

1 *Aedes aegypti* gut transcriptomes respond differently to
2 microbiome transplants from field-caught or laboratory-reared
3 mosquitoes.

4

5 Shivanand Hegde^{*1,‡}, Laura E. Brettell^{*1}, Shannon Quek^{*1}, Kayvan Etebari², Miguel A.
6 Saldaña³, Sassan Asgari², Kerri L. Coon⁴, Eva Heinz⁵, Grant L. Hughes^{1,†}

7

8 ¹Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical
9 Medicine, Liverpool L3 5QA, UK.

10 ²Australian Infectious Disease Research Centre, School of Biological Sciences, The
11 University of Queensland, Brisbane, Queensland, Australia.

12 ³Department of Microbiology and Immunology, University of Texas Medical Branch,
13 Galveston, Texas, USA.

14 ⁴Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.

15 ⁵ Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical
16 Medicine, Liverpool L3 5QA, UK.

17 * These authors contributed equally to this work.

18 # Current address: School of Life Sciences, Keele University, Keele ST5 5BG, UK.

19 † Corresponding author.

20

21 **Abstract**

22 The mosquito microbiome is critical for host development and plays a major role in many
23 aspects of mosquito biology. While the microbiome is commonly dominated by a small number
24 of genera, there is considerable variation in composition among mosquito species, life stages,
25 and geography. How the host controls and is affected by this variation is unclear. Using
26 microbiome transplant experiments, we asked whether there were differences in
27 transcriptional responses when mosquitoes of different species were used as microbiome
28 donors. We used microbiomes from four different donor species spanning the phylogenetic
29 breadth of the Culicidae, collected either from the laboratory or field. We found that when
30 recipients received a microbiome from a donor reared in the laboratory, the response was
31 remarkably similar regardless of donor species. However, when the donor had been collected
32 from the field, far more genes were differentially expressed. We also found that while the
33 transplant procedure did have some effect on the host transcriptome, this is likely to have had
34 a limited effect on mosquito fitness. Overall, our results highlight the possibility that variation
35 in mosquito microbiome communities are associated with variability in host-microbiome
36 interactions and further demonstrate the utility of the microbiome transplantation technique.

37

38 **Keywords:** Microbiome, RNA-Seq, Transplant, Transcriptome, Mosquito, *Aedes aegypti*,
39 Insect.

40

41 **Background**

42 The collection of microorganisms associated with an organism (*i.e.*, its microbiome) has
43 profound effects on its host biology. The mosquito microbiome in particular is critical for larval
44 development (Coon et al., 2014), plays a profound role in host fitness (Giraud et al., 2022;
45 Schmidt and Engel, 2021; Sharma et al., 2013), and, importantly, can affect the mosquito's
46 ability to transmit pathogens such as dengue and Zika viruses (Cansado-Utrilla et al., 2021;

47 Carlson et al., 2020; Ramirez et al., 2012). As such, manipulating the mosquito microbiome
48 has the potential to reduce transmission of globally important mosquito-borne pathogens.

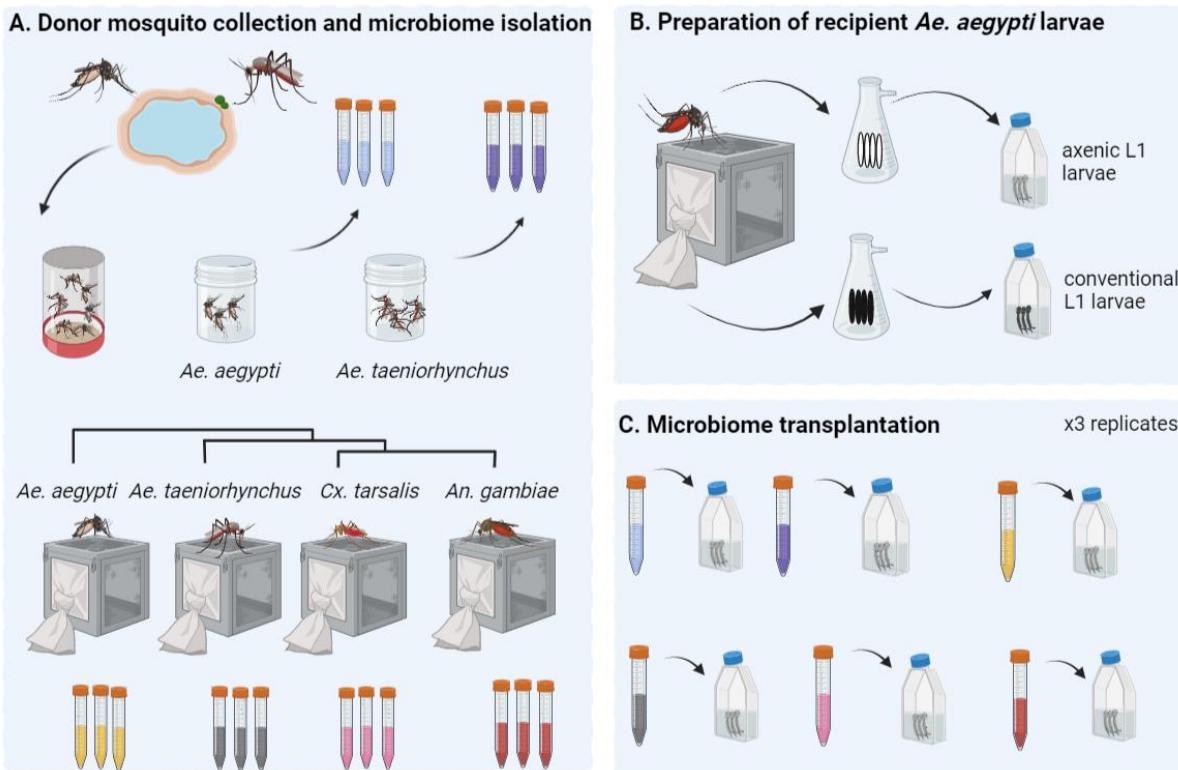
49 Traditionally, manipulating the microbiome has involved treating mosquitoes with antibiotics
50 that alter microbiome composition, but can also affect mosquito physiology (Chabanol et al.,
51 2020; Ha et al., 2021). However, approaches rearing axenic (germ-free) mosquito larvae
52 followed by supplementation with bacteria of choice have proven to be an excellent way to
53 interrogate host-microbe interactions without using antibiotics, thus removing effects of the
54 antibiotic and the 'original' microbiome. Largely, this gnotobiotic approach has been used for
55 investigating the role of the microbiome in mosquito development (Coon et al., 2016; Correa
56 et al., 2018). More recently, this approach has been exploited to perform interspecies
57 microbiome transfers opening up the possibility to study microbial symbiosis in mosquitoes
58 (Coon et al., 2022; Romoli et al., 2021).

59 The ability to rear axenic/gnotobiotic mosquitoes also provides an opportunity to understand
60 how the presence or absence of gut microbial communities affect host gene expression.
61 Previously, in a comparison of axenic, gnotobiotic and conventionally-reared *Aedes aegypti*,
62 1328 host transcripts were differentially expressed compared to gnotobiotic and
63 conventionally-reared mosquito larvae (Vogel et al., 2017). However, a different study found
64 a much smaller effect in adult *Ae. aegypti*, with only 170 genes differentially expressed
65 between axenic and conventionally-reared mosquitoes (Hyde et al., 2020). These studies
66 demonstrate the utility of the axenic/gnotobiotic system for investigating mosquito-microbiome
67 interactions, and furthermore point to larval stages being key for understanding how the host
68 reacts to the microbiome.

69 Recently, we developed an interspecies microbiome transplantation technique in mosquitoes
70 and showed that we could successfully recapitulate microbial composition in the recipient host
71 (Coon et al., 2022). This novel approach allowed us to manipulate the microbiome and to
72 investigate the impact of complex heterogeneous communities on mosquito gene expression.

73 This study sought to address two questions: (1) How does the *Ae. aegypti* transcriptome
74 change upon receiving microbiome transplant when a different mosquito species is used as a
75 microbiome donor? and (2) Does *Ae. aegypti* experience transcriptomic changes associated
76 with the transplant procedure itself? To address the first question, we performed inter-species
77 microbiome transplants using microbiomes from three donor species (*Aedes taeniorhynchus*,
78 *Culex tarsalis* and *Anopheles gambiae*) and performed RNA-Seq analysis to compare
79 recipient host transcriptional profiles to *Ae. aegypti* recipients transplanted with their original
80 microbiome. We also considered whether microbiomes derived from field-caught or
81 laboratory-reared *Ae. aegypti* and *Ae. taeniorhynchus* mosquitoes affect recipient host
82 transcriptomes differently. To address the second question, we compared transcriptional
83 profiles of each of the *Ae. aegypti* treatment groups that had received a microbiome
84 transplantation to mosquitoes conventionally reared in the same system without a microbiome
85 transplant. Using mosquito microbiome transplants to unravel the intricacies of how
86 mosquitoes are affected by their microbiomes is relevant for both mosquito biology and our
87 understanding of host-microbiome interactions more broadly.

88


89 **Methods**

90 **Experimental setup**

91 The experimental setup comprised seven treatments, each with three replicates (Figure 1): (i)
92 *Ae. aegypti* receiving a transplant isolated from conspecific individuals of the same laboratory-
93 maintained Galveston line (i.e., their original microbiome); *Ae. aegypti* receiving a transplant
94 from one of five different donor pools from varying locations and phylogenetically distinct
95 species (henceforth termed ‘extraneous donors’); these included (ii) field-caught *Ae. aegypti*,
96 (iii) field-caught *Ae. taeniorhynchus*, (iv) laboratory-reared *Ae. taeniorhynchus*, (v) laboratory-
97 reared *Cx. tarsalis*, and (vi) laboratory-reared *An. gambiae*; and (vii) *Ae. aegypti* Galveston

98 line reared under aseptic conditions without egg sterilization to retain their original microbiome
99 (conventionally-reared control).

100

101

102 **Figure 1.** Microbiome transplantation from field-collected and laboratory-reared mosquitoes
103 into recipient laboratory-reared mosquitoes. **A.** Adult mosquitoes from field populations of *Ae.*
104 *aegypti* or *Ae. taeniorhynchus* were trapped using BG sentinel traps in Galveston, Texas and
105 sorted according to species and sex. Three replicate pools of 20 adult females were then used
106 to isolate donor microbiomes from each species. Donor microbiomes were also isolated from
107 three replicate pools of 20 laboratory-reared *Ae. aegypti*, *Ae. taeniorhynchus*, *Cx. tarsalis*, and
108 *An. gambiae* adult females. **B.** Laboratory-reared *Ae. aegypti* were used as recipient hosts for
109 all transplants. In brief, eggs were surface sterilized using ethanol and bleach before vacuum
110 hatching to obtain L1 axenic larvae. As a control for the transplantation process, we also
111 vacuum hatched a batch of non-sterilized eggs from the same colony. These were grown
112 conventionally in closed conditions to retain their original microbiome. (**C**) Axenic larvae were
113 transferred into T75 tissue culture flasks at 20 larvae per flask with three replicates per
114 treatment. Here they were inoculated with the donor microbiome through supplementation of
115 the larval water. Flasks were maintained at 28 °C and fed with sterile fish food on alternative
116 days. Once larvae had reached the fourth instar they were harvested, their guts dissected and
117 RNA-Seq was carried out using pools of five guts for each of three replicate flasks per
118 treatment. Figure created using Biorender.

119

120 **Donor mosquito collections**

121 Microbiome transplants were carried out by first isolating donor microbiomes from one of
122 four mosquito species (*Ae. aegypti*, *Ae. taeniorhynchus*, *Cx. tarsalis*, or *An. gambiae*), which
123 had either been laboratory-reared or field-caught (Figure 1). Colonies of all four species had
124 been continually maintained at the University of Texas Medical Branch at 28 °C with 12 hr
125 light/dark cycles and provided 20% sugar solution *ad libitum*. The laboratory colony of *Ae.*
126 *aegypti* (Galveston line) were the F3 generation, whereas all other laboratory-reared mosquito
127 colonies had been maintained for approximately ten years. Pools of 20 three-to-four-day old
128 sugar fed adult females from one colony of each species were used for microbiome isolations.
129 We also collected members of two of these species, *Ae. aegypti* and *Ae. taeniorhynchus* from
130 field populations. Collections were made in 2018 locally in Galveston, Texas using Biogents
131 sentinel (BG) traps. Adult mosquitoes were collected and sorted morphologically according to
132 species and sex. Again, pools of 20 females of each of the two species were used for
133 microbiome isolations.

134

135 **Preparation of recipient mosquitoes and microbiome transplantation**

136 Microbiome isolation and transplantation was carried out using our recently developed
137 methodology (Coon et al., 2022) as follows: Recipient mosquitoes were prepared by surface
138 sterilising *Ae. aegypti* eggs using 70% ethanol and vacuum hatching under sterile conditions
139 to generate axenic first instar larvae. The larvae were then transferred to T75 tissue culture
140 flasks in sterile water at the rate of 20 larvae per flask (three replicate flasks per treatment).
141 The same laboratory-reared *Ae. aegypti* (Galveston line) colony as used for microbiome
142 donation was used as the source of recipient hosts for all transplants. For each of the six donor
143 types (four laboratory-reared and two field-caught), three replicate pools of 20 mosquitoes
144 were surface sterilised using 70% ethanol and bleach washes followed by homogenisation
145 and filtration. Resulting donor microbiome aliquots were transplanted into recipient larvae by
146 inoculating the larval water, with one aliquot per replicate flask. Recipient larvae were
147 maintained in a closed environment at 28 °C with 12 hr light and dark cycle and supplemented

148 with sterile fish food on alternative days until they reached the fourth instar. Since *Ae. aegypti*
149 larvae require bacteria for their development (Coon et al., 2014), only those individuals that
150 had been successfully inoculated with the donor microbiota developed.

151

152 **Sample preparation, RNA extraction and preparation of cDNA libraries for RNA-Seq**

153 When recipient mosquitoes reached their fourth instar, five larvae were collected from each
154 flask, surface sterilised, and their guts dissected. The five guts were then pooled to obtain
155 sufficient RNA for cDNA library preparation and RNA-Seq. RNA was extracted using the
156 PureLink RNA mini kit (Thermo Fisher Scientific), then using between 100ng-1ug total RNA,
157 polyA+ RNA transcripts were isolated using the NEBNext Poly(A) mRNA Magnetic Isolation
158 Module (New England Biolabs). Non-directional libraries were created using the NEBNext
159 Ultra II RNA Library Prep Kit (New England Biolabs) and Next Generation Sequencing was
160 carried out using the Illumina NextSeq 550 platform to generate 75bp paired end reads at the
161 University of Texas Medical Branch Core Next Generation Sequencing Facility.

162

163 **Data analysis**

164 Sequence data were obtained in fastq format and quality checked using FASTQC v0.11.5
165 (Andrews, 2017). All samples had an average phred score of > 30, with no adapter sequences
166 present so no trimming was performed. FeatureCounts v2.0.1 (Liao et al., 2014) was used to
167 obtain raw count data from the sequencing files using default parameters and the *Ae. aegypti*
168 reference genome (Genome version GCA_002204515.1, Annotation version AaegL5.3) to
169 determine feature locations. The resulting feature count table was then imported into RStudio
170 v1.4.1106 and filtered to remove any genes which did not have at least ten reads present in
171 each replicate of at least one treatment group before continuing with subsequent analyses.

172 Firstly, we investigated how *Ae. aegypti* responded to receiving a microbiome transplant from
173 an extraneous donor. We compared gene expression in each recipient that had received a
174 microbiome from a donor belonging to a different species, or from a different location to a
175 baseline of recipients that had received a transplant of their ‘original’ microbiome from a
176 conspecific donor. To focus on the gene expression in transplant-recipients, for this analysis
177 we had removed the conventionally reared control mosquitoes. Differential expression (DE)
178 analysis was carried out using DESeq2 v1.30.1 (Love et al., 2014) using default parameters.
179 DESeq2 takes as input raw read counts from programs such as FeatureCounts, using the
180 DESeqDataSetFromMatrix command. As part of its internal workflow, DESeq2 automatically
181 normalizes gene expression data based on the input raw count data. Thresholds were applied
182 to the resulting list of differentially expressed genes (DEGs) to retain only those with an
183 adjusted p value of < 0.05 and an absolute \log_2 fold change of ≥ 1.5 . An upset plot was created
184 using the UpsetR package v1.4.0 (Conway et al., 2017) to visualise the number of DEGs in
185 each pairwise comparison between recipients of a transplant from an extraneous donor and
186 the recipients of a transplant from a conspecific donor, as well as show how many were
187 common to multiple transplant groups or unique to one treatment. The ComplexHeatmap
188 package v2.12.0 (Gu et al., 2016) was used to visualise the \log_2 fold changes of these DEGs
189 compared to the ‘original’ microbiome control. We further investigated those DEGs identified
190 as enhanced or suppressed when using each of the extraneous donor-derived microbiomes,
191 by using the VectorBase Gene Ontology enrichment analysis tool to determine enriched GO
192 terms (Biological Processes, Bonferroni adjusted p value < 0.05) in the enhanced or
193 suppressed DEGs (VectorBase IDs).

194 To investigate how the recipient host transcriptome was affected by the transplant procedure
195 itself, differential expression analysis was repeated using DESeq2 and conventionally reared
196 mosquitoes as the baseline group to which all transplant groups were compared. The UpsetR
197 and ComplexHeatmap packages were then used to compare DEGs present in every

198 comparison to the conventional control and to plot associated \log_2 fold changes prior to GO
199 enrichment analysis to identify functions of commonly enhanced and suppressed genes.

200 Sequencing reads were deposited in the National Centre for Biotechnology Information
201 Sequence Read Archive under the accession PRJNA941184. All R code used in analyses, as
202 well as raw counts table and metadata are available at https://github.com/laura-brettell/microbiome_transplant_RNASeq

204

205 **Results and Discussion**

206 **Host gene expression shows marked differences when the microbiome donor was field-
207 caught compared to laboratory-reared**

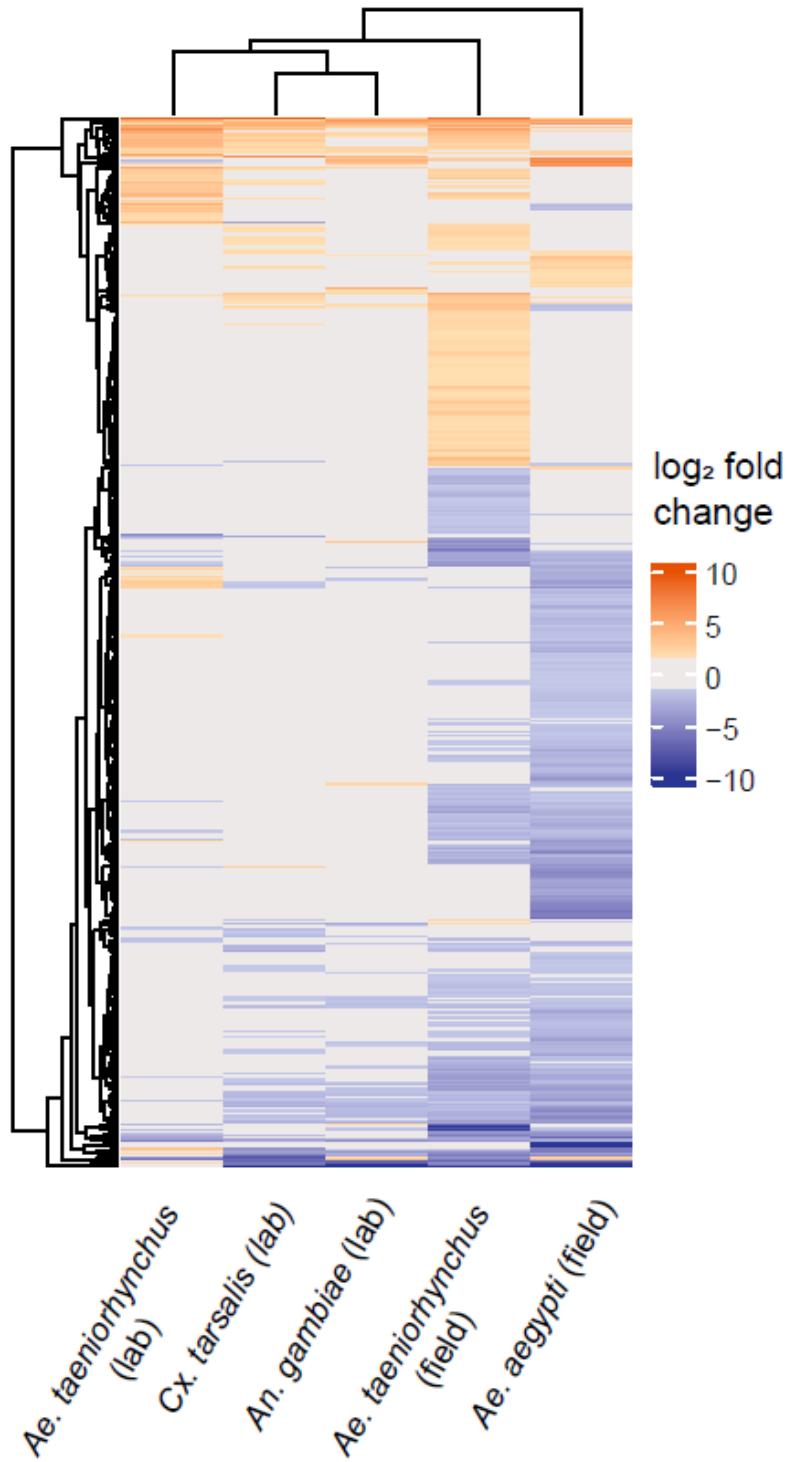

208 Microbiome transplantation experiments provide a unique opportunity to investigate how the
209 host interacts with a selection of diverse microbiomes in a controlled environment. Here, we
210 used our previously developed methodology (Coon et al., 2022) to ask whether different
211 microbiomes alter the host transcriptome. While mosquito microbiomes are commonly
212 dominated by a small number of bacterial genera (Coon et al., 2014), microbiome composition
213 varies amongst host species (Hegde et al., 2018; Kozlova et al., 2021), geography (Coon et
214 al., 2016; Zouache et al., 2011), and across individuals (Coon et al., 2022; Osei-Poku et al.,
215 2012). In our previous study, we found variability in the microbiome of three different mosquito
216 species reared under identical insectary conditions (Hegde et al 2018). Hence, this begs
217 question how do mosquitoes respond to these varied microbiomes.

218 To assess whether mosquitoes respond differently to varied mosquito-derived microbiomes,
219 we performed transplantations using donors spanning the phylogenetic breadth of the
220 Culicidae and a combination of laboratory-reared and field-caught samples. All microbiomes
221 were transplanted into laboratory-reared *Ae. aegypti* (Galveston line) from the same
222 generation (Figure 1). Larvae in all experimental treatments successfully developed to the
223 fourth instar, indicating that each of the mosquito microbiomes used in this experiment

224 provided the necessary nourishment for larval development. This is irrespective of donor
225 species or collection environment, and is in agreement with the findings of several previous
226 studies that looked at the impact of altered larval microbiomes on mosquito development
227 (Correa et al., 2018; Vogel et al., 2017).

228 Using RNA-Seq, we compared gene expression in the guts of mosquitoes that received a
229 microbiome from an extraneous donor (*i.e.*, isolated from a different species or collected from
230 a different environment) to those that received their original microbiome (*i.e.*, isolated from
231 conspecifics from the same *Ae. aegypti* laboratory population) (Figure 1). Across the entire
232 dataset, we obtained an average of 23.6M reads per sample (range 16.1M – 30.8M) with an
233 average of 74% of reads (range: 70.4% – 76.3%) mapping uniquely to the *Ae. aegypti* genome
234 (Supplementary Table 1). Differential expression (DE) analysis revealed a striking difference
235 between recipients of inoculated with laboratory-reared versus field-caught donor
236 microbiomes. When recipients received a transplant from a donor reared in the same
237 laboratory, there was little change to the gut transcriptome regardless of which donor species
238 was used (Figure 2). Transplants using microbiomes derived from laboratory-reared *Ae.*
239 *taeniorhynchus*, *Cx. tarsalis*, and *An. gambiae* donors resulted in 55, 49, and 19 DEGs,
240 respectively (Figure 2, Supplementary Table 2). In contrast, transplantation using
241 microbiomes derived from field-caught donors resulted in far more modulated transcripts, with
242 microbiomes from field-caught *Ae. aegypti* resulting in 447 DEGs and those from field-caught
243 *Ae. taeniorhynchus* resulting in 448 DEGs.

244


245

246 **Figure 2.** Upset plot showing the number of differentially expressed genes (DEGs) in each of
247 the microbiome transplant recipients relative to the control recipients, that had received their
248 original microbiome. Set size refers to the number of DEGs in the recipient when transplanted
249 with microbiomes from each of five donor types (*An. gambiae*, *Cx. tarsalis*, and *Ae.*
250 *taeniorhynchus* reared in the laboratory (yellow bars); and *Ae. aegypti* and *Ae. taeniorhynchus*
251 collected from the field, (green bars)). Intersections where DEGs were identified in multiple
252 transplantation types are denoted by the ball and stick diagram, with black bars showing the
253 number of DEGs in each intersection, *i.e.*, 285 DEGs were seen only when *Ae. aegypti* (field)
254 -derived microbiomes were used.

255

256 While we did not characterize the composition of the different donor microbiomes in our study,
257 the consistency in response, or lack thereof, of recipient hosts to laboratory-reared donor
258 microbiomes suggests some level of similarity in composition between the different laboratory-
259 derived donor microbiomes we isolated. The overall stronger differences in responses we
260 observed across recipients of field-caught donor microbiomes also suggests that field-caught
261 mosquitoes harbour more variable microbial communities that differ in composition from those
262 present in laboratory-reared mosquitoes. This is also consistent with previous studies
263 comparing the microbiomes of *Ae. aegypti* and other animals maintained in captivity to their
264 free-living counterparts (Eichmiller et al., 2016; Lemieux-Labonté et al., 2016). Collectively,

265 this suggests that microbiome composition is generally affected more by environment than
266 host species, although it is not always the case (Hegde et al., 2018), which indicates that the
267 factors governing microbiome assembly are complex. In each of the groups receiving a
268 transplant from a field-caught donor, approximately one quarter of DEGs compared to the
269 original microbiome control were common to both comparisons (136/447 for *Ae. aegypti* field
270 donor and 136/448 for *Ae. taeniorhynchus* field donor) (Figure 2). We assume that the two
271 field-derived microbiomes were different from one another, given we have previously seen
272 that different species harbour distinct microbiomes (Hegde et al., 2018). However, the overlap
273 in DEGs suggests some level of commonality in response, or that divergent field bacterial elicit
274 similar transcriptional effects. Furthermore, of the DEGs common to both field-derived
275 transplants, all but one DEGs showed the same direction of change (Supplementary Figure 1,
276 Supplementary Table 2). Nine genes were enhanced when a transplantation was performed
277 using a field-caught donor: a putative cytochrome b5 gene (AAEL004450), a ubiquitin-
278 conjugating enzyme (AAEL001208), transcription initiation factor RRN3 (AAEL012265), a
279 sterol o-acyltransferase (AAEL009596), and five for which the product is unknown. The same
280 sterol o-acyltransferase has previously been found to be enhanced in gnotobiotic and
281 axenically reared larvae compared to conventionally reared individuals (Vogel et al., 2017). Of
282 the 126 genes that were suppressed in both field-transplant groups, 62 are of unknown
283 function. However, the genes showing the strongest levels of suppression across the two field-
284 transplant samples included three metalloproteases (AAEL011540 and AAEL011559, and the
285 zinc metalloprotease AAEL008162). Zinc metalloproteases have previously been implicated
286 as contributors to gut microbiome homeostasis in mice (Rodrigues et al., 2012). We did not
287 identify any immune signal associated with receiving a microbiome transplant from an
288 extraneous donor. Therefore, while immune function is affected by particular gut functions *i.e.*,
289 blood meal digestion (Hyde et al., 2020), it does not appear to be affected by the presence of
290 different transplanted mosquito-derived microbiomes.

291

292 **Figure 3.** Heatmap showing differential gene expression between microbiome transplants
293 using extraneous donors relative to transplants with laboratory-reared *Ae. aegypti* receiving
294 their original microbiome. Orange cells represent when gene expression was enhanced in the
295 transplant treatment (absolute log₂ fold change ≥ 1.5 , adjusted p value < 0.05). Blue cells
296 represent a suppression of gene expression, passing the same thresholds. Grey denotes
297 where a gene did not pass the differential expression threshold (log₂ fold change > 1.5 ,
298 adjusted p value < 0.05). The microbiome donor is shown on the x-axis, with each row on the
299 y-axis corresponding to a DEG. The dendograms represent clustering of similar responses
300 as determined through the *hclust* function within the *ComplexHeatmap* package.

301

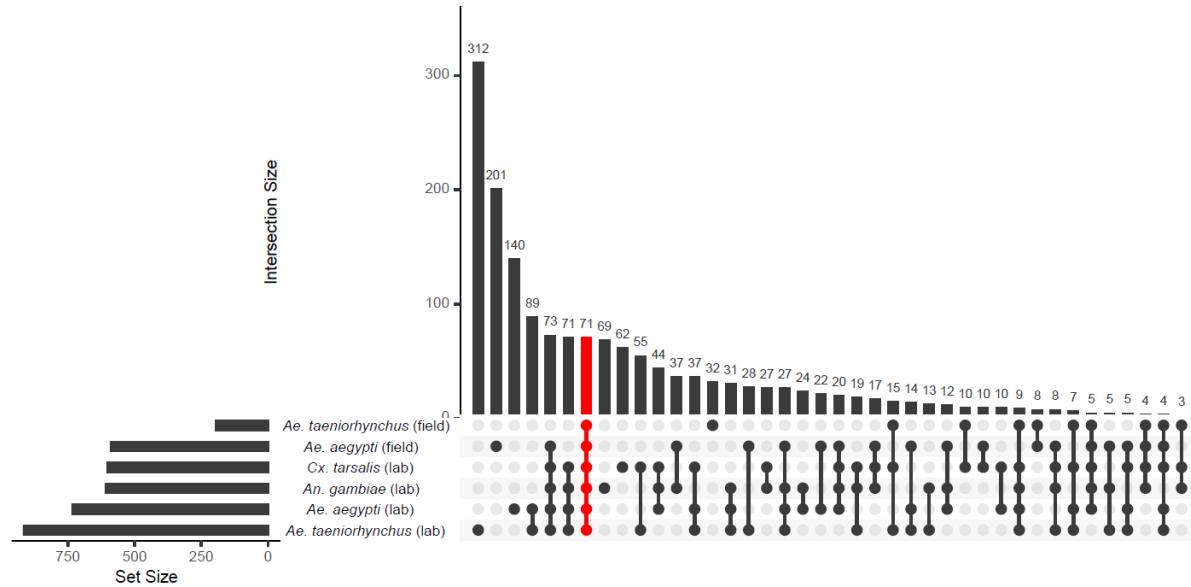
302 It is notable that when field-caught *Ae. taeniorhynchus* was used as the microbiome donor,
303 similar numbers of genes were enhanced or suppressed compared to the original microbiome
304 control (Figure 3). However, when using field-caught *Ae. aegypti* as the microbiome donor,
305 recipients showed far greater numbers of suppressed than enhanced genes compared to the
306 original microbiome control (Figure 3). That we did not observe a more profound effect when
307 using field-caught *Ae. taeniorhynchus* donor microbiomes over field-caught *Ae. aegypti* donor
308 microbiomes may be related to the inherent variability of using pools of field-caught
309 mosquitoes.

310

311 Given that the majority of DEGs were different between the two field-caught microbiome donor
312 groups, we also looked at each of the two groups separately to identify whether any of the
313 same biological processes may be implicated across both groups. We used Gene Ontology
314 Enrichment Analysis to identify GO terms that were enriched in enhanced or suppressed
315 DEGs in recipients of each of the field-derived microbiomes. Four biological processes were
316 identified as suppressed in the recipients of both the *Ae. aegypti* (field) and *Ae. taeniorhynchus*
317 (field) microbiomes (Supplementary Table 3). These include carbohydrate metabolic process,
318 a dominant process of the anterior midgut and proventriculus (Hixson et al., 2022),
319 transmembrane transport, obsolete oxidation-reduction process, and small molecule catabolic
320 process. In keeping with the gene-level results, which showed only a small number of
321 enhanced genes in the recipients of field-caught *Ae. aegypti* donor microbiomes, no GO terms
322 were significantly enhanced. The recipients of field-caught *Ae. taeniorhynchus* donor
323 microbiomes however, showed an enhancement of GO terms related to translation, including
324 ribosome biogenesis, rRNA processing, and rRNA metabolic process.

325

326 **A core set of genes were consistently affected when conducting a microbiome**
327 **transplantation**


328 To maximise the potential of microbiome transplantation experiments, it is important to
329 determine whether the transplant technique itself may influence the host. We know that
330 transplant recipients successfully develop to adulthood (Coon et al., 2022), but we do not know
331 if the recipients experienced transcriptomic changes associated with the experimental
332 procedure. To address this, we compared the gut transcriptomes of *Ae. aegypti* larvae
333 receiving a microbiome transplant (either their original microbiome or from a 'foreign' donor)
334 to the gut transcriptomes of *Ae. aegypti* larvae from the same laboratory population that had
335 not received a transplant to look for commonalities between responses (Figure 1).

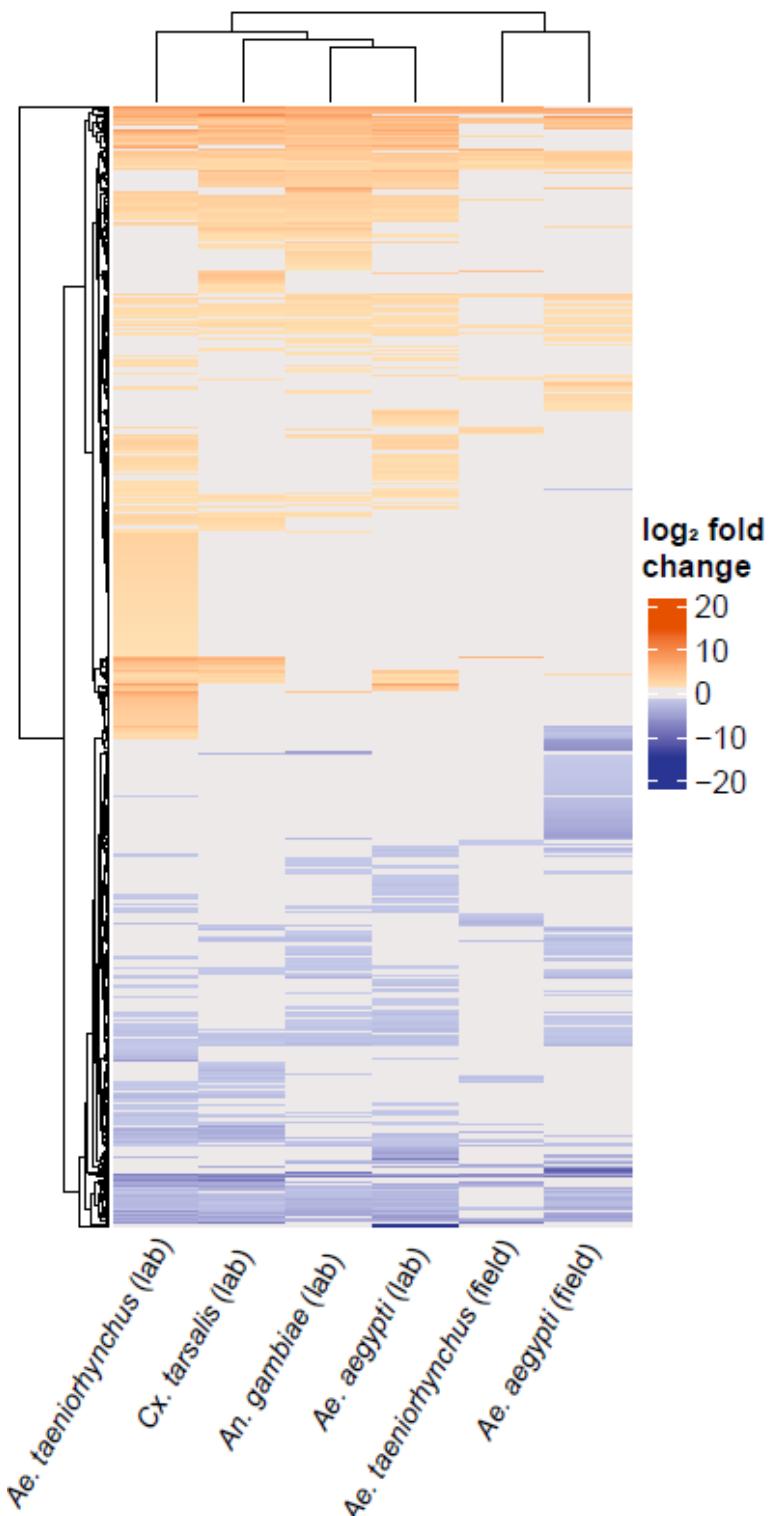
336

337 We conducted differential expression analysis to compare gene expression in the
338 conventionally reared larvae and each of the microbiome transplant treatments individually.
339 We found 1680 DEGs in at least one transplantation group relative to the conventional control
340 (Figure 4, Supplementary Table 4). This number ranged from 614 DEGs in the comparison
341 between conventionally reared larvae and recipients of a field-caught *Ae. taeniorhynchus*
342 donor microbiome, and up to 1269 genes in the comparison with recipients of a laboratory-
343 reared *Ae. taeniorhynchus* donor microbiome. We then identified 71 genes that were
344 consistently differentially expressed during each microbiome transplant, and thus could be a
345 conserved response to the technique itself. Interestingly, these genes all showed the same
346 direction of change in all comparisons, with 50 genes consistently enhanced when a transplant
347 was performed, and 21 genes consistently suppressed (Supplementary Figure 2,
348 Supplementary Table 5). Of the DEGs that were enhanced in the transplant recipients, one
349 gene showed substantially higher differential expression than any other, a threonine
350 dehydratase/deaminase gene (AAEL003564) involved in ammonia transport and
351 detoxification (Durant et al., 2021). Among the most strongly suppressed DEGs in the
352 transplantation groups were two glucosyl/glucuronosyl transferases (AAEL008560 and

353 AAEL010381), genes previously found to be enriched in the L3/L4 life stages (Matthews et al.,
354 2018).

355

356


357 **Figure 4.** Upset plot showing the number of differentially expressed genes (DEGs) in
358 recipients of each of the microbiome transplant treatments relative to the conventionally reared
359 control. The 71 DEGs identified in every transplantation group are highlighted in red.

360

361 Given that the 71 genes identified in every comparison with conventionally reared controls
362 were consistently affected in the same manner, we next asked whether other genes that had
363 been identified in multiple comparisons were also affected in the same direction. We looked
364 at all genes that passed our differential expression thresholds for at least one comparison and
365 saw that, of the 1680 genes, all but 26 genes showed the same direction of change when they
366 were identified in multiple comparisons (Figure 5, Supplementary Table 4). Thus, while only a
367 small number of genes were identified in every comparison (and are therefore likely those
368 most impacted by the transplant technique itself), there were general similarities in
369 transcriptomic responses to a transplant overall. However, the magnitude of DEG changes
370 between transplant recipients and conventionally reared controls varied amongst treatment
371 groups. Interestingly, the treatment that showed the most similar transcriptome to conventional

372 was the transplant using donor microbiomes isolated from field-caught *Ae. taeniorhynchus*,
373 which as a different mosquito species and collection environment presumably harboured a
374 substantially different microbiome composition to the *Ae. aegypti* control mosquitoes that were
375 conventionally reared in the laboratory.

376

377

378 **Figure 5.** Heatmap showing the \log_2 fold change of each of the 1680 genes identified as
379 differentially expressed in at least one comparison between a transplant treatment group and
380 conventional. Warmer colours indicate when gene expression was enhanced in the transplant
381 group and cooler colours indicate when gene expression was suppressed. Grey denotes
382 where a gene did not pass the differential expression threshold (\log_2 fold change > 1.5 ,
383 adjusted p value < 0.05). The microbiome donor is shown on the x-axis, with each row on the
384 y-axis corresponding to a DEG.

385
386 To investigate whether biological functions could be implicated as being affected by the
387 transplant process, we assigned GO terms to the genes that were consistently enhanced or
388 suppressed in at least one transplant group across the dataset as a whole. The genes that
389 were suppressed when a transplant was carried out were largely those with roles in
390 metabolism and RNA processing (Supplementary Table 6), processes typically occurring in
391 the gut (Hixson et al., 2022; Vogel et al., 2017). Indeed, one of the GO terms implicated in our
392 data (ribonucleoprotein complex biogenesis) has previously been found to be affected by
393 blood meal digestion (Hixson et al., 2022). Of the genes that were enhanced overall, when a
394 transplant was performed, proteolysis was the only enriched GO term identified with a
395 Bonferroni adjusted p value < 0.05.

396 Overall, these results support a lack of any strong, consistent physiological response to the
397 transplant technique. While there were numerous DEGs identified amongst all different
398 transplant groups compared to conventionally reared controls, most of these genes were only
399 identified in a subset of comparisons. While other studies have shown alterations to the
400 transcriptome when carrying out microbiome manipulations, there does not appear to be a
401 consistent pattern. Hyde et al (2020) reported minimal effects on gut transcriptomes when
402 comparing adult *Ae. aegypti* that had either received their native microbiome or been reared
403 axenically. In contrast, Vogel et al (2017) reported a larger difference in the gut transcriptomes
404 of first instar larvae that had been axenically or gnotobiotically reared compared to
405 conventionally reared larvae. It should be noted that in both studies, these differences were
406 likely attributable in large part to starvation stress associated with the developmental arrest of
407 axenic larvae and are therefore not directly comparable to other studies, including this one,
408 which sampled later life stages. Overall, we can speculate that while the transplant technique
409 is likely having some effect, it is largely transient and not severely detrimental to the recipient
410 host. Nevertheless, it is known that what bacteria mosquito larvae are exposed to can affect
411 biological traits in adulthood (Carlson et al., 2020; Dickson et al., 2017), warranting further

412 work to identify whether recipients are affected by the transplant technique as they develop
413 into adulthood. Additionally, given our microbiome donors were all non-blood fed adults, it
414 would be interesting to test what effect using donor microbiomes derived from this life stage
415 had compared to other stages, including donor microbiomes derived from larvae or blood fed
416 adults.

417

418 **Conclusions**

419 The gut transcriptomes of *Ae. aegypti* responded differently to a microbiome transplant from
420 a field-caught compared to a laboratory-reared donor, regardless of donor species. When the
421 donor was laboratory-reared, even microbiomes derived from the most phylogenetically
422 distant host showed a small number of DEGs. The responses imparted when a field-caught
423 microbiome donor was used were far greater (more DEGs) and varied by donor species. The
424 responses experienced across the transplants were varied and DEGs were generally those
425 involved in normal gut functions such as metabolism. While we hypothesise that the responses
426 seen here are not severely detrimental to the recipient mosquito, it does highlight the clear
427 differences in microbiomes of laboratory-reared and field-caught mosquitoes, which must be
428 considered when carrying out experiments with laboratory-reared mosquitoes. Taken
429 together, these findings demonstrate the utility of the mosquito microbiome transplantation
430 technique in determining the molecular basis of mosquito-microbiome interactions and
431 underscores how mosquito larval life history has generally relaxed the dependence of larvae
432 on any particular microbiome, at least under ideal diet/nutrient conditions. Future studies
433 should focus on studying such interactions under variable diet/nutrient conditions that mimic
434 field conditions and determining effects on adults.

435 **Acknowledgements**

436 This work was supported by collaborative awards from the National Science Foundation and
437 Biotechnology and Biological Sciences Research Council (NSF/2019368; BB/V011278/1) (to
438 KLC, EH, and GLH) and National Institutes of Health (R21AI138074) (to GLH and KLC). KLC
439 was further supported by the U.S. Department of Agriculture (2018-67012-29991). SH and

440 LEB were supported by the LSTM Director's Catalyst Fund. MS was supported by the NIAID
441 Emerging and Tropical Infectious Diseases Training Program (5T32AI7526-17, PI: Lynn
442 Soong)
443

444 **References**

445 Andrews, S., 2017. FastQC: a quality control tool for high throughput sequence data. 2010.
446 Cansado-Utrilla, C., Zhao, S.Y., McCall, P.J., Coon, K.L., Hughes, G.L., 2021. The
447 microbiome and mosquito vectorial capacity: rich potential for discovery and
448 translation. *Microbiome* 9, 1–11.
449 Carlson, J.S., Short, S.M., Angleró-Rodríguez, Y.I., Dimopoulos, G., 2020. Larval exposure
450 to bacteria modulates arbovirus infection and immune gene expression in adult
451 *Aedes aegypti*. *Dev. Comp. Immunol.* 104, 103540.
452 Chabanol, E., Behrends, V., Prévot, G., Christophides, G.K., Gendrin, M., 2020. Antibiotic
453 treatment in *Anopheles coluzzii* affects carbon and nitrogen metabolism. *Pathogens*
454 9, 679.
455 Conway, J.R., Lex, A., Gehlenborg, N., 2017. UpSetR: an R package for the visualization of
456 intersecting sets and their properties. *Bioinformatics*.
457 Coon, K.L., Brown, M.R., Strand, M.R., 2016. Mosquitoes host communities of bacteria that
458 are essential for development but vary greatly between local habitats. *Mol. Ecol.* 25,
459 5806–5826.
460 Coon, K.L., Hegde, S., Hughes, G.L., 2022. Interspecies microbiome transplantation
461 recapitulates microbial acquisition in mosquitoes. *Microbiome* 10, 58.
462 <https://doi.org/10.1186/s40168-022-01256-5>
463 Coon, K.L., Vogel, K.J., Brown, M.R., Strand, M.R., 2014. Mosquitoes rely on their gut
464 microbiota for development. *Mol. Ecol.* 23, 2727–2739.
465 <https://doi.org/10.1111/mec.12771>
466 Correa, M.A., Matusovsky, B., Brackney, D.E., Steven, B., 2018. Generation of axenic
467 *Aedes aegypti* demonstrate live bacteria are not required for mosquito development.
468 *Nat. Commun.* 9, 1–10.
469 Dickson, L.B., Jiolle, D., Minard, G., Moltini-Conclois, I., Volant, S., Ghozlane, A., Bouchier,
470 C., Ayala, D., Paupy, C., Moro, C.V., Lambrechts, L., 2017. Carryover effects of
471 larval exposure to different environmental bacteria drive adult trait variation in a
472 mosquito vector. *Sci. Adv.* 3, e1700585. <https://doi.org/10.1126/sciadv.1700585>
473 Durant, A.C., Guardian, E.G., Kolosov, D., Donini, A., 2021. The transcriptome of anal
474 papillae of *Aedes aegypti* reveals their importance in xenobiotic detoxification and
475 adds significant knowledge on ion, water and ammonia transport mechanisms. *J.*
476 *Insect Physiol.* 132, 104269.
477 Eichmiller, J.J., Hamilton, M.J., Staley, C., Sadowsky, M.J., Sorensen, P.W., 2016.
478 Environment shapes the fecal microbiome of invasive carp species. *Microbiome* 4, 1–
479 13.
480 Giraud, É., Varet, H., Legendre, R., Sismeiro, O., Aubry, F., Dabo, S., Dickson, L.B.,
481 Valiente Moro, C., Lambrechts, L., 2022. Mosquito-bacteria interactions during larval
482 development trigger metabolic changes with carry-over effects on adult fitness. *Mol.*
483 *Ecol.* 31, 1444–1460.
484 Gu, Z., Eils, R., Schlesner, M., 2016. Complex heatmaps reveal patterns and correlations in
485 multidimensional genomic data. *Bioinformatics* 32, 2847–2849.
486 Ha, Y., Jeong, S., Jang, C., Chang, K., Kim, H., Cho, S., Lee, H., 2021. The effects of
487 antibiotics on the reproductive physiology targeting ovaries in the Asian tiger
488 mosquito, *Aedes albopictus*. *Entomol. Res.* 51, 65–73.
489 Hegde, S., Khanipov, K., Albayrak, L., Golovko, G., Pimenova, M., Saldana, M.A., Rojas,
490 M.M., Hornett, E.A., Motl, G.C., Fredregill, C.L., 2018. Microbiome interaction
491 networks and community structure from laboratory-reared and field-collected *Aedes*

492 aegypti, *Aedes albopictus*, and *Culex quinquefasciatus* mosquito vectors. *Front.*
493 *Microbiol.* 9, 2160.

494 Hixson, B., Bing, X.-L., Yang, X., Bonfini, A., Nagy, P., Buchon, N., 2022. A transcriptomic
495 atlas of *Aedes aegypti* reveals detailed functional organization of major body parts
496 and gut regional specializations in sugar-fed and blood-fed adult females. *Elife* 11,
497 e76132.

498 Hyde, J., Correa, M.A., Hughes, G.L., Steven, B., Brackney, D.E., 2020. Limited influence of
499 the microbiome on the transcriptional profile of female *Aedes aegypti* mosquitoes.
500 *Sci. Rep.* 10, 1–12.

501 Kozlova, E.V., Hegde, S., Roundy, C.M., Golovko, G., Saldaña, M.A., Hart, C.E., Anderson,
502 E.R., Hornett, E.A., Khanipov, K., Popov, V.L., Pimenova, M., Zhou, Y., Fovanov, Y.,
503 Weaver, S.C., Routh, A.L., Heinz, E., Hughes, G.L., 2021. Microbial interactions in
504 the mosquito gut determine *Serratia* colonization and blood-feeding propensity. *ISME J.* 15,
505 93–108. <https://doi.org/10.1038/s41396-020-00763-3>

506 Lemieux-Labonté, V., Tromas, N., Shapiro, B.J., Lapointe, F.-J., 2016. Environment and host
507 species shape the skin microbiome of captive neotropical bats. *PeerJ* 4, e2430.

508 Liao, Y., Smyth, G.K., Shi, W., 2014. featureCounts: an efficient general purpose program
509 for assigning sequence reads to genomic features. *Bioinformatics* 30, 923–930.

510 Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion
511 for RNA-seq data with DESeq2. *Genome Biol.* 15, 1–21.

512 Matthews, B.J., Dudchenko, O., Kingan, S.B., Koren, S., Antoshechkin, I., Crawford, J.E.,
513 Glassford, W.J., Herre, M., Redmond, S.N., Rose, N.H., 2018. Improved reference
514 genome of *Aedes aegypti* informs arbovirus vector control. *Nature* 563, 501–507.

515 Osei-Poku, J., Mbogo, C., Palmer, W., Jiggins, F., 2012. Deep sequencing reveals extensive
516 variation in the gut microbiota of wild mosquitoes from Kenya. *Mol. Ecol.* 21, 5138–
517 5150.

518 Ramirez, J.L., Souza-Neto, J., Torres Cosme, R., Rovira, J., Ortiz, A., Pascale, J.M.,
519 Dimopoulos, G., 2012. Reciprocal tripartite interactions between the *Aedes aegypti*
520 midgut microbiota, innate immune system and dengue virus influences vector
521 competence. *PLoS Negl. Trop. Dis.* 6, e1561.

522 Rodrigues, D.M., Sousa, A.J., Hawley, S.P., Vong, L., Gareau, M.G., Kumar, S.A., Johnson-
523 Henry, K.C., Sherman, P.M., 2012. Matrix metalloproteinase 9 contributes to gut
524 microbe homeostasis in a model of infectious colitis. *BMC Microbiol.* 12, 1–13.

525 Romoli, O., Schönbeck, J.C., Hapfelmeier, S., Gendrin, M., 2021. Production of germ-free
526 mosquitoes via transient colonisation allows stage-specific investigation of host–
527 microbiota interactions. *Nat. Commun.* 12, 1–16.

528 Schmidt, K., Engel, P., 2021. Mechanisms underlying gut microbiota–host interactions in
529 insects. *J. Exp. Biol.* 224, jeb207696. <https://doi.org/10.1242/jeb.207696>

530 Sharma, A., Dhayal, D., Singh, O., Adak, T., Bhatnagar, R.K., 2013. Gut microbes influence
531 fitness and malaria transmission potential of Asian malaria vector *Anopheles*
532 *stephensi*. *Acta Trop.* 128, 41–47.

533 Vogel, K.J., Valzania, L., Coon, K.L., Brown, M.R., Strand, M.R., 2017. Transcriptome
534 sequencing reveals large-scale changes in axenic *Aedes aegypti* larvae. *PLoS Negl.*
535 *Trop. Dis.* 11, e0005273.

536 Zouache, K., Raharimalala, F.N., Raquin, V., Tran-Van, V., Raveloson, L.H.R.,
537 Ravelonandro, P., Mavingui, P., 2011. Bacterial diversity of field-caught mosquitoes,
538 *Aedes albopictus* and *Aedes aegypti*, from different geographic regions of
539 Madagascar. *FEMS Microbiol. Ecol.* 75, 377–389.

540

541

542

543

544 **Supplementary Information**

545

546 **Supplementary Table S1:** Summary of RNA-Seq data obtained, showing total number of
547 paired reads for each sample with the proportion mapping to the *Ae. aegypti* reference
548 genome (GCA_002204515.1), both singly and with multiple matches and the proportion of
549 unmapped reads.

550 **Supplementary Table S2:** All differentially expressed genes that were identified in recipients
551 of a microbiome transplant from an extraneous donor relative to control larvae that received
552 their 'original' microbiome (passing thresholds of $p_{adj} < 0.05$ and absolute \log_2 fold change \geq
553 1.5). VectorBase IDs are given alongside \log_2 fold change when using each of the extraneous
554 donors.

555 **Supplementary Table S3:** GO terms identified as enriched in differentially expressed genes
556 that were enhanced/suppressed in recipients of an extraneous donor-derived microbiome,
557 relative to control larvae that received their 'original' microbiome.

558 **Supplementary Table S4:** All differentially expressed genes that were identified in recipients
559 of a microbiome transplant relative to control larvae that were conventionally reared in the
560 laboratory (passing thresholds of $p_{adj} < 0.05$ and absolute \log_2 fold change ≥ 1.5). VectorBase
561 IDs are given alongside \log_2 fold change when a microbiome transplant was performed with
562 each donor.

563 **Supplementary Table S5:** Differentially expressed genes that were commonly identified
564 across all transplant groups relative to the conventionally reared control larvae (passing
565 thresholds of $p_{adj} < 0.05$ and \log_2 fold change > 1.5). VectorBase IDs and gene names are
566 given alongside \log_2 fold change when larvae received microbiome transplants from each
567 donor group.

568 **Supplementary Table S6:** GO terms enhanced/suppressed in recipients of microbiome
569 transplants relative to a baseline of conventionally reared, no transplant controls.

570

571