10⁴ CFU). Eighteen hours after the mice were treated with either saline (as control), FMT (fecal microbiota transplantation), FVT-UnT (fecal virome transplantation – Untreated, i.e. sterile filtered donor feces), FVT-ChP (FVT-chemostat propagated fecal donor virome to remove eukaryotic viruses by dilution), FVT-SDT (FVT-solvent/detergent treated to inactivate enveloped viruses), and FVT-PyT (FVT-pyronin-Y treated to inactivate RNA viruses). Crosses marks time points of feces sampling.

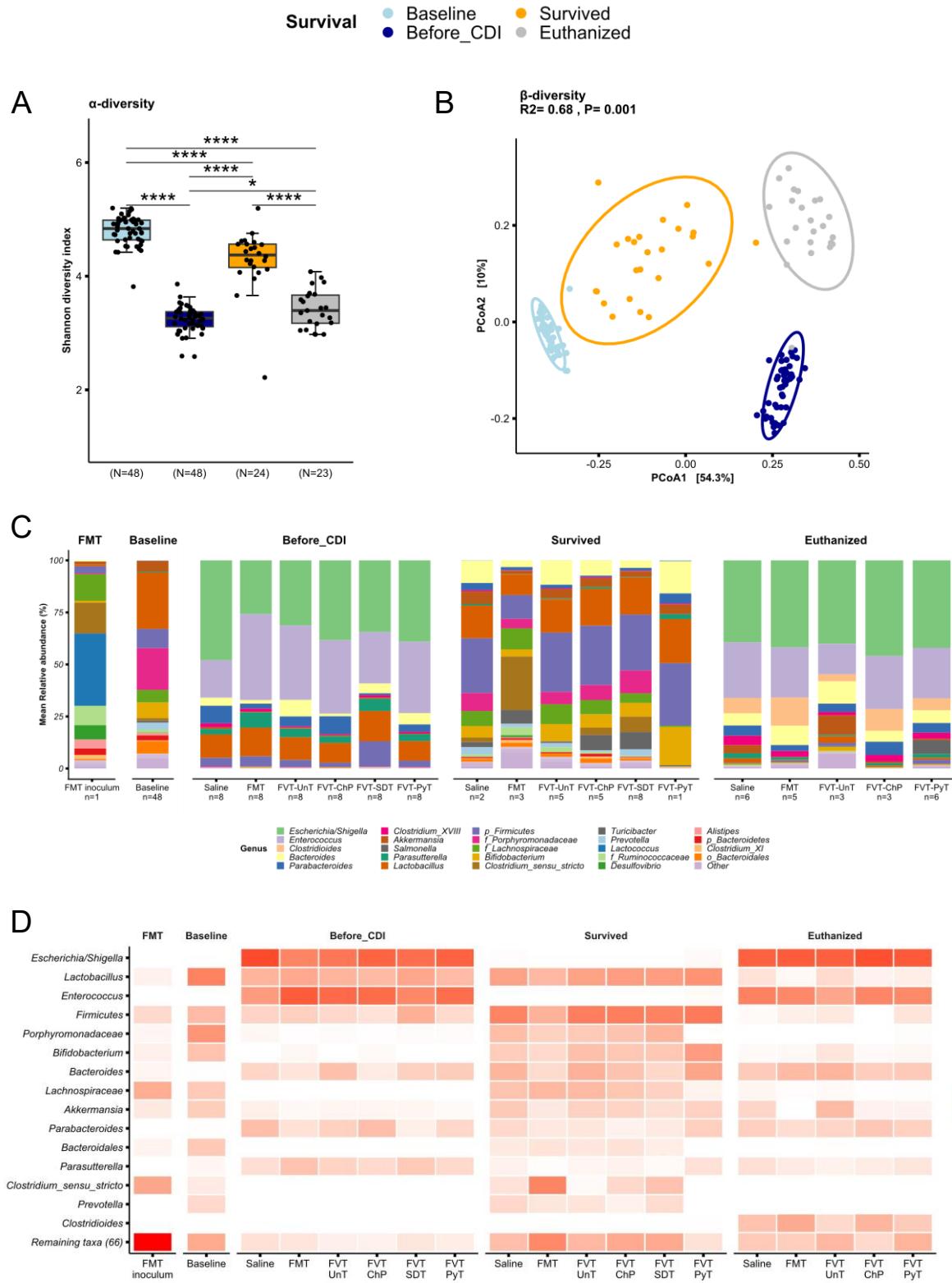
A



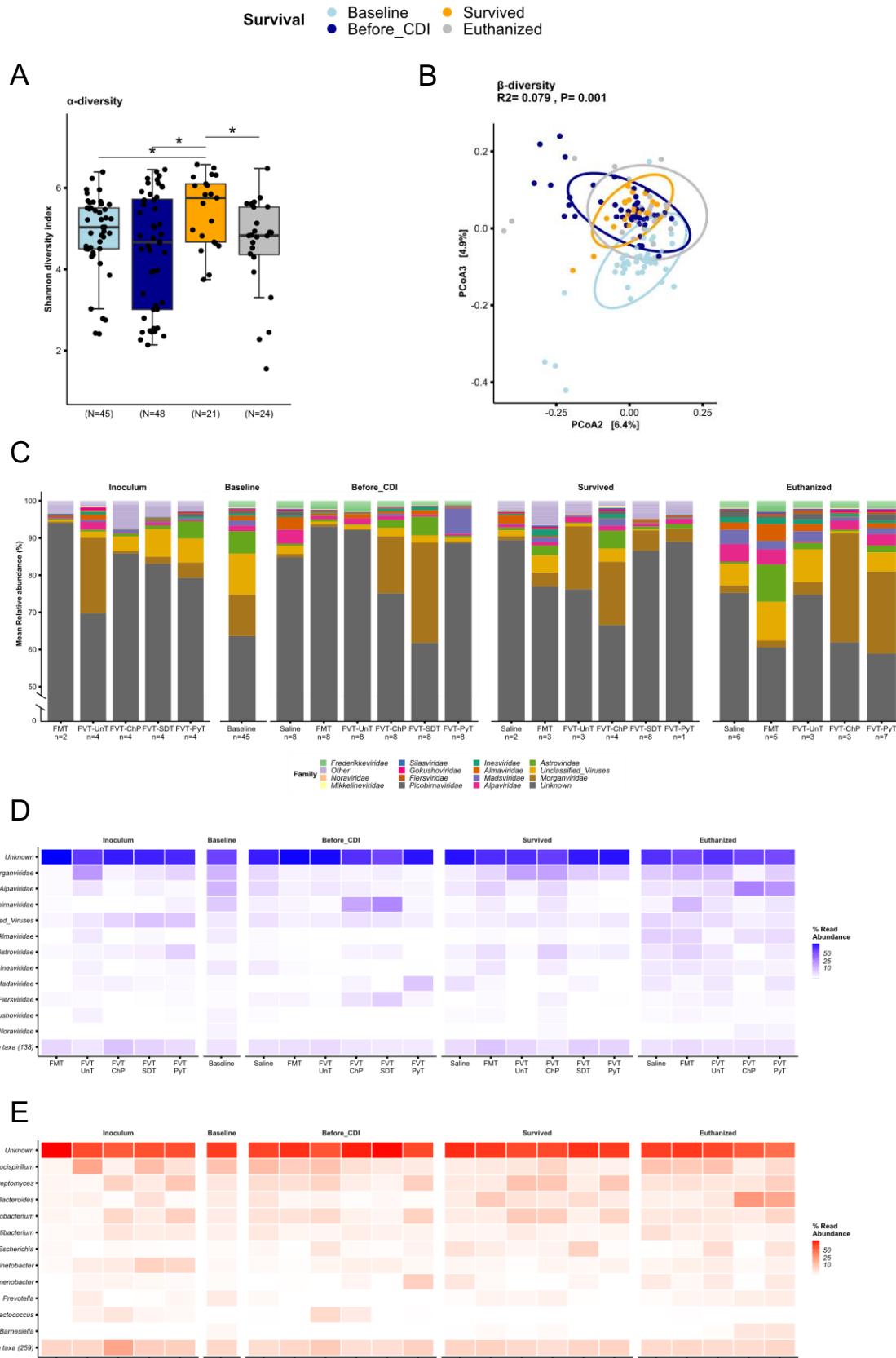
B

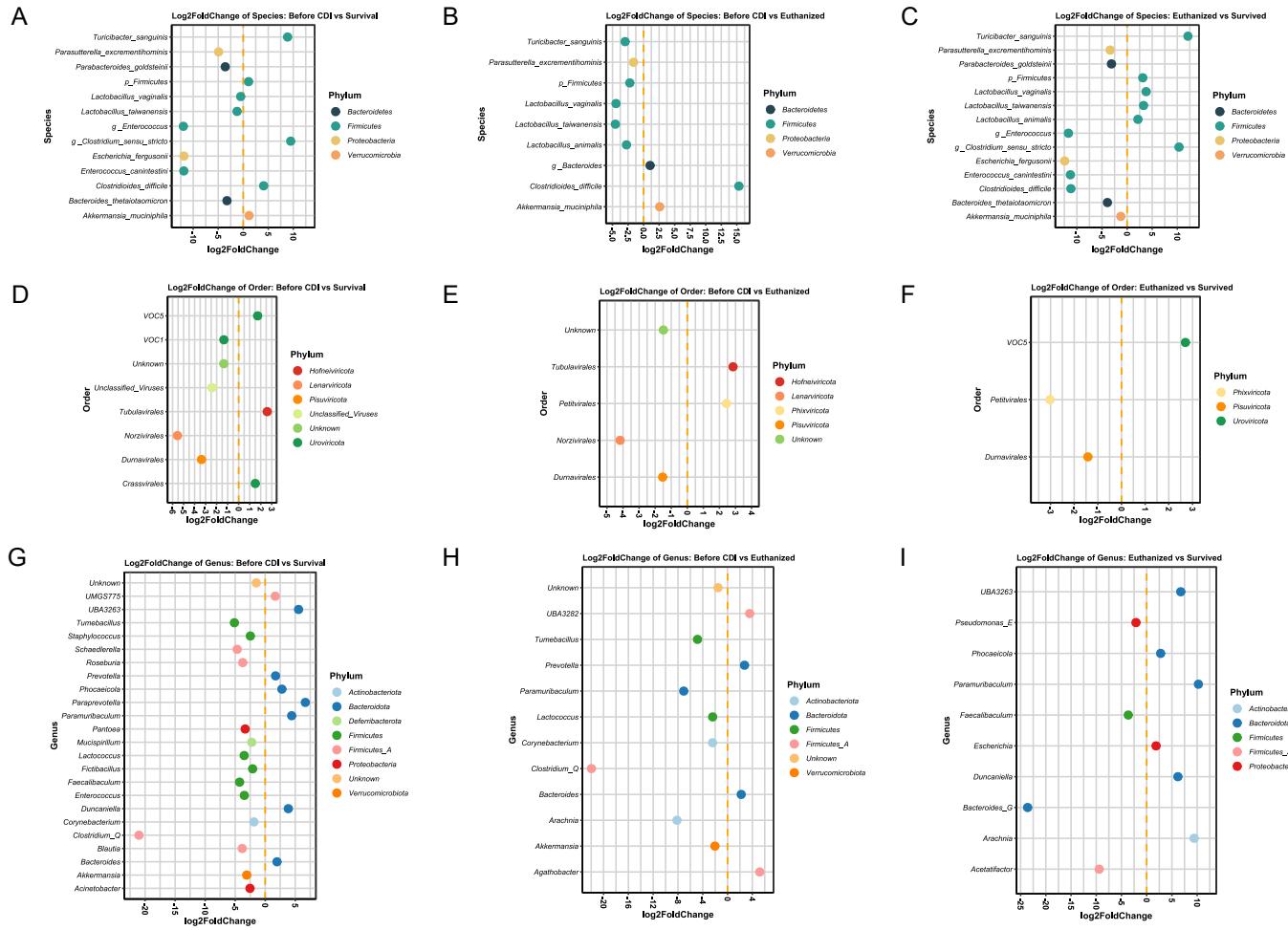


1291


1292 Fig. 2: Evaluation of inactivation of phage activity (plaque-forming units, PFU/mL) with solvent/detergent or pyronin-Y
1293 treatment was evaluated on their respective bacterial hosts all performed in three replicates. Significance was evaluated
1294 with comparisons of means and t-test, with only considering the comparison between the control and the treatment
1295 applied in the study. A) Three non-enveloped phages (phiX174, C2, and T4) and one enveloped phage (phi6) were
1296 treated with solvent/detergent, and their plaque activity (plaque forming units per mL) was evaluated on their respective
1297 bacterial hosts. B) Phages representing ssDNA (phiX174), dsDNA (C2 and T4), ssRNA (MS2), and dsRNA (phi6) were
1298 treated with pyronin-Y, and their plaque activity (PFU/mL) at different incubation conditions was evaluated on their
1299 respective bacterial hosts. Dashed lines mark the detection limit of the applied assay.

1301 Fig. 3: Overview of mouse phenotypic characteristics. A) Kaplan-Meier curve showing the survival probability of the
 1302 mice that was associated to the different treatments when compared with the saline treated group. Pairwise
 1303 comparisons between treatment groups with corrections for multiple testing were performed. B) Pathological score of
 1304 cecum tissue evaluating the effect of the treatments' ability to prevent *C. difficile* associated damage of the cecum
 1305 tissue. C) to L) Showing the overall cytokine profile in the mouse cecum tissue of the different treatments. The
 1306 euthanized (cross) mice are differentiated from the mice that survived (circle) the *C. difficile* infection and therefore
 1307 represent two different time points. It was not possible to perform statistical analysis for the pathological score and
 1308 cytokine profiles due to different timepoint of sampling of the euthanized and survived animals.


1310 Fig. 4: Evaluation of *C. difficile* abundance A) to C) by qPCR targeting the *toxA* gene and D) to F) the associated toxin
1311 A/B levels measured with ELISA on feces samples from three different time points: before *C. difficile* inoculum, before
1312 2nd treatment, and at study termination. The fraction below the boxplots highlights the number of mice that were
1313 detected positive of either *C. difficile* or toxin A/B. Dashed line marks the detection limit of the applied assay. *=p<0.05,
1314 **=p<0.01.


1315

1316 Fig. 5: Bacteriome analysis based on 16S rRNA gene amplicon sequencing. A) The bacterial Shannon diversity-index
1317 (α-diversity) and B) Bray-Curtis dissimilarity based PCoA plot (β-diversity) at baseline (before antibiotic treatment),

1318 before *C. difficile* infection (after antibiotic treatment), for the mice that survived *C. difficile* infection (regardless of the
1319 treatment), and the euthanized mice. C) Bar plot and D) heatmap illustrating the bacterial relative abundance in
1320 percentage of the dominating bacterial taxa that was associated to the different mice that either survived the infection
1321 or were euthanized. The “n” below the bar plots highlights the number of mice of which the taxonomical average was
1322 based on. ***=p<0.005. ****=p<0.0005.

1324 Fig. 6: Metavirome analysis based on whole-genome sequencing. A) The viral Shannon diversity-index (α -diversity)
1325 and B) Bray-Curtis dissimilarity based PCoA plot (β -diversity) at baseline (before antibiotic treatment), before *C. difficile*
1326 infection (after antibiotic treatment), for the mice that survived *C. difficile* infection (regardless of the treatment), and the
1327 euthanized mice. C) Bar plot showing the relative abundance in percentage of the viral taxonomy (normalized on the
1328 basis of transcripts per million, TPM), and D) heatmap illustrating the relative abundance in percentage of the bacterial
1329 hosts that are predicted on the basis of the viral sequences. The “n” below the bar plots highlights the number of mice
1330 of which the taxonomical average was based on. **=p<0.01, ***=p<0.005.

1331

1332 Fig. 7: Differential abundance of significantly ($p < 0.05$) different A-C bacterial taxa, D-F) viral taxa, and G-I)
 1333 predicted bacterial hosts based on the viral sequences showing three comparisons: microbial taxa before *C. difficile*
 1334 infection versus survived or euthanized mice, and the euthanized versus survived mice.