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Abstract

Inhibitors of the Menin-KMT2A interaction are promising agents for the treatment of
KMT2A-rearranged (KMT2A-r) leukemias. We evaluated Menin inhibition in patient derived
xenografts of KMT2A-r leukemias with high-risk features. Three AMLs with high-risk fusion
partners (MLLT10, MLLT4) and two infant ALL samples were sensitive to Menin inhibition. We
also evaluated serial samples from two patients with multiply relapsed ALL. We found that
highly pretreated KMT2A-AFF1 ALL samples were much less sensitive compared to cells
obtained earlier in the same patients’ disease course. Since none of the patients had been
treated with a Menin inhibitor, resistance in these highly pretreated samples was acquired in the
absence to Menin inhibitor exposure. Transcriptomic analysis documented sustained on-target
efficacy towards the canonical targets in the Menin-inhibitor in resistant cells. Targeted genomic
analysis documented the emergence of multiple co-mutations, including RAS pathway and
TP53 mutations, although neither was sufficient to induce Menin-inhibitor resistance in vitro.
Downregulation of KMT3D may account for resistance in one patients; inactivation of KMT2C/D
had previously been reported to result in Menin inhibitor resistance. Future studies will need to
clarify more broadly which genomic/epigenomic alterations drive upfront resistance. Regardless
of mechanism, our data supports using Menin-inhibitors upfront or in early lines of therapy

before substantial genomic or epigenomic evolution has occurred.
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Introduction

10% of acute leukemias carry rearrangements of the KMT2A gene (Mixed-Lineage
Leukemia-1, MLL-1). More than 80 fusion partners have been identified, and differences in
fusion partner have been linked to outcomes (1-3). KMT2A-r leukemias have a unique gene
expression profile characterized by high expression of HOXA cluster genes, Meisl and FLT3
(4,5). The 5-year event free and overall survival of pediatric KMT2A-r AML remains suboptimal
at 38% and 58% (3). The survival for infants and adults with KMT2A-r ALL remains dismal (6-8).

Recently, inhibition of the KMT2A-interacting protein Menin was identified as a promising
therapeutic strategy (9-14). Menin is essential for the oncogenic activity of KMT2A fusions (15).
Early studies of the Menin inhibitor VTP-50469 demonstrated impressive single agent activity in
KMT2A-r ALL and AML (9,10,14). Molecularly, Menin inhibitors interfere with the recruitment of
KMT2A-fusion to a subset of their target genes (9-11,13).

Preclinical studies published to date mostly interrogated common fusion partners and
samples banked at initial diagnosis (9,10,12). We sought to evaluate the efficacy of Menin
inhibition in AML with the more rare high-risk fusion partners MLLT10 (AF10) and MLLT4 (AF6)
(2,3), infant-ALL (6,7), and multiply relapsed KMT2A-r ALL (16). We found that highly pretreated
ALL samples were less sensitive to Menin inhibition than samples from the same patients earlier
in their course. Our data supports moving Menin-inhibitors into early lines of therapy to
maximize their potential clinical impact.

Materials and Methods

Human samples: Samples were obtained from patients at the Children’s Hospital of

Philadelphia with informed consent according to the Declaration of Helsinki and Institutional

Review Board (IRB) approval.

Patient derived xenografts: NSG (ALL samples, NOD-scid IL2Rgnull) or NSGS (AML

samples, NOD-scid IL2Rgnull-3/GM/SF, Jackson laboratories®) were conditioned with Busulfan
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and patient cells were injected into the tail vein. Menin inhibitor or control chow was given as
indicated. Human leukemia cells were detected in peripheral blood, bone marrow and spleen

using anti-huCD45.

RNA-Seq analysis: Raw Fastq files were aligned using STAR against reference Mus
musculus GRCm38, read-counts were quantified by Kallisto and directly imported into DESeq2
(RRID:SCR_000154). Gene Set Enrichment Analysis (GSEA) was carried out using GSEA

software (SeqGSEA, RRID:SCR_005724).

Targeted DNA sequencing: Targeted sequencing of patient leukemia samples was
performed using the in-house clinical platform. MEN1 mutation status was validated using

clinical sequencing at Memorial Sloan Kettering Cancer Institute.

Data availability statement: RNA-Seq data has been submitted to GEO and access will

be provided upon request.

Results
Menin inhibition is effective in AML samples with high risk KMT2A fusion partners.

We first evaluated the efficacy of Menin inhibition in two AML patient samples with the
high-risk fusion partner MLLT-10 (AF10) (Table 1 and supplemental material). These
experiments were carried out using the preclinical tool compound VTP50469. Menin inhibitor
treated mice lived significantly longer than untreated mice. (Figure 1A and supplementary
Figure 1A). Menin inhibition was also effective in a xenografts of a patient with high risk
KMT2A-MLLT4 (AF6) AML (supplementary Figure 2), and 2 infant ALL samples at initial

diagnosis (patient 4, 21). (Figure 1B, and supplementary Figure 3).

Preceding standard chemo / immunotherapy induces Menin-inhibitor resistance in

multiply relapsed, Menin-inhibitor naive KMT2A-r ALL samples.
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We next interrogated the efficacy of Menin inhibition in two paired samples from patients
with KMT2A-r ALL, obtained early and late in their disease course. Due to availability, some of
these experiments were carried out using the SNDX5613 compound. SNDX5613 is equipotent
to VTP50469 in our xenograft model (Supplementary Figure 4). “Early” samples were from
either initial diagnosis (patient 5) or the third relapse (patient 8). “Late” samples were obtained
after several lines of therapy, including high dose chemotherapy, immunotherapy and stem cell
transplant. Patient 5 and 8 experienced a lineage switch to AML (for detail see supplemental
material). Menin inhibition has been shown to induce myeloid differentiation in AML samples,
which could be promoted by the presence of myeloid cytokines. In order to facilitate a
differentiation response in lineage switch samples, “late” samples were transplanted into NSGS
mice (which express human cytokines that promote differentiation, including interleukin 3 and
GM-CSF), as well as NSG mice, while initial ALL samples were only transplanted into NSG
mice. We found that leukemia cells obtained early in the disease course were sensitive to Menin
inhibition (Figure 1C top row). In contrast, leukemia samples obtained after multiple lines of
therapy from patients 5 and 21 were near completely resistant (Figure 1C middle and bottom
row, and supplementary Figure 5 - 7). Menin inhibitor resistance thus had developed without

exposure to Menin inhibition.

RAS pathway and TP53 mutations do not mediate Menin-inhibitor resistance.

We next analyzed the co-mutational landscape of our serial samples using a targeted
DNA sequencing panel (Figure 2A). We found RAS pathway mutations in all three, and TP53
mutations in two of three patients. We did not observe any of the mutations in the MEN1 gene
(targeted sequencing and RNA-Seq) (17). Prior reports have documented that KMT2A-fusion
leukemias carrying TP53 mutations or activating RAS mutations can be highly sensitive to
Menin inhibition (18-20). We confirmed these observations by treating a murine model of

KMT2A-MLLT2 AML with and without NRAS mutation, (Figure 2B), and MV;11 cells engineered
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to carry inactivating mutations of TP53 to Menin-inhibition (Figure 2C). Neither NRAS nor TP53

mutations induced Menin inhibitor resistance.

Sustained suppression of the canonical Menin:KMT2A-fusion targets in resistant cells.
We next performed RNA-Seq of leukemia isolated from xenografts, comparing the
transcriptional response to in vivo Menin inhibition in samples from patient 8 obtained early
(sample 8-1, “sensitive”) and late (sample 8-2, “resistant”) in the disease course. Mice were
treated for 3 weeks with Menin inhibitor or control, then leukemia cells were isolated and
subjected to RNA-Seq. Principal component analysis demonstrated that Menin inhibition
induced a stronger transcriptional response in the samples obtained earlier in the disease
course (Figure 4A). However, and somewhat unexpectedly, profound downregulation of the
canonical Menin-inhibitor responsive gene signature was maintained in the resistant AML
(Figure 4B, Supplementary Figure 6, Supplementary Table 1). Enriched signatures included
genes downregulated upon Menin inhibitor treatment (13), sites that lose Menin binding and are
downregulated upon Menin inhibitor treatment (10), genes downregulated upon Menin deletion
(10), as well as genes regulated by HOXA9 (25). We conclude that Menin inhibition maintained

on-target transcriptional activity in resistant cells.

Decreased expression of KMT2C and decreased KMT2C/KDMG6A target induction in
multiply relapsed cells.

We next compared sensitive and resistant cells. Consistent with the clinically observed
myeloid switch we observed enrichment of a myeloid differentiation signature in the resistant
cells (26) (Figure 4C). A pattern of Menin-inhibitor resistance with preserved transcriptional
response of the core Menin:KMT2A-fusion target genes that emerged under pressure from
Menin-inhibitor exposure was recently reported. Resistance in this context was linked to a

blunted induction of a non-canonical senescence signature that requires KMT2C/KDMG6A (UTX)
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(24). We therefore probed the expression of KMT2C/D complex members and found profound
downregulation of KMT2C in resistant cells (Figure 4D). The core Menin:KMT2A-fusion target
signature did not enrich in either sensitive or resistant cells (Figure 4E) (10). However, KDM6A-
targets (24) and senescence associated genes (27) were enriched in sensitive cells from the
VTP treatment group. The downregulation of KMT2C in resistant cells was therefore associated
with a blunted induction of the KMT2D/KDMG6A dependent senescence signature described by
Soto-Feliciano and colleagues (24), and could potentially account for the decreased sensitivity

to Menin inhibition.

Discussion

This is the first report showing that preceding chemo/immunotherapy can render
KMT2A-rearranged samples resistant to Menin inhibition without prior Menin inhibitor exposure.
Our findings complement several recent reports of resistance that arises under pressure of
Menin inhibitor treatment.

This study has potential clinical implications. The majority of patients in the recent phase
I /1l study of revumenib (SNDX-5613) saw downregulation of the key KMT2A target genes. The
overall response and CR/CRh rates, however, were much lower at 50% and 30%(14). While this
is an excellent CR rate for a single agent in a multiply relapsed, highly refractory patient
population, our data suggest that an even higher percentage of patients might have responded
if treated in an earlier line of therapy.

On a mechanistic level, we found that the transcriptional response of the core Menin-
KMT2A-fusion target genes was preserved in resistant cells. However, resistant cells had
become tolerant to the downregulation of key KMT2A fusion target genes over the course of
preceding chemo/immunotherapy. While two patients (Pt 5 and 8) underwent a lineage switch
(28), myeloid differentiation alone seems unlikely to mediate resistance given the encouraging

clinical response rates in AML (29). However, failure to induce a KMT2C/KDM6A dependent
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senescence signature, a described mechanism of Menin inhibitor resistance (24), was observed
in one patient. Our data suggests that KMT2C/KDM6A might be involved in mediating
resistance both upfront and in response to Menin inhibitor treatment.
Conclusion

We document the emergence of Menin inhibitor resistance in highly pretreated, Menin-
inhibitor naive, ALL samples that were initially sensitive. (17). Our data supports treating patient

with Menin-inhibitors early in their disease course before significant resistance has developed.
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Table 1:
# Diagnosis Age at Sex Day from Prior lines of Fusion
diagnosis diagnosis therapy
1-1 AML 18 months M 0 0 KMT2A-
MLLT10
(MLL-AF10)
2-1 AML 6.8 years F 0 0 KMT2A-
MLLT10
(MLL-AF10)
3-1 AUL 12 years M 0 0 KMT2A-MLLT4
(MLL-AF6)
4-1 Infant ALL 10 months F 626 2 KMT2A-MLLT6
(MLL-AF17)
21-1 | Infant ALL 1 months F 0 0 KMT2A-AFF1
(MLL-AF4)
5-1 B-ALL 13 months M 0 0 KMT2A-AFF1
(MLL-AF4)
5-2 Lineage 721 6 KMT2A-AFF1
switch (MLL-AF4)
8-1 B-ALL 14 years F 217 3 KMT2A-AFF1
(MLL-AF4)
8-2 Lineage 282 6 KMT2A-AFF1
switch (MLL-AF4)
Table 1:

Patient and sample characteristics. Detailed specimen reports, cytogenetic and molecular
analysis and detailed clinical characteristics are available in the supplementary material.

AML: acute myeloid leukemia, ALL: acute lymphoblastic leukemia, AUL: acute undifferentiated
leukemia.
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Figure 1: Menin-inhibitor treatment of high risk KMT2A-r leukemia xenografts.

In vivo treatment of patient derived xenografts from KMT2A rearranged leukemias with Menin
inhibitor (red) or control (black). The type of inhibitor indicated on the graph and choice of agent
was based on availability. We found VTP-50469 and SNDX-5613 to be equipotent.

A: AML patients with high-risk fusions partner MLLT10, MLLT4.

B: infant B-ALL

C: KMT2A-AFF1 PDX established early (top row, initial diagnosis or three prior lines of therapy)
or late (middle and bottom row, 6 prior lines of therapy) in the course of a patient’s therapy.
Late samples were transplanted into either NSG (middle row) or NSGS (bottom row) mice.

n=5-10 per treatment arm, error bars = SEM, *p<0.0001, Mantle-Cox.

Figure 2: molecular characterization of patient samples over the course of preceding
therapy

A: Variant allelic frequency (VAF) of mutations identified on targeted NGS of primary patient
bone marrow cells obtained at different time points during the treatment course corresponding
to, or close to, the time points from which PDXs were established (left: patient 5, right: patient
8).

B: Functional modeling of RAS pathway and TP53 mutations. Left: in vitro treatment response
of murine KMT2A-MLLT3 driven AML cells with or without expression of NRAS-Q61K (retroviral
model) to VTP50469. Right: in vitro treatment response of MV4;11 (KMT2A-AFF1, TP53 wild
type) as well as CRISPR engineered biallelic TP53 mutant sublines (TP53-KO1 and 2) to
VTP50469. Cell viability after 96 hours of drug treatment was determined by trypan blue
exclusion. N=3, error bar = SEM, differences between WT and KO were not statistically

significant.
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C-F: RNA-Seq of sorted leukemia cells (huCD45+, mCD45-, DAPI-) from the bone marrow of
mice treated with VTP-50469 for 3 weeks (Sample 8-1 = sensitive, sample 8-2 = resistant).

C: Principal component analysis and K-means clustering.

D: GSEA of established Menin-response signatures. Top row: sensitive, second row: resistant
samples. Gene signatures contain genes that are downregulated upon Menin inhibitor treatment
in MV4;11 cells (left panels), sites that lose Menin binding and are downregulated upon Menin
inhibitor treatment in RS4;11 cells (middle panels), and genes that are downregulated upon
Menin deletion in Molm13 cells (right panels).

E-G: Comparison of resistant and sensitive samples isolated from animals in the vehicle control
group (i.e. no Menin inhibitor exposure). E: enrichment of myeloid developmental genes in the
lineage switch resistant sample. F: downregulation of KMT2C in the resistant sample (p=2.5E-
15). KMT2D and the core complex member KDM6A (UTX) are also significantly downregulated
(*padj<0.05).

G: Comparison of resistant and sensitive samples isolated from animals in the Menin inhibitor
treatment group. Left panel: no enrichment of core Menin-KMT2A-fusion program. Middle panel:
enrichment of KDM6A dependent genes in sensitive cells (Menin-UTX Targets). Right panel:

enrichment of senescence associated genes in sensitive cells.
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