

1 **WALLFLOWER, a RLK, simultaneously localizes to opposite sides of**
2 **root hair cells & functions to position hairs**

3
4
5

6 Jessica N. Toth, Cecilia Rodriguez-Furlan, and Jaimie M. Van Norman*

7
8 Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative
9 Genome Biology, University of California, Riverside, USA

10
11
12

13 *Author for contact:

14 Jaimie M. Van Norman, jaimie.vannorman@ucr.edu

15
16

17 **KEYWORDS**

18 Arabidopsis root, root hair, epidermis, LRR-RLK, polar localization

19
20

21 **SHORT TITLE**

22 WALLFLOWER polarity and function in the root

23
24

25 **ONE SENTENCE SUMMARY**

26 A receptor kinase with dual polar localization, to the inner polar domain and root hair initiation
27 domain, in root epidermal cells, requires its intracellular domain for localization and function.

28

29 **ABSTRACT**

30 Polarized cells are frequently partitioned into subdomains with unique features or functions. As
31 plant cells are surrounded by walls, polarized cell shape and protein polarity in the plasma
32 membrane are particularly important for normal physiology and development. We have
33 identified WALLFLOWER (WFL), a transmembrane receptor kinase that is asymmetrically
34 distributed at the inner face of epidermal cells and this localization is maintained independent of
35 cell type. In epidermal hair (H) cells in the elongation and differentiation zones, WFL exhibits a
36 dual polar localization, accumulating at the inner domain as well as at the root hair initiation
37 domain (RHID). Furthermore, overexpression of WFL leads to a downward shift in root hair (RH)
38 position suggesting WFL operates in a signaling pathway that functions across H cells to inform
39 RH position. WFL asymmetric distribution and function is affected by deletion of the intracellular
40 domains resulting in its mislocalization to the outer polar domain of H cells and exclusion from
41 RHIDs and bulges. Thus, our results demonstrate that in epidermal H cells the WFL intracellular
42 domains are required to direct its dual polar localization and influence RH position.

43

44 **INTRODUCTION**

45 Eukaryotic cells are frequently partitioned into subdomains with unique features or functions and
46 can therefore be described as polarized. Cell polarity can be defined as asymmetry in the
47 localization of subcellular constituents and proteins and/or in cell morphology. One of the
48 primary ways that cell polarity is achieved is through the preferential accumulation of proteins at
49 specific subcellular locations. Partitioning of the plasma membrane (PM) can impact protein
50 function, activity, and stability; therefore, it has tremendous regulatory potential in intercellular
51 communication, development, and environmental interactions (Łangowski et al., 2016; Van
52 Norman, 2016; Nakamura and Grebe, 2018). Because plant cells are fixed in place due to the
53 cell wall, polarized protein accumulation is required for diverse physiological and developmental
54 processes, such as asymmetric cell division, localized cell growth, long- and short-range signal
55 transduction, and directional transport (Petrásek and Friml, 2009; Takano et al., 2010; Breda et
56 al., 2017).

57

58 The *Arabidopsis* root is an excellent system to study various aspects of cell polarity and to link it
59 to cellular or organ function and development. The root is composed of cells that are primarily
60 cuboidal in shape and organized into concentric layers around the central vascular tissues with
61 individual files of cells extending throughout the longitudinal axis (Dolan et al., 1993). In this
62 axis, the root is divided into three developmental zones: the meristematic, elongation, and

63 differentiation zones, within which cells divide, elongate, or mature, respectively (Benfey and
64 Scheres, 2000). These organizational features allow for straightforward analysis of protein
65 localization and growth, morphology, and developmental phenotypes in the root.

66

67 The root epidermis is composed of two cell types, hair (H) and nonhair cells (NH). Cells with H
68 cell identity will form long, thin tubular extensions called root hairs (RHs), which are dramatic
69 examples of morphological cell polarity. As RHs substantially increase root surface area, they
70 are functionally important for efficient uptake of water and nutrients as well as plant anchorage
71 (Grierson et al., 2014). Development and differentiation of the root epidermis and formation of
72 RHs reveals links between subcellular polarity, tissue patterning, and structural polarity in terms
73 of polarized cell growth. Additionally, RHs are an advantageous model to study how cellular
74 polarity is achieved and maintained during development (Schiefelbein and Somerville, 1990).

75

76 The initiation of RHs requires the establishment of an additional polar domain within the context
77 of the cell's existing polarity. Confined to a very small region, the polar RH initiation domain
78 (RHID) is located on the outer face near the rootward end of epidermal H cells. One of the first
79 proteins to be positioned at the RHID is ROP GUANINE NUCLEOTIDE EXCHANGE FACTOR 3
80 (GEF3) followed by recruitment of RHO-RELATED PROTEIN FROM PLANTS 2 (ROP2)
81 proteins (Denninger et al., 2019). Preceding H cell differentiation, GEF3 and ROP2 are
82 uniformly distributed in the PM of these cells but as differentiation proceeds, these proteins
83 accumulate at the RHID and are visualized as a disc-shaped area where the cell wall begins to
84 soften. Subcellular and cell wall components are trafficked to the RHID, which leads to local
85 formation of a bulge on the H cell surface that increases in size and becomes more defined
86 (Grierson et al., 2014).

87

88 After the RHID is established, a dome-shaped outgrowth or bulge is formed leading to a series
89 of events including cell wall acidification and loosening that facilitates the onset of RH
90 elongation through a process known as tip growth (Gilroy and Jones, 2000). Bulge formation
91 and tip growth occur through intensive polarized secretion of cellular and cell wall materials to
92 this specific region of the cell. Many proteins show higher accumulation at the growing tip of root
93 hairs; some of these proteins may be caught up in the default secretion scheme of RH
94 elongation, but others, including many involved in signaling, are important for maintaining tip
95 growth and cell wall integrity. One example is FERONIA (FER), a member of the *Catharanthus*
96 *roseus* RECEPTOR-LIKE KINASE 1-LIKE (CrRLK1L) subfamily of putative cell wall sensors,

97 which is involved in many developmental processes, including vacuolar expansion for cell
98 elongation (Dünser et al., 2019). Additionally, FER shows polar accumulation in specific
99 developmental contexts, but is otherwise nonpolar (Zhu et al., 2020). In RH formation, FER
100 forms a complex with ROPs and GEFs and regulates tip growth through accumulation of
101 reactive oxygen species (ROS) at the RH tip. Loss of function of either FER or GEFs reduces
102 ROS accumulation, resulting in RHs that are shorter than wild type (WT) and have abnormally
103 shaped tips (Duan et al., 2010; Huang et al., 2013). Mutants of another, CrRLK1 related
104 receptor, ERULUS (ERU), have a similar RH phenotype. ERU-GFP preferentially accumulates
105 at the tip of elongating RHs where it acts as a cell wall sensor that regulates cell wall elasticity
106 through inhibition of pectin methylesterase activity (Kwon et al., 2018; Schoenaers et al., 2018).
107 Thus, polarized proteins are essential for normal RH development, with cell wall sensing being
108 crucial to maintain cell wall integrity and prevent cell rupture during the dramatic, local
109 elongation of RHs.

110

111 Here we identify and characterize a polarly localized leucine-rich repeat receptor-like kinase
112 (LRR-RLK) named WALLFLOWER (WFL). WFL is localized to the inner polar domain of
113 epidermal cells in the elongation and differentiation zones and, in H cells, WFL maintains this
114 polarity as it accumulates at the RHIDs and bulges at the outer polar domain of the PM. This
115 unusual localization positions WFL simultaneously on opposite sides of H cells. This polar
116 localization appears to be linked to function as WFL overexpression perturbs RH position in the
117 longitudinal axis, leading to a downward shift. Furthermore, overexpression of WFL lacking the
118 intracellular domain does not alter RH position indicating that signal transduction is related to
119 this function. Our results also show that WFL polar accumulation and maintenance is mainly
120 achieved by *de novo* protein synthesis and secretion through a Brefeldin A (BFA) dependent
121 endomembrane trafficking pathway. WFL polarization appears to be determined by its
122 intracellular domains as expression of truncated WFL is mislocalized to the outer polar domain
123 of H cells and remarkably, fails to accumulate at RHIDs and bulges. Additionally, this truncated
124 version of WFL is directed to different cellular domains in different cell types indicating that its
125 intracellular portion is needed for correct, cell type-specific polar delivery. Given these results,
126 we propose that polarly localized WFL participates in an epidermal signaling pathway that links
127 cues from the root's inner cell layers with polar growth at the outer epidermal surface, informing
128 RH position.

129

130

131 **RESULTS**

132 ***WFL* is expressed primarily in LRC and epidermal cells**

133 We identified WALLFLOWER (*WFL*), encoded by At5g24100, as an LRR-RLK putatively
134 involved in signaling and RH development based on its predominant expression in H cells in the
135 elongation and differentiation zones (Brady et al., 2007; Li et al., 2016). To validate these data
136 *in planta*, we drove expression of endoplasmic reticulum-localized green fluorescent protein
137 (erGFP) with the putative *WFL* promoter (*pWFL*) in WT seedlings. *pWFL* activity was observed
138 in the lateral root cap (LRC), but was not detectable in other cell types in root meristem (Figure
139 1D-E). Consistent with the expression data, in elongation and differentiation zones, *pWFL*
140 activity was detected in epidermal cells with preferential activity in H cells. Additionally, we
141 detected *pWFL* activity in pericycle cells along with weaker activity in cortex cells (Figure 1B-C).
142

143 ***WFL* accumulates asymmetrically at the PM**

144 To examine *WFL* protein accumulation in *Arabidopsis* roots, we generated a GFP fusion under
145 control of *pWFL* (*pWFL:WFL-GFP*). In the meristematic zone of WT roots expressing
146 *pWFL:WFL-GFP*, we detect the protein only in the outermost cell layer of the LRC (Figure 1F,
147 1I-J). Consistent with the observed promoter activity, in the elongation and differentiation zones
148 *WFL-GFP* accumulates in cells of the epidermis, cortex, and pericycle. In the LRC and
149 epidermis, *WFL-GFP* is polarly localized to the inner polar domain of the PM (Figure 1F-J).
150 Interestingly, in the epidermis, *WFL* has higher accumulation in H cells and is also localized to
151 the RH bulge (Figure 1K). In cortex cells, we were unable to determine whether *WFL-GFP* was
152 polarly localized due to the fluorescent signal from the adjacent epidermis. Also, in the pericycle,
153 *WFL-GFP* signal appears diffuse, making it difficult to assess how *WFL* is distributed at the PM
154 (Figure 1F-G). These results indicate that *WFL* is asymmetrically distributed along the PM in
155 LRC and epidermal cells at different stages of differentiation.
156

157 ***WFL-GFP* localizes to the inner polar domain regardless of cell type**

158 With the endogenously expressed reporter, it was difficult to assess the polar distribution of
159 *WFL-GFP* within internal cell layers of the root. To address this, we misexpressed *WFL-GFP*
160 using cell type- and tissue-specific promoters. *WFL-GFP* expressed under the control of the
161 *WEREWOLF* promoter (*pWER*, (Lee and Schiefelbein, 1999), which is specifically expressed in
162 the epidermis and LRC (Figure 2A), confirmed *WFL* localization to the inner polar domain of
163 these cell types (Figure 2B-C). We also misexpressed *WFL-GFP* in the endodermis,
164 cortex/endermal initial (CEI), cortex/endermal initial daughter (CEID), and quiescent center

165 (QC) (Figure 2D) using the SCARECROW promoter (*pSCR*, (Wysocka-Diller *et al.*, 2000;
166 Levesque *et al.*, 2006). We found that WFL-GFP localized towards the stele in these cell types,
167 accumulating at the inner polar domain of endodermal and initial cells and the shootward polar
168 domain in the QC (Figure 2E). Additionally, we misexpressed WFL-GFP in immature and
169 mature cortex cells using the promoters of CORTEX2 (*pCO2*, (Heidstra *et al.*, 2004; Paquette
170 and Benfey, 2005)) and CORTEX (*pC1*, (Lee *et al.*, 2006)), respectively. We were unable to
171 detect any GFP signal in immature cortex cells (not shown) but observed that WFL-GFP
172 localized to the inner polar domain of mature cortex cells (Figure 2G). Altogether, our results
173 show that polar localization of WFL-GFP is oriented inwards, towards the stele in all cell types
174 examined. This suggests that, as proposed for some nutrient transporters (Alassimone *et al.*,
175 2010), WFL localization to the inner polar domain may be informed by a cue originating from the
176 stele.

177

178 **WFL-GFP is dynamically trafficked to and from the PM**

179 Proteins with polar localization can be directed to the PM by targeted secretion and/or
180 maintained at the PM by endocytosis and recycling (Rodriguez-Furlan *et al.*, 2019; Raggi *et al.*,
181 2020). Beyond its PM localization, in growing RHs WFL-GFP is detected in mobile intracellular
182 compartments that most likely correspond to highly dynamic endomembrane traffic (Movie
183 SM1). To understand how endomembrane trafficking contributes to the polar distribution of
184 WFL-GFP at the PM, we performed a series of chemical treatments on roots expressing *pWFL*
185 driven WFL-GFP (Figure 3A). Treatments with Brefeldin A (BFA), an inhibitor of Golgi trafficking
186 that affects secretion to the PM, generated intracellular accumulations consistent with BFA
187 bodies. These accumulations indicate that WFL-GFP is trafficked to the PM via a BFA-sensitive
188 mechanism (Figure 3B and F).

189

190 WFL-GFP accumulation into BFA bodies could be attributed solely to secretion of newly
191 synthesized WFL-GFP or to protein returning to the PM after endocytosis and recycling to
192 maintain the polarized pool of proteins. To investigate this, we first treated roots with
193 cycloheximide (CHX), an inhibitor of protein synthesis and after 2 hours we observed a
194 considerable reduction in WFL-GFP signal at the PM indicating a high rate of *de novo* protein
195 secretion and turnover (Figure 3C and F). We next pre-treated the roots with CHX for 60
196 minutes and added BFA and incubated for an additional 60 minutes. After the co-treatment,
197 WFL accumulation in BFA bodies was nearly abolished, with only a faint signal remaining
198 detectable (Figure 3D and F). Therefore, the majority of the signal observed in BFA bodies can

199 be attributed to the endomembrane trafficking of newly synthesized WFL-GFP. Furthermore,
200 after a 60-minute BFA treatment followed by wash out in the presence of CHX, WFL-GFP signal
201 at the PM is recovered to values similar to the control (Figure 3E and F); again, indicating a high
202 rate of protein turnover.

203

204 As our results indicate a high rate of protein turnover, we explored whether WFL is actively
205 degraded by a Wortmannin (Wm)-sensitive pathway. Wm is an inhibitor of phosphoinositide
206 synthesis that has been reported to inhibit endocytic trafficking of PM proteins towards the
207 vacuole. Additionally, it has been shown that darkness induces internalization and trafficking of
208 PM proteins to the vacuole and changes vacuolar pH, which delays degradation allowing
209 fluorescent protein detection at the vacuole lumen (Kleine-Vehn et al., 2008). *pWFL:WFL-GFP*
210 expressing roots were exposed to a 3 hour dark treatment to increase WFL-GFP transport to
211 the vacuole evidenced by the GFP detection at the lumen in the epidermal cells (Figure 3G and
212 G"). Upon a 2-hour treatment with Wm in dark conditions, we observed characteristic doughnut-
213 shaped intracellular accumulations of WFL-GFP and a considerable decrease in fluorescent
214 signal at the vacuole lumen (Figure 3H and 3H'). These results indicate that WFL-GFP is
215 actively endocytosed and trafficked to the vacuole by a Wm sensitive pathway.

216

217 **The WFL kinase domain is necessary for its polar distribution**

218 To determine whether specific protein domains inform WFL polar localization at the PM, we
219 created a truncated version by removing the intracellular region, which consists of the
220 juxtamembrane (Jx) and kinase (K) domains, and fused this truncation to GFP under *pWFL*
221 (*pWFL:WFLΔJxK-GFP*). Similar to full-length WFL-GFP, we detected accumulation of
222 WFLΔJxK-GFP in LRC cells of the meristematic zone, as well as in epidermal, cortex, and
223 pericycle cells in the elongation and differentiation zones (Figure 4A-G). However, WFL
224 localization to the inner polar domain and the RHID was strongly impacted. Indeed, WFLΔJxK-
225 GFP polar localization appears to switch from the inner to the outer polar domain in LRC and
226 epidermal NH and H cells (Figure 4A-G) and is specifically excluded from the RHID and bulge of
227 H cells (Figure 4E-F). Similar results were obtained by removing only the kinase domain
228 (*pWFL:WFLΔK-GFP*, Figure S1). When compared to WFLΔJxK-GFP, the WFLΔK-GFP signal is
229 lower, suggesting a reduction in secretion to the PM and/or protein instability. These results
230 suggest WFL localization is highly regulated and that the intracellular domains are required for
231 normal WFL polar localization.

232

233 **WFL intracellular domains are important for cell type-specific polar localization**
234 WFL appears to be oriented by a stele-derived cue that coordinates its inner polar distribution in
235 different cell types. Therefore, we explored whether deleting the WFL cytoplasmic domain alters
236 the localization of WFL in different cell types. When expressed from *pWER* and *pCO2*,
237 *WFLΔJxK-3xYFP* preferentially localizes to the outer polar domain of LRC/epidermal and
238 immature cortex cells near the QC (Figure 5A-B and E), respectively. Upon expression in
239 mature cortex from *pC1*, *WFLΔJxK-3xYFP* was predominantly localized to the outer polar
240 domain, however, some elongating cells showed nonpolar distribution of the protein (Figure 5C-
241 D). Notably, when *WFLΔJxK-3xYFP* was expressed from *pSCR* there was no detectable signal
242 in the primary root, however, in the endodermis and ground tissue stem cells of lateral roots,
243 signal was detectable and showed a nonpolar distribution along the PM (Figure 5F). Thus, in
244 contrast to full length WFL-GFP, there is no uniform interpretation of cues to polarize truncated
245 WFL among the different cell types examined. These data indicate that WFL localization is
246 highly regulated and its polarization towards the stele requires the intracellular domains, without
247 which truncated WFL is misdirected in different cell types and developmental contexts.

248
249 ***WFLΔJxK* is polarly distributed but actively excluded from WFL accumulation domains**
250 To further characterize the opposite localization of WFL and *WFLΔJxK* in H cells, we closely
251 followed their respective distributions during the different stages of RH development. WFL-GFP
252 is present at the inner polar domain of elongating H cells and gradually appears at the RHID
253 and is present at the bulge. In contrast, *WFLΔJxK*-GFP is present at the outer polar domain in
254 elongating H cells and gradually decreases its accumulation at RHIDs and later at the bulge
255 (Figure 6A-B). Additionally, WFL-GFP shows the highest fluorescence intensity at the center of
256 RHIDs and RH bulges (Figure 6C-F), whereas roots expressing *pWFL:WFLΔJxK-GFP* exhibited
257 lower fluorescence intensity at the center of RHIDs and RH bulges with higher fluorescence
258 above and below the developing RH (Figure 6G-J). Together, these results indicate that WFL
259 intracellular domains are important for polarized accumulation of WFL at specific domains of the
260 PM.

261
262 **Overexpression of WFL affects the position of RHIDs and bulges**
263 In roots overexpressing WFL-GFP, we observed that RH position is perturbed. In WT plants the
264 RHID is normally located approximately 10 μ m from the rootward edge of epidermal H cells
265 (Figure 7A, (Grierson et al., 2014)). However, in *pWFL:WFL-GFP* roots, we observed that bulge
266 formation is consistently shifted downward toward the rootward edge of H cells (Figure 7B). To

267 quantify this phenotype, we classified RH bulge position as WT (normal) or shifted downward,
268 where shifted RHs have no measurable distance between the RH bulge and the rootward edge
269 of the cell. We used confocal microscopy to visualize bulge position in two independent
270 *pWFL:WFL-GFP* transgenic lines and concluded that bulge position is indeed shifted towards
271 the rootward edge of H cells in these roots (Figure 7D). These results indicate that
272 overexpression of WFL-GFP in a WT background leads to a defect in RH positioning.

273

274 Interestingly, during our examination of *pWFL:WFL-GFP* in the WT (Col-0) background we
275 observed that these roots appeared damaged more frequently than nontransgenic WT or
276 *pWFL:erGFP* (in WT) roots, as evidenced by the presence of propidium iodide (PI) within cells.
277 Incidents of damage were observed in >4 independent transgenic lines and by separate
278 researchers (not shown). We hypothesized that these plants were sensitive to being mounted
279 on slides, a type of mechanical stress, possibly due to a defect in cell wall integrity. To test this
280 we transferred seedlings expressing *pWFL:WFL-GFP* from our standard growth medium to
281 medium deficient in phosphate (-Pi), which has been reported to rigidify the walls of elongating
282 root cells (Péret et al., 2011; Balzergue et al., 2017). After a 24-hour treatment on -Pi media,
283 these roots showed substantially less damage (PI penetration) and WFL-GFP localization was
284 unaffected. This suggests that expression of WFL-GFP in a WT background has additional
285 phenotypic consequences. Together with the shift in RH position, it is tempting to propose that
286 WFL is involved in cell wall modification and that this activity along with its polarized presence at
287 the RHID and bulge might alter RH positioning upon overexpression.

288

289 To confirm the level of *WFL* overexpression in *pWFL:WFL-GFP* transgenic plants compared to
290 non-transgenic WT controls, we conducted RT-qPCR. *WFL* transcript levels were approximately
291 2-fold higher in transgenic plants compared to WT and were similar between the two
292 independent transgenic lines (Figure S2B). Similarly, when bulge position was quantified in
293 another overexpression line where WFL-GFP is expressed from the constitutively active
294 *UBIQUITIN10* promoter (*pUBQ10*, *pUBQ10:WFL-GFP*) we observed that bulges were shifted
295 downward (Figure 7D). Notably, the proportion of shifted bulges in *pUBQ10:WFL-GFP* roots
296 was similar to that of *pWFL:WFL-GFP* roots confirming the relationship between WFL
297 overexpression and altered RH positioning. These results suggest overexpression (above the
298 endogenous level) or increased copy number of WFL leads to a shift in RH position, however,
299 an alternative explanation is that the GFP fusion somehow interferes with WFL function causing
300 this phenotype. To test this, we generated an untagged version of the transgene (*pWFL:WFL*)

301 and upon its expression in WT, we observed a similar shift in RH bulge position as seen in
302 WFL-GFP fusions (Figure S2A). Thus, the fusion of GFP to WFL cannot explain the abnormal
303 RH bulge position phenotype, suggesting expression level or increased copy number leads to
304 this phenotype.

305
306 To further characterize WFL function, we generated a putative null allele, *wfl-1*, with reduced
307 *WFL* expression (Figure S3), however, we did not observe any RH positioning phenotype.
308 Additionally, expression of *pWFL:WFL-GFP* in the *wfl-1* background did not result in a shift in
309 the position of RH bulges (Figure 7D) indicating a reduction in expression or functional copy
310 number alleviates this phenotype. Finally, we examined RH bulge position in WT and *wfl-1* roots
311 expressing *pWFL:WFLΔJxK-GFP* and found that bulge position was unaffected in either
312 genotype (Figure S2C). Taken together, these results indicate that only overexpression of full
313 length WFL elicits a shift in RH bulges toward the rootward edge of H cells indicating that the
314 WFL intracellular domains and/or subcellular localization are required for this phenotype.

315

316 **DISCUSSION**

317 Polarization of proteins at the PM often precedes polarized cellular morphology. WFL polarity at
318 the inner polar domain in epidermal cells during cell elongation and then its appearance at the
319 RHID site implicate it in epidermal cell differentiation and RH positioning. The dual polarization
320 of WFL is likely informed both by features of the WFL intracellular domain and cell type-specific
321 factors. The importance of the WFL intracellular domains is highlighted by the change in WFL
322 localization from the inner to the outer polar domain, upon their removal. This is further
323 underscored by the reduced accumulation of WFLΔJxK-GFP at RHIDs and bulges. Our results
324 suggest that polar localization of WFL is subject to precise spatiotemporal regulation. It is also
325 clear that WFL intracellular domains are functionally important for RH positioning, as only
326 overexpression of the full-length protein results in a shift in RH position. Thus, we propose that
327 WFL functions in a signaling pathway that links cues from the inner cell layers of the root with
328 polar growth at the epidermal surface to inform RH position..

329

330 Modification of cellular infrastructure is required to accommodate the drastic change in cellular
331 polarity and morphology as a RH develops; therefore, there are multiple factors that can
332 influence RH position. In the *deformed root hairs 1 (der1)* mutant, in which *ACTIN2* is mutated,
333 RHs often emerge in the middle of H cells, indicating that the cytoskeleton is important for
334 normal RH positioning and bulge formation (Ringli et al., 2002). Furthermore, hormones also

335 have a role in determining RH position, for example, positioning is affected in auxin/ethylene
336 perception and biosynthesis mutants (Masucci and Schiefelbein, 1994a; Masucci and
337 Schiefelbein, 1996).

338

339 One of the greatest obstacles during RH development is the cell wall, which must be modified to
340 allow asymmetric, polarized growth of the RH. In *procuste1* (*prc1-1*) mutants, which have a
341 defect in the *CELLULOSE SYNTHASE6* (*CESA6*) gene, RH position is shifted toward the
342 rootward edge of H cells (Singh et al., 2008), similar to the phenotype observed in roots
343 overexpressing WFL-GFP. In addition to shifted RHs, roots overexpressing WFL-GFP also
344 appear to be sensitive to mechanical stress and this sensitivity can be alleviated by exposure to
345 -Pi growth conditions, which rigidifies root cell walls. Intriguingly, WFL localizes to areas of the
346 root where dramatic changes to the cell wall are taking place, including the outermost layer of
347 the LRC, cells of the elongation zone, and RHIDs and bulges. The presence of WFL at these
348 positions of cell wall modification together with a shifted RH position upon WFL overexpression
349 make it very tempting to speculate that WFL is involved in sensing cell wall status and/or cell
350 wall modification.

351

352 In further support of a role for WFL in cell wall sensing or modification, the Search Tool for the
353 Retrieval of Interacting Genes/Proteins (STRING) database predicts interactions with a RH-
354 specific proline-rich extensin-like family protein (EXT15, AT1G23720) and two RH-specific Class
355 III (CIII) peroxidase (PRX) proteins (PRX27, AT3G01190 and PRX57, AT5G17820) (Szklarczyk
356 et al., 2019). *prx57* mutants have shorter RHs with frequent bursting, indicating that PRX57
357 plays a role in cell wall modification during RH elongation (Kwon et al., 2015). It is known that
358 LRR-RLKs interact with extensins, for example, FERONIA interacts with LEUCINE-RICH
359 REPEAT/EXTENSIN 1 (LRX1) to coordinate cell wall loosening with cell elongation (Dünser et
360 al., 2019). Further research into a possible role for WFL in cell wall sensing or modification
361 through these cell wall-associated proteins and their potential interaction with WFL are intriguing
362 areas for future study.

363

364 Endomembrane protein trafficking is closely related to the establishment and maintenance of
365 PM protein polarity (Muroyama and Bergmann, 2019; Rodriguez-Furlan et al., 2019; Raggi et
366 al., 2020). Our results indicate that WFL polarity at the PM is primarily maintained by constant
367 secretion and degradation. The WFL biosynthetic secretory traffic is directed through a BFA
368 sensitive pathway, however, BFA interference with protein delivery does not alter WFL polarity

369 as it has been described for PIN1 (Tanaka et al., 2014). Additionally, endocytosis and recycling
370 does not appear to be responsible for maintaining the pool of WFL at the PM, which instead
371 relies mainly on *de novo* protein synthesis. Therefore, WFL polar secretion appears to be similar
372 to that of other laterally localized proteins, such as POLAR AUXIN TRANSPORT INHIBITOR-
373 SENSITIVE 1/PLEIOTROPIC DRUG RESISTANCE 9 (PIS1/PDR9/ABCG37) (Langowski et al.,
374 2010; Langowski et al., 2016).

375

376 While polar localization of full-length WFL is likely informed by organ-level polarity cues,
377 removal of the intracellular domains indicates that the kinase domain is essential for different
378 cells to interpret these cues and localize WFL. Unlike WFL-GFP, misexpression of WFLΔJxK-
379 GFP reveals differential localization depending on cell identity and developmental context.
380 WFLΔJxK-GFP localizes to the outer polar domain of epidermal cells and the immature cortex
381 cells, whereas in mature cortex cells, WFLΔJxK-GFP is also sometimes present at the inner PM
382 domain. Strikingly, WFLΔJxK-GFP cannot be detected in endodermal cells of the primary root,
383 but in lateral roots, exhibits nonpolar localization in the endodermis. Therefore, it is possible that
384 when the intracellular domains are absent, the protein is redirected to different secretion
385 pathways in different cell types. This hypothesis is consistent with the existence of multiple
386 endomembrane trafficking pathways governing polar localization of transmembrane receptors in
387 plants (Li et al., 2017). These results underscore the necessity of WFL intracellular domains to
388 direct its polar localization, which is informed by context specific factors that take into account
389 cell type and developmental stage.

390

391 WFLΔJxK-GFP is secreted to H cell domains where full length WFL does not normally
392 accumulate; indeed, WFLΔJxK-GFP appears to be excluded from the inner domain and from
393 the RHID. The distribution of these two proteins is particularly intriguing and suggests that their
394 secretion to the PM is subject to strict regulation. It is unclear how this contrasting localization is
395 achieved, but it could be explained by interaction, or lack thereof, with other proteins.
396 Specifically, interaction of the WFL cytoplasmic domain with another protein that is polarly
397 localized at the RHID but excluded from the rest of the outer polar domain could explain WFL
398 polar localization. Recently, polar localization of GEF3 to the RHID was shown to be necessary
399 for ROP2 recruitment to this site (Denninger et al., 2019). Therefore, it is possible that in the
400 absence of its intracellular domains, WFLΔJxK-GFP is unable to interact with the binding
401 partner that is driving WFL polarization to the inner polar domain and the RHID. However, this
402 explanation is not very satisfying as it implies that without its correct binding partner WFL would

403 have a reciprocal localization pattern in H cells (identical to WFLΔJxK-GFP) or that truncated
404 WFL interacts with a different protein that happens to have the opposite polar localization.
405 Further research will be necessary to identify WFL binding partners and determine whether they
406 influence WFL polarity.

407
408 The identification of receptor kinases with polar localization provides a new set of conceptual
409 and molecular tools to investigate cell polarity in plants. Unlike transporters, polar localization of
410 receptor proteins is not implicitly tied to their molecular function, suggesting that establishment
411 of polarized signaling domains to perceive extracellular cues is functionally important. There is a
412 long-standing hypothesis that directional signaling and positional information are key drivers of
413 plant development and the identification of polarized receptor kinases, like WFL, supports this
414 hypothesis.

415

416 MATERIALS & METHODS

417 Lead contact and materials availability

418 Further information and requests for resources and reagents should be directed to and will be
419 fulfilled by the Lead Contact, Jaimie Van Norman (jaimie.vannorman@ucr.edu). Plasmids and
420 transgenic Arabidopsis lines generated in this study have been deposited to the Arabidopsis
421 Resource Center (ABRC, <https://abrc.osu.edu/>)

422

423 Plant materials and growth conditions

424 The *Arabidopsis thaliana* Columbia-0 accession was used as the wild type. Standard growth
425 media consisted of 0.5x, 1x, or 1x -Pi Murashige and Skoog (MS) salts (Caisson labs), 0.5 g/L
426 MES (EMD), 1% sucrose, pH 5.7, and 1% agar (Difco), unless otherwise noted. Seeds were
427 surface sterilized with chlorine gas, stratified in tubes at 4°C for 2-3 days and then plated on 100
428 mm plates with standard growth medium. Plates were then placed vertically in a Percival
429 incubator under long day conditions (16 h light/8 h dark) at a constant temperature of 22°C.
430 Plates were sealed with parafilm for experimental analyses. Seedlings were typically examined
431 between 4-7 days post-stratification (dps). Details for individual experiments are listed in figure
432 legends and/or below.

433

434 A candidate insertional allele of *WFL* was obtained from the ABRC (Arabidopsis Resource
435 Center), SAIL_1170_A12, but could not be used for any analyses in this paper as no

436 heterozygous or homozygous mutant individuals could be identified. An allele (*wfl-1*) was
437 generated using CRISPR-Cas9 technology and used for all phenotypic analyses.

438

439 **Vector Construction and Plant Transformation**

440 Transcriptional and translational reporter genes were constructed by standard molecular biology
441 methods and utilizing Invitrogen Multisite Gateway® technology (Carlsbad, USA). A region 4.1
442 kb upstream of the *WFL* (At5g24100) start codon was amplified from Col-0 genomic DNA and
443 recombined into the Invitrogen pENTR™ 5'-TOPO® TA vector. For the transcriptional reporter,
444 the promoter drove endoplasmic reticulum-localized green fluorescent protein (erGFP) as
445 previously described (Van Norman et al., 2014). For translational fusions, the genomic fragment
446 encoding *WFL* from the ATG up to, but excluding the stop codon (including introns, 2.0 kb), was
447 amplified from Col-0 genomic DNA and recombined into the Invitrogen pENTR™
448 DIRECTIONAL TOPO® (pENTR-D-TOPO) vector and fused to a C-terminal GFP tag (unless
449 otherwise noted) as previously described (Van Norman et al., 2014). Specific primers for *WFL*
450 cloning are listed in Table S1.

451

452 *WFL*-GFP and *WFL*ΔJxK-GFP were driven by cell type-specific promoters (*pSCR*_{2.0}, *pCO*₂, *pC1*,
453 *pUBQ10*, and *pWER*) as previously described (Lee et al., 2006; Campos et al., 2020). Due to
454 the relatively low fluorescent signal of *pWFL*:*WFL*ΔJxK-GFP, *WFL*ΔJxK-GFP misexpression
455 reporters for these truncations were fused to 3xYFP. *pC1* was received in (Gateway
456 Compatible) pENTR™ P4P1R TA vector from the lab of Philip Benfey, Duke University
457 (Durham, NC, USA). The epidermal translational reporter *pWER*:*WFL*-eYFP:*WER3*' was
458 generated as previously described (Campos et al., 2020). The various Gateway compatible
459 fragments were recombined together with the dpGreen-BarT or dpGreen-NorfT destination
460 vector (Lee et al., 2006)).

461

462 The dpGreenNorfT was generated by combining the backbone of dpGreenBarT with the
463 p35S::tpCRT1 and terminator insert from pGII0125. Within the target region of the
464 dpGreenBarT, one AcII site was mutated with the QuickChangeXL kit (Stratagene). Plasmids
465 were amplified in ccdB-resistant *E. coli* and plasmids prepped with a Bio Basic Plasmid DNA
466 Miniprep kit. 34uL of the modified dpGreenBarT and unmodified pGII0125 were digested with
467 1ul each FspI and AcII in CutSmart buffer (NEB) for 1hr at 37C. Digests were subjected to gel
468 electrophoresis on a 1% agarose gel. The 5866bp fragment from the dpGreenBarT and 2592bp
469 fragment from the pGII0125 were extracted with a Qiagen MinElute Gel Extraction kit. The

470 fragments were then ligated at 1:1 volumetric ratio (20ng vector; 8.8ng insert) using T4 DNA
471 ligase incubated at 16C overnight before transformation into ccdB-resistant *E. coli*.
472
473 Expression constructs were then transformed into Col-0 plants by the floral dip method (Clough
474 and Bent, 1998) using Agrobacterium strain GV3101 (Koncz et al., 1992) and transformants
475 were identified using standard methods. For each reporter gene, T2 lines with a 3:1 ratio of
476 resistant to sensitive seedlings, indicating the transgene is inherited as a single locus, were
477 selected for propagation. These T2 plants were allowed to self and among the subsequent T3
478 progeny, those with 100% resistant seedlings, indicating that the transgene was homozygous,
479 were used in further analyses. For each reporter, at least three independent lines with the same
480 relative expression levels and localization pattern were selected for imaging by confocal
481 microscopy.

482
483 CRISPR-induced mutagenesis was performed as described in (Fauser et al., 2014), a single
484 guide RNA (5'-TTAACCGTAGTATTCCCGCGGG) was selected in exon 2 of *WFL*. T2 lines
485 that exhibited a 3:1 ratio of resistant to sensitive seedlings, indicating the CRISPR-guideRNA-
486 containing transgene was inherited as a single locus, were selected for continued analyses and
487 sensitive plants were transferred to 1X MS standard growth media to recover. These plants
488 were subsequently tested for lesions in *WFL* in proximity to the guideRNA binding site. We
489 identified *wfl-1*, which has reduced *WFL* expression (Figure S3) and has a single T insertion in
490 the coding region of the second exon that results in a premature stop codon before the
491 transmembrane domain.

492
493 **Confocal Microscopy and Image Analysis**
494 Roots were stained with ~10 µM propidium iodide (PI) solubilized in water for 1-2 min. Imaging
495 was performed via laser scanning confocal microscopy on a Leica SP8 upright microscope
496 equipped with a water-corrected 40x objective and housed in the Van Norman lab. Root
497 meristems were visualized in the median longitudinal or transverse planes. Images were
498 generated using PMT and HYD detectors with the pinholes adjusted to 1 airy unit for each
499 wavelength and system settings were as follows: GFP (excitation 488 nm, emission 492-530
500 nm), YFP (excitation 514 nm, emission 515-550 nm) and PI (excitation 536 nm, emission 585-
501 660 nm). Unless otherwise indicated, all confocal images are either median longitudinal of roots
502 or transverse sections acquired in the meristematic, elongation, and/or differentiation zones. All
503 plants used for reporter expression imaging were grown on 1x MS with the exception of the

504 roots expressing *pWFL:WFL-GFP* in Figure 1 and Figure 3C and 3E which were grown on 1x
505 MS for 6 days and then transferred to 1x MS -Pi plates for 24 hours. Localization of WFL-GFP
506 was unaffected by -Pi treatment.

507

508 For GFP fluorescence intensity measurements of *pWFL:WFL-GFP* and *pWFL:WFLΔJxK-GFP*,
509 seedlings were grown side-by-side on 0.5x MS plates until 5 dps. RHIDs and bulges were
510 selected for analysis at the beginning of the differentiation zone. GFP intensity was measured
511 using Leica (LAS X) quantification software at 3 different positions across the outer epidermal
512 edge. The positions were assigned as follows: Position 1, the area just above the RHID or
513 bulge; Position 2, at center of the RHID or bulge; Position 3, the area just below the RHID or
514 bulge. The maximum GFP intensity was recorded for all 3 positions in 2 biological replicates for
515 15-20 roots per replicate and GFP intensity was measured in 2-3 cells per root. Representative
516 images of RHID sites and bulges were chosen for each genotype for the figure.

517

518 To visualize the dynamic movement of WFL-GFP in RHs, a movie was created by acquiring
519 images every ~10 seconds for ~3 minutes. The images were then exported and compiled into a
520 hyperstack using ImageJ software (<https://imagej.nih.gov/ij/>). These final stacks were saved as
521 an AVI movie with a frame rate of 5 frames per second.

522

523 **Phenotypic Analyses**

524 Root hair bulge position measurement protocol was modified from that was previously described
525 in (Masucci and Schiefelbein, 1994b). For root hair bulge position quantification ~15 roots of
526 each genotype were grown side-by-side on 0.5x MS plates until 4 dps. To image roots,
527 seedlings were stained with PI (as described above) and imaged using confocal microscopy.
528 For each biological replicate, imaging was primarily done in median longitudinal sections at the
529 beginning of the differentiation zone of 15 roots with 3-5 epidermal cells with a root hair bulge
530 selected from each root for analysis. Root hair bulges were binned into 2 categories with the
531 following parameters: “normal (WT)” if there was a measurable distance from the emerging root
532 hair to the rootward edge of the cell and “shifted” if there was no measurable distance. Images
533 were analyzed using ImageJ software for at least 2-4 biological replicates analyzed for each
534 genotype.

535

536 **Chemical Treatments**

537 Treatments with small molecules were performed using *pWFL:WFL-GFP* in the Col-0
538 background seedlings grown on 0.5x MS plates grown until 5 dps. Seedlings were then
539 incubated in liquid 0.5x MS containing one or a combination of the following chemicals:
540 Brefeldin A (BFA) (Sigma-Aldrich) was dissolved in dimethyl sulfoxide (DMSO) (Calbiochem,
541 Cat #317275) in 50 mM stocks and added to the media at a final concentration of 50 μ M for 1
542 hour or other indicated times. Cycloheximide (CHX) (Sigma-Aldrich, Cat #C7698) was added
543 from a 50 mM aqueous stock to a final concentration of 50 μ M for 2 hours or other indicated
544 time. Wortmannin (Wm) (Sigma-Aldrich) was dissolved in DMSO and used at 33 μ M for 2 hours.
545 In control (mock) experiments, seedlings were incubated in the same media containing an equal
546 amount (0.05% to 0.1%) of the correspondent solvent.

547

548 **RT-qPCR Analysis**

549 Total RNA for quantitative RT-PCR (qRT-PCR) was isolated using Qiagen's RNeasy Plant Mini
550 Kit. Total RNA was extracted from whole seedlings at 7 dps after growth on our standard 1X MS
551 (*wfl-1* and Col-0) or 0.5x MS (Col-0 and *pWFL:WFL-GFP*) growth medium and sealed with
552 parafilm. For each of the biological replicates Col-0 and *wfl-1* or *pWFL:WFL-GFP* were grown
553 side-by-side on the same plate. RNA was isolated for three independent biological replicates for
554 Col-0, *pWFL:WFL-GFP*, and the *wfl-1* allele. First-strand cDNA was synthesized from 1 μ g total
555 RNA with RevertAid First Strand cDNA Synthesis and the oligo(dT)₁₈ primer (Thermo Scientific).
556 qRT-PCR reactions were set up using IQ SYBR Green Supermix (BioRad) and analysis was
557 performed on the CFX-Connect Real-Time System housed in the Integrative Institute of
558 Genome Biology Genomics Core facility at UC-Riverside. The reaction conditions for each
559 primer pair were: 95°C for 3 min followed by 40 cycles of 95°C for 10s and 57°C for 20 s.
560 Standard curves were performed at least in duplicate. Primer pair efficiency values were
561 calculated for each replicate of the standard curves and the average efficiency was used for
562 subsequent analysis (Table S2). For each genotype and biological replicate, three technical
563 replicates were performed. Data analysis was performed with the Bio-Rad CFX Manager
564 software 3.1 and transcript levels were normalized to *SERINE/THREONINE PROTEIN*
565 *PHOSPHATASE2A (PP2A)* (Czechowski *et al.*, 2005).

566

567 **Quantification and Statistical Analysis**

568 The Leica LAS X software, as well as ImageJ were used for post-acquisition confocal image
569 processing. The corrected plasma membrane fluorescence intensity data was obtained by
570 analyzing the images with the software ImageJ and calculating the Integrated Density of plasma

571 membrane fluorescence and subtracting (Area of selected cell x Mean fluorescence of
572 background readings). Graphs were generated using PRISM8 (GraphPad Software,
573 <https://www.graphpad.com/>, San Diego, USA). The exact value of n, what n represents, the
574 number of biological or technical replicates, the means, standard error of the mean (SEM),
575 standard deviation (SD), and how statistical significance was defined are indicated in each of
576 the relevant figure legends. Standard two-tailed student's t test was performed when comparing
577 wild type to mutant and overexpression phenotypic aspects as a normal distribution is expected.
578

579 **ACKNOWLEDGMENTS**

580 We thank members of the Van Norman Lab: Roya Campos and Jason Goff and Dr. Carolyn
581 Rasmussen and Dr. Patricia Springer (UC, Riverside) for discussions of the project and
582 feedback on the manuscript while it was in preparation. We also thank Dr. Erin Sparks
583 (Delaware Biotechnology Institute) for providing the NorfT version of the dpGreen Gateway
584 compatible destination vector. We appreciate access to and assistance from the Institute of
585 Integrative Genome Biology Genomics Core Facility (UC, Riverside). This work was supported
586 by Initial Complement (IC) funds from the University of California, Riverside, USDA-NIFA-CA-R-
587 BPS-5156-H, NSF CAREER award #1751385 to J.M.V.N., and NSF-GRFP award #DGE-
588 1326120 to J.N.T.

589

590 **AUTHOR CONTRIBUTIONS**

591 Conceptualization: J.M.V.N.; Methodology and Investigation: J.M.V.N., J.N.T., and C.R-F.;
592 Resources: J.M.V.N. and J.N.T.; Writing - Original Draft: J.N.T.; Writing - Review and Editing,
593 J.N.T., C.R-F., and J.M.V.N.; Visualization: J.N.T. and C.R-F.; Supervision: J.M.V.N.; Funding
594 Acquisition: J.M.V.N. and J.N.T.

595

596 **FIGURE LEGENDS**

597 **Figure 1. *pWFL* is active in the lateral root cap and epidermis and *WFL-GFP* localizes to
598 the inner polar domain of these cell types.** (A) Schematic representation of cell types in the
599 Arabidopsis root in longitudinal and transverse views. (B-K) Confocal images of WT roots
600 expressing (B-E) *pWFL:erGFP* and (F-K) *pWFL:WFL-GFP* and stained with propidium iodide
601 (PI) to show cell outlines. Adjacent panels show GFP alone (α) and GFP + PI merged (α'),
602 except in (F) where only the merged image is shown. (B and C) In the elongation and
603 differentiation zones, *pWFL* is most active in pericycle and epidermal cells with (C) higher
604 activity in H cells compared to NH cells. (D and E) In the meristematic zone, *pWFL* is active in

605 the cell layers of the LRC. (F) WFL-GFP localization in the root tip. (G and H) In the elongation
606 and differentiation zones, WFL-GFP localizes to the inner polar domain of (G) epidermal cells
607 with (H) preferential accumulation in H cells. (K) WFL-GFP also localizes to RH bulges (yellow
608 asterisk). (I and J) WFL-GFP localizes to the inner polar domain of the outermost layer of the
609 LRC. Abbreviations: LRC, lateral root cap; Ep, epidermis; C, cortex; P, pericycle; H, hair cell.
610 Scale bars: 50 μ m in (F); 25 μ m in (B, D, G, and I); 10 μ m in all others.

611

612 **Figure 2. WFL-GFP localizes to the inner polar domain regardless of cell type.**

613 (A, D, and G) Schematics indicating activity of various promoters in specific cell layers. (A)
614 *pWER* is active in LRC and epidermis. (D) *pSCR* is active in endodermis, CEI and QC. (G) *pC1*
615 is active in mature cortex cells. (B, C, E, F, H, and I) Confocal images in longitudinal (B, E, and
616 H) and transverse (C, F, I) planes of WT roots expressing WFL-GFP/YFP driven by cell layer-
617 specific promoters (*pWER*, *pSCR*, and *pC1*) and stained with propidium iodide (PI) with
618 adjacent panels showing GFP alone (false colored to show signal intensity, α) and GFP + PI
619 merged (α'). (B-C) In the LRC and epidermis, WFL-eYFP localizes to the inner polar domain.
620 (E-F) In endodermis and (H-I) the mature cortex, WFL-GFP localizes to the inner polar domain.
621 Abbreviations: LRC, lateral root cap; Ep, epidermis; C, cortex; E, endodermis; QC, quiescent
622 center. Scale bars: 25 μ m.

623

624 **Figure 3. WFL-GFP is dynamically localized at the PM and trafficked to the vacuole for**
625 **degradation.** (A-F) Confocal images of unstained WT roots expressing *pWFL:WFL-GFP*. (A) In
626 untreated control, WFL-GFP localizes to the inner polar domain of epidermal cells. (B) 60-
627 minute BFA treatment results in WFL-GFP accumulation in BFA bodies. (C) 2-hour CHX
628 treatment reduces WFL-GFP fluorescence at PM. (D) WFL-GFP weakly accumulates in BFA
629 bodies upon cotreatment with CHX and BFA. White arrows indicate WFL-GFP in BFA bodies.
630 (E) 2-hour CHX treatment followed by BFA washout does not result in appreciable signal
631 recovery at the plasma membrane. (F) Graph shows the quantification of WFL corrected
632 fluorescence intensity in arbitrary units (AU) at the PM after the indicated treatments. Data
633 shown are representative results of experiments with at least three independent replicates. Bars
634 indicate min. to max. values and 1-4 stars indicate statistical significance (P values ≤ 0.05 , one-
635 way ANOVA using Dunn's multiple comparison test). (G and G') 3-hour dark treatment induces
636 WFL-GFP trafficking to vacuole. Green arrowheads indicate WFL-GFP accumulation in the
637 vacuole lumen. (H and H') 2-hour Wortmannin (Wm) treatment results in accumulation of WFL-
638 GFP in Wm bodies and inhibition of vacuolar trafficking. (G and H) Side view and (G' and H') top

639 view of epidermal cells. White arrowheads indicate WFL-GFP in Wm bodies. Abbreviations: Ep,
640 epidermis; C, cortex. Scale bars: 20 μ m.

641

642 **Figure 4. Deletion of the intracellular domains redirects WFL localization.** (A-E) Confocal
643 images of WT roots expressing WFL Δ JxK-GFP driven by *pWFL* (*pWFL:WFL Δ JxK-GFP*) and
644 stained with propidium iodide (PI) to show cell outlines. Adjacent panels show GFP alone (α)
645 and GFP + PI merged (α'). (A and C) In elongation and differentiation zones, WFL Δ JxK-GFP
646 localizes to the outer polar domain of epidermal cells with (C) preferential accumulation in H
647 cells. (E) WFL Δ JxK-GFP is excluded from RHIDs (yellow arrows). (B and E) WFL Δ JxK-GFP
648 localizes to the outer polar domain of the outermost cell layer of the LRC. (F and G) Schematics
649 of WFL-GFP and WFL Δ JxK-GFP localization in median (F) longitudinal and (G) transverse
650 views. Abbreviations: LRC, lateral root cap; Ep, epidermis; C, cortex; P, pericycle; H, hair cell.
651 Scale bars: 25 μ m in (A, B, and E); 10 μ m in all others.

652

653 **Figure 5. Truncated WFL predominantly localizes to the outer polar domain or is**
654 **nonpolar.** (A-D) Confocal images of WT roots expressing WFL Δ JxK-eYFP/3xYFP driven by cell
655 layer-specific promoters (*pWER*, *pCO2*, *pC1*, and *pSCR*) and stained with propidium iodide (PI)
656 with adjacent panels showing YFP alone (false colored to show signal intensity, (α) and YFP +
657 PI merged (α') (A, C, E, F) show images in longitudinal planes and (B, D, E, and F) in the
658 transverse planes (A-B) In the LRC and epidermis, WFL Δ JxK-eYFP localizes to the outer polar
659 domain. (C-D) In mature cortex cells, WFL Δ JxK-3xYFP preferentially localizes to the outer polar
660 domain. (E) In immature cortex cells, WFL Δ JxK-3xYFP localizes to the outer polar domain. (F)
661 In ground tissue initials and endodermal cells of lateral roots, WFL Δ JxK-3xYFP is nonpolar.
662 Abbreviations: LRC, lateral root cap; Ep, epidermis; C, cortex; E, endodermis; CEI,
663 cortex/endodermal initial; QC, quiescent center. Scale bars: 25 μ m.

664

665 **Figure 6. WFL-GFP and WFL Δ JxK-GFP have reciprocal localization at RHIDs and bulges.**
666 (A and B) Confocal images of WT root H cells expressing *pWFL* driven (A) WFL-GFP and (B)
667 WFL Δ JxK-GFP (GFP false colored to show signal intensity). As H cell development progresses,
668 (A) WFL-GFP localizes to RHIDs and bulges while (B) WFL Δ JxK-GFP is excluded from these
669 sites. (C, E, G, and I) Confocal images of WT roots expressing *pWFL* driven WFL-GFP and
670 WFL Δ JxK-GFP and stained with propidium iodide (PI) with adjacent panels showing GFP alone
671 (α) and GFP + PI merged (α'). (C and E) WFL-GFP localizes to the inner polar domain of H
672 cells and to (C) RHIDs as well as (C) bulges. (D and F) Quantification of fluorescence intensity

673 at 3 positions - above, at the center, and below of (D) RHIDs and (F) bulges in two independent
674 transgenic lines. (G and I) WFLΔJxK-GFP localizes to the outer polar domain of epidermal cells
675 and is excluded from (G) RHIDs and (I) bulges. (H and J) Quantification of fluorescence
676 intensity above, below, and at (H) RHIDs and (I) bulges in two independent transgenic lines. For
677 graphs: error bars, SD; student's t test, **** p<0.0001. Two different transgenic lines for each
678 reporter were used as biological replicates, with n= 15-20 roots and 2-3 cells per root per
679 replicate. Yellow asterisks and arrows indicate RHIDs and bulges for WFL-GFP and WFLΔJxK-
680 GFP, respectively. Numbers indicate positions of fluorescence intensity measurements relative
681 to RH apex, 1= above, 2= center, 3= below. Abbreviations: Ep, epidermis; C, cortex. Scale bars:
682 20 μ m in (A and B) 50 μ m in (C and I); 25 μ m in (E and G).

683

684 **Figure 7. Overexpression of WFL-GFP shifts root hair position downward toward the**
685 **rootward edge of hair cells.** (A and B) Confocal images showing propidium iodide (PI) stain
686 (gray) to show cell outlines of (A) WT and (B) WT roots expressing *pWFL:WFL-GFP*. (A) RHs
687 in WT roots have a defined space between the rootward edge of H cells and the site of the RH
688 bulge (yellow arrows). (B) In contrast, in roots expressing *pWFL:WFL-GFP*, RHs are shifted
689 downward towards the rootward edge of H cells (yellow asterisks). (C and D) RHs were binned
690 into 2 categories based on position and quantified according to genotype. (C) RH bulge position
691 in *wfl-1* and WT is the same, whereas RH bulges are shifted downwards when WFL-GFP is
692 overexpressed by either *pWFL* or *pUBQ10*. No change in RH bulge position is observed when
693 *pWFL:WFL-GFP* is expressed in *wfl-1*. For graphs: student's t test, *** p<0.001 and ****
694 p<0.0001. Data shown is from one (of two) independent transgenic lines per reporter (with
695 similar results for each line in each replicate) and 3-4 biological replicates combined, with n=15
696 roots and 3-5 cells per root per replicate. Abbreviations: Ep, Epidermis. Scale bars: 25 μ m.
697

698 **Supplemental Figure S1. WFLΔK-GFP localizes to the outer polar domain of lateral root**
699 **cap and epidermal cells.** (A-E) Confocal images of WT roots expressing WFLΔK-GFP driven
700 by *pWFL* (*pWFL:WFLΔK-GFP*) and stained with propidium iodide (PI) to show cell outlines.
701 Adjacent panels show GFP alone (α) and GFP + PI merged (α'). (A and C) In elongation and
702 differentiation zones, WFLΔK-GFP localizes to the outer polar domain of epidermal cells with
703 (C) preferential accumulation in H cells. (E) WFLΔK-GFP is excluded from RHIDs. (B and D)
704 WFLΔK-GFP localizes to the outer polar domain of the LRC. Abbreviations: LRC, lateral root
705 cap; Ep, epidermis; C, cortex; H, hair cell. Scale bars: 25 μ m in (A, B, and E); 10 μ m in all
706 others.

707

708 **Supplemental Figure S2. GFP does not cause shifted RH bulge phenotype and this**
709 **phenotype is not observed in roots expressing *pWFL:WFLJxK-GFP*.**

710 (A and C) RH bulges were binned into two categories and quantified. (A) RH bulges are shifted
711 towards the rootward edge of H cells in roots expressing an untagged version of WFL
712 (*pWFL:WFL*). (C) Bulge position is unaffected in roots expressing *pWFL:WFLΔJxK-GFP* and
713 *pWFL:WFLΔJxK-GFP* in *wfl-1*. (B) RT-qPCR showing transcript levels of *WFL* among
714 transgenic lines used for phenotyping. Error bars show standard error of the mean. For RH
715 bulge position graphs: student's t test, ** p<0.01 and **** p<0.0001. Data shown is from one (of
716 two) independent transgenic lines per reporter (with similar results for each line in each
717 replicate) and 2-3 biological replicates combined, with n= 15 roots and 3-5 cells per root for
718 each replicate.

719

720 **Supplemental Figure S3. *WFL* transcript level is reduced in *wfl-1*.** RT-qPCR showed
721 reduced *WFL* transcript levels in *wfl-1*. *WFL* expression is relative to *SERINE/THREONINE*
722 *PROTEIN PHOSPHATASE 2A (PP2A)*. Data shown for one biological replicate (of three) with 3
723 technical replicates performed per experiment and each experiment was repeated 3 times. Error
724 bars indicate standard error of the mean.

725

726 **Supplemental Movie SM1. *WFL* is a highly dynamic transmembrane protein.** *WFL-GFP* is
727 dynamic and moves to and from on the plasma membrane during RH development.

728

729 **LITERATURE CITED**

730 Alassimone J, Naseer S, Geldner N (2010) A developmental framework for endodermal
731 differentiation and polarity. *Proceedings of the National Academy of Sciences* 107: 5214–
732 5219

733 Balzergue C, Darteville T, Godon C, Laugier E, Meisrimler C, Teulon J-M, Creff A, Bissler M,
734 Brouchoud C, Hagège A, et al (2017) Low phosphate activates STOP1-ALMT1 to rapidly
735 inhibit root cell elongation. *Nat Commun* 8: 15300

736 Benfey PN, Scheres B (2000) Root development. *Curr Biol* 10: R813–5

737 Brady SM, Orlando DA, Lee J-Y, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN
738 (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns.

739 Science 318: 801–806

740 Breda AS, Hazak O, Hardtke CS (2017) Phosphosite charge rather than shootward localization
741 determines OCTOPUS activity in root protophloem. Proc Natl Acad Sci U S A 114: E5721–
742 E5730

743 Campos R, Goff J, Rodriguez-Furlan C, Van Norman JM (2020) The Arabidopsis Receptor
744 Kinase IRK Is Polarized and Represses Specific Cell Divisions in Roots. Dev Cell 52: 183–
745 195.e4

746 Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated
747 transformation of *Arabidopsis thaliana*. Plant J 16: 735–743

748 Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R (2005) Genome-wide
749 identification and testing of superior reference genes for transcript normalization in
750 *Arabidopsis*. Plant Physiol 139: 5–17

751 Denninger P, Reichelt A, Schmidt VAF, Mehlhorn DG, Asseck LY, Stanley CE, Keinath NF,
752 Evers J-F, Grefen C, Grossmann G (2019) Distinct RopGEFs Successively Drive
753 Polarization and Outgrowth of Root Hairs. Curr Biol 29: 1854–1865.e5

754 Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular
755 organisation of the *Arabidopsis thaliana* root. Development 119: 71–84

756 Duan Q, Kita D, Li C, Cheung AY, Wu H-M (2010) FERONIA receptor-like kinase regulates
757 RHO GTPase signaling of root hair development. Proc Natl Acad Sci U S A 107: 17821–
758 17826

759 Dünser K, Gupta S, Herger A, Feraru MI, Ringli C, Kleine-Vehn J (2019) Extracellular matrix
760 sensing by FERONIA and Leucine-Rich Repeat Extensins controls vacuolar expansion
761 during cellular elongation in *Arabidopsis thaliana*. EMBO J. doi:
762 10.15252/embj.2018100353

763 Fauser F, Schiml S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be
764 used efficiently for genome engineering in *Arabidopsis thaliana*. Plant J 79: 348–359

765 Gilroy S, Jones DL (2000) Through form to function: root hair development and nutrient uptake.
766 Trends Plant Sci 5: 56–60

767 Grierson C, Nielsen E, Ketelaarc T, Schiefelbein J (2014) Root hairs. *Arabidopsis Book* 12:
768 e0172

769 Heidstra R, Welch D, Scheres B (2004) Mosaic analyses using marked activation and deletion
770 clones dissect *Arabidopsis* SCARECROW action in asymmetric cell division. *Genes Dev*
771 18: 1964–1969

772 Huang G-Q, Li E, Ge F-R, Li S, Wang Q, Zhang C-Q, Zhang Y (2013) *Arabidopsis* RopGEF4
773 and RopGEF10 are important for FERONIA-mediated developmental but not environmental
774 regulation of root hair growth. *New Phytol* 200: 1089–1101

775 Kleine-Vehn J, Leitner J, Zwiewka M, Sauer M, Abas L, Luschnig C, Friml J (2008) Differential
776 degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. *Proc
777 Natl Acad Sci U S A* 105: 17812–17817

778 Koncz C, Németh K, Rédei GP, Schell J (1992) T-DNA insertional mutagenesis in *Arabidopsis*.
779 *Plant Mol Biol* 20: 963–976

780 Kwon T, Sparks JA, Liao F, Blancaflor EB (2018) ERULUS Is a Plasma Membrane-Localized
781 Receptor-Like Kinase That Specifies Root Hair Growth by Maintaining Tip-Focused
782 Cytoplasmic Calcium Oscillations. *Plant Cell* 30: 1173–1177

783 Kwon T, Sparks JA, Nakashima J, Allen SN, Tang Y, Blancaflor EB (2015) Transcriptional
784 response of *Arabidopsis* seedlings during spaceflight reveals peroxidase and cell wall
785 remodeling genes associated with root hair development. *Am J Bot* 102: 21–35

786 Langowski L, Růžicka K, Naramoto S, Kleine-Vehn J, Friml J (2010) Trafficking to the outer
787 polar domain defines the root-soil interface. *Curr Biol* 20: 904–908

788 Łangowski Ł, Wabnik K, Li H, Vanneste S, Naramoto S, Tanaka H, Friml J (2016) Cellular
789 mechanisms for cargo delivery and polarity maintenance at different polar domains in plant
790 cells. *Cell Discov* 2: 16018

791 Lee J-Y, Colinas J, Wang JY, Mace D, Ohler U, Benfey PN (2006) Transcriptional and
792 posttranscriptional regulation of transcription factor expression in *Arabidopsis* roots. *Proc
793 Natl Acad Sci U S A* 103: 6055–6060

794 Lee MM, Schiefelbein J (1999) WEREWOLF, a MYB-related protein in *Arabidopsis*, is a

795 position-dependent regulator of epidermal cell patterning. *Cell* 99: 473–483

796 Levesque MP, Vernoux T, Busch W, Cui H, Wang JY, Blilou I, Hassan H, Nakajima K,
797 Matsumoto N, Lohmann JU, et al (2006) Whole-genome analysis of the SHORT-ROOT
798 developmental pathway in *Arabidopsis*. *PLoS Biol* 4: e143

799 Li R, Rodriguez-Furlan C, Wang J, van de Ven W, Gao T, Raikhel NV, Hicks GR (2017)
800 Different Endomembrane Trafficking Pathways Establish Apical and Basal Polarities. *Plant*
801 *Cell* 29: 90–108

802 Li S, Yamada M, Han X, Ohler U, Benfey PN (2016) High-Resolution Expression Map of the
803 *Arabidopsis* Root Reveals Alternative Splicing and lincRNA Regulation. *Dev Cell* 39: 508–
804 522

805 Masucci JD, Schiefelbein JW (1994a) Root-Hair Initiation through an Auxin- and Ethylene-
806 Associated Process'. *Plant Physiol* 106: 1335–1346

807 Masucci JD, Schiefelbein JW (1996) Hormones act downstream of TTG and GL2 to promote
808 root hair outgrowth during epidermis development in the *Arabidopsis* root. *Plant Cell* 8:
809 1505–1517

810 Masucci JD, Schiefelbein JW (1994b) The rhd6 Mutation of *Arabidopsis thaliana* Alters Root-
811 Hair Initiation through an Auxin- and Ethylene-Associated Process. *Plant Physiol* 106:
812 1335–1346

813 Muroyama A, Bergmann D (2019) Plant Cell Polarity: Creating Diversity from Inside the Box.
814 *Annu Rev Cell Dev Biol* 35: 309–336

815 Nakamura M, Grebe M (2018) Outer, inner and planar polarity in the *Arabidopsis* root. *Curr Opin*
816 *Plant Biol* 41: 46–53

817 Paquette AJ, Benfey PN (2005) Maturation of the ground tissue of the root is regulated by
818 gibberellin and SCARECROW and requires SHORT-ROOT. *Plant Physiol* 138: 636–640

819 Péret B, Clément M, Nussaume L, Desnos T (2011) Root developmental adaptation to
820 phosphate starvation: better safe than sorry. *Trends Plant Sci* 16: 442–450

821 Petrásek J, Friml J (2009) Auxin transport routes in plant development. *Development* 136:
822 2675–2688

823 Raggi S, Demes E, Liu S, Verger S, Robert S (2020) Polar expedition: mechanisms for protein
824 polar localization. *Curr Opin Plant Biol* 53: 134–140

825 Ringli C, Baumberger N, Diet A, Frey B, Keller B (2002) ACTIN2 is essential for bulge site
826 selection and tip growth during root hair development of *Arabidopsis*. *Plant Physiol* 129:
827 1464–1472

828 Rodriguez-Furlan C, Minina EA, Hicks GR (2019) Remove, Recycle, Degrade: Regulating
829 Plasma Membrane Protein Accumulation. *Plant Cell* 31: 2833–2854

830 Schiefelbein JW, Somerville C (1990) Genetic Control of Root Hair Development in *Arabidopsis*
831 *thaliana*. *Plant Cell* 2: 235–243

832 Schoenaers S, Balcerowicz D, Breen G, Hill K, Zdanio M, Mouille G, Holman TJ, Oh J, Wilson
833 MH, Nikonorova N, et al (2018) The Auxin-Regulated CrRLK1L Kinase ERULUS Controls
834 Cell Wall Composition during Root Hair Tip Growth. *Curr Biol* 28: 722–732.e6

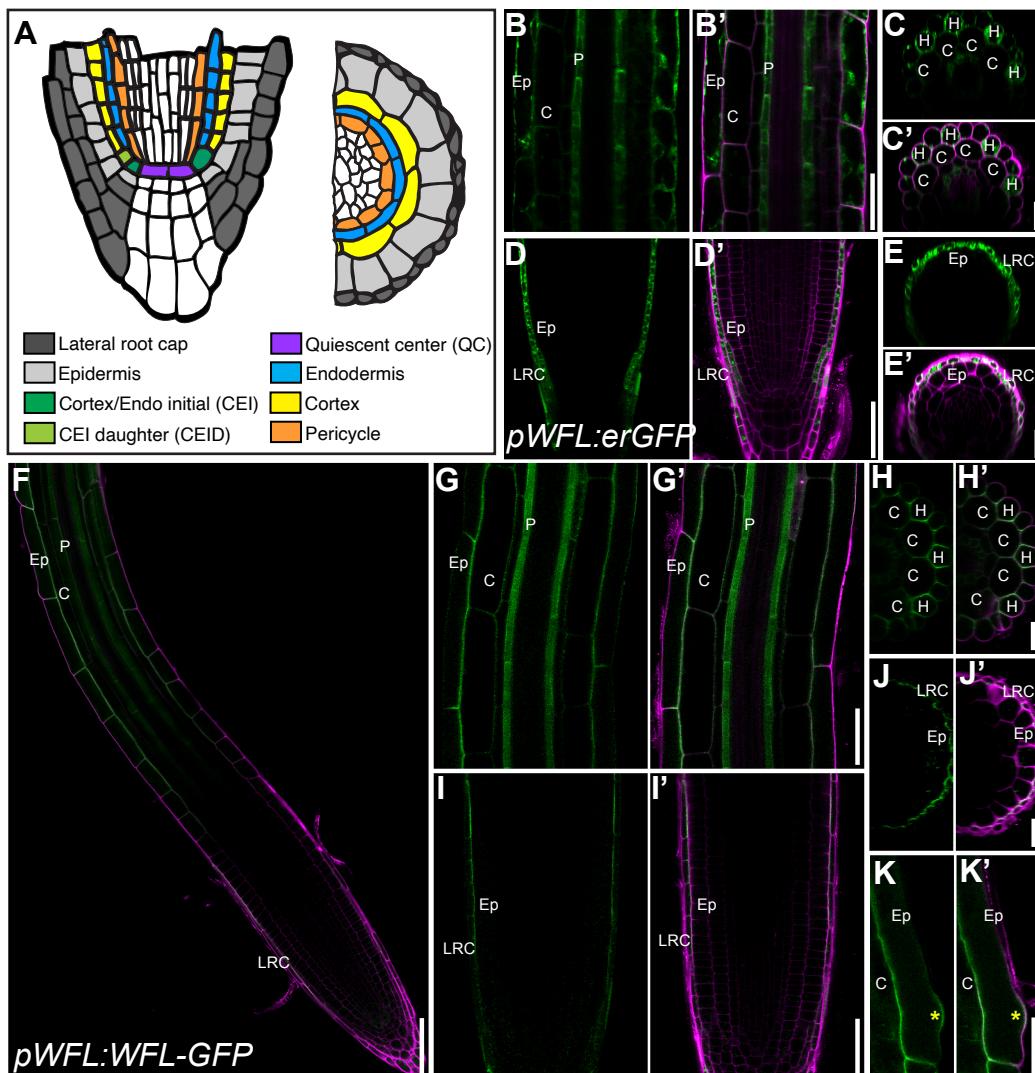
835 Singh SK, Fischer U, Singh M, Grebe M, Marchant A (2008) Insight into the early steps of root
836 hair formation revealed by the *procuste1* cellulose synthase mutant of *Arabidopsis thaliana*.
837 *BMC Plant Biol* 8: 57

838 Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva
839 NT, Morris JH, Bork P, et al (2019) STRING v11: protein–protein association networks with
840 increased coverage, supporting functional discovery in genome-wide experimental
841 datasets. *Nucleic Acids Res* 47: D607–D613

842 Takano J, Tanaka M, Toyoda A, Miwa K, Kasai K, Fuji K, Onouchi H, Naito S, Fujiwara T (2010)
843 Polar localization and degradation of *Arabidopsis* boron transporters through distinct
844 trafficking pathways. *Proc Natl Acad Sci U S A* 107: 5220–5225

845 Tanaka H, Nodzyński T, Kitakura S, Feraru MI, Sasabe M, Ishikawa T, Kleine-Vehn J, Kakimoto
846 T, Friml J (2014) BEX1/ARF1A1C is required for BFA-sensitive recycling of PIN auxin
847 transporters and auxin-mediated development in *Arabidopsis*. *Plant Cell Physiol* 55: 737–
848 749

849 Van Norman JM (2016) Asymmetry and cell polarity in root development. *Dev Biol* 419: 165–
850 174


851 Van Norman JM, Zhang J, Cazzonelli CI, Pogson BJ, Harrison PJ, Bugg TDH, Chan KX,
852 Thompson AJ, Benfey PN (2014) Periodic root branching in *Arabidopsis* requires synthesis
853 of an uncharacterized carotenoid derivative. *Proc Natl Acad Sci U S A* 111: E1300–9

854 Wysocka-Diller JW, Helariutta Y, Fukaki H, Malamy JE, Benfey PN (2000) Molecular analysis of
855 SCARECROW function reveals a radial patterning mechanism common to root and shoot.
856 *Development* 127: 595–603

857 Zhu S, Estévez JM, Liao H, Zhu Y, Yang T, Li C, Wang Y, Li L, Liu X, Pacheco JM, et al (2020)
858 The RALF1-FERONIA Complex Phosphorylates eIF4E1 to Promote Protein Synthesis and
859 Polar Root Hair Growth. *Mol Plant* 13: 698–716

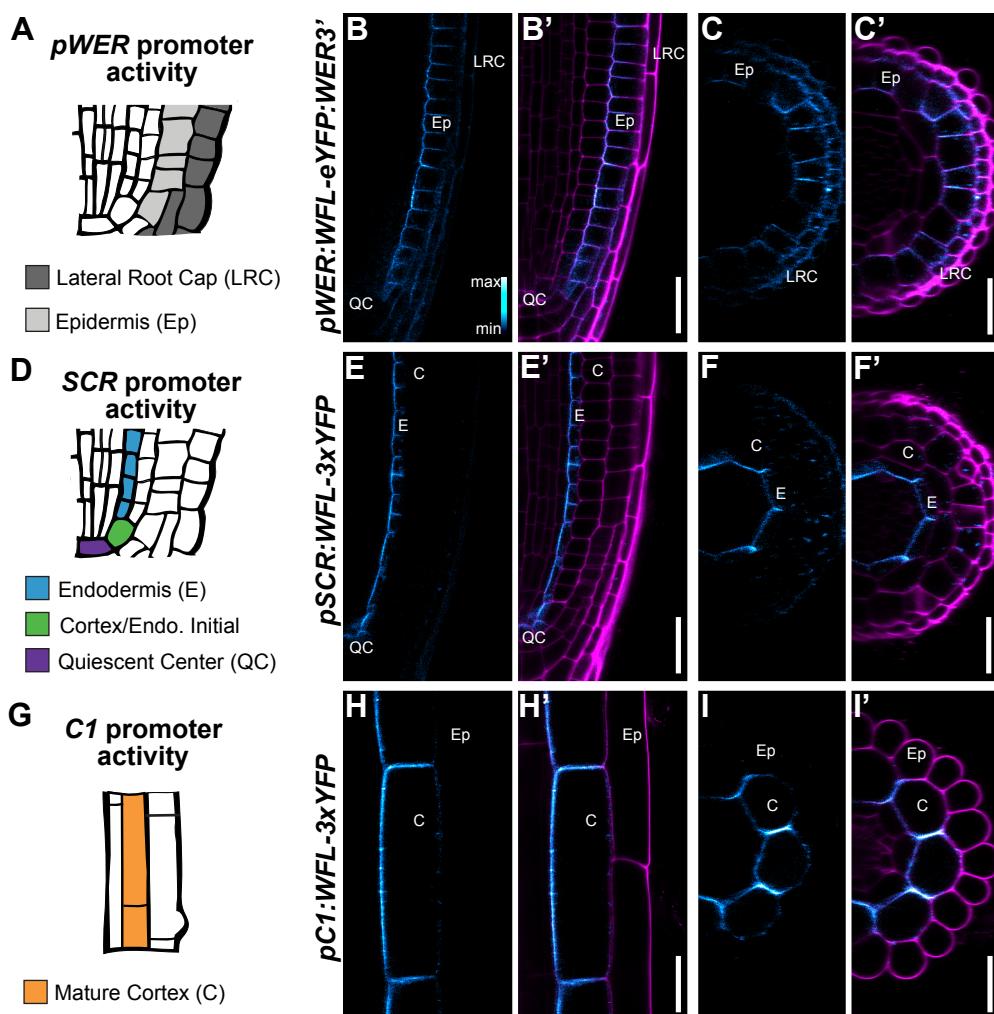

860

Figure 1

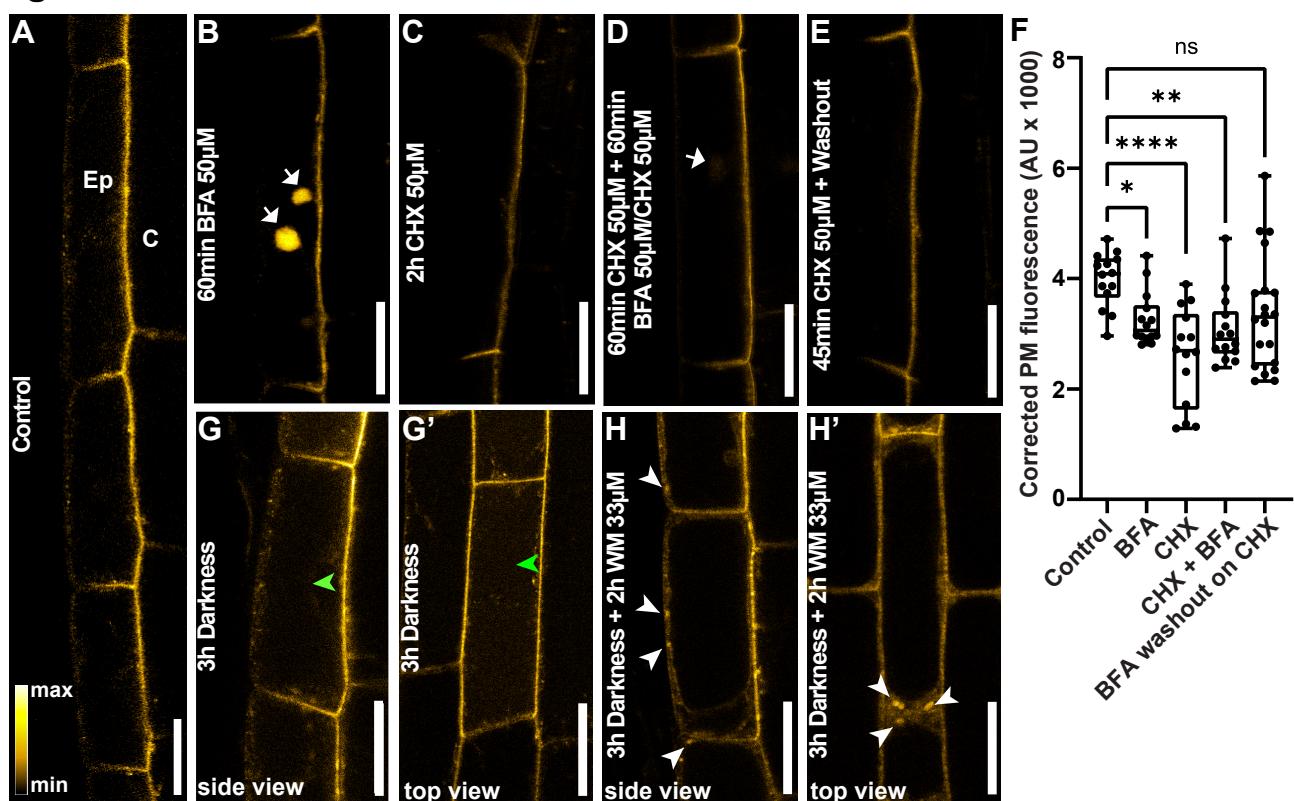

Figure 1. *pWFL* is active in the lateral root cap and epidermis and *WFL-GFP* localizes to the inner polar domain of these cell types. (A) Schematic representation of cell types in the Arabidopsis root in longitudinal and transverse views. (B-K) Confocal images of WT roots expressing (B-E) *pWFL:erGFP* and (F-K) *pWFL:WFL-GFP* and stained with propidium iodide (PI) to show cell outlines. Adjacent panels show GFP alone (a) and GFP + PI merged (a'), except in (F) where only the merged image is shown. (B and C) In the elongation and differentiation zones, *pWFL* is most active in pericycle and epidermal cells with (C) higher activity in H cells compared to NH cells. (D and E) In the meristematic zone, *pWFL* is active in the cell layers of the LRC. (F) *WFL-GFP* localization in the root tip. (G and H) In the elongation and differentiation zones, *WFL-GFP* localizes to the inner polar domain of (G) epidermal cells with (H) preferential accumulation in H cells. (K) *WFL-GFP* also localizes to RH bulges (yellow asterisk). (I and J) *WFL-GFP* localizes to the inner polar domain of the outermost layer of the LRC. Abbreviations: LRC, lateral root cap; Ep, epidermis; C, cortex; P, pericycle; H, hair cell. Scale bars: 50 μ m in (F); 25 μ m in (B, D, G, and I); 10 μ m in all others.

Figure 2

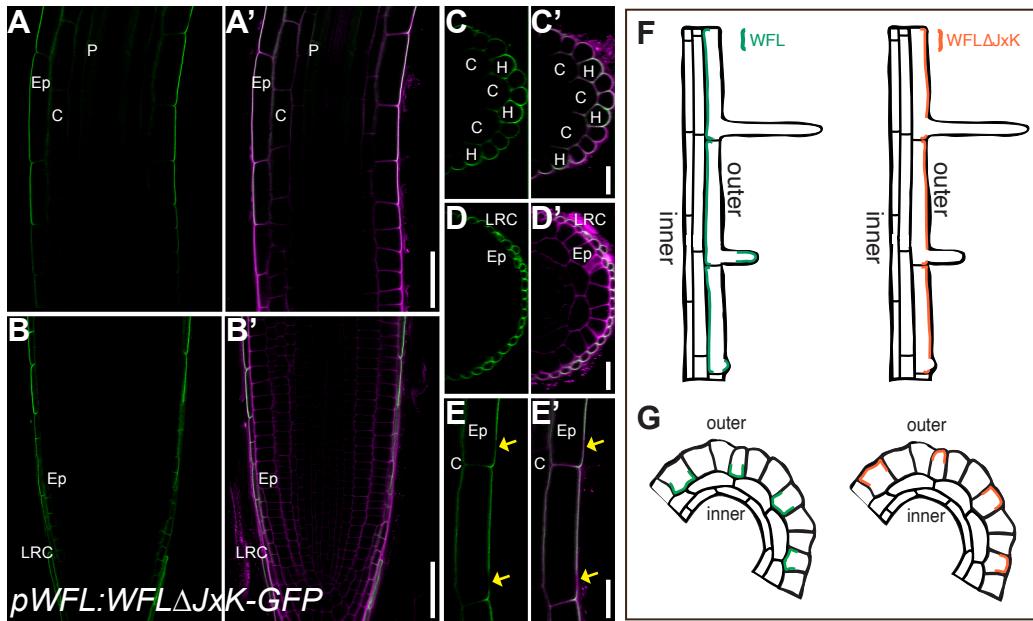

Figure 2. WFL-GFP localizes to the inner polar domain regardless of cell type. (A, D, and G) Schematics indicating activity of various promoters in specific cell layers. (A) *pWER* is active in LRC and epidermis. (D) *pSCR* is active in endodermis, CEI and QC. (G) *pC1* is active in mature cortex cells. (B, C, E, F, H, and I) Confocal images in longitudinal (B, E, and H) and transverse (C, F, I) planes of WT roots expressing WFL-GFP/YFP driven by cell layer-specific promoters (*pWER*, *pSCR*, and *pC1*) and stained with propidium iodide (PI) with adjacent panels showing GFP alone (false colored to show signal intensity, (a) and GFP + PI merged (a')). (B-C) In the LRC and epidermis, WFL-eYFP localizes to the inner polar domain. (E-F) In endodermis and (H-I) the mature cortex, WFL-GFP localizes to the inner polar domain. Abbreviations: LRC, lateral root cap; Ep, epidermis; C, cortex; E, endodermis; QC, quiescent center. Scale bars: 25 μ m.

Figure 3

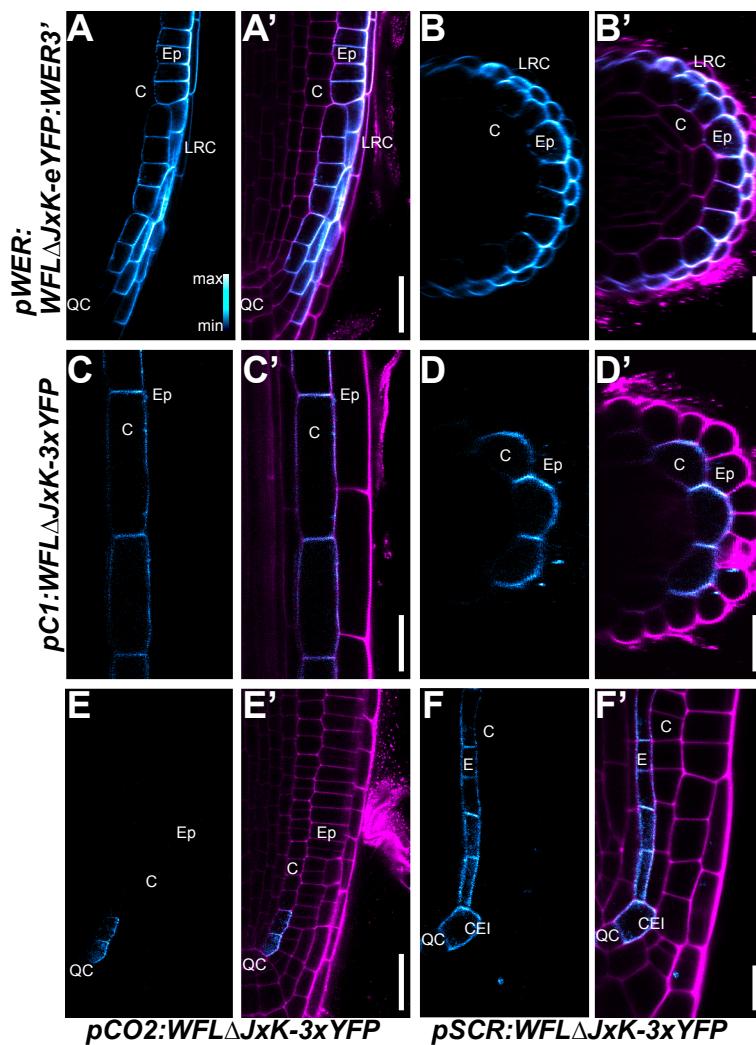

Figure 3. WFL-GFP is dynamically localized at the PM and trafficked to the vacuole for degradation. (A-F) Confocal images of unstained WT roots expressing *pWFL:WFL-GFP*. (A) In untreated control, WFL-GFP localizes to the inner polar domain of epidermal cells. (B) 60-minute BFA treatment results in WFL-GFP accumulation in BFA bodies. (C) 2-hour CHX treatment reduces WFL-GFP fluorescence at PM. (D) WFL-GFP accumulates in BFA bodies upon cotreatment with BFA and CHX. White arrows indicate WFL-GFP in BFA bodies. (E) 2-hour CHX treatment followed by BFA washout does not result in appreciable signal recovery at the plasma membrane. (F) Graph shows the quantification of WFL corrected fluorescence intensity in arbitrary units (AU) at the PM after the indicated treatments. Data shown are representative results of experiments with at least three independent replicates. Bars indicate min. to max. values and 1-4 stars indicate statistical significance (P values ≤ 0.05 , one-way ANOVA using Dunn's multiple comparison test). (G and G') 3-hour dark treatment induces WFL-GFP trafficking to vacuole. Green arrowheads indicate WFL-GFP accumulation in the vacuole lumen. (H and H') 2-hour Wortmannin (Wm) treatment results in accumulation of WFL-GFP in Wm bodies and inhibition of vacuolar trafficking. (G and H) Side view and (G' and H') top view of epidermal cells. White arrowheads indicate WFL-GFP in Wm bodies. Abbreviations: Ep, epidermis; C, cortex. Scale bars: 20 μ m.

Figure 4

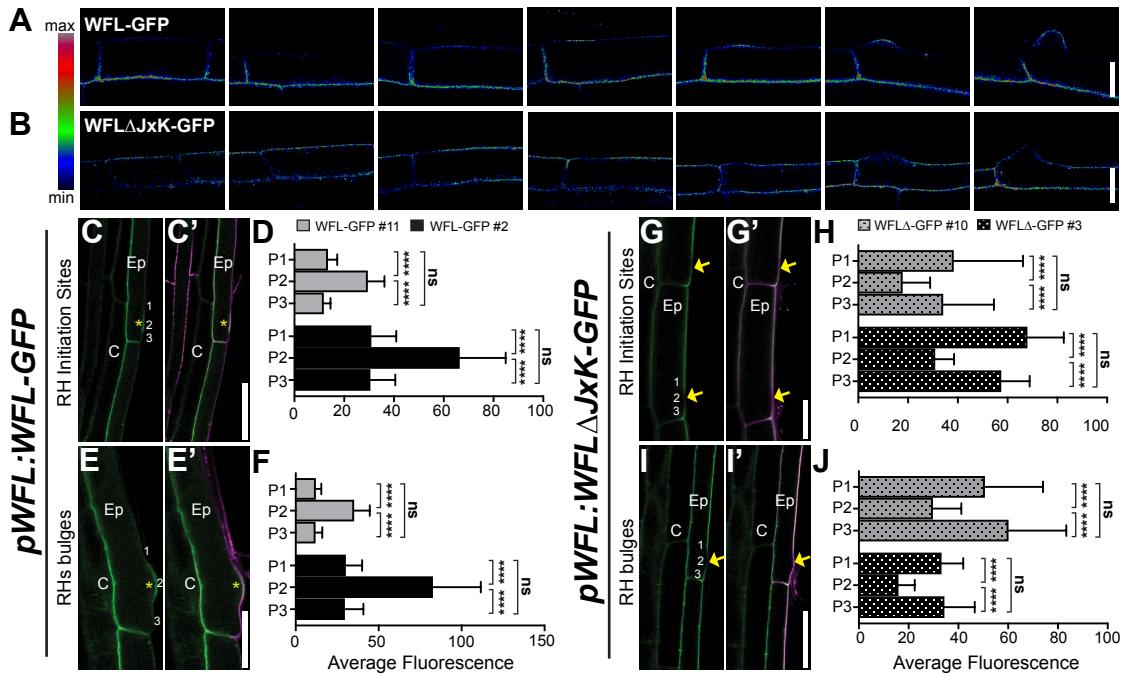

Figure 4. Deletion of the intracellular domains redirects WFL localization. (A-E) Confocal images of WT roots expressing WFLΔJxK-GFP driven by *pWFL* (*pWFL*:WFLΔJxK-GFP) and stained with propidium iodide (PI) to show cell outlines. Adjacent panels show GFP alone (a) and GFP + PI merged (a'). (A and C) In elongation and differentiation zones, WFLΔJxK-GFP localizes to the outer polar domain of epidermal cells with (C) preferential accumulation in H cells. (E) WFLΔJxK-GFP is excluded from RHIDs (yellow arrows). (B and E) WFLΔJxK-GFP localizes to the outer polar domain of the outermost cell layer of the LRC. (F and G) Schematics of WFL-GFP and WFLΔJxK-GFP localization in median (F) longitudinal and (G) transverse views. Abbreviations: LRC, lateral root cap; Ep, epidermis; C, cortex; P, pericycle; H, hair cell. Scale bars: 25 μ m in (A, B, and E); 10 μ m in all others.

Figure 5

Figure 5. Truncated WFL predominantly localizes to the outer polar domain or is nonpolar. (A-D) Confocal images of WT roots expressing $WFL\Delta JxK$ -eYFP/3xYFP driven by cell layer-specific promoters (*pWER*, *pCO2*, *pC1*, and *pSCR*) and stained with propidium iodide (PI) with adjacent panels showing YFP alone (false colored to show signal intensity, α) and YFP + PI merged (α') (A, C, E, F) show images in longitudinal planes and (B, D, E, and F) in the transverse planes (A-B) In the LRC and epidermis, $WFL\Delta JxK$ -eYFP localizes to the outer polar domain. (C-D) In mature cortex cells, $WFL\Delta JxK$ -3xYFP preferentially localizes to the outer polar domain. (E) In immature cortex cells, $WFL\Delta JxK$ -3xYFP localizes to the outer polar domain. (F) In ground tissue initials and endodermal cells of lateral roots, $WFL\Delta JxK$ -3xYFP is nonpolar. Abbreviations: LRC, lateral root cap; Ep, epidermis; C, cortex; E, endodermis; CEI, cortex/endodermal initial; QC, quiescent center. Scale bars: 25 μ m.

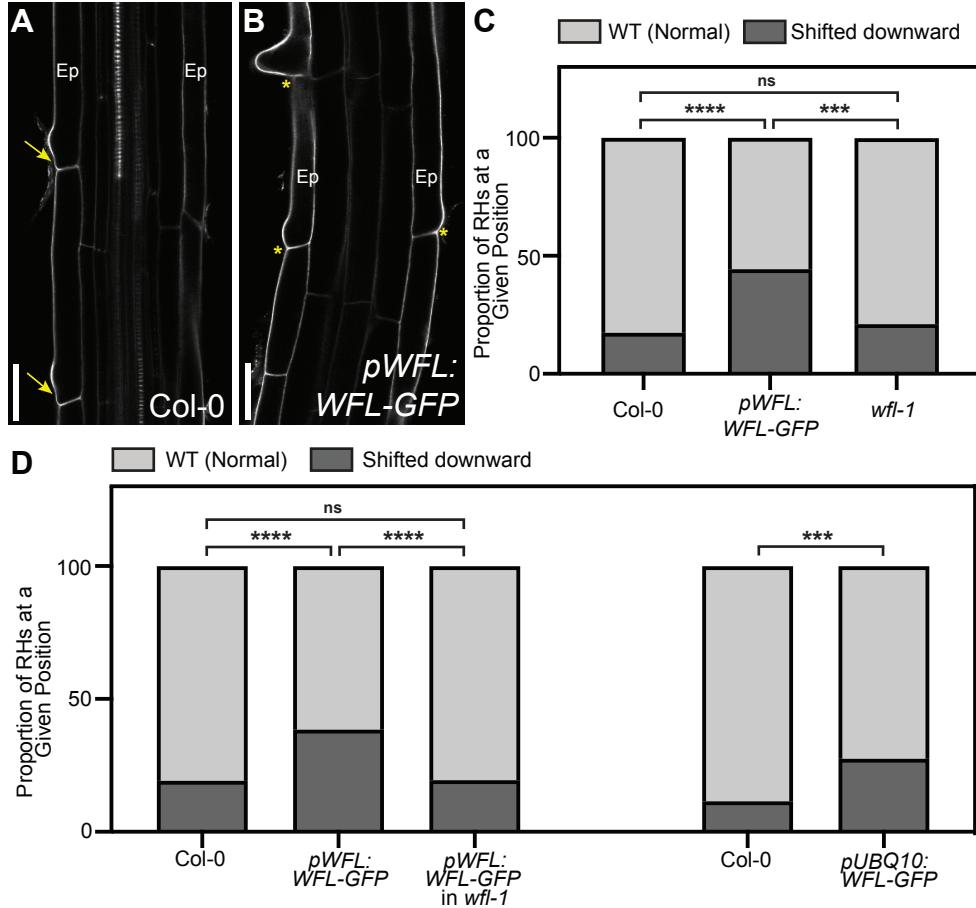

Figure 6

Figure 6. WFL-GFP and WFL Δ JxK-GFP have reciprocal localization at RHIDs and bulges.

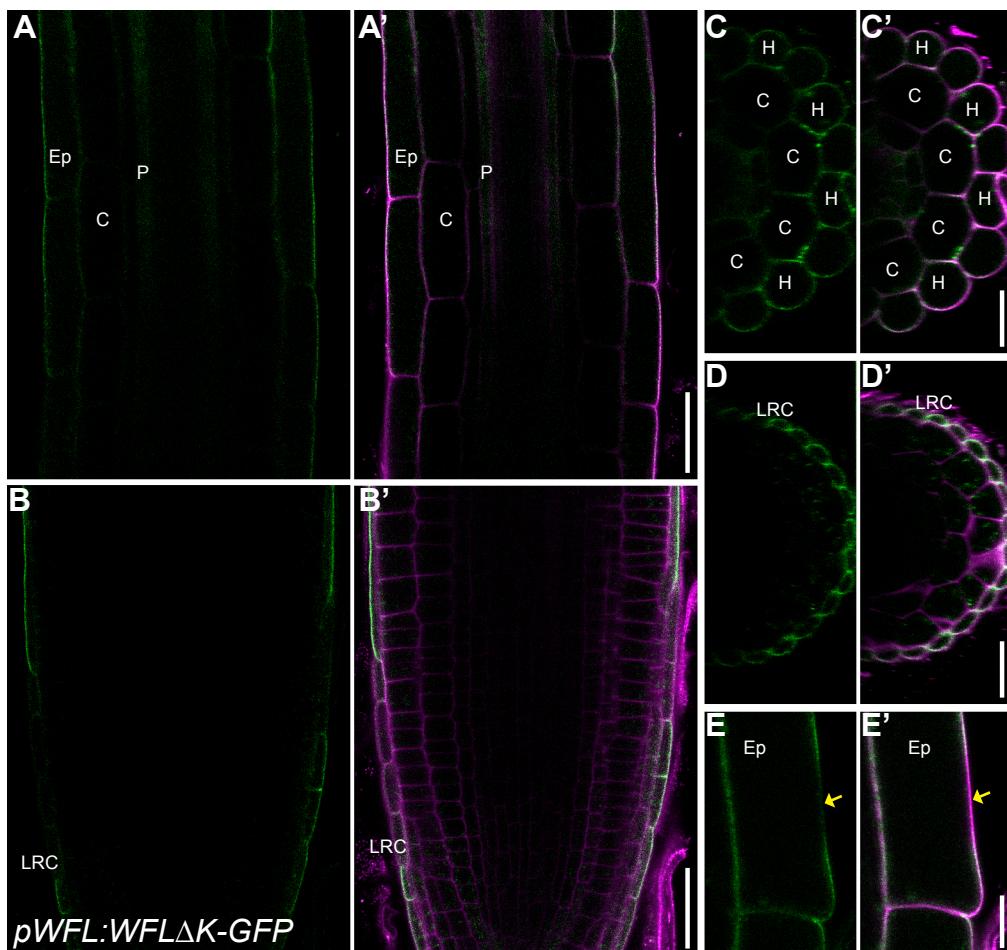
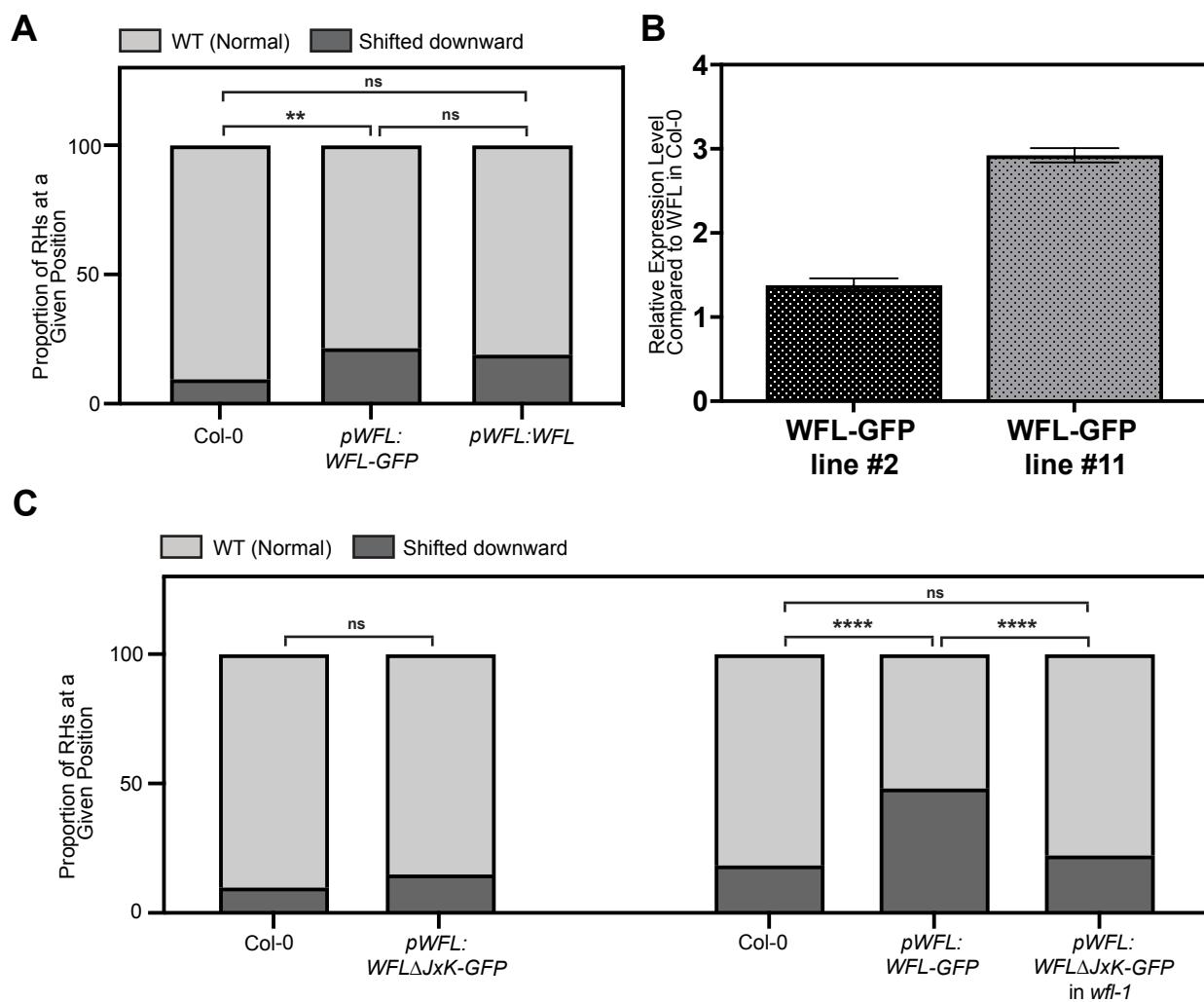
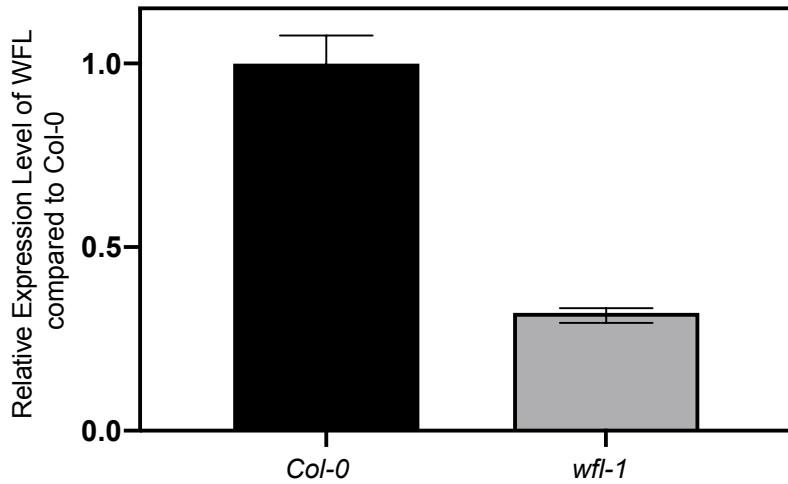

(A and B) Confocal images of WT root H cells expressing *pWFL* driven (A) WFL-GFP and (B) WFL Δ JxK-GFP (GFP false colored to show signal intensity). As H cell development progresses, (A) WFL-GFP localizes to RHIDs and bulges while (B) WFL Δ JxK-GFP is excluded from these sites. (C, E, G, and I) Confocal images of WT roots expressing *pWFL* driven WFL-GFP and WFL Δ JxK-GFP and stained with propidium iodide (PI) with adjacent panels showing GFP alone (α) and GFP + PI merged (α'). (C and E) WFL-GFP localizes to the inner polar domain of H cells and to (C) RHIDs as well as (E) bulges. (D and F) Quantification of fluorescence intensity at 3 positions - above, at the center, and below of (D) RHIDs and (F) bulges in two independent transgenic lines. (G and I) WFL Δ JxK-GFP localizes to the outer polar domain of epidermal cells and is excluded from (G) RHIDs and (I) bulges. (H and J) Quantification of fluorescence intensity above, below, and at (H) RHIDs and (I) bulges in two independent transgenic lines. For graphs: error bars, SD; student's t test, **** p<0.0001. Two different transgenic lines for each reporter were used as biological replicates, with n= 15-20 roots and 2-3 cells per root per replicate. Yellow asterisks and arrows indicate RHIDs and bulges for WFL-GFP and WFL Δ JxK-GFP, respectively. Numbers indicate positions of fluorescence intensity measurements relative to RH apex, 1= above, 2= center, 3= below. Abbreviations: Ep, epidermis; C, cortex. Scale bars: 20 μ m in (A and B) 50 μ m in (C and I); 25 μ m in (E and G).

Figure 7


Figure 7. Overexpression of WFL-GFP shifts root hair position downward toward the rootward edge of hair cells. (A and B) Confocal images showing propidium iodide (PI) stain (gray) to show cell outlines of (A) WT and (B) WT roots expressing pWFL:WFL-GFP. (A) RHs in WT roots have a defined space between the rootward edge of H cells and the site of the RH bulge (yellow arrows). (B) In contrast, in roots expressing pWFL:WFL-GFP, RHs are shifted downward towards the rootward edge of H cells (yellow asterisks). (C and D) RHs were binned into 2 categories based on position and quantified according to genotype. (C) RH bulge position in wfl-1 and WT is the same, whereas RH bulges are shifted downwards when WFL-GFP is overexpressed by either pWFL or pUBQ10. No change in RH bulge position is observed when pWFL:WFL-GFP is expressed in wfl-1. For graphs: student's t test, *** p<0.001 and **** p<0.0001. Data shown is from one (of two) independent transgenic lines per reporter (with similar results for each line in each replicate) and 3-4 biological replicates combined, with n=15 roots and 3-5 cells per root per replicate. Abbreviations: Ep, Epidermis. Scale bars: 25 μ m.

Supplemental Figure S1


Supplemental Figure 1. WFLΔK-GFP localizes to the outer polar domain of lateral root cap and epidermal cells. (A-E) Confocal images of WT roots expressing WFLΔK-GFP driven by *pWFL* (*pWFL:WFLΔK-GFP*) and stained with propidium iodide (PI) to show cell outlines. Adjacent panels show GFP alone (a) and GFP + PI merged (a'). (A and C) In elongation and differentiation zones, WFLΔK-GFP localizes to the outer polar domain of epidermal cells with (C) preferential accumulation in H cells. (E) WFLΔK-GFP is excluded from RHIDs. (B and D) WFLΔK-GFP localizes to the outer polar domain of the LRC. Abbreviations: LRC, lateral root cap; Ep, epidermis; C, cortex; H, hair cell. Scale bars: 25 μ m in (A, B, and E); 10 μ m in all others.

Supplemental Figure S2

Supplemental Figure S2. GFP does not cause shifted RH bulge phenotype and this phenotype is not observed in roots expressing pWFL:WFLΔJxK-GFP. (A and C) RH bulges were binned into two categories and quantified. (A) RH bulges are shifted towards the rootward edge of H cells in roots expressing an untagged version of WFL (pWFL:WFL). (C) Bulge position is unaffected in roots expressing pWFL:WFLΔJxK-GFP and pWFL:WFLΔJxK-GFP in *wfl-1*. (B) RT-qPCR showing transcript levels of WFL among transgenic lines used for phenotyping. Error bars show standard error of the mean. For RH bulge position graphs: student's t test, ** p<0.01 and **** p<0.0001. Data shown is from one (of two) independent transgenic lines per reporter (with similar results for each line in each replicate) and 2-3 biological replicates combined, with n= 15 roots and 3-5 cells per root for each replicate.

Supplemental Figure S3

Supplemental Figure S3. *WFL* transcript level is reduced in *wfl-1*. RT-qPCR showed reduced *WFL* transcript levels in *wfl-1*. *WFL* expression is relative to *SERINE/THREONINE PROTEIN PHOSPHATASE2A (PP2A)*. Data shown for one biological replicate (of three) with 3 technical replicates performed per experiment and each experiment was repeated 3 times. Error bars indicate standard error of the mean.

Table S1. Cloning and genotyping primers.

Purpose	Primer Name	Sequence (5'->3')
Genotyping	WFLcod_seqF3*	GGTACTATCAGCCGTCTATCG
	WFLcod_seqR2*	ATTCGCTCTTATCCTCCATGTC
*Amplification followed by digestion with SacII for genotyping		
Cloning	WFLcod_F	caccATGAGTAGAGGAAGATCTTCATCTTC
	WFLcod_R	GTCTCTCTCAATCTCTTCCAAAGTC
	WFLpro_F	CGAAGAGTCATGTTGGTCATGTT
	WFLpro_R	CTTCTTACTAATTGTTATGTGATGGA
	WFLcod_truncR	TGTCTCTGACTCCTCTGCCT
	WFLcod_trunc-K_R	TGCAGAAGCTATCAACAAAGTCTTC

Table S2. Primers and primer efficiency information for RT-qPCR.

Primer Name	Primer Sequence (5'->3')	Primer Efficiency (%)					
		Run 1	Run 2	Run 3	Run 4	Run 5	Average
PP2A_qF	TAACGTGGCCAAAATGATGC	88.1%	96%	95.8%	90.1%	97.9%	93.6%
PP2A_qR	GTTCTCCACAACCGCTTGGT						
WFL_ex1/2_qF	CGCATTGAACTATATAAAAGTC	91.2%	77.9%	91.3%	82.5%	104.6%	89.5%
WFL_ex2_qR2	ACAGAGCCGATGATCCAAAGA						
WFL_ex2_qF3	GCTTACGTGTGTTCCAAGGA	92.9%	91.3%	ND	ND	ND	92.1%
WFL_ex2/3_qR1	GTCTGCGTTCTGCCATGAA						