
Accurate prediction of transcriptional activity  

of single missense variants in HIV Tat with deep learning 

 

Houssemeddine Derbel1, CJ Giacoletto2, Ronald Benjamin1, 2, Gordon Chen1, Martin R. Schiller1, 2, Qian 

Liu1, 2* 

1 Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las 

Vegas, NV 89154, USA 

2 School of Life Sciences, College of Sciences, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las 

Vegas, NV 89154, USA 

* Correspondence: qian.liu@unlv.edu; Tel.: +1 702 895 1187 

Abstract: Tat is an essential gene for increasing the transcription of all HIV genes, and it affects HIV 

replication, HIV exit from latency, and AIDS progression. The Tat gene frequently mutates in vivo 

producing variants with diverse activities, contributing to HIV viral heterogeneity, as well as drug-

resistant clones. Thus, identifying the transcriptional activities of Tat variants will help to better 

understand AIDS pathology and treatment. We recently reported the missense mutation landscape of all 

single amino acid Tat variants. In these experiments, a fraction of double missense alleles exhibited 

intragenic epistasis. It is too time-consuming and costly to determine a variants’ effect for all double 

mutant alleles with experiments. Therefore, we propose a combined GigaAssay/Deep learning 

approach. As a first step for determining activity landscapes for complex variants, we evaluated a deep 

learning framework using previously reported GigaAssay experiments to predict how transcription 

activity is affected by Tat variants with single missense substitutions. Our approach achieves a 0.94 

Pearson correlation coefficient when comparing experimental to predicted activities. This hybrid 

approach should be extensible to more complex Tat alleles for better understanding the genetic control 

of HIV genome transcription. 
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1. Background 

Human immunodeficiency virus (HIV) causes acquired immunodeficiency syndrome (AIDS), 

characterized by a progressive failure of the immune system. It remains an important health problem in 

the United States with 1,189,700 infected people, 18,489 annual deaths, and an annual medical cost 

exceeding $50 billion dollars[1]. HIV lacks proofreading of its replicated RNA genome and has a high 

mutation rate of 1 in 104 bp, with each virion 9 kB genome having about 10 new variants [2]. 

Furthermore, an active HIV infection in a single individual is estimated to generate approximately 1011 

virions per day [3]. The combination of high mutation rates with efficient virion generation creates 

extremely genetically heterogeneous and diverse viral genome population, which is a key consideration 

for important pathogenic processes such as antiretroviral therapy (ARV) resistance, latency, and strain 

evolution. After selective pressure from ARV therapy, variant virions with drug-resistant variants may 

survive and propagate, limiting therapeutic efficacy. Therefore, it is important to understand how HIV 
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evolves both within a person, and in worldwide populations with relevance to AIDS pathogenesis and 

treatment [4]. 

Tat is an essential regulatory gene that drastically enhances the efficiency of HIV genome transcription 

and replication. The absence of Tat may lead to short and abortive viral transcripts, and Tat variants 

widely affect different viral activities. Therefore, comprehensive investigation of various activities of Tat 

variants can deepen understanding of AIDS pathology and assist drug design targeting for a broader 

range of HIV-1 strains.  

Studies of variant frequencies, HIV evolution, and small-scale mutagenesis studies have greatly 

advanced knowledge about ARV drug resistance and how to effectively treat AIDS. Although viral 

isolates from an infected patient are experimentally tested, and the ability to link specific genetic 

changes with the functions of viral proteins is limited to largely low-throughput experiments, which 

slowly and incrementally reveals how the vast variant landscape of in a typical infection impacts HIV 

replication, viral latency, drug resistance, and AIDS pathogenesis.  

Two high throughput approaches are available for estimating variants’ effects: the GigaAssay[5] directly 

measures a functional readout such as transcription, whereas the alternative multiplexed assay of 

variant effect (MAVE)s are survival screens [6]–[8]. Activities are determined in a GigaAssay by 

measuring thousands of reads for approximately a million individually UMI-barcoded variant cDNAs. By 

comparing populations of cDNAs for each mutant to populations for controls, this approach produces 

accurate measurement and classification of Tat transcriptional activity with high confidence.  

Previous analysis of Tat with the GigaAssay reported transcriptional activities for all 1,615 Tat single and 

3,429 double missense variants with a ~95% accuracy [5]. In summary, 35% of all possible single amino 

acid variants in Tat are loss-of-function. However, it is currently too time-consuming and costly to 

conduct GigaAssay experiments on millions of variants needed to complete the Tat double missense 

mutant landscape. We therefore propose an efficient computational method to combine high-accuracy 

GigaAssay variant/activity data with deep learning algorithms to precisely predicting variants’ effect on 

Tat activities. The higher performance demonstrated for single missense mutant activity prediction in 

our results, indicates that this approach can likely be extended to predict the effect of more complex 

variants and possibly for other protein activities. Our tool is available at 

https://github.com/qgenlab/Rep2Mut. 

2. Results 

2.1 Overview of the proposed deep learning framework called Rep2Mut. 

We propose to test a deep learning framework called Rep2Mut, to accurately estimate the 

transcriptional activity of missense variants. The architecture of the Rep2Mut algorithm is shown in 

Figure 1 using the Tat protein (86 amino acids) as an example. The output of Rep2Mut is the predicted 

effect upon transcriptional activity of Tat variants, and the inputs are the wild type (WT) protein 

sequence, mutated protein sequence (missense variant), and mutated amino acid positions.  

There are several steps in the Rep2Mut algorithm to capture the difference between a WT sequence 

and its mutated sequences. First, the WT sequence is an input of the evolutionary scale modeling (ESM) 

protein language model [9] to learn the representation of the position of interest in a WT sequence. This 

WT representation, with a vector of 1,280 elements, is then used as input of fully connected layer 1 in 
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the network (Figure 1) to generate a vector with 128 elements. Similarly, the corresponding mutated 

sequence is used as input to ESM to generate a representation vector of 1,280 elements in a mutated 

sequence. The learned representation is then fed into a fully connected layer 2 (Figure 1) to generate 

the other vector with 128 elements. The two vectors of 128 elements are combined by applying element 

wise multiplication (see Figure 1) followed by the concatenation with the position encoding vector of a 

mutation position. The position encoding vector has N elements (N=86 for the Tat protein); each 

element is for one position in a protein sequence. All values are zero except for the mutated position 

which is marked by 1. Next, the combined vector is an input to fully connected layer 3 (Figure 1) with a 

Sigmoid activation function to generate the prediction of transcriptional activity. In total, the Rep2Mut 

network with the Tat protein has 328,153 trainable weights. 

 

 

Figure 1: The generic architecture of Rep2Mut model. Tat protein (86 amino acids) is shown as an 

example. Amino acid in red: mutated residue; Numbers in the rectangles indicates the size of the vectors; 

filled rectangles in brown: input; filled rectangles in green: output; Cross symbol: elementwise dot 

product; Plus symbol: concatenation of vectors. 

2.2 Evaluation of the proposed deep learning framework Rep2Mut. 

We evaluated Rep2Mut on the GigaAssay transcriptional activity data for all 1,615 single amino acid 

missense variants in HIV Tat. Layers 1 and 2 of Rep2Mut (in Figure 1) were pretrained on 115,997 single 

variants of 37 existing protein datasets with different protein functional measurements (Figure 1). After 

adding layer 3, all layers in Rep2Mut were then optimized and fine-tuned on the experimental GigaAssay 

data. To avoid overfitting, 10-fold cross-validation was repeated 10 times and used to calculate the 

performance of Rep2Mut.  

When the variant activities predicted with Rep2Mut were compared to the GigaAssay results, a Pearson 

correlation coefficient of 0.94 and Spearman correlation coefficient of 0.89 were observed. We repeated 
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the analysis with two recently published methods, ESM [9], DeepSequence [10] and a baseline method, 

as compared to Rep2Mut in Figure 2 and Table 1. The baseline method is a feed neural network with 

simple encoding of variant sequences as input (described in Methods), and its performance is ~0.17 

lower than Rep2Mut.   

For ESM prediction methods (called ESM_pred, to be distinguished from ESM models), we tested all Tat 

variant activities of five trained ESM_pred estimations compared with experimental activities and 

calculated the best performance. The predictions and the performance of the averaged prediction by 

ESM_pred is shown in Figure 2 (a) and (b) and in Table 1. As expected, the averaged estimation of 

variants from the five ESM_pred achieves better performance (0.59 Spearman correlation coefficient) 

than any of the individual ESM_pred estimations.  

For the DeepSequence method, we generated multiple sequence alignments using EVision and retrained 

DeepSequence as suggested by Riesselman et al [10]. DeepSequence needs to be retrained for each 

protein sequence due to the number of dimensions. DeepSequence generated a higher Pearson 

correlation coefficient (0.57), but lower Spearman correlation coefficient (0.41) when compared to the 

ESM_pred prediction of Tat variants’ activities (Figure 2(c); Table 1). Unfortunately, DeepSequence is 

only able to generate predictions for 10% of all variant data (see Figure 2(c)) even after fine-tuning the 

retraining process with more sequences in the multiple sequence alignments, demonstrating a limitation 

of DeepSequence for this application. 

In conclusion, our Rep2Mut algorithm achieved much better performance when compared to the state-

of-the-art models ESM_pred and DeepSequence models (Figure 2(d) and Table 1). The Pearson 

correlation coefficient for Rep2Mut was 0.39 higher than ESM_pred, 0.37 higher than DeepSequence 

and 0.18 higher than the baseline method. Likewise, the Spearman correlation coefficient was 0.31 

higher than ESM_pred, 0.48 higher than DeepSequence and 0.17 higher than the baseline method. 
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Figure 2: Comparison of activity estimation by Rep2Mut with two state-of-the-art methods. (a) 

ESM_pred: the best performance among the 5 ESM_pred estimation; (b) ESM_pred _avg: the 

performance of averaging the 5 ESM_pred estimation; (c) DeepSequence; (d): Rep2Mut; the solid line: 

the error margins of 0.2 and the dashed line: an error margin of 0.3. Amino acid mutation outliers are 

labeled with red font. Color legend at the right: the density of the dots in graph; (e) A baseline method. 
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Table 1: Pearson and Spearman correlation coefficients comparing experimental activities to predictions 

from Rep2Mut and state-of-the-art methods. 

Prediction method Pearson Spearman 

ESM_pred 0.51 0.56 

ESM_pred_avg 0.54 0.59 

DeepSequence 0.57 0.41 

The baseline method 0.76 0.72 

Rep2Mut (wo_p1) 0.91 0.87 

Rep2Mut 0.94 0.89 

1“wo_p”: Rep2Mut without position correction vector. 

2.3. Effect of amino acid position on activity prediction 

The activities of Tat variants are partially dependent upon the positions in Tat protein sequence. The last 

20 positions of Tat protein (C-terminal) have WT GigaAssay activities with some outliers, such as K85E, 

which demonstrate a higher tolerance than the N-terminal amino acids (Figure 3,). Therefore, we tested 

the predictions of the Rep2Mut without a position encoding vector. Compared with Rep2Mut, a 

modified algorithm without a position vector achieves slightly lower Pearson and Spearman correlation 

coefficients (0.03 and 0.02 lower, respectively; Table 1). This result suggests that Rep2Mut has no 

significant overfitting with positional information. 

 

 

 

Figure 3: Tat variant activity is partially dependent upon the amino acid position. Each dot represents a 

Tat variant. 
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2.4. Rep2Mut sensitivity analysis for the fraction of training data 

The initial evaluation of Rep2Mut predictions used 90% of the variant activity data (n =1,457) to train 

Rep2Mut, and the remaining 10% for testing. However, for scaling, wet-lab experiment even with high-

throughput approaches such as the GigaAssay, acquiring experimental data is too time consuming and 

cost prohibitive to assess complex variants. Therefore, we evaluated Rep2Mut’s performance to identify 

the minimal amount of training data needed to maintain near-maximal performance. We trained 

Rep2Mut with 70%, 50%, 30%, 20%, 10%, and 7% of the Tat activity single missense variant dataset, and 

tested Rep2Mut performance with the remainder of the data. To reduce errors from random sampling, 

we split, trained, and tested those predictions 50 times, calculating an average performance for all tests 

(Figure 4).  

As expected, reduced Rep2Mut performance was observed with smaller training sampling. However, the 

performance (Spearman correlation coefficient) had only minimal reduction when Rep2Mut was trained 

with 50% or more of the data. Further reduction to 20% or 30% of training data, only reduced the 

performance by 0.03. And the performance further decreases by another ~0.02 when 10% of data are 

used for training. Surprisingly, Rep2Mut achieved more than a 0.80 or 0.82 Spearman correlation 

coefficient when only 7% (113 variants) or 10% of the data, respectively were used for training. This will 

make the combination of deep learning with the GigaAssay more scalable for multivariant alleles 

because as little as ~20% of the variant data can generate predictions of variant effect with little 

compromise of performance. 

 

 

Figure 4. The sensitivity of Rep2Mut performance with the numbers of training instances. X%: X% data 

are used to train Rep2Mut and (100-X)% for testing, and X is 90, 70, 50, 30, 20, 10, and 7 for different 

testing strategies. 
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3. Discussion 

 

Figure 5. Visualization of Rep2Mut final vectors after dimensionality reduction with UMAP: (a,c,e,g,i): 

with position vector, (b,d,f,h,j): without position vector, (a,b): colored by GigaAssay activities; (c-j): 

colored by position; (e,f): positively charged amino acids (Arg, His, and Lys); (g,h): Special cases of amino 

acids (Cys, Gly, and Pro), (I,j): Polar uncharged amino acid (Ser, Thr, Asn, and Gln). In (e-j), 0: positions of 

variants lower than 45. 1: positions of variants larger than 45. 
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3.1. Visualization of predicted vectors: 

To better understand how Rep2Mut predicts variant effects, we used combined vector after dot product 

in Figure 1 of all variants to create a global map after dimension deduction to a 2D- space using Uniform 

Manifold Approximation and Projection (UMAP) [11]. We then investigated the resulting 2-D map for 

correlations with GigaAssay activity, variant position, and the physiochemical types of amino acids 

(Figure 5). 

Figure 5 (a) and (b) clearly demonstrate that variants with different experimental activities have a 

smooth distribution from the right to the left, with or without position encoding. Variants with high 

activities are in the left half, while most of variants with low experimental activities are in the right half 

for both Figure 5 (a) and (b). The positions follow quite similar distribution in the 2D space, although 

there is abnormal deviation in the middle of the plots of Figure 5 (c) and (d). This again suggests that the 

Rep2Mut model itself learned position information from protein sequences without including the 

position encoding. 

 

Table 2. Overestimated and underestimated outliers predicted by Rep2Mut.  

Var: the variants, GA: GigaAssay, Pred: predicted activities, #ID: WT amino acid with variant position, Min: the 3 minimum 

GigaAssay or predicted values for that variant, Max: the 3 maximum GigaAssay or predicted values for that variant). “X=Y”: X is 

the amino acid type, and Y is the activities.  

 

3.2. Association of amino acid types with Tat activity predictions 

 
GigaAssay Predicted 

Var GA Pred #ID Avg Min Max Avg Min Max 

Overestimation 

E2A 0.19 0.57 E2 0.44 P=0.16;A=0.19;C=0.24 D=0.77;T=0.72;Q=0.72 0.47 P=0.28;I=0.36;R=0.36 S=0.58;T=0.57;Q=0.57 

P3R 0.21 0.56 P3 0.56 R=0.20;K=0.22;G=0.34 L=0.77;V=0.75;I=0.75 0.56 K=0.41;D=0.43;Y=0.48 V=0.64;S=0.62;L=0.62 

P6K 0.16 0.55 P6 0.62 K=0.16;R=0.36;L=0.45 W=0.85;Y=0.79;F=0.77 0.61 R=0.48;D=0.51;E=0.54 S=0.67;H=0.66;A=0.66 

R7P 0.25 0.64 R7 0.78 P=0.24;K=0.7;I=0.75 E=0.86;D=0.85;S=0.83 0.75 P=0.63;W=0.66;T=0.69 E=0.83;Q=0.8;Y=0.8 

K12P 0.12 0.56 K12 0.70 P=0.12;G=0.50;T=0.62 L=0.83;Q=0.82;N=0.82 0.69 F=0.55;P=0.55;W=0.59 Q=0.8;A=0.79;T=0.78 

Q17V 0.32 0.62 Q17 0.51 P=0.11;W=0.24;I=0.24 K=0.8;R=0.78;A=0.77 0.51 P=0.32;F=0.33;Y=0.41 V=0.62;M=0.61;C=0.59 

F32H 0.16 0.47 F32 0.24 D=0.09;K=0.1;N=0.1 Y=0.84;W=0.76;L=0.55 0.27 G=0.07;P=0.11;E=0.13 Y=0.53;H=0.47;M=0.42 

Q35R 0.11 0.44 Q35 0.42 K=0.08;D=0.1;R=0.11 H=0.79;M=0.74;Y=0.71 0.43 P=0.26;G=0.33;E=0.33 H=0.55;A=0.55;M=0.51 

M39K 0.11 0.45 M39 0.45 W=0.1;K=0.1;R=0.1 L=0.84;I=0.78;V=0.78 0.45 P=0.22;R=0.28;D=0.28 V=0.77;I=0.61;S=0.6 

K85E 0.17 0.76 K85 0.76 E=0.16;W=0.72;F=0.75 V=0.83;D=0.81;Q=0.81 0.78 P=0.65;M=0.73;W=0.73 S=0.87;T=0.83;H=0.82 

Underestimation 

D5E 0.64 0.32 D5 0.28 F=0.15;I=0.16;R=0.17 E=0.64;S=0.51;C=0.4 0.32 I=0.18;L=0.19;M=0.22 N=0.46;S=0.46;H=0.41 

E9P 0.84 0.37 E9 0.45 W=0.13;F=0.15;Y=0.17 P=0.84;A=0.81;D=0.76 0.45 F=0.25;W=0.32;R=0.32 D=0.66;A=0.61;Q=0.58 

P10N 0.77 0.46 P10 0.43 W=0.12;F=0.14;M=0.17 N=0.76;A=0.74;S=0.74 0.43 W=0.29;D=0.32;Y=0.33 A=0.62;S=0.57;C=0.53 

G15T 0.59 0.21 G15 0.21 E=0.09;F=0.11;I=0.11 S=0.73;T=0.59;P=0.35 0.23 Y=0.11;I=0.14;F=0.16 Q=0.36;M=0.33;V=0.33 

G15S 0.74 0.28 G15 0.21 E=0.09;F=0.11;I=0.11 S=0.73;T=0.59;P=0.35 0.23 Y=0.11;I=0.14;F=0.16 Q=0.36;M=0.33;V=0.33 

Q17K 0.81 0.50 Q17 0.51 P=0.11;W=0.24;I=0.24 K=0.8;R=0.78;A=0.77 0.51 P=0.32;F=0.33;Y=0.41 V=0.62;M=0.61;C=0.59 

C31A 0.76 0.36 C31 0.24 P=0.09;Y=0.1;E=0.1 A=0.76;S=0.73;V=0.42 0.25 R=0.11;K=0.14;D=0.14 S=0.53;V=0.51;T=0.49 

F32Y 0.85 0.53 F32 0.24 D=0.09;K=0.1;N=0.1 Y=0.84;W=0.76;L=0.55 0.27 G=0.07;P=0.11;E=0.13 Y=0.53;H=0.47;M=0.42 

F32W 0.76 0.29 F32 0.24 D=0.09;K=0.1;N=0.1 Y=0.84;W=0.76;L=0.55 0.27 G=0.07;P=0.11;E=0.13 Y=0.53;H=0.47;M=0.42 

F38W 0.52 0.19 F38 0.15 D=0.08;Q=0.09;R=0.09 W=0.51;Y=0.39;L=0.15 0.14 R=0.06;K=0.07;S=0.07 I=0.22;V=0.22;W=0.19 
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Figure 5 (e-j) show three different types of WT amino acid types in 2D space, with and without the 

position vector. In all the subplots, there is a clear distribution of experimental activities from right to 

left. Interestingly, there is no such pattern in the 2D space with different types of mutated amino acids, 

suggesting non-randomness of WT amino acids at each position. 

3.3. Outliers in Rep2Mut prediction 

To better understand incorrect predictions, we analyzed activity prediction outliers. In Figure 2(d) and 

Table 2, we annotated those variants whose predicted activities is 0.3 larger or smaller than the 

experimentally-determined activities (n = 20). We split them into two groups: overestimation if 

predicted activities is 0.3 larger than experimental activities, or underestimation if predicted activities is 

0.3 smaller than experimental activities. We chose the 0.2 to 0.3 range because this is the approximate 

error rate for activities determined for UMI barcodes in the GigaAssay [5]. In Table 2, we also listed 

mean, maximum and minimum predicted and GigaAssay activities for the positions of the outlier 

predictions.  

In all outlier predictions, the average predicted activities of each mutated position are very similar to the 

averaged experimental activities for that position. The majority of outlier overestimations had very low 

experimental activities among the 19 variants for each position, while all underestimated outliers had 

the highest experimental activities. In particular, K12P and K85E, that were overestimated by Rep2Mut, 

have significantly lower experimental values when compared to other variants at the same positions 

(K85E: 0.16 vs >0.72 for other K85 variants; K12P: 0.12 vs >0.5 for other K12 variants). Several other 

variants, such as P3R, P6K, K12P, and R7P, all involve a Proline substitution, suggesting that the unique 

nature of Proline might not be captured by the deep learning algorithm.  

Curiously, all overestimated and underestimated outliers are in the Cyclin T1 interaction site defined in a 

structure of the Tat:Cyclin T1 complex [12]. Visualization of this structure (PDB: 4OR5) with PyMOL 

identifies M39K and F32H in two α-helices (27-32 and 34-42) of the Tat protein, and majority of these 

mutated positions interact with Cyclin T1 (Figure 6). According to the accessible surface area calculated 

by RDBePISA, many of the mutated positions have buried accessible surface area >40 Å2 when the Tat 

protein binding with CyclinT1. The structure analysis also demonstrates that the outliers Q35R, Q17V, 

and E2A have hydrogen bonds with Cyclin T1. The observation of the erroneous predictions at the Cyclin 

T1 interface suggests that Cylcin T1 accessibility or interactions may differ in the cell lines used in the 

GigaAssay. The cells used for the GigaAssay do express Cyclin T1 [13].  

 

Figure 6. The structure (PDB ID: 4OR5) of the Tat: Cyclin T1 complex. Tat (cartoon) binds to Cyclin T1 

(surface view). (a) Underestimated variants are colored green. (b) Overestimated variants are colored 

red. 
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4. Materials and Methods 

4.1. Dataset 

The dataset used for testing is single variants of HIV Tat proteins, generated by GigaAssay [5]. This Tat 

protein is composed of 86 amino acids, and each position except the first amino acid is mutated 

individually to 19 other amino acids besides the WT amino acid. In total, there are 1,615 single missense 

mutations of Tat protein. Each of missense mutations were sequenced with more than five barcodes, 

and the transcriptional activity of each variant is calculated by GigaAssay. The effect of single variant is 

estimated with a value ranging from 0 to 1: the larger the value is, the less effect of the single variant on 

the transcriptional activities of Tat protein.  

4.2. Rep2Mut framework to estimate Tat variants’ effect on transcriptional activities 

Rep2Mut is a sequence-based prediction of the effect of variants on transcriptional activities measured 

by GigaAssay. As shown in Figure 1, the input of Rep2Mut includes three types of sequence information. 

One is the WT sequence, and the other is the mutated sequence with a substitution of an amino acid at 

a position of interest. For either WT or mutated sequence, we used Evolutionary Scale Modeling (ESM) 

[9] to learn the representation of the mutated position.  

ESM [9], [14], [14] is a self-supervised learning framework that was trained on millions of protein 

sequences to learn multiple levels of protein knowledge from biochemical properties to evolutionary 

information. It is composed of multiple transformer layers and trained using the masked language 

modeling objective [15]. Usually, the learned representation at the 33rd layer is used for predicting 

diverse functions of proteins. ESM-1v [9] is a 34-layer Transformers trained on UniRef90 dataset [16] 

with 5 released pretrained models. We used the first pretrained model, and fed WT or mutated 

sequences to it. We used the learned vector of the position of interest at 33rd layer to represent WT or 

variant information. This learned vector has 1,280 elements.  

Each of learned representation vectors from ESM-1v is used as input of a fully connected neural network 

layer with a vector of 128 elements as output (as shown in Figure 1). The PReLU activation function [17] 

is applied to the layers with a dropout rate of 0.2 to avoid overfitting [18]. The two 128-deminsion 

vectors are then merged with an elementwise dot product. The element-wise product (or the Hadamard 

product) is a binary operation that takes two matrices of the same dimensions as input and produces 

another matrix of the same dimension as the operands. In other words, given two matrices Am,n and Bm,n, 

of the same dimension m × n, the elementwise product 𝐴 ⊙ 𝐵 = (𝐴)𝑖𝑗(𝐵)𝑖𝑗  where 0 < 𝑖 ≤ 𝑚, and 

0 < 𝑗 ≤ 𝑛. 

The third type of input to Rep2Mut is a mutated position. A position is encoded into a binary vector of N 

elements each of which is corresponding to a position in the protein sequence of interest. This encoding 

vector only has one value of 1 at the mutated positions for a variant and 0 for all other positions. This 

position encoding vector is then concatenated with the dot-product vector and used as input of another 

fully connected neural network to predict transcriptional activity. The prediction is normalized with a 

sigmoid activation function so that the output value ranges from 0 to 1. 

4.3. Training and testing Rep2Mut 
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There are two steps to train Rep2Mut. First, we pretrained the layers 1 and 2 (as shown in Figure 1) on 

another 37 protein datasets with various measurements of protein functions. The pretraining is used to 

optimize weights in the two neural networks. After that, we added layer 3 in Figure 1, and fine-tuned 

Rep2Mut for predicting GigaAssay activities. In both pretraining and fine-tuning processes, we used 

Adam optimizer [19] and MSE loss function in back-propagation. MSE is defined in Equation ( 1 ) where n 

is the number of data points, Yi are the observed activities and Ŷ are the predicted activities. 

𝑀𝑆𝐸 =  
1

𝑛
 ∑(𝑌𝑖 − 𝑌̂𝑖 )2

𝑛

𝑖=1

 

( 1 ) 

 

During fine-tuning process, we used a batch size of 8, and a learning rate of 1e-3 for layer 3. Since layers 

1 and 2 have been optimized during pretraining step, we used a smaller rate and the learning rate for 

layers 1 and 2 is 1e-5.  

To compare Rep2Mut with other methods, we used 10-fold cross validation. We randomly split the 

GigaAssay data into 10 groups each of which has 10% of the experimental data. Each time, a group is 

used for testing and the remaining data for training. We repeated this process ten times and got the 

mean of performance to evaluate Rep2Mut. 

To test the performance of Rep2Mut with different sizes of training data, the variants in the dataset 

were shuffled, and then split into two sets called training (90%) and test (10%) set. Rep2Mut was 

learned on training data and evaluated on test data using Pearson and Spearman's correlation 

coefficients defined below. To avoid random split, the process above was repeated 50 times, and the 

averaged performance was calculated for final evaluation. 

4.4. Evaluation measurements 

We used Pearson and Spearman's correlation coefficients to measure the performance of each tested 

method. We used the python package scipy to calculate both Pearson and Spearman correlations for the 

prediction activities of a method. In detail, let X be the GigaAssay activities of a list of variants, and Y be 

the predicted activities of the same list, and then Pearson correlation coefficients (PCC) are calculated 

using Equation ( 2 ) where p is the Pearson correlation coefficient, xi is the ith observed values in X, x̄ is 

the mean of X, yi is the ith predicted values in Y and ȳ is the mean of Y. 

 

𝑝 =
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

√∑(𝑥𝑖 − 𝑥̅)2 ∑(𝑦𝑖 − 𝑦̅)2 
 

( 2 ) 

Likewise, the Spearman's rank correlation coefficients (sPCC) are estimated with Equation ( 3 ) where sp 

is Spearman's rank correlation coefficient, 𝑅(∗) is the ranking of items in ∗, 𝑐𝑜𝑣(𝑅(𝑋), 𝑅(𝑌)) is the 

covariance of 𝑋 and 𝑌, 𝜎𝑅(𝑋) is the standard deviations of 𝑋, and 𝜎𝑅(𝑌) is the standard deviations of 𝑌. 
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𝑠𝑝 =
𝑐𝑜𝑣(𝑅(𝑋), 𝑅(𝑌))

𝜎𝑅(𝑋)𝜎𝑅(𝑌)
 

( 3 ) 

4.5. How to use ESM to predict Tat variants’ activities: 

ESM [9] has diverse capability to estimate proteins’ activities and functions. Here, we used ESM (called 

ESM_pred so that it is different from ESM released models) to estimate GigaAssay activities that is not 

done before. For determining variants’ effect, the probability of each amino acids type of a position of 

interest is predicted in ESM_pred, and the variant effect is calculated based on the logarithmic ratio of 

the probability between the mutated amino acid and the WT amino acid in Equation ( 4 ) where T is the 

set of mutated positions, 𝑥\𝑇 is the masked input sequence, 𝑝(𝑥𝑡 =  𝑥𝑡
𝑚𝑡|𝑥\𝑇) is the probability 

assigned to the mutated amino acid  𝑥𝑡
𝑚𝑡, and 𝑝(𝑥𝑡 =  𝑥𝑡

𝑤𝑡|𝑥\𝑇) is the probability assigned to the 

wildtype. 

 

∑ log 𝑝(𝑥𝑡 =  𝑥𝑡
𝑚𝑡|𝑥\𝑇) − 

𝑡∈𝑇

log 𝑝(𝑥𝑡 =  𝑥𝑡
𝑤𝑡|𝑥\𝑇)  

( 4 ) 

 

Recommended by ESM [9], five released ESM models (ESM-2 Public Release v1.0.3: 

esm1v_t33_650M_UR90S_1, esm1v_t33_650M_UR90S_2, esm1v_t33_650M_UR90S_3, 

esm1v_t33_650M_UR90S_4, and esm1v_t33_650M_UR90S_5) were used individually to predict the 

transcriptional effect after Tat variants. sPCC was then calculated for each model. In addition, the 

average prediction for the transcriptional effect of each Tat variant was determined by combining the 

predictions of five models, and estimated using sPCC.  

4.6. How to test DeepSequence on Tat variants: 

DeepSequence [10] is a generative, unsupervised latent variable model for estimating variants’ effect of 

biological sequences across a variety of datasets with deep mutational scanning. The model was learned 

in an unsupervised manner solely from sequence information, and grounded with biologically motivated 

priors, revealing latent organization of sequence families. There are three steps to run DeepSequence. 

First, a protein sequence of interest was used as input of multiple sequence alignment (MSA) tools to 

generate multiple sequence alignments. We use recommended tools by DeepSequence, EVcoupling 

from the website v2.evcouplings.org. DeepSequence [10] suggests the use of a bit score of 0.5 

bits/residue as a threshold to generate MSA results. However, MSA results of Tat protein with this score 

generated only 1.7 Seqs/L with 123 sequences, which is not enough to train DeepSequence. We thus 

tested 2 bit scores: 0.3 bits/residue with 1,645 effective sequences and 23.8 Seqs/L, and 0.25 

bits/residue with 7,871 effective sequences and 110.9 Seqs/L. Second, DeepSequence was trained with 

the sequences from MSA. Although DeepSequence is a generative model, each protein sequence 

requires a different model. We used MSA sequences with each bit score to retrain DeepSequence to 

generate separate models. Finally, the retrained models were used to predict variants’ effect. However, 
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both models predicted only ~10% (114) of single variants, although 0.3 bits/residue produces better 

results. 

4.7. The framework of a baseline method: 

A simple baseline method was also designed and compared with Rep2Mut. This method uses the one-

hot encoding of amino acids at each position as input, and has 3 fully connected layers of feed forward 

network: the input is a vector of 1,720 elements, the first hidden layer generates a vector of 860, and 

the second generates a vector of 256. The output is the predicted activity for a variant. This method was 

trained with a batch size of 16 as well as a learning rate of 5e-4, and tested with the similar strategy as 

Rep2Mut does. 

5. Conclusions 

We designed a deep learning-based method that only uses protein sequences to accurately predict 

transcriptional activities of experimentally-determined Tat. With the representation learning with 

protein sequence models, our approach achieved 0.94 Pearson correlation coefficient. This 

demonstrates that deep learning-based method can precisely estimate transcriptional activities of 

proteins with various variants and has great potential to be extended to complex mutations and other 

protein sequences. Although we use supervised learning, while state-of-the-art methods such as ESM 

and DeepSequence models use unsupervised training, the superior performance makes our approach 

more promising for new applications. In particular, our method trained on as little as 20% or 30% of data 

is able to achieve much better performance than state-of-the-art methods, demonstrating its potential 

application on other proteins with limited training data. We plan to extend our methods to complex 

variant alleles and to other proteins for human disease studies. 
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