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Abstract  

T-cells are critical components of the adaptive immune system. Upon activation, they 

acquire effector functions through a complex interplay between mRNA transcripts and 

proteins, the landscape of which remains to be fully elucidated. In this resource article, 

we present an integrative temporal proteomic and transcriptomic analysis of primary 

human CD4+ and CD8+ T-cells following ex vivo activation with anti-CD3/CD28 

Dynabeads. Our data reveal a time-dependent dissociation between the T-cell 

transcriptome and proteome during activation. A transient downregulation of GLUT1, the 

central glucose transporter in T-cells, marked the onset of reprogramming in both CD4+ 

and CD8+ T-cells. At late activation, CD4+ T-cells upregulated enzymes associated with 

degradation of fatty acids while CD8+ T-cells preferentially upregulated enzymes in the 

metabolism of cofactors and vitamins. Surprisingly, we found that activated CD4+ and 

CD8+ T-cells became transcriptionally more divergent at the same time their proteome 

became more similar. In addition to the metabolic reprogramming highlighted in our 

analysis, this dataset provides a public resource for understanding temporal molecular 

changes governing the acquisition of effector functions by T-cells.  
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Background  

T-cells are key players in adaptive immunity and have a major role in the surveillance 

against pathogens and tumor cells while maintaining unresponsiveness to self-antigens. 

The metabolic and protein synthesis machinery that shape T-cell responses is controlled 

by immune activation. Stimulation of the T-cell receptor (TCR) and its costimulatory 

molecule, CD28, initiates a transcriptional program in naïve T-cells that leads to 

activation, expansion and differentiation into specialized CD4+ “helper” and CD8+ 

“cytotoxic” T-cells (Shah et al, 2021; Kumar et al, 2018). The duration of TCR signaling is 

reported as a key factor determining the functional qualities of the T-cells that develop 

and their commitment to proliferation (Shinzawa et al, 2022; Prlic et al, 2006; Au-Yeung 

et al, 2014). In this regards, the time of TCR stimulation necessary to launch the 

proliferative program for naive CD4+ T-cells has been shown to be more than required to 

CD8+ T-cells (Kaech & Ahmed, 2001; Iezzi et al, 1998).   

The extensive reprogramming of activated T-cells reflects substantial remodeling of 

multiple molecular pathways involved in cellular metabolism and protein synthesis 

increasingly being comprehended due to recent advancements in the fields of proteomics, 

transcriptomics, metabolomics and epigenomics (Papale, 2021; Wang et al, 2008; Shay 

& Kang, 2013; Hukelmann et al, 2016; Tan et al, 2017). Initial genomic and transcriptomic 

studies laid the baseline for understanding the T-cell reprogramming following TCR 

stimulation but only captured a partial snapshot of this complex process, also involving 

several protein-protein interactions and protein phosphorylation (Soskic et al, 2022; 

Shifrut et al, 2018). Our knowledge on changes in the proteome of activated T-cells has 

widened with the application of high throughput proteomic technologies in the field of 
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immunology (Weerakoon et al, 2020; Subbannayya et al, 2021; Suomi & Elo, 2022; 

Papale, 2021). Based on proteomics analysis of mouse primary cells, the competitive 

proliferative advantage of activated CD8+ over CD4+ T-cells was found to be  associated 

with differences in their intrinsic nutrient transport and biosynthetic capacity (Howden et 

al, 2019).  

The caveat of studies based on the traditional single-omics approach is the limitation in 

providing integrated mRNA-protein data, which offers the opportunity to understand the 

flow of information that underlies T-cell activation and the acquisition of specialized 

effector functions. Further, many investigations in the fields of T-cell immunology and 

biology originate from observations based on animal experimental models and T-cell lines 

limiting the current knowledge around the immune response of primary human T-cells to 

TCR stimulation (Mestas & Hughes, 2004; Mak et al, 2014). As such, mapping the T-cell 

activation cycle at multiple molecular levels is crucial to understand the complex 

mechanisms underpinning this process, as well as identifying conditions where TCR 

activation is disrupted by negative signals that influence the quality of T-cell responses. 

To characterize the main pathways governing the acquisition of effector functions by 

CD4+ and CD8+ T-cells, we have generated a temporal proteomic and transcriptomic 

dataset of human primary T-cell activation. Here, we report an integrative analysis of the 

dataset that revealed the extent of transcriptome-proteome discordance in activated T-

cells, the differentially expressed pathways between CD4+ and CD8+ T-cells, and the 

metabolic reprogramming during the different phases of activation. Furthermore, this 

temporal dataset of human primary T-cell activation provides an important public 

reference resource for immunology and biomedical research. 
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Results 

Uncoupling of T-cell proteome and transcriptome following activation 

There has traditionally existed an assumed implication of a proportional relationship 

between mRNA transcription abundance and protein expression measured from a tissue. 

However, concomitant analysis of gene and protein expression can frequently fail to 

provide a correlation between the two domains (Marguerat et al, 2012; Jovanovic et al, 

2015; Payne, 2015; Zhang et al, 2014; Saelao et al, 2018; Johansson et al, 2019). To 

explore the temporal transcriptomic and proteomic changes mediated by TCR activation 

in both CD4+ and CD8+ T-cells, these subsets were purified from the blood of three 

healthy volunteers and analyzed at different time points following activation with 

CD3/CD28 Dynabeads; 0 hour (h), 6h, 12h, 24h, 3 days (d), and 7d (Figure 1A), using a 

parallel workflow to generate both transcriptomic and proteomic datasets. These time 

points were chosen to represent early (up to 24h) and late phase (3d and 7d) of T-cell 

activation. Prior to RNA sequencing (RNA-seq) and label-free data-dependent acquisition 

mass spectrometry-based proteomics (DDA-proteomics), the purity of isolated CD4+ and 

CD8+ T-cells was assessed by fluorescence-labeled flow cytometry (FACS) and 

monoclonal antibodies to be >90% (Supplementary Figure 1A).  

A total of 18,678 protein-coding mRNA and 3,531 proteins were identified from a total of 

36 samples analyzed (Figure 1A). Quality control measures computed using RNA-SeQC 

and Maxquant output ensured the suitability of the refined transcriptome and proteome 

datasets, respectively. Based on similar distribution of mRNA copy numbers 

(Supplementary Figure 1B), similar total protein intensities (Supplementary Figure. 1C), 

as well as < 20% missing values for proteins (Supplementary Figure 1D), 11,440 mRNA 
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transcripts (Supplementary Table 1) and ~2,550 proteins (Supplementary Table 2) were 

selected for differential expression (DE) analysis,   

To define the temporal dimensions of T-cell activation, we assessed cell proliferation 

(based on cell trace violet (CTV) dilution) alongside cell activation (based on the detection 

of surface markers for early (CD69) and late (CD226) phases of T-cell activation) 

(Lepletier et al, 2019). In line with previous studies (Obst, 2015), T-cells started to 

proliferate after 24h of stimulation (Figure 1B). In both CD4+ and CD8+ T-cells, a 

pronounced CD69 surface expression was elicited between 6h and 24h, followed by 

gradual reduction. Conversely, CD226 expression was transiently downregulated in the 

first 24h (Figure 1B), indicating 24h as the inflection point between the early and late 

activation phases in our dataset. This was further supported by principal component (PC) 

analyses, which revealed that mRNA obtained from unstimulated (0h), early- or late-

activated T-cells, formed three well defined and distinct clusters (Figure 1C, left). A similar 

protein clustering pattern was observed between unstimulated and early activated T-cells 

(Figure 1C, right).  

DE analysis was conducted by comparing each activation time point to 0h, revealing the 

percentage of mRNA or proteins that were differential in each T-cell type over time (Figure 

1D and 1E). As expected, the overall changes in the T-cell transcriptome content 

preceded changes at the protein level. As early as 6h following activation, the expression 

of ~25% of the transcriptome was significantly changed, in contrast to only ~5% of the 

proteome, in both T-cell subsets. However, during the proliferation phase (late phase of 

activation), the fraction of DE mRNA transcripts and proteins became almost equal, due 

to a dramatic increase in proteins but little change in mRNA contents (Figure 1D).  
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Together, these data reveal a rapid and drastic T-cell transcriptomic response following 

TCR activation, which converts to a refined proteomic response with prolonged 

stimulation that coincided with proliferation. 

Proteome and transcriptome rewiring at late stage of T-cell activation 

We hypothesized that the signal propagation required for the conversion of mRNA 

transcripts into proteins would be temporally regulated during T-cell activation. Supporting 

this idea, a high discrepancy between the mRNA and protein content was observed 

during CD4+ and CD8+ T-cell activation (Figure 2A). Only 20% of mRNA transcripts 

identified in activated T-cells, were quantified at the proteomic level (Figure 2B), likely 

due to sensitivity limitations of the proteomic technology. In view of this limitation, we 

focused on the DE transcripts, with the rationale that a significant increase in transcript 

abundance should increase the detectability of the cognate protein. From 570 DE 

transcripts identified at 6h, 150 matching proteins were found to be DE during the course 

of analysis, representing 25 proteins simultaneously modulated at 6h and over 100 

proteins modulated at late phase (Figure 2C). This expression pattern was common to 

both CD4+ and CD8+ T-cells and indicates a time delay of at least 3 days for a significant 

proportion of the mRNA transcripts to be translated into proteins in response to T-cell 

activation. Interestingly, a gradual and consistent increase was observed towards the 

later time points analyzed. While the correlation between proteins and mRNA 

simultaneously expressed at 6 hours was poor (r=0.35 and r=0.23 for CD4+ and CD8+, 

respectively), a moderate/strong correlation between mRNA and protein groups was 

observed at 3d (r=0.67 and r=0.73 for CD4+ and CD8+, respectively) and 7d (r=0.69 and 

r=0.72 for CD4+ and CD8+, respectively) (Figure 2D and 2E).  
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Thus, a lag between the expression of mRNA transcripts and protein synthesis explains 

a significant part of the transcriptome-proteome discordance observed in both populations 

of activated T-cells, allowing for a period of temporal regulation and “omic” rewiring.  

TCR activation results in proteomic convergence between CD4+ and CD8+ T-cells 

not mirrored at the mRNA level  

Comparison of mRNA transcript and protein libraries between activated human CD4+ and 

CD8+ T-cells, from a temporal perspective, has not been previously reported. Therefore, 

we sought to reveal molecular differences between both T-cell subsets by comparing their 

dynamic transcriptomic and proteomic changes during activation. Among the proteins and 

transcripts commonly quantified in both subsets, 19% of proteins (487/2,544) and 8% of 

mRNA transcripts (968/11,440) were found to be DE between CD4+ and CD8+ T-cells 

(Supplementary Table 3). Most of the DE proteins were identified at 0h (n=172) (Figure 

3A). Over-expressed proteins in CD4+ T-cells included the RNA demethylase (ALKBH5, 

log2fc = 3.59), methyl-CpG-binding protein (MBD2, log2fc=3.62) and mitochondrial protein 

(MRPL44, log2fc=3.59) (Figure 3B) while over-expressed proteins in CD8+ T-cells 

included the regulator complex proteins (LAMTOR5, log2fc=4.57), hexosaminidase 

subunit beta (HEXB, log2fc=3.99) and lysosomal enzyme (AGA, log2fc=3.38). The 

transcription regulator Runt-related transcription factor 3 (RUNX3, log2fc=3.75) and 

distinct profiles of cytotoxic granules (granzymes, GZMM and GZMA), were also among 

the highest upregulated proteins in CD8+ T-cells at 0h (Figure 3B). Interestingly, during 

activation, the expression of proteins highly DE at 0h became more similar between CD4+ 

and CD8+ T-cells (Figure 3C, top graphs), while the expression of their corresponding 

transcripts did not significantly change (Figure 3C, bottom graphs). Despite reduction in 
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the number of DE proteins, CD8+ T-cells maintained proteins associated with cytolysis 

enriched during the entire time course analyzed (Supplementary Figure 2A).  

Among the mRNA transcripts overexpressed in CD8+ T-cells were the canonical markers 

CD8A and CD8B, natural killer (NK) cell receptors (KLRK1, KLRC3 and NKG2-E) (Chen 

et al, 2020), and receptors involved in cytolysis (CRTAM and CD160) (Figure 3B, 

Supplementary Figure 2B). CD4 and FOXP3, the transcriptional regulator required for the 

development of regulatory T-cell, were among the overexpressed transcripts in CD4+ T-

cells (Figure 3B, Supplementary Figure 2C). In contrast to proteins, the mRNA content 

became more distinct between CD4+ and CD8+ T-cells following activation, and most of 

the DE mRNA transcripts were identified at 7d (n=530) (Figure 3A). Supporting lower 

mRNA discrepancy at 0h, unsupervised hierarchical analysis comparing expression 

profiles between CD4+ and CD8+ T-cells, revealed that the identified transcripts clustered 

across both cell subsets, while expressed proteins did not present a clear clustering 

pattern at 0h and during early activation (Figure 3D).  

The significant reduction in the number of DE proteins at late activation indicates the 

acquisition of similar phenotypic features between CD4+ and CD8+ T-cells coinciding with 

their proliferative states, which was not captured at the mRNA level.  

Integrated omics networks reveal temporal changes in the metabolic pathways of 

CD4+ and CD8+ T-cells following activation 

To elucidate the main cellular pathways supporting CD4+ and CD8+ T-cell activation, we 

used a soft clustering tool to divide mRNA transcripts and proteins that significantly 

changed following TCR/CD28 activation in 12 clusters, according to their kinetics of 
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expression (Figure 4A, Supplementary Figure 3, Supplementary Table 4). Although 

clusters were formed with a similar number of transcripts and proteins representing each 

T-cell subset (Figure 4A, Supplementary Figure 3), the overall expression overlap 

observed between CD4+ and CD8+ T-cells identified as part of the same kinetics cluster 

was intermediate for mRNA transcripts (~50% overlap) and poor for proteins (~25% 

overlap) (Figure 4B). 

To map the main biological changes underpinning T-cell activation, we next conducted a 

functional pathway enrichment analysis using Kyoto Encyclopedia of Genes and 

Genomes (KEGG). Pathways categorized under metabolism, genetic information 

processing, environmental information processing, cellular processes, and organismal 

systems were selected for comparative analysis between activated CD4+ and CD8+ T-

cells (Figure 4C). As expected, major changes in metabolic pathways were detected in 

activated T-cells at both protein and transcripts levels. Differences in both mRNA 

transcripts and proteins governing glycolysis/gluconeogenesis, carbon metabolism, and 

biosynthesis of amino acids, were observed following TCR activation. However, changes 

in the metabolism of essential (methionine and threonine) and non-essential (alanine, 

aspartate, glutamate, glycine, serine, and cysteine) amino acids were only captured by 

transcriptomics in both cell subsets, while DE transcripts associated with arginine and 

proline metabolism were exclusively detected in CD8+ T-cells (Figure 4D). Following 

activation, the expression of proteins in the lipid metabolism pathway mostly represented 

by enzymes related with degradation of fatty acids, such as ACAT2, ACSL4, ACADVL 

and HADH, exponentially upregulated in CD4+ T-cells only (cluster 10) (Figure 4A and 

4C, Supplementary Table 5). In parallel, proteins associated with energy metabolism and 
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metabolism of cofactors and vitamins were DE solely in CD8+ T-cells (clusters 9 and 12, 

respectively) (Figure 4A and 4C). 

As the transport of nutrients from the surrounding environment is a crucial factor in 

modulating the molecular mechanisms that lead to activation, we mapped the kinetics of 

the glucose and amino acid transporters to identify T-cell reprogramming following 

TCR/CD28 activation. Corroborating findings from previous studies (Bevilacqua et al, 

2022), a number of amino acid receptors involved in glutamine uptake, including the 

transporters SLC1A5, SLC7A5, and SLC3A2, showed upregulation of their corresponding 

mRNA and proteins as early as 6h (Figure 5, Supplementary Figure 4A). Interestingly, 

upregulated transcripts for these transporters reduced to unstimulated T-cell levels after 

12h, while their corresponding proteins exponentially increased during the activation time 

course in both CD4+ and CD8+ T-cells. Similar expression kinetics was observed for 

transcripts and proteins representing enzymes in the glutaminolysis pathway: GLS, which 

convert glutamine into TCA (tricarboxylic acid) cycle metabolites, pyruvate producer ME2, 

and pyruvate metabolizer LDH (Figure 5). 

As T-cells are known to perform aerobic glycolysis to fulfill the bioenergetic demands of 

activation (Almeida et al, 2016; Chapman et al, 2020), we further explored our datasets 

to identify DE mRNA transcripts and proteins in the glycolysis pathway. Surprisingly, the 

observed increase in glutamine transport and metabolism was paralleled by a transitory 

downregulation of protein measures for the main glucose transporter expressed by T-

cells, GLUT1 (SLC2A1), between 6h (CD4+ T-cell) and 12h (CD8+-T cell) following initial 

activation (Figure 5, Supplementary Figure 4B). The results obtained from the high 

throughput proteomics data were validated by flow cytometry (FACS) using a fluorescent 
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labeled monoclonal antibody, demonstrating downregulation of GLUT1 during the first 

12h in both CD4+ and CD8+ T-cells (Supplementary Figure 4B). Strikingly, in comparison 

to proteomics, the FACS data revealed a much higher increase in GLUT1 expression 

after 24h, maybe reflecting the difference in surface expression captured by FACS versus 

total GLUT1 captured by proteomics. The decrease in GLUT1 expression was paralleled 

by transitory downregulation of PFKB3 (a key allosteric activator of glycolysis) protein in 

CD8+ T-cells only, whilst PFKB3 mRNA transcript remained downregulated during the 

entire time course analyzed (Figure 5, Supplementary Figure 4C and 4D). Protein 

expression of SLC16A3, a high affinity transporter capable of exporting lactate and 

pyruvate in response to the glycolytic influx, transiently dropped at 12h in CD4+ T-cells 

only (Figure 5). In both CD4+ and CD8+ T-cells, expression of the rate-limiting enzymes 

of glycolysis, HK2, PKM, and PFK1 increased in the late phase of activation, while their 

mRNA transcripts were found to be increased as early as 6h and remained elevated at 

later time points (Figure 5).  

Altogether, our data reveal a transient disconnection between the aerobic glycolysis and 

glutaminolysis pathways during T-cell activation, differently captured across CD4+ and 

CD8+ T-cells. Such a finding was only possible due to multi-omic analysis and would be 

overlooked using the single-omics analysis of the T-cell transcriptome. 

Discussion 

Here we report the first temporal transcriptomic and proteomic dataset of primary human 

T-cell subsets as a reference for probing the molecular events underpinning T-cell 

activation. Interrogation of these integrated datasets provided novel insights on the 

molecular reprogramming kinetics of T-cell activation. 
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Our data indicate a high level of temporal discordance between mRNA transcription and 

protein expression in T-cells following TCR activation. Interestingly, by the late phase of 

activation, we observed concordance between the reprogrammed transcriptome and 

proteome resulting in proliferation. The correlation between mRNA transcript and protein 

expression can vary according to the cell type and its functional status and a complex 

discordance in the relationship have been recognized in multiple studies (Marguerat et al, 

2012; Jovanovic et al, 2015; Payne, 2015; Zhang et al, 2014; Saelao et al, 2018; 

Johansson et al, 2019). A quantitative proteome and transcriptome mapping of paired 

healthy human tissues from the Human Protein Atlas project revealed that hundreds of 

proteins could not be detected for highly expressed mRNA and strong differences were 

observed between mRNA transcripts and protein quantities within and across tissues 

(Wang et al, 2019). This discordance was partly associated with post-translational 

modifications of proteins induced by external environmental signals, such as the 

metabolic flux (Buccitelli & Selbach, 2020). We speculate that the discordance observed 

in this study may be due to insufficient ribosome number/activity to process the rapid 

transcriptional activation following TCR engagement. This is supported by the observed 

increase in translation pathway proteins during early activation phase (Figure 4C). While 

changes in other mRNA silencing mechanisms such as RNA decay (Gratacós & Brewer, 

2013), degradation by RNases (Ramanathan et al, 2016) or sequestration to stress 

granules (Mikulits et al, 2000; Hoefig et al, 2021) were not identified in the pathway 

analyses, we have not specifically evaluated these mechanisms and therefore cannot 

definitively exclude them at this stage.  
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T-cell subsets have differential requirements for energy and biosynthetic precursors 

during activation. Therefore, differential programming of key metabolic processes such 

as glycolysis, fatty acid and mitochondrial metabolism can direct T-cell to particular 

effector functions (Jones et al, 2017). As an example, a metabolic shift from oxidative to 

glycolytic pathways upon engagement of TCR ensures long-term T-cell survival and fuels 

fast energy supply for biosynthesis and replication (Pearce et al, 2013). Our integrated 

temporal transcriptomics and proteomics design comparing CD4+ and CD8+ T-cells from 

the same donors uncovered previously uncharacterized selective transcriptional and 

translational metabolic reprogramming. Following TCR activation, expression of key 

enzymes in carbohydrate and energy pathway decrease in CD8+ T-cells. At the same 

time, CD4+ T-cells engages enzymes associated with fatty acid degradation to generate 

acetyl-CoA for the TCA cycle (Figure 4) and upregulate LAMTOR5 (Figure 3C) to activate 

the mTOR pathway, increasing glycolysis and oxidative phosphorylation required for 

cytokine production. These data show that CD4+ T-cells have higher mitochondrial 

respiratory capacities compared to CD8+ T-cells. We reveal that among the top 10 

proteins upregulated in unstimulated CD4+ T-cells were the death-associated protein 3 

(Dap-3), and a subunit of the endoplasmic reticulum (ER) membrane protein complex 

(EMC1), which have not been previously characterized in T-cells and may play a role in 

CD4+ T-cell biology. Interestingly, we found that the protein content of CD4+ T-cells 

became gradually more similar to CD8+ T-cells over time, including the acquisition of 

cytotoxic functions by CD4+ T-cells, as characterized by increased levels of GZMA and 

GZMM. While CD4+ T-cells with cytotoxic activity able to secrete GZMB and perforin have 

been observed in various immune responses (reviewed in (Takeuchi & Saito, 2017)), a 
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role for GZMA- and GZMM-expressing CD4+ T-cells is less known. It is possible that the 

reduction observed in the number of DE proteins between both T-cell subsets is 

associated with the activation method employed in this study. Even though anti-

CD3/CD28 Dynabeads generate a more physiologically relevant activation over 

traditional stimulation methods, such as mitogenic lectins (Trickett & Kwan, 2003), it is 

likely that the bulk (polyclonal) response subsequent to this type of activation is leading 

to similar developmental program in both T-cell subsets, as opposed to conditions where 

activation is achieved directly through antigen-specific interactions. Supporting this 

concept, naturally recognized peptides have been shown to produce a different metabolic 

signature to anti-CD3/CD28 stimulation, associated with their TCR binding affinity (Jones 

et al, 2017). 

We report a previously uncharacterized transitory downregulation of GLUT1 during early 

activation. Although the mechanism controlling transitory GLUT1 downregulation is not 

demonstrated in this study, GLUT1 surface trafficking is known to be regulated through 

the co-stimulatory receptor CD28, and tight regulation of this transporter is suggested to 

be imperative for normal T-cell activation (Jacobs et al, 2008). Despite the decreased 

expression of the main glucose transporter, glycolysis in activated T-cells has been 

shown to occur independently of the glucose influx (Menk et al, 2018). Both lipids and 

amino acids can be converted into various intermediates of glycolysis and the TCA cycle, 

allowing them to slip into the cellular respiration pathway through a multitude of side doors 

including glutaminolysis, the process where glutamine (the most abundant amino acid 

found in the human body) is converted into mitochondrial TCA cycle intermediates (Chen 

& Chen, 2022; Song et al, 2020). Correlating with the absolute requirement for glutamine 
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to supply carbon and nitrogen to fuel energy necessary for the synthesis of 

macromolecules in proliferating T-cells (Carr et al, 2010), our data show an exponential 

increase in glutamine transporters and glutaminolysis enzymes in activated T-cells. 

Additionally, we confirm upregulation of the glutamine transporters, SLC1A5, SLC7A5, 

SLC3A2, alongside glutamate synthase (GLS), the key enzyme able to provide 

glutamine-derived carbons to the TCA cycle (reviewed in Ren et al, 2017). These findings 

indicate that glutamine may play an important role in fulfilling the early metabolic 

requirement unleashed by TCR activation when intracellular levels of glucose are likely 

to be low. Supporting the idea of a crosstalk between GLUT1 and glutamine transporters 

in activated T-cells, similarly to glucose uptake, transport of glutamine into T-cells is 

dependent on CD28 co-stimulation (Jacobs et al, 2008; Carr et al, 2010). 

The increase in glycolysis and mitochondrial respiration may lead to the accumulation of 

pyruvate in activated T-cells. Accordingly, we evidence upregulation of the mitochondrial 

malic enzyme (ME2) during late activation, showing that most of the malate originated 

from the TCA cycle is likely to be converted to pyruvate rather than oxaloacetate. As 

pyruvate is rapidly converted into lactic acid in the cell cytoplasm, rather than oxidized in 

the mitochondrial TCA cycle, rise in intracellular lactate level will cause premature cell 

death (Chapman et al, 2020; Madden & Rathmell, 2021). Our data demonstrate a 

compensatory mechanism to protect the proliferating CD4+ and CD8+ T-cells from 

acidosis, mediated by upregulation of the lactate transporter SLC16A3, which allows for 

efflux of lactate. Interestingly, extracellular lactate correlates with T-cell proliferation (Grist 

et al, 2018) and additional research is important to investigate possibilities of lactate 
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recycling for the production of energy, as shown for other human cell types (Leverve & 

Mustafa, 2002). 

In summary, we report the first matched temporal transcriptomic and proteomic dataset 

from CD4+ and CD8+ T-cells upon TCR activation. Integrated analysis of transcript and 

protein expression changes across early and late phases, revealing the complexity and 

differences of CD4+ and CD8+ T-cells metabolic reprogramming in response to the same 

generic stimuli. While the current datasets are limited by the depth of proteomic coverage 

and use of a single stimulus, they nevertheless provide a novel resource for human 

immunology research on T-cell activation in health and disease. 
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Material & Methods 

Human CD4+ and CD8+ T-cell isolation and in vitro activation 

Human PBMCs isolated from three healthy young adult volunteer blood donors (age 30-

35 years, 2 females, 1 male) were further purified using human pan T-cell isolation kit and 

magnetic activated cell sorting (MACS) (Miltenyi Biotech, Germany) to isolate unlabeled 

CD3+ T-cells. Approximately 30% of total CD3+ T-cells were purified using human CD4+ 

T-cell isolation kit while the rest were sorted with human CD8+ T-cell isolation kit (Miltenyi 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2023. ; https://doi.org/10.1101/2023.03.17.532022doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.17.532022
http://creativecommons.org/licenses/by-nd/4.0/


Biotech, Germany) using MACS to obtain untouched CD4+ and CD8+ T-cells, 

respectively. The sorted cell populations had purity of over 90%, as assessed by FACS. 

From each sample, 106 cells were aliquoted for ex vivo proteomics and transcriptomics, 

respectively. The remainder (~ 7.5 x 106 cells each) were harvested in Roswell Park 

Memorial Institute (RPMI) 1640 medium supplemented with 10% Foetal calf serum 

(Gibco, USA) and 50 units/ml penicillin and 50μg/ml streptomycin (Gibco, USA) and 

activated with ‘Dynabeads human T-cell activator CD3/CD28 (Thermo Fisher Scientific, 

USA) at the bead: cell ratio of 1:1 as per the manufacturer’s instructions. CD8+ T-cell 

cultures were supplemented with 120 IU/ml human recombinant IL-2 (Sigma Aldrich, 

USA). T-cells were aliquoted into five samples with 1.5 x 106 cells in each condition to 

obtain cells at five different time points (6 hours, 12 hours, 24h, 3d and 7d) and incubated 

at 370C in a humidified, 5% CO2 incubator. The culture medium was changed on day 4 of 

post activation. At each time point, aliquots of activated T-cells were collected washed 

three times with phosphate buffered saline (PBS), and stored for batch 

proteomics/transcriptomics processing. T-cells for proteomics were stored at -800C. For 

transcriptomics, cells were lysed in 400 μl of cold TRIzol before storage at -800C until 

RNA processing. 

Monitoring the in vitro T-cell activation process 

T-cell activation and expansion were monitored using T-cell activation markers and a T-

cell proliferation assay. In parallel to the main experiment, a sample of CellTraceTM Violet 

(CTV) (Thermo Fisher Scientific, USA) stained T-cells (CD4+ and CD8+) from each donor 

was performed as per the protocol given by the manufacturer. At each time point a sample 

of cells was stained with CD69-PE-cy7 (BD biosciences, USA) and CD226-FITC (BD 
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Biosciences, USA) along with CD3-APCe780 (eBioscience, USA), CD4-BV711 (BD 

Bioscience, USA) and CD8-Percp cy5.5 (Bioledgend, USA). Samples were analyzed 

using FACS to determine dynamic expression changes. The percentage of CTV- cells 

were analyzed to determine the T-cell proliferation rate at different time points. 

RNA extraction, mRNA library generation and next generation sequencing (NGS) 

Total RNA was extracted using TRIzol (Thermo Fisher Scietific, USA) phase separation, 

following the protocol given by the manufacturer. Ultrapure glycogen (Thermo Fisher 

Scientific, USA) was used to precipitate total RNA. The quality and quantity of the 

extracted RNA were analyzed using qubit fluorometer (Invitrogen, Thermo Fisher 

Scientific, USA) and Agilent 2100 bioanalyzer (Agilent technologies, USA), respectively. 

and RIN score of over 8.00 was confirmed for all the samples (n = 36). In each sample, 

300 ng of total RNA was aliquoted and mRNA libraries were prepared using TruSeq 

stranded mRNA library preparation kit (Illumina, USA). After quality and quantity 

assessment of the generated libraries, next-generation sequencing (NGS) was performed 

using NextSeq 500/550 high output v2 kit (150 cycles) (Illumina, USA) to obtain 800 x 106 

paired reads per pool (50 x 106 paired reads per sample). Library generation and NGS 

were performed at the analytical facility, QIMRB. 

Proteomic sample preparation and LC-MS/MS data acquisition 

T-cells (1x106) were lysed in 2% SDS in 100 mM TEAB in the presence of protease 

inhibitor cocktail. After assessing the protein quantity using pierce BCA protein 

quantification kit (Thermo Fisher Scientific, USA), ~ 20 μg from each cell lysate was 

separated and 200 ng of ovalbumin was added as the internal standard. These samples 

were reduced, alkylated, and digested using trypsin following the method samples as 
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previously described (Weerakoon et al, 2020) to obtain the peptides. After desalting, 

peptides were quantified using microBCA (Thermo Fisher scientific, USA) protein assay 

to aliquot 1 μg from each sample for MS analysis and were resuspended in MS grade 

water with 2% acetonitrile, 0.1% formic acid (v/v) to obtain the final volume of 10 μl. These 

samples were injected to Protecol C18 trap column in Prominence Nano (Shimadzu, 

Japan) LC system to separate the ions in a Protecol C18 (200Å, 3 μm particle size, 150 

mm x 150 μm) column at a flow rate of 1 μl/min over 180 min linear gradient. Solvent A 

(0.1% formic acid) and solvent B (100% acetonitrile and 0.1% formic acid) were used for 

the mobile phase. Peptides were eluted in three consecutive linear gradient: 5–10% 

solvent B over 5 minutes, 10–27% solvent B over 147 minutes and 27–40% solvent B 

over 10 minutes. Finally, the column was cleaned using 40% to 95% solvent B for 10 

minutes.  Chromeleon software (version 6.8, Dionex) embedded in Xcalibur software 

(version 3.0.63, Thermo Fisher Scientific) was used in the nano LC system. Peptides 

ionized by the nano spray (Thermo Fisher Scientific, USA) ion source (ion spray voltage 

- 1.75V, heating temperature 285 °C) were analyzed using a Velos Pro Orbitrap mass 

spectrometer (Thermo Fisher Scientific, USA). In DDA-MS, the MS was controlled and 

operated in the “top speed” mode using the Xcalibur software to obtain MS1 and MS2 

spectral data for peptide ions with charge status between +2 to +4 at 1.96 second window 

time.  

Transcriptomic data analysis and identification of differentially expressed genes 

Sequence reads were trimmed for adapter sequences using Cutadapt (version 1.11) 

(Martin, 2011) and aligned using STAR (version 2.5.2a) (Dobin et al, 2013). to the 

GRCh37 assembly with the gene, transcript, and exon features of Ensembl (release 89) 
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gene model. Quality control metrics were computed using RNA-SeQC (version 1.1.8) 

(Deluca et al, 2012), while gene expression was estimated using RSEM (version 1.2.30) 

(Li & Dewey, 2011). Both counts per million (CPM) and trimmed mean of M-values (TMM) 

methods were used to normalize the gene expression data and differential expression 

analysis was carried out using edgeR (R package) (Robinson et al, 2010). mRNA with 

log2fc > 1.5 or < -1.5 at adj. p value of < 0.01 were considered as differentially expressed 

(DE), up- and down-regulated genes, respectively. 

Proteomic data analysis and identification of differentially expressed proteins 

After inspecting the quality of generated DDA-MS data using RawMeat (Vast Scientific), 

raw files were analyzed using MaxQuant software (Cox & Mann, 2008) against UniProt 

reviewed human proteome database containing 20,242 entries (downloaded on 25th 

October 2017), UniProt chicken ovalbumin (UniProt ID – P01012) fasta file and the list of 

common MS contaminants included in the software. maxLFQ (Cox et al, 2014) was used 

to obtain normalized protein intensity data. Peptides and proteins identified at 1% FDR, 

were further filtered to identify the proteins with single UniProt protein accessions, 

detected with at least 2 unique or razor peptides, and m-score value with over 5. Protein 

intensities (log2 transformed) of activated T-cells of different time points were compared 

with that of unstimulated samples (baseline) using multiple t-tests with false discovery 

determination by two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli 

(q value) (Benjamini et al, 2006) to obtain statistical significance and their log2fc. Proteins 

with log2fc ≥ 1.0 or ≤ -1.0 at q value of ≤ 0.05 were considered as statistically significant 

up- and down-regulated genes, respectively. 
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Correlation analysis, clustering and gene enrichment analysis of differentially 

expressed mRNA and protein 

Commonly quantified mRNA and protein were selected by mapping uniProt IDs of 

proteomic data with the Ensemble IDs using UniProt Retrieve/ID mapping. Using log2fc 

values Pearson correlation between DE mRNA transcripts and their corresponding 

protein was calculated for different time points. Correlation co-efficient values ±(1.00 – 

0.70) was considered as a strong correlation while ± (0.69 – 0.40) and  ± (0.39 – 0.10) 

were taken as moderate and weak respectively (Schober et al, 2018). To identify the co-

expression clusters over the course of activation, mRNA or protein significant in at least 

one time point were filtered and clustered using the Mfuzz soft clustering method (R 

package) (Kumar & E Futschik, 2007). KEGG pathways (Kanehisa & Goto, 2000) 

enriched (FDR ≤ 0.05) by the genes represented by each cluster were identified using  

String: functional protein network analysis version 11.5 (Szklarczyk et al, 2019) and 

ShinyGO 0.76 (Ge et al, 2020). Word clouds were generated using the online tool 

(https://www.wordclouds.com, accessed December, 2021). Bioinformatics analysis and 

graph generation were done using R Studio (RStudio Team (2020). RStudio: Integrated 

Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/.) and 

GraphPad Prism (version 9.2.0 for Windows, GraphPad Software, San Diego, California 

USA).  

Data and code availability 

The mass spectrometry proteomics data have been deposited on the ProteomeXchange 

Consortium via the PRIDE partner repository with the dataset identifier PXD038810. The 

RNAseq raw sequence data are not publicly available because participants did not give 
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consent for the data to be publicly released. The RNAseq genecount data is given in 

Supplementary Table 6. 

Figure legends 

Figure 1. Minor changes to T-cell proteome during early stages of T-cell activation 

A. Schematic of CD4+ and CD8+ T-cells isolation, activation, and parallel transcriptomic 

and proteomic analysis at 6 time points using RNA sequencing (RNA-seq) and data 

dependent acquisition proteomic analysis (DDA-proteomics), respectively. The number 

of transcripts/proteins pre- and post- quality control is indicated, along with criteria for 

differential expression (DE) analysis. 

B. Characterization of stages of T-cell activation through T-cell activation markers, CD69 

and CD226, and proliferative T-cells (CTV-) by flow cytometry; early activation 

(CD69highCD226lowCTV+) and late activation (CD69highCD226lowCTV-).  

C.  Principal component analysis shows the relationship of mRNA and protein data from 

three biological replicates across different time points. 

D. Ratio of mRNA and protein differentially expressed at different time points in relation 

to their corresponding unstimulated controls (0h = 1).  

E. Bar charts indicate DE genes and proteins in CD4+ T-cells and CD8+ T-cells as a 

percentage of total mRNA/ proteins detected in each time point in relation to unstimulated 

cells.  red: up-regulated, green: down-regulated mRNA/ proteins.  

Figure 2.  Proteome and transcriptome rewire at late stages of T-cell activation 
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A. Heatmaps show the expression patterns of commonly quantified mRNA transcripts 

and proteins in CD4+ and CD8+ T-cells. Red: upregulated, grey: no DE, green: 

downregulated.  

B. Venn diagrams showing the overlap between quantified mRNA and protein obtained 

from transcriptomic and proteomic data 

C. DE proteins encoded by mRNA differentially expressed at 6 hours following activation. 

The number of the proteins regulated at each time point is shown. FDR < 0.05. Dotted 

line represents the total number of proteins up- (green) or downregulated (red). 

D. Pearson correlation between DE genes and proteins over the entire time course of T-

cell activation. Green to red gradient shows low to high correlation values for CD4+ and 

CD8+ T-cells at each time point  

E. Scatter graph with four quadrants indicate the distribution and correlation between 

gene and protein expression changes in both CD4+ and CD8+ T-cells at different time 

points following activation. Each region lists the percentage of T-cells falling in each 

category. mRNA distribution is represented in the “x” axis and protein distribution in the 

“y” axis. ‘R’ represents Pearson correlation coefficient.  

Figure 3. CD4+ and CD8+ T-cells become more divergent during activation 

A. Stacked bar graphs showing total number of proteins and mRNA transcripts DE 

between CD4+ and CD8+ T-cells at each timepoint. Columns represent transcripts and 

proteins overexpressed in each T-cell subset. 
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B. Volcano plots showing proteins mRNA DE between CD4+ and CD8+ T-cells at 0 hours. 

Name of top 10 overexpressed mRNA and proteins in CD8+ and CD4+ T-cells are 

indicated.  

C. Expression kinetics of proteins upregulated in CD4+ (i) and CD8+ (ii) T-cells and their 

corresponding mRNA transcripts. Intensities of each time point are shown as mean and 

the standard error of mean (SEM) (n=3).  

D.  Heat map shows the relationship of protein/mRNA expression between CD4+ and 

CD8+ T-cells over the time course. mRNA and protein commonly quantified between 

two T-cell subsets were used. Average linkage and Pearson distance measurement 

were used in column clustering. 

Figure 4. Main pathway altered during T-cell activation is associated with 

metabolism 

A. Co-expression clusters of transcriptome and proteome data from CD4+ and CD8+ T-

cells. DE mRNA transcripts of each dataset were clustered using mFuzz soft clustering 

(R package). mRNA or protein intensities at each time point are shown as mean and the 

standard error of mean (SEM). Number of mRNA/proteins included in each cluster are 

indicated for CD4+ and CD8+ T-cells, respectively. mRNA transcripts with log2fc > 1.5 or 

< -1.5 and proteins with log2fc ≥ 1.0 or ≤ -1.0 were considered as DE. 

B. Venn diagrams showing the overlap of mRNA and protein identified in each cluster 

between activated CD4+ and CD8+ T-cells. 

C. Enriched KEGG pathways (FDR < 0.05) for co-expression clusters (defined in Figure 

4A) of CD4+ and CD8+ T-cell.  
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D. Molecular interaction, reaction and relation network showing the relationship of the top 

first 20 enriched KEGG pathways categorized under ‘metabolism’ (FDR < 0.05). The 

network was generated using all DE mRNA transcripts and proteins. The size of each 

node directly correlates with the number of genes included.  Edges represents sharing of 

20% or more genes between two nodes while the thickness of the edge directly correlates 

with the number of overlapping genes. The number in each coloured box indicates the 

co-expression clusters in Figure 4A from where the corresponding mRNA transcript/ 

protein was enriched. In pink CD4+ mRNA, yellow CD4+ protein, green CD8+ mRNA, blue 

CD8+ protein. 

Figure 5. Re-wiring of aerobic glycolysis and glutaminolysis detected by multi-omic 

analysis during T-cell activation 

Besides glucose, T-cells utilize glutamine through the glutaminolysis pathway to produce 

energy during the activation. Line graphs show the dynamic protein and gene expression 

patterns of the main glucose and glutamine transporters and the rate-limiting/ key 

enzymes of aerobic glycolysis and glutaminolysis during CD4+ (orange color) and CD8+ 

(blue color) T-cell activation (0 – 24 hours) and proliferation (3rd to 7th day). Expressed 

proteins are named as follow: GLUT-1 (SLC2A1) - the main glucose transporter in T-cells, 

SLC7A5, SLC3A2 and SLC1A5 - glutamine transporters, SLC16A3 –lactate transporter, 

HK2, PFKP and PKM – the rate-limiting enzymes of glycolysis, PFKFB3 – a key allosteric 

activator of glycolysis, LDH – the enzyme which converts pyruvate to lactate, GLS – the 

enzyme which converts glutamine to glutamate and ME2 – the enzyme which converts 

malate to pyruvate in the mitochondrial matrix. 
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