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Abstract 

Inhibitors of the Menin-KMT2A interaction are promising agents for the treatment of 

KMT2A-rearranged (KMT2A-r) leukemias. We evaluated Menin inhibition in patient derived 

xenografts of KMT2A-r leukemias with high-risk features. Three AMLs with high-risk fusion 

partners (MLLT10, MLLT4) and two infant ALL samples were sensitive to Menin inhibition. We 

also evaluated serial samples from two patients with multiply relapsed ALL. We found that 

highly pretreated KMT2A-AFF1 ALL samples were much less sensitive compared to cells 

obtained earlier in the same patients’ disease course. Since none of the patients had been 

treated with a Menin inhibitor, resistance in these highly pretreated samples was acquired in the 

absence to Menin inhibitor exposure. Transcriptomic analysis documented sustained on-target 

efficacy towards the canonical targets in the Menin-inhibitor in resistant cells.  Targeted genomic 

analysis documented the emergence of multiple co-mutations, including RAS pathway and 

TP53 mutations, although neither was sufficient to induce Menin-inhibitor resistance in vitro. 

Downregulation of KMT3D may account for resistance in one patients; inactivation of KMT2C/D 

had previously been reported to result in Menin inhibitor resistance. Future studies will need to 

clarify more broadly which genomic/epigenomic alterations drive upfront resistance. Regardless 

of mechanism, our data supports using Menin-inhibitors upfront or in early lines of therapy 

before substantial genomic or epigenomic evolution has occurred. 
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Introduction 

  10% of acute leukemias carry rearrangements of the KMT2A gene (Mixed-Lineage 

Leukemia-1, MLL-1). More than 80 fusion partners have been identified, and differences in 

fusion partner have been linked to outcomes (1-3). KMT2A-r leukemias have a unique gene 

expression profile characterized by high expression of HOXA cluster genes, Meis1 and FLT3 

(4,5). The 5-year event free and overall survival of pediatric KMT2A-r AML remains suboptimal 

at 38% and 58% (3). The survival for infants and adults with KMT2A-r ALL remains dismal (6-8).  

Recently, inhibition of the KMT2A-interacting protein Menin was identified as a promising 

therapeutic strategy (9-14). Menin is essential for the oncogenic activity of KMT2A fusions (15). 

Early studies of the Menin inhibitor VTP-50469 demonstrated impressive single agent activity in 

KMT2A-r ALL and AML (9,10,14). Molecularly, Menin inhibitors interfere with the recruitment of 

KMT2A-fusion to a subset of their target genes (9-11,13). 

Preclinical studies published to date mostly interrogated common fusion partners and 

samples banked at initial diagnosis (9,10,12). We sought to evaluate the efficacy of Menin 

inhibition in AML with the more rare high-risk fusion partners MLLT10 (AF10) and MLLT4 (AF6) 

(2,3), infant-ALL (6,7), and multiply relapsed KMT2A-r ALL (16). We found that highly pretreated 

ALL samples were less sensitive to Menin inhibition than samples from the same patients earlier 

in their course. Our data supports moving Menin-inhibitors into early lines of therapy to 

maximize their potential clinical impact. 

Materials and Methods  

 Human samples: Samples were obtained from patients at the Children’s Hospital of 

Philadelphia with informed consent according to the Declaration of Helsinki and Institutional 

Review Board (IRB) approval.  

Patient derived xenografts: NSG (ALL samples, NOD-scid IL2Rgnull) or NSGS (AML 

samples, NOD-scid IL2Rgnull-3/GM/SF, Jackson laboratories®) were conditioned with Busulfan 
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and patient cells were injected into the tail vein. Menin inhibitor or control chow was given as 

indicated. Human leukemia cells were detected in peripheral blood, bone marrow and spleen 

using anti-huCD45.  

RNA-Seq analysis: Raw Fastq files were aligned using STAR against reference Mus 

musculus GRCm38, read-counts were quantified by Kallisto and directly imported into DESeq2 

(RRID:SCR_000154). Gene Set Enrichment Analysis (GSEA) was carried out using GSEA 

software (SeqGSEA, RRID:SCR_005724).  

 Targeted DNA sequencing: Targeted sequencing of patient leukemia samples was 

performed using the in-house clinical platform. MEN1 mutation status was validated using 

clinical sequencing at Memorial Sloan Kettering Cancer Institute. 

Data availability statement: RNA-Seq data has been submitted to GEO and access will 

be provided upon request. 

Results 

Menin inhibition is effective in AML samples with high risk KMT2A fusion partners. 

We first evaluated the efficacy of Menin inhibition in two AML patient samples with the 

high-risk fusion partner MLLT-10 (AF10) (Table 1 and supplemental material). These 

experiments were carried out using the preclinical tool compound VTP50469. Menin inhibitor 

treated mice lived significantly longer than untreated mice. (Figure 1A and supplementary 

Figure 1A). Menin inhibition was also effective in a xenografts of a patient with high risk 

KMT2A-MLLT4 (AF6) AML (supplementary Figure 2), and 2 infant ALL samples at initial 

diagnosis (patient 4, 21). (Figure 1B, and supplementary Figure 3).  

 

Preceding standard chemo / immunotherapy induces Menin-inhibitor resistance in 

multiply relapsed, Menin-inhibitor naïve KMT2A-r ALL samples. 
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We next interrogated the efficacy of Menin inhibition in two paired samples from patients 

with KMT2A-r ALL, obtained early and late in their disease course. Due to availability, some of 

these experiments were carried out using the SNDX5613 compound. SNDX5613 is equipotent 

to VTP50469 in our xenograft model (Supplementary Figure 4). “Early” samples were from 

either initial diagnosis (patient 5) or the third relapse (patient 8). “Late” samples were obtained 

after several lines of therapy, including high dose chemotherapy, immunotherapy and stem cell 

transplant. Patient 5 and 8 experienced a lineage switch to AML (for detail see supplemental 

material). Menin inhibition has been shown to induce myeloid differentiation in AML samples, 

which could be promoted by the presence of myeloid cytokines. In order to facilitate a 

differentiation response in lineage switch samples, “late” samples were transplanted into NSGS 

mice (which express human cytokines that promote differentiation, including interleukin 3 and 

GM-CSF), as well as NSG mice, while initial ALL samples were only transplanted into NSG 

mice. We found that leukemia cells obtained early in the disease course were sensitive to Menin 

inhibition (Figure 1C top row). In contrast, leukemia samples obtained after multiple lines of 

therapy from patients 5 and 21 were near completely resistant (Figure 1C middle and bottom 

row, and supplementary Figure 5 - 7). Menin inhibitor resistance thus had developed without 

exposure to Menin inhibition.  

 

RAS pathway and TP53 mutations do not mediate Menin-inhibitor resistance. 

We next analyzed the co-mutational landscape of our serial samples using a targeted 

DNA sequencing panel (Figure 2A). We found RAS pathway mutations in all three, and TP53 

mutations in two of three patients. We did not observe any of the mutations in the MEN1 gene 

(targeted sequencing and RNA-Seq) (17). Prior reports have documented that KMT2A-fusion 

leukemias carrying TP53 mutations or activating RAS mutations can be highly sensitive to 

Menin inhibition (18-20). We confirmed these observations by treating a murine model of 

KMT2A-MLLT2 AML with and without NRAS mutation, (Figure 2B), and MV;11 cells engineered 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2024. ; https://doi.org/10.1101/2023.03.16.532874doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.532874
http://creativecommons.org/licenses/by-nc-nd/4.0/


to carry inactivating mutations of TP53 to Menin-inhibition (Figure 2C). Neither NRAS nor TP53 

mutations induced Menin inhibitor resistance. 

 

Sustained suppression of the canonical Menin:KMT2A-fusion targets in resistant cells. 

We next performed RNA-Seq of leukemia isolated from xenografts, comparing the 

transcriptional response to in vivo Menin inhibition in samples from patient 8 obtained early 

(sample 8-1, “sensitive”) and late (sample 8-2, “resistant”) in the disease course. Mice were 

treated for 3 weeks with Menin inhibitor or control, then leukemia cells were isolated and 

subjected to RNA-Seq. Principal component analysis demonstrated that Menin inhibition 

induced a stronger transcriptional response in the samples obtained earlier in the disease 

course (Figure 4A). However, and somewhat unexpectedly, profound downregulation of the 

canonical Menin-inhibitor responsive gene signature was maintained in the resistant AML 

(Figure 4B, Supplementary Figure 6, Supplementary Table 1). Enriched signatures included 

genes downregulated upon Menin inhibitor treatment  (13), sites that lose Menin binding and are 

downregulated upon Menin inhibitor treatment (10), genes downregulated upon Menin deletion 

(10), as well as genes regulated by HOXA9 (25). We conclude that Menin inhibition maintained 

on-target transcriptional activity in resistant cells.  

 

Decreased expression of KMT2C and decreased KMT2C/KDM6A target induction in 

multiply relapsed cells. 

We next compared sensitive and resistant cells. Consistent with the clinically observed 

myeloid switch we observed enrichment of a myeloid differentiation signature in the resistant 

cells (26) (Figure 4C). A pattern of Menin-inhibitor resistance with preserved transcriptional 

response of the core Menin:KMT2A-fusion target genes that emerged under pressure from 

Menin-inhibitor exposure was recently reported. Resistance in this context was linked to a 

blunted induction of a non-canonical senescence signature that requires KMT2C/KDM6A (UTX) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2024. ; https://doi.org/10.1101/2023.03.16.532874doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.532874
http://creativecommons.org/licenses/by-nc-nd/4.0/


(24). We therefore probed the expression of KMT2C/D complex members and found profound 

downregulation of KMT2C in resistant cells (Figure 4D). The core Menin:KMT2A-fusion target 

signature did not enrich in either sensitive or resistant cells (Figure 4E) (10). However, KDM6A-

targets (24) and senescence associated genes (27) were enriched in sensitive cells from the 

VTP treatment group. The downregulation of KMT2C in resistant cells was therefore associated 

with a blunted induction of the KMT2D/KDM6A dependent senescence signature described by 

Soto-Feliciano and colleagues (24), and could potentially account for the decreased sensitivity 

to Menin inhibition. 

 

Discussion 

This is the first report showing that preceding chemo/immunotherapy can render 

KMT2A-rearranged samples resistant to Menin inhibition without prior Menin inhibitor exposure. 

Our findings complement several recent reports of resistance that arises under pressure of 

Menin inhibitor treatment.  

This study has potential clinical implications. The majority of patients in the recent phase 

I / II study of revumenib (SNDX-5613) saw downregulation of the key KMT2A target genes. The 

overall response and CR/CRh rates, however, were much lower at 50% and 30%(14). While this 

is an excellent CR rate for a single agent in a multiply relapsed, highly refractory patient 

population, our data suggest that an even higher percentage of patients might have responded 

if treated in an earlier line of therapy.  

On a mechanistic level, we found that the transcriptional response of the core Menin-

KMT2A-fusion target genes was preserved in resistant cells. However, resistant cells had 

become tolerant to the downregulation of key KMT2A fusion target genes over the course of 

preceding chemo/immunotherapy. While two patients (Pt 5 and 8) underwent a lineage switch 

(28), myeloid differentiation alone seems unlikely to mediate resistance given the encouraging 

clinical response rates in AML (29). However, failure to induce a KMT2C/KDM6A dependent 
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senescence signature, a described mechanism of Menin inhibitor resistance (24), was observed 

in one patient. Our data suggests that KMT2C/KDM6A might be involved in mediating 

resistance both upfront and in response to Menin inhibitor treatment.  

Conclusion 

We document the emergence of Menin inhibitor resistance in highly pretreated, Menin-

inhibitor naïve, ALL samples that were initially sensitive. (17). Our data supports treating patient 

with Menin-inhibitors early in their disease course before significant resistance has developed. 
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Table 1:  

# Diagnosis Age at 
diagnosis 

Sex Day from 
diagnosis 

Prior lines of 
therapy 

Fusion  

1-1 AML 18 months M 0 0 KMT2A-
MLLT10 
(MLL-AF10) 

2-1 AML 6.8 years F 0 0 KMT2A-
MLLT10 
(MLL-AF10) 

3-1 AUL 12 years M 0 0 KMT2A-MLLT4 
(MLL-AF6) 

4-1 Infant ALL 10 months F 626 2 KMT2A-MLLT6 
(MLL-AF17) 

21-1 Infant ALL 1 months F 0 0 KMT2A-AFF1 
(MLL-AF4) 

5-1 B-ALL 13 months M 0 0 KMT2A-AFF1 
(MLL-AF4) 

5-2 Lineage 
switch 

  721 6 KMT2A-AFF1 
(MLL-AF4) 

8-1 B-ALL 14 years F 217 3 KMT2A-AFF1 
(MLL-AF4) 

8-2 Lineage 
switch 

  282 6 KMT2A-AFF1 
(MLL-AF4) 

 

 

Table 1: 

Patient and sample characteristics. Detailed specimen reports, cytogenetic and molecular 
analysis and detailed clinical characteristics are available in the supplementary material. 

AML: acute myeloid leukemia, ALL: acute lymphoblastic leukemia, AUL: acute undifferentiated 
leukemia.  
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Figure 1: Menin-inhibitor treatment of high risk KMT2A-r leukemia xenografts. 

In vivo treatment of patient derived xenografts from KMT2A rearranged leukemias with Menin 

inhibitor (red) or control (black). The type of inhibitor indicated on the graph and choice of agent 

was based on availability. We found VTP-50469 and SNDX-5613 to be equipotent. 

A: AML patients with high-risk fusions partner MLLT10, MLLT4.   

B: infant B-ALL  

C: KMT2A-AFF1 PDX established early (top row, initial diagnosis or three prior lines of therapy) 

or late (middle and bottom row, 6 prior lines of therapy) in the course of a patient’s therapy. 

Late samples were transplanted into either NSG (middle row) or NSGS (bottom row) mice.  

n=5-10 per treatment arm, error bars = SEM, *p<0.0001, Mantle-Cox. 

 

Figure 2: molecular characterization of patient samples over the course of preceding 

therapy 

A: Variant allelic frequency (VAF) of mutations identified on targeted NGS of primary patient 

bone marrow cells obtained at different time points during the treatment course corresponding 

to, or close to, the time points from which PDXs were established (left: patient 5, right: patient 

8). 

B: Functional modeling of RAS pathway and TP53 mutations. Left:  in vitro treatment response 

of murine KMT2A-MLLT3 driven AML cells with or without expression of NRAS-Q61K (retroviral 

model) to VTP50469. Right: in vitro treatment response of MV4;11 (KMT2A-AFF1, TP53 wild 

type) as well as CRISPR engineered biallelic TP53 mutant sublines (TP53-KO1 and 2) to 

VTP50469. Cell viability after 96 hours of drug treatment was determined by trypan blue 

exclusion. N=3, error bar = SEM, differences between WT and KO were not statistically 

significant. 
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C-F: RNA-Seq of sorted leukemia cells (huCD45+, mCD45-, DAPI-) from the bone marrow of 

mice treated with VTP-50469 for 3 weeks (Sample 8-1 = sensitive, sample 8-2 = resistant).  

C: Principal component analysis and K-means clustering. 

D: GSEA of established Menin-response signatures. Top row: sensitive, second row: resistant 

samples. Gene signatures contain genes that are downregulated upon Menin inhibitor treatment 

in MV4;11 cells (left panels), sites that lose Menin binding and are downregulated upon Menin 

inhibitor treatment in RS4;11 cells (middle panels), and genes that are downregulated upon 

Menin deletion in Molm13 cells (right panels).   

E-G: Comparison of resistant and sensitive samples isolated from animals in the vehicle control 

group (i.e. no Menin inhibitor exposure). E: enrichment of myeloid developmental genes in the 

lineage switch resistant sample. F: downregulation of KMT2C in the resistant sample (p=2.5E-

15). KMT2D and the core complex member KDM6A (UTX) are also significantly downregulated 

(*padj<0.05). 

G: Comparison of resistant and sensitive samples isolated from animals in the Menin inhibitor 

treatment group. Left panel: no enrichment of core Menin-KMT2A-fusion program. Middle panel: 

enrichment of KDM6A dependent genes in sensitive cells (Menin-UTX Targets). Right panel: 

enrichment of senescence associated genes in sensitive cells. 
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