

1 Mating systems and recombination landscape
2 strongly shape genetic diversity and selection
3 in wheat relatives

4 *Concetta Burgarella*^{1,2,3*}, *Marie-Fleur Brémaud*², *Gesa Von Hirschheydt*⁴, *Veronique*
5 *Viader*², *Morgane Ardisson*², *Sylvain Santoni*², *Vincent Ranwez*², *Miguel Navascués*⁵,
6 *Jacques David*² and *Sylvain Glémin*^{6,7*}

9 ¹ CNRS, Univ Montpellier, ISEM– UMR 5554, 34095 Montpellier, France.

10 ² AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.

11 ³ Department of Organismal Biology, Evolutionary Biology Center, Uppsala University,
12 Uppsala, Sweden.

13 ⁴ Swiss Federal Research Institute WSL, Zürcherstrasse 111 8903 Birmensdorf, Switzerland.

14 ⁵ UMR CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.

15 ⁶ CNRS, Univ. Rennes, ECOBIO - UMR 6553, F-35000 Rennes, France.

16 ⁷ Department of Ecology and Evolution, Evolutionary Biology Center, Uppsala University,
17 Uppsala, Sweden.

18

19

20 ***Corresponding authors**

21 Concetta Burgarella: AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro,
22 Montpellier, France. E-mail: concetta.burgarella@inrae.fr

23

24 Sylvain Glémin: CNRS, Univ. Rennes, ECOBIO - UMR 6553, F-35000 Rennes, France.

25 Department of Ecology and Evolution, Evolutionary Biology Center, Uppsala University,

26 Uppsala, Sweden. E-mail: sylvain.glemin@univ-rennes.fr

27

28

29 **Keywords:** self-fertilization, polymorphism, linked selection, fitness effect of mutations,

30 selfing-syndrome

31

32 **Abstract**

33 How and why genetic diversity varies among species is a long-standing question in
34 evolutionary biology. Life history traits have been shown to explain a large part of observed
35 diversity. Among them, mating systems have one of the strongest impacts on genetic
36 diversity, with selfing species usually exhibiting much lower diversity than outcrossing
37 relatives. Theory predicts that a high rate of selfing amplifies selection at linked sites,
38 reducing genetic diversity genome wide, but frequent bottlenecks and rapid population turn-
39 over could also explain low genetic diversity in selfers. However, how linked selection varies
40 with mating systems and whether it is sufficient to explain the observed difference between
41 selfers and outcrossers has never been tested. Here, we used the *Aegilops/Triticum* grass
42 species, a group characterized by contrasted mating systems (from obligate out-crossing to
43 high selfing) and marked recombination rate variation across the genome, to quantify the
44 effects of mating system and linked selection on patterns of neutral and selected
45 polymorphism. By analyzing phenotypic and transcriptomic data of 13 species, we show that
46 selfing strongly affects genetic diversity and the efficacy of selection by amplifying the
47 intensity of linked selection genome wide. In particular, signatures of adaptation were only
48 found in the highly recombining regions in outcrossing species. These results bear
49 implications for the evolution of mating systems and more generally for our understanding of
50 the fundamental drivers of genetic diversity.

51 **Introduction**

52 How and why genetic diversity varies among species is a central and long-standing
53 question in evolutionary biology, dating back from the 1960's (Ellegren and Galtier, 2016).
54 For neutral variation, patterns of genetic diversity depend on the balance between mutation
55 and genetic drift, characterized by the effective size of a population, N_e , and also on the
56 efficacy of selection for functional regions of the genome. Recently, thanks to the availability
57 of population genomic data in many non-model species, several studies have explored the
58 ecological correlates of diversity levels, usually measured as nucleotide polymorphism, π .
59 These surveys have shown that life history traits (LHTs), especially life-span and
60 reproductive mode, can explain a large part of the observed variation in genetic diversity
61 among species (Romiguier *et al.*, 2014; Chen *et al.*, 2017; Mackintosh *et al.*, 2019; Muyle *et*
62 *al.*, 2021). LHTs may reflect long-term effective population size, which depends on current
63 population size and past fluctuations across generations (e.g. Romiguier *et al.*, 2014;
64 Mackintosh *et al.*, 2019). N_e can also depend on selection at linked sites, i.e. the hitch-hiking
65 effect of the fixation of beneficial or the removal of deleterious mutations on linked neutral
66 variation (Cutter and Payseur, 2013), which also affects long-term N_e and seems rather
67 pervasive across genomes (Corbett-Detig *et al.*, 2015; Mackintosh *et al.*, 2019; Chen *et al.*,
68 2020; Buffalo, 2021).

69 Among LHTs, mating systems deeply affect the genetic and ecological functioning of
70 a species and are predicted to strongly impact both demographic outcomes and the
71 response to selection. Thanks to the ability to produce seeds under limited mate availability,
72 the capacity of autonomous selfing provides reproductive assurance and can be an
73 ecologically successful strategy, allowing colonizing new habitats and increasing species
74 range (Grossenbacher *et al.*, 2015), which should be associated with a large census
75 population size. However, being able to reproduce alone implies a much higher demographic

76 stochasticity due to recurrent bottlenecks and colonization-extinction dynamics, which
77 strongly reduces genetic diversity, not only at the population scale but also at the whole
78 species scale (Pannell and Charlesworth, 1999; Ingvarsson, 2002). Moreover, the dynamics
79 of range expansions, which can be associated with the evolution of selfing, can also
80 unintuitively lead to the loss of diversity, especially on the expansion front (Excoffier *et al.*,
81 2009). So, despite possible large species range and census population size, the specific
82 ecology of selfing species may lead to a reduction in N_e . In addition to these demographic
83 effects, selfing also has direct genetic effects that can reduce N_e . Non-independent gamete
84 sampling during mating automatically increases genetic drift and reduces genetic mixing,
85 which generates genome-wide genetic linkage disequilibrium enhancing the effect of linked
86 selection (Agrawal and Hartfield, 2016; Roze, 2016; Hartfield and Bataillon, 2020).

87 So far, striking differences in genetic diversity have already been observed between
88 outcrossing and selfing relatives (e.g., Hazzouri *et al.*, 2013; Slotte *et al.*, 2013; Burgarella *et*
89 *al.*, 2015; Teterina *et al.*, 2023) and the underlying causes (linked-selection, demographic
90 instability) have been often discussed and studied from a theoretical point of view
91 (Charlesworth *et al.*, 1993; Barrett *et al.*, 2014), but, to our knowledge, attempts at a direct
92 quantification with empirical data are recent and only partial (see the comparison between
93 two outcrossing and selfing *Caenorhabditis* species in Teterina *et al.*, 2023). Yet, how the
94 intensity of linked selection varies with mating system and whether it can be sufficient to
95 explain the observed difference between outcrossing and selfing species remains to be
96 quantified. Beyond a genomewide reduction in polymorphism and selection efficacy with
97 increasing selfing rates, theory also predicts that genomic patterns across chromosomes
98 should vary with the interaction between recombination and selfing rates. We expect a clear
99 positive relationship between genetic diversity and recombination in outcrossers, but an
100 increasingly flatter relationship in species with increasing selfing rates. We also expect that

101 deleterious mutations should accumulate mainly in lowly recombining regions whereas
102 adaptation should be prevalent in highly recombining regions in outcrossing species, in
103 contrast to selfing species where signatures of high deleterious load and low adaptation
104 should be more evenly distributed along the genome.

105 Here, we tested these hypotheses by comparing species with a large range of mating
106 systems occurring within a single genus, which allows strong genetic contrast among
107 otherwise similar species, an advocated sampling design (Leffler *et al.*, 2012; Cutter and
108 Payseur, 2013). We used the *Aegilops/Triticum* grass species as a study system. This group
109 of Mediterranean and Western/Central Asian grasses belongs to the Triticeae tribe
110 (Poaceae) and includes wheat and its wild relatives. The *Aegilops/Triticum* genus forms a
111 monophyletic group with 13 diploid and about 17 polyploid species that likely diversified ~4-7
112 millions years ago (Huang *et al.*, 2002; Marcussen *et al.*, 2014; Glémén *et al.*, 2019b). All
113 species are characterized by similar life-history traits (wind-pollinated, annual, herbaceous
114 species) and ecology (open landscapes, warm-temperate climate), but present a large
115 diversity of mating systems, spanning from obligate out-crossing to highly selfing species
116 (van Slageren, 1994; Kilian *et al.*, 2011) (**Fig. 1**). Triticeae genomes are large, with markedly
117 U-shaped recombination patterns along chromosomes conserved across species: most
118 recombination is located in the distal parts whereas no or very low recombination occurs in
119 their central part (Brazier and Glémén, 2022). Marked differences in both mating systems
120 among species and recombination rate within genomes make the group an ideal model to
121 unravel the role of selection on species genetic diversity.

122 Through a comparative population genomic approach, we assessed the expectation
123 that genetic diversity and selection efficacy decreases with higher selfing rate and with lower
124 recombination rate within each species, by controlling for species range that varies among
125 species (**Supplementary Fig. S1**). We then explicitly tested whether the effect of linked

126 selection was stronger in selfing species as predicted by population genetics theory. We
127 found that selfing strongly affects genetic diversity and the efficacy of selection by amplifying
128 the intensity of linked selection genome wide, while species range plays a minor role. We
129 also showed that genomic patterns remarkably matched the gradient of mating systems
130 across species, while models and empirical evidence so far suggested that only extreme
131 mating systems left clear signatures in the genomes (Agrawal and Hardfield 2016, Roze
132 2016). These results have multiple implications for both the evolution of mating systems and
133 our understanding of the fundamental drivers of genetic diversity.

134

135

136

137 **Material and methods**

138 **Plant material**

139 We analyzed molecular and morphological data of the 13 extant wild diploid species
140 of the *Aegilops/Triticum* genus (Triticeae tribe, Kilian *et al.*, 2011) and 3 outgroup species
141 (*Taeniatherum caput-medusae*, *Hordeum spontaneum* and *Secale strictum*) for a total of 98
142 accessions. We targeted 7-20 individuals from each of five focal species, including the two
143 self-incompatible outcrossing *Ae. speltoides* and *Ae. mutica* and the three predominantly
144 selfing *Ae. tauschii*, *T. urartu* and *T. monococcum*. We included 2-4 accessions from each of
145 the other *Aegilops/Triticum* species and 1-3 from each of the outgroups. The accessions
146 were obtained from several international seed banks and donor researchers. The list of
147 accessions per species with their passport information is provided in **Supplementary Table**
148 **S1**.

149

150 **Morphological data**

151 To finely characterize the selfing syndrome of each species, we measured several
152 morphofunctional traits describing the reproductive organs and function (Friedman and
153 Harder, 2005; Escobar *et al.*, 2010 and references therein). Around 3-4 grains per accession
154 were sown in January 2014 in a glass house. After emergence, the seedlings were
155 submitted to 4°C for 6 weeks to assure vernalization requirements. Only one seedling per
156 accession was kept after vernalization. The first two spikes of each plant were closed in
157 paper bags to prevent cross fertilization. We collected the two bagged spikes, one open
158 mature spike, mature anthers, stigmas and ovaries for measurements. Anthers, stigmas and
159 ovaries were preserved in Carnoy fixative solution. For each of 5-7 accessions per
160 *Aegilops/Triticum* species and 1-3 accessions per outgroup species, we measured a mature
161 spike (length, spikelet number, grain number), three spikelets per spike (spikelet length) and
162 three flowers from one spikelet (length of palea and lemma). All flowers of the three spikelets
163 were classified as fertile (if the presence of grain was observed), female (only stigma
164 observed), male (anthers observed), or sterile. For each accession, we measured 6 anthers
165 (length and width) and 3 stigmas and ovaries (length of each organ). For anthers and stigma
166 and ovaries, each organ was measured five times and the mean value of these replicates
167 was used in further analysis. Measures were manually recorded on millimeter paper or taken
168 on photographs with the software analySIS (Soft Imaging System GmbH 2002; see
169 **Supplementary Fig. S12** for an example).

170 Missing data (31%) on the directly observed measures were imputed with the
171 missMDA package (Josse and Husson, 2016) under the R environment (R Core Team,
172 2018). Parameters were set by default and the optimal number of components retained for
173 imputation were estimated with the cross-validation method (ncp=3). Raw and imputed
174 measures are provided in **Supplementary tables S2** and **S3**, respectively and the list of
175 measured traits is provided in **Table S4**.

176 Additional variables were calculated on imputed measures as follows. The mean
177 values of anther and stigma dimensions were calculated per accession and standardized by
178 dividing by the flower length. Following Escobar *et al.* (2010), the autonomous seed set was
179 estimated as $\text{self-fertilised_seed_number}/(\text{self-}$
180 $\text{fertilized_spikelet_number} * \text{number_fertile_flower}/\text{spikelet})$, corresponding to the number of
181 seeds per fertile flower. Spikelet compactness was calculated as the ratio (mean flower
182 length* number _fertile _flower)/mean spikelet length. Male investment was calculated as the
183 ratio of the mean anther length and the mean ovary length. We used these additional
184 variables to summarize the selfing syndrome with a synthetic measure corresponding to the
185 first axis of a Principal Component Analysis (PCA) (**Supplementary Table S3 and S4**). The
186 PCA was performed with the ade4 package (Dray and Dufour, 2007) under the R
187 environment.

188

189 Species range

190 We expect that species with bigger census sizes also harbor higher genetic diversity,
191 a relationship that could mask or interact with the effect of the mating system. To control for
192 this potential effect, we used species range as a proxy for census size, since, to our
193 knowledge, there are no direct estimates of census size for wild *Aegilops/Triticum* species.
194 To estimate species range, we retrieved occurrence data from the Global Biodiversity
195 Information Facility (<http://www.gbif.org>) for each species. We manually cleaned the data set
196 to remove single occurrences outside species range, which can be due either to
197 identification errors or recent introductions. Cleaned data were mapped on the world map
198 (focusing on western Eurasia and North Africa) on which we applied a grid with cell size of
199 one decimal degree square (~10,000 km²). We estimated species range as the number of
200 cells occupied by a species time 10,000 km² (**Supplementary Figure S1 and Table S5**).

201

202 **Sequencing**

203 We added 48 new sequences to the dataset used for the phylogenomic analysis of
204 Glémin *et al.* (2019b) and Clément *et al.* (2017), for a total of 98 sequences for 13
205 *Aegilops/Triticum* species (n=2-21) and 3 outgroup species (n=1-3).

206 We performed full transcriptome sequencing following the procedure described in
207 Sarah *et al.* (2017) and Glémin *et al.* (2019b). Briefly, RNAs were extracted and prepared
208 separately for leaves and inflorescence tissues, and mixed subsequently in 20% and 80%
209 proportions, respectively. RNA was extracted using a Spectrum Plant Total RNA kit (Sigma-
210 Aldrich, USA) with a DNase treatment. RNA concentration was measured with two methods,
211 a NanoDrop ND-1000 Spectrophotometer and the Quant-iT™ RiboGreen® (Invitrogen,
212 USA) protocol. RNA quality was assessed on the RNA 6000 Pico chip on a Bioanalyzer
213 2100 (Agilent Technologies, USA). Following the Illumina TruSeq mRNA protocol, we kept
214 samples with an RNA Integrity Number (RIN) value greater than eight. Libraries were
215 prepared with a modified protocol of the TruSeq Stranded mRNA Library Prep Kit (Illumina,
216 USA) to obtain library fragments of 250-300 bp. Modification details and amplification
217 conditions are available in Glémin *et al.* (2019b). After verifying and quantifying each
218 indexed cDNA library using a DNA 100 Chip on a Bioanalyzer 2100, pooled libraries were
219 made of twelve, equally represented, genotypes. Each final pooled library was quantified by
220 qPCR with the KAPA Library Quantification Kit (KAPA Biosystems, USA) and sequenced
221 using the Illumina paired-end protocol on a HiSeq3000 sequencer by the Get-PlaGe core
222 facility (GenoToul platform, INRA Toulouse, France <http://www.genotoul.fr>).

223

224 **Transcriptome assembly, mapping and genotype calling**

225 Reads cleaning and assembly were performed with the pipeline described in Sarah

226 *et al.* (2017). Adapters were removed with cutadapt (Martin, 2011). Reads were trimmed at
227 the end, removing sequences with low quality scores (parameter -q 20), and we retained
228 only reads with a minimum length of 35 bp and a mean quality higher than 30. Orphan reads
229 were then discarded using a homemade script. Retained reads were assembled with ABySS
230 (Simpson *et al.*, 2009), using the paired-end option with a kmer value of 60, followed by one
231 step of Cap3 (Huang and Madan, 1999) run with the default parameters, 40 bases of overlap
232 and 90% percentage of identity. To predict the CDS embedded in our contigs, we used the
233 *prot4est* program (Wasmuth and Blaxter, 2004). We provided three gene datasets: the
234 output of a *Rapsearch* (Ye *et al.*, 2011) similarity analysis, *Oryza* matrix model for de-novo
235 based predictions and the codon usage bias observed in *T. monococcum*. We run
236 Rapsearch to identify protein sequences similar to our contigs in either plant species of
237 Uniprot swissprot (<http://www.uniprot.org>) or in the Monocotyledon species of greenphyl
238 (<http://www.greenphyl.org/cgi-bin/index.cgi>). For the individual used as mapping reference
239 within each species (see below), we discarded predicted CDS with less than 250bp.

240 For each species, mapping was done following Sarah *et al.* (2017), except for the
241 use of the bwa (Li and Durbin, 2009) option –mem (instead of –aln) more adapted for reads
242 of 100 bp. Reads were mapped on the sequences of the individual with the highest coverage
243 or with the highest number of annotated contigs. The list of samples used as reference
244 sequences and the total number of contigs per reference is given in **Supplementary Table**
245 **S5**.

246 For each individual, diploid genotypes were called with reads2snps v. 2.0.64
247 (Tsagkogeorga *et al.*, 2012; Gayral *et al.*, 2013) (available at
248 <https://kimura.univ-montp2.fr/PopPhyl/index.php?section=tools>). This tool is specifically
249 designed to analyze transcriptome data for population genomics of non-model species. The
250 method first calculates the posterior probability of each possible genotype in the maximum-

251 likelihood framework, after estimating the sequencing error rate. Genotypes supported with
252 probability higher than a given threshold (here 0.95) are retained, otherwise missing data are
253 called. We required a minimum coverage of 10X per position and per individual to call a
254 genotype. SNPs are then filtered for possible hidden paralogs (duplicated genes) using a
255 likelihood ratio test based on explicit modeling of paralogy (“paraclean” option embedded in
256 the reads2snps software, (Gayral *et al.*, 2013)). First, genotype and SNPs were called
257 assuming panmixia (heterozygote deficiency $F = 0$), and F was estimated on the retained
258 SNPs. As we have species-wide samples, F is equivalent to a F_{IT} and mainly corresponds to
259 F_{IS} for selfing species and to F_{ST} for outcrossing ones. As the assumed expected
260 heterozygosity can affect genotype calling and paralog filtering, reads2snps were run a
261 second time for each species using the F estimated after the first step. For the outgroup
262 species with sample size n=1 (*T. caput-medusae*) we kept the initial genotype calling and
263 filtering procedure.

264 Open-reading frames (ORFs) were predicted using the program ORF_extractor.pl
265 (available at <https://kimura.univ-montp2.fr/PopPhyl/index.php?section=tools>). Gene length
266 and number of SNPs in the final data set per species is provided in **Supplementary Table**
267 **S5**.

268 Orthologous pairs of ORFs, hereafter called genes, from the 5 focal and one
269 outgroup species (*T. caput-medusae*) were identified using reciprocal best hits on BLASTn
270 results, a hit being considered as valid when e value was below e-50. Outgroup sequences
271 were added to within-focal species alignments using MACSE v. 1.2 (Ranwez *et al.*, 2011), a
272 program dedicated to the alignment of coding sequences and the detection of frameshifts.
273 Genes were only retained if no frameshift was identified by MACSE, and if the predicted
274 ORF in the focal species was longer than 100 codons.

275

276 Chromosome patterns and recombination map

277 We wanted to analyze polymorphism patterns across chromosomes and as a
278 function of recombination rates. Unfortunately, there is neither reference genome nor genetic
279 map available for every species. Among the high-quality recombination maps available (see
280 Brazier and Glémin 2022), we first used the recombination map of *Hordeum vulgare* as a
281 reference for all species. The synteny is well conserved at the scale of Triticeae (Mayer *et*
282 *al.*, 2011; but see Parisod and Badaeva, 2020) and, as *H. vulgare* is an outgroup, there
283 should not be a specific bias for one species or another. For comparison, we also used the
284 three constitutive genomes AA, BB and DD of the hexaploid wheat, *Triticum aestivum*, which
285 correspond to the three main lineages in the *Aegilops/Triticum* phylogeny (Glémin *et al.* 2019
286 and **Fig. 1**). These genomes are closer to the focal species but the phylogenetic distance
287 depends on the genome and the species.

288 To build the recombination maps, we built genetic versus physical distance maps
289 (Marey's maps). For the barley genome, we used the genetic SNP markers from Comadran
290 *et al.* (2012) which was initially mapped on version 082214v1 of the barley genome. We thus
291 used the coordinate correspondence between this first version and the new reference
292 genome assembly (Hv_IBSC_PGSB_v21) to locate the SNP markers on this reference
293 genome. After visual inspection of aberrant markers, we kept a total of 3590 markers (on
294 average ~513 markers per chromosome). Recombination rates were computed with the
295 *MareyMap* R package (Rezvoy *et al.*, 2007) by fitting a loess function with a second-degree
296 polynomial on sliding windows containing 20% of the markers of a chromosome. This led to
297 a rather smooth recombination map, which is sufficient for our purpose of capturing large-
298 scale patterns and reducing noise. For the bread wheat genome, we used the Marey maps
299 built in Brazier and Glémin (2022). Genetic distances were then interpolated between
300 markers using the fitted function so that a genetic distance could be attributed to each

301 annotated gene of the *Hordeum* genome. For each gene we computed the local
302 recombination rate by taking the local derivative of the fitted loess function as implemented
303 in MareyMap (recombination maps are provided in **Supplementary Fig. S13**).

304 For each assembled transcript of each focal species, we searched for its orthologous
305 sequence in the *H. vulgare* genome (H) using reciprocal best blast and retaining pairs when
306 e value was below e-50. Then the two sequences were aligned with MACSE v.1.2 and the
307 synonymous divergence, D_s , was computed using *codeml* from the PAML software (Yang,
308 2007). The D_s distribution was clearly bimodal for all species, and gene pairs showing too
309 high divergence ($D_s > 0.35$) were discarded as they likely corresponded to paralogues. For
310 each transcript in each focal species, we attributed the same genetic distance and local
311 recombination rate as its ortholog in *H. vulgare*. We applied the same procedure for the
312 three *T. aestivum* subgenomes (A, B and D) separately, except that we did not filter on D_s
313 that cannot be used as an homogeneous criterium for all species as the distance depends
314 on the subgenome and the focal species, contrary to *Hordeum*, which as the same expected
315 distance with all focal species.

316 For each focal species, to assess the similarity among genomes, we counted how
317 many genes had an orthologue on the same chromosome of the four reference genomes (H,
318 A, B and D) and whether it corresponded to the same category of recombination (low: below
319 the median, or high: above the median).

320

321 **Sequence polymorphism analysis**

322 Polymorphism and divergence statistics were calculated with dNdSpNpS v.3.
323 (available at <https://kimura.univ-montp2.fr/PopPhyl/index.php?section=tools>) that rely on the
324 Bio++ libraries (Guéguen *et al.*, 2013). Further filters were applied to the data sets. Positions
325 at which a genotype could be called in less than five individuals for species with sample size

326 $n \geq 5$ and in less than $n/2$ for species with $n < 5$ were discarded. Genes with less than 10
327 codons were discarded. For each gene, the following statistics were calculated: per-site
328 synonymous (π_S) and nonsynonymous (π_N) mean pairwise nucleotide diversity, heterozygote
329 deficiency (F), number of synonymous (S_S) and nonsynonymous (S_N) segregating sites,
330 number of synonymous (D_S) and nonsynonymous (D_N) fixed differences between focal and
331 outgroup species. These statistics were computed from complete, biallelic sites only, i.e.,
332 sites showing no missing data after alignment cleaning, and no more than two distinct states.
333 For each species, statistics were averaged across genes weighting by the number of
334 complete sites per gene, thus giving equal weight to every SNP. For π_N/π_S and D_N/D_S , we
335 first computed the averages of π_N , π_S , D_N , and D_S and subsequently the ratios of averages.
336 Confidence intervals were obtained by 10,000 bootstraps over genes. For the focal selfing
337 species *Ae. tauschii*, *T. monococcum* and *T. urartu*, all statistics were calculated on $n/2$
338 alleles, by randomly drawing one haploid sequence per gene and individual
339 (**Supplementary Table S5**).

340

341 **Fit of a linked-selection model**

342 To go further, we fitted a linked-selection model, following Corbett-Detig *et al.* (2015)
343 and Elyashiv *et al.* (2016) but including the effect of partial selfing. To simplify the model,
344 and because we did not have information about substitutions across the genome, we only
345 considered background selection.

346 The genome was split into genomic windows. For each region where $\pi_S(i)$ has been
347 estimated on n_i positions, we assumed that $n_i \times \pi_S(i)$ followed a binomial distribution with
348 parameter n_i and p_i given by:

$$349 p_i = \pi_{max} e^{-\sum_j u_j \frac{s}{(r_j + s)^2}} \quad (2)$$

350 where s is the mean selection coefficient against deleterious mutations, r_{ij} represents the
351 probability of recombination between the focal region i and any other region of the genome, j
352 containing L_j coding positions so that $u_j = u L_j$, and where u is the rate of deleterious
353 mutations. To improve the fit to the data we considered a distribution of fitness effects of
354 mutations. We used a simple discrete distribution with three categories characterized by
355 their mutation rates and selection coefficients: u_1, u_2, u_3 , and s_1, s_2, s_3 . Equation (2) can thus
356 generalized as:

$$357 p_i = \pi_{max} e^{-\sum_j^{\square} L_j \left(u_1 \frac{s_1}{(r_{ij}+s_1)^2} + u_2 \frac{s_2}{(r_{ij}+s_2)^2} + u_3 \frac{s_3}{(r_{ij}+s_3)^2} \right)} \quad (3)$$

358 Note that the s values correspond in fact to $(h + F - hF)s$ where h is the dominance
359 coefficient. However, because our aim is not to estimate and compare deleterious mutation
360 parameters we did not fit h and s separately. r_{ij} is obtained from the genetic distance, d_{ij} ,
361 using Haldane's mapping function: $r_{ij} = (1 - \exp(-2d_{ij}))/2$. To take partial selfing into account,
362 we rescaled r_{ij} by $r_{ij}(1 - F)$ (see Nordborg, 2000). This rescaling is correct only for low
363 recombination rates and a more accurate expression of background selection was obtained
364 by Roze (2016). However, the simple rescaling provides a good approximation and is much
365 simpler to handle than the full expression (Roze, 2016). Note that we took the sum on all
366 genomic regions on the same chromosome of the focal region but also on other
367 chromosomes (so with $r_{ij} = 1/2$). This is especially important under partial selfing as selection
368 on one chromosome can also affect the other chromosomes. Under outcrossing it boils
369 down to the effect of the additive variance in fitness that reduces effective population size
370 (Roze, 2016).

371

372 We had seven parameters to estimate: $u_1, u_2, u_3, s_1, s_2, s_3$ and π_{max} . Because estimates of F
373 were not very precise, we run the model by letting F free and being estimated jointly with the

374 other parameters (so eight parameters in total). The log likelihood function was optimized
375 with the *optim* function in *R* using the “L-BFGS-B” method and the constraint: $u_1 > u_2 > u_3$.

376 Recombination is very heterogeneous along chromosomes (U-shaped) and large
377 central regions are strongly linked. Instead of splitting the genome into regions of equal
378 physical size (in Mb) we split it into regions of equal genetic size (in cM) based on the Marey
379 map interpolation. Genomic regions on the telomeric parts of the chromosomes were thus
380 shorter than centromeric regions, where recombination is very low. We chose a window size
381 of 1 cM and we discarded regions with less than 300 bp to avoid too noisy data. To obtain
382 confidence intervals on parameter estimations we bootstrapped data 100 times and rerun
383 the model.

384

385 **Linear models and phylogenetic correction**

386 We looked at the relation of polymorphism (π_S , π_N/π_S and π_{max}) and F with mating
387 system (PC1 of reproductive morphology) and species geographical range using simple
388 unweighted linear regressions of the form $y \sim x$ ($F \sim \text{PC1}$, $\log(\pi_S) \sim \text{PC1}$, $\pi_N/\pi_S \sim \text{PC1}$,
389 $\log(\pi_S) \sim \text{range}$, $\pi_N/\pi_S \sim \text{range}$, $\pi_N/\pi_S \sim F$). To evaluate the joint effects of mating system and
390 species range on polymorphism (π_S and π_N/π_S), we performed multiple linear regressions in
391 the form $\log(\pi_S) \sim \text{mating_system} + \text{species range}$ and $\pi_N/\pi_S \sim \text{mating_system} + \text{species}$
392 range. We then represented the residuals, after removing the effect of the mating system, as
393 a function of species range. All linear models were run with the function *lm* under the R
394 environment.

395 We also applied a correction to take into account the phylogenetic relationships
396 among species using the ultrametric tree retrieved from Glémén *et al.* (2019). For this, we
397 computed the phylogenetically independent contrasts using the method of Felsenstein
398 (1985) with the package *ape* version 5.6-2 (Paradis and Schliep, 2019). The function *pic* was

399 applied to the y and x vectors with default parameters, then the lm analysis was repeated
400 with the contrast values obtained instead of the raw values.

401

402 **Estimation of the distribution of fitness effect of mutations**

403 In the two self-incompatible species, *Ae. mutica* and *Ae. speltooides*, and in two highly
404 selfing species, *Ae. tauschii* and *T. urartu*, we estimated the distribution of fitness effect of
405 mutations using the *PolyDFE* method (Tataru *et al.*, 2017; Tataru and Bataillon, 2019). In
406 brief, this method used the unfolded site frequency spectrum (uSFS) for both synonymous
407 and non-synonymous mutations to fit the distribution of fitness effect (DFE) of mutations
408 modelled by the mix of a gamma distribution for deleterious mutations and an exponential
409 distribution for beneficial mutations. Demography is taken into account by adding and fitting
410 noise parameters that distort uSFS from the equilibrium expectation following Eyre-Walker
411 *et al.* (2006). Because uSFS are sensitive to polarization errors, which can give spurious
412 signatures of beneficial mutations, a probability of mis-polarization is also added and fitted in
413 the model. This yields a set of four related models: with and without beneficial mutations,
414 and with and without polarization errors. Instead of choosing the best model to estimate
415 parameters, we run all four and used a model averaging procedure (as in Muyle *et al.*,
416 2021): each parameter estimate was averaged using Akaike weights $e^{-\frac{1}{\Delta AIC_i}}$ with
417 $\Delta AIC_i = AIC_i - AIC_{min}$ where AIC_{min} is the AIC of the best model. Confidence intervals were
418 obtained by bootstrapping SNPs 1000 times.

419 For the four species, uSFS were polarized using *Taeniatherum caput-medusae* as an
420 outgroup. We performed three analyses: on the whole set of SNPs or by splitting the dataset
421 into two subsets: SNPs from genes in the high or low recombining regions. GC-biased gene
422 conversion (gBGC), a recombination associated processes mimicking selection in favor of G

423 and C nucleotides, is known to be active in grasses (Rodgers-Melnick *et al.*, 2016; Clément
424 *et al.*, 2017) and could lead to spurious signatures of positive selection in highly recombining
425 regions. To test for the possible effect of gBGC, we also re-run the analyses on three
426 categories of SNPs: AT → GC, GC → AT, and G ← → C + A ← → T.

427

428 **Simulations**

429 To understand how different selfing rates affect our ability to detect the effects of
430 linked selection on polymorphism landscape and distribution of fitness effects, we run
431 forward time individual-based evolutionary simulations in SLiM v.3.3 (Haller and Messer
432 2019). We simulated a population of $N = 10,000$ individuals with five different selfing rates: 0,
433 0.5, 0.9, 0.99 and 1. We considered a genome of three Mb with a single chromosome
434 composed of 1000 genes of 1000 bp separated by intergenic regions of 2000 bp.
435 Recombination decreased exponentially from 60 cM/Mb at the tips to 6 cM/Mb in the center
436 of the chromosome, corresponding to a total genetic of 3.24 Morgan (so an average of three
437 crossovers per chromosome per meiosis, which is in the range of one to three/four that is
438 observed in plants, Brazier and Glémén 2022). We assumed a mutation rate of 10^{-6} , with $\frac{2}{3}$ of
439 mutations being neutral, corresponding to an expected genetic diversity of $4Nu = 0.027$, of
440 the order of magnitude of what we observed in the outcrossing species, and corresponding
441 to an average r/u close to one. The other third of mutations were considered deleterious with
442 a dominance level of $h = 0.25$ and deleterious effects in homozygotes drawn in a gamma
443 distribution with mean = 0.01 and shape = 0.5. This corresponds to a genomic deleterious
444 mutation rate of $U = 0.33$. After a burn-in period of $10N$ generations we recorded the
445 genome sequence of 15 individuals. We run ten replicates for each selfing rate.

446 We used the simulated data to assess the effect of selfing and linked selection on the
447 estimation of the DFE. Importantly, polyDFE estimates the shape and the population-scaled

448 mean of the DFE: $S = 4N_e(h + F - hF)s$. However, N_e is not set nor fixed in the model,
449 contrary to h , s and F , but depends on the intensity of linked selection. We thus used the
450 observed π_S divided by $4u$ to get the predicted N_e , hence the predicted S .

451

452

453 **Results**

454 **Mating system widely varies in *Aegilops/Triticum* genus**

455 We analyzed phenotypic and transcriptomic diversity in 98 accessions from the 13
456 diploid *Aegilops/Triticum* species and three close outgroup species *Taenatherium caput-*
457 *medusae*, *Hordeum vulgare* and *Secale vavilovii* (**Fig. 1**, **Table S1** and **Fig. S1**). Individuals
458 were sampled over the whole geographic range to assess genetic diversity at the species
459 scale. For some species the mating system was already well known, including the self-
460 incompatible *Ae. speltoides* and *Ae. mutica* and the highly selfing *T. urartu*, *T. monococcum*
461 and *Ae. tauschii* (Dvořák *et al.*, 1998; Escobar *et al.*, 2010), but for others it was poorly
462 documented (Kilian *et al.*, 2011). We thus characterized the mating system of each species
463 by quantifying six floral and reproductive traits, including the size of female and male
464 reproductive organs (anthers, stigmas), male investment, spikelet compactness, and the
465 autonomous seed set (Escobar *et al.*, 2010) (**Supplementary Tables S2, S3 and S4**).
466 Building on previous work (Escobar *et al.*, 2010), we considered these traits as indicative of
467 the selfing syndrome, i.e. the specific changes in flower morphology and function that are
468 expected to occur following the evolution of self-fertilization, especially for anemophilous
469 species (Escobar *et al.*, 2010; Sicard and Lenhard, 2011). The autonomous seed set
470 provided a verification that self-incompatible species *Ae. mutica* and *Ae. speltoides*
471 produced almost no seeds under imposed self-fertilization in the greenhouse (bagged
472 spikes), while all the other species were able to produce seeds (**Supplementary Fig. S2**).

473 All the other traits were significantly negatively (anther and stigma size, male investment) or
474 positively (spikelet compactness) correlated with the autonomous seeds set
475 (**Supplementary Fig. S3**), indicating that the selected traits are good indicators of the
476 mating system of each species.

477 We summarized this reproductive morpho-functional diversity with a multivariate
478 approach, principal component analysis (PCA). The PCA first axis reflected the differences
479 in mating systems within the *Aegilops/Triticum* genus (**Fig. 1B** and **Supplementary Fig. S4**).
480 On one extreme of PC1 there were self-incompatible *Ae. mutica* and *Ae. speltoides*, which
481 showed bigger anthers and stigmas, higher male/female investment, lower spikelet
482 compactness and lower (null) autonomous seed set. On the other extreme there were the
483 predominantly selfing *Ae. tauschii*, *T. urartu* and *T. monococcum*, with opposite states of the
484 traits (**Fig. 1A and 1B**). The other *Aegilops* species showed intermediate values of the multi-
485 trait statistic. This result still held when outgroups were included in the analysis
486 (**Supplementary Fig. S5**).

487 Species morphology measured by PC1 explained well the genome-wide estimate of
488 inbreeding coefficient, F , calculated on the whole transcriptome dataset ($R^2=0.83$, p -
489 value=1.68e-05, **Fig. 1C**), confirming that our phenotypic data represented a good proxy of
490 the mating system. Thus, in the following analyses, we used PC1 to describe the selfing
491 syndrome, which avoids using genomic data for both characterizing the mating systems and
492 their genomic consequences.

493 These findings are in agreement with previous knowledge (Dvořák *et al.*, 1998;
494 Escobar *et al.*, 2010) and allowed us to characterize the mating system for the species that
495 lacked outcrossing rate estimations. They also showed that the effects of selfing might be
496 gradual, with species exhibiting mixed mating strategies described by intermediate values of
497 F and of the phenotypic selfing syndrome. Mapping mating systems on the phylogeny

498 suggested that self-incompatibility was likely ancestral and may have broken only once as all
499 species are self-compatible, except the two external ones (*Ae. mutica* and *Ae. speltoides*).
500 However, several breakdowns of self-incompatibility cannot be excluded. For example, high
501 selfing could have evolved four times independently, in the branches leading to *Ae. tauschii*,
502 *Ae. searsii*, *Ae. uniaristata* and *Triticum* species (**Fig. 1A**).

503

504 **Polymorphism strongly correlates with mating systems**

505 Genetic diversity was estimated for each species from whole transcriptome
506 sequencing data. Sequences of 48 accessions were generated and *de novo* assembled in
507 this study and were added to the datasets of Glémin *et al.* (2019b) and Clément *et al.* (2017)
508 (**Supplementary Table S1**). Between 19,518 and 28,834 coding sequences were obtained
509 per species. After filtering, genotype calling was performed on a number of contigs varying
510 from 7,083 (*Ae. searsii*) to 21,706 (*T. caput-medusae*) (**Supplementary Table S5**).

511 Selfing is expected to reduce neutral genetic diversity (Pollak, 1987; Schoen and
512 Brown, 1991; Jarne, 1995; Nordborg, 2000; Ingvarsson, 2002), here estimated as
513 synonymous polymorphism, π_s . Across species, π_s varied more than one order of
514 magnitude, from 0.0011 for the self-compatible *Ae. searsii* to 0.02 for the self-incompatible
515 *Ae. speltoides*. According to expectations, genetic diversity decreases with increasing selfing
516 rate. Neutral genetic diversity, π_s and PC1 were significantly correlated across species ($R^2 =$
517 0.75, p -value = 0.00014), indicating a gradient in which stronger selfing syndrome
518 corresponds to lower genome-wide neutral diversity (**Fig. 2A**). The correlation was still
519 significant after phylogenetic control ($R^2 = 0.67$, p -value = 0.00111). Interestingly, this
520 relationship is more or less log-linear (**Fig. 2A**) with the main difference being observed
521 between the two self-incompatible (*Ae. speltoides* and *Ae. mutica*) and the self-compatible
522 species (all the others).

523 Selfing is also expected to reduce the efficacy of selection, thus leading to higher
524 accumulation of segregating slightly deleterious mutations in selfing than in outcrossing
525 species (Glémén, 2007). In agreement with this prediction, the efficacy of purifying selection
526 estimated by the ratio of non-synonymous to synonymous polymorphism π_N/π_S (Kimura,
527 1983) was lower for selfing species (max π_N/π_S value 0.21 for *T. urartu*) than for outcrossing
528 ones (0.09 for *Ae. speltoides*). Similarly to neutral diversity, the efficacy of selection was also
529 significantly explained by the selfing syndrome ($R^2 = 0.48$, p -value = 0.0083; with
530 phylogenetic control $R^2 = 0.35$, p -value = 0.041; **Fig. 2B**). We further verified that both
531 polymorphism statistics, π_S and π_N/π_S , also correlated with F estimates (**Supplementary Fig.**
532 **S6**).

533 We also tested whether species range, used as a proxy of census population size,
534 also correlated with genetic diversity, with widespread species predicted to be more
535 polymorphic than species with restricted geographic distribution. In contrast to the mating
536 system, species range was not correlated with either π_S (**Fig. 2C**) or π_N/π_S (**Fig. 2D**). Such a
537 correlation could be masked by the strong effect of selfing, which is expected to favor
538 species range expansions. For example, *Ae. tauschii* is highly selfing and has by far the
539 largest species range (**Supplementary Fig. S1**). However, a linear model with the two
540 effects showed that the mating system still significantly explained both π_S (p -value=0.00004)
541 and π_N/π_S (p -value=0.0157) whereas species range did not (**Supplementary Fig. S7**). Yet,
542 the effect of species range on π_S is barely significant (p -value = 0.063), so it is still possible
543 that there is a weak effect that we could not detect with only thirteen species. Overall, these
544 results suggest that the mating system is the main driver of genetic diversity in
545 *Aegilops/Triticum* species and overwhelms potential effects of recent population history.

546

547 **The effect of linked selection depends on the mating system**

548 We tested the hypothesis that selfing increases the effect of linked selection by
549 comparing polymorphism patterns and recombination along chromosomes. Species-specific
550 recombination maps were not available for most species, so we used the recombination map
551 of the outgroup species *Hordeum vulgare*, which we compared to the recombination maps of
552 the three diploid subgenomes of bread wheat (A, B and D, corresponding to the wild parents
553 *T. urartu*, *Ae. speltoides/mutica*, *Ae. tauschii*). For each focal species, we found that 99% or
554 orthologs with *H. vulgare* mapped on the same chromosome as at least one of the three
555 subgenomes of *T. aestivum*, and 96% to 97% as all three of them. Similarly, 97 to 99% of
556 orthologs with *H. vulgare* belonged to the same recombination category as at least one of
557 the three subgenomes, and 78 to 79% as all three of them (**Supplementary Table S6**).

558 In what follows, we only show the results with *H. vulgare*, since it provides the further
559 advantage that the outgroup has (on average) the same phylogenetic distance to every
560 *Aegilops/Triticum* species, ensuring an unbiased analysis that does not favor species closer
561 to the reference. For comparison, some additional results using the *T. aestivum*
562 subgenomes as reference are given in supplementary material (**Supplementary Table S6**
563 and **Fig. S9**).

564 In all species, synonymous polymorphism was strongly correlated with recombination
565 and presented a U-shaped pattern along chromosomes more or less mirroring the
566 recombination pattern (see **Fig. 3A** and **Supplementary Fig. S14**). However, the higher the
567 selfing rate, the flatter the relationship (**Fig. 3B**), suggesting a strong effect of the mating
568 system on the relationship between polymorphism and recombination. We verified that the
569 positive relationship between diversity and recombination rate was not merely caused by the
570 mutagenic effect of recombination, by looking at the correlation between synonymous
571 divergence (D_S) with the outgroup (*H. vulgare*) and recombination rate (Kulathinal et al.,
572 2008). We found that the magnitude of D_S variation (factor 1.5, **Supplementary Fig. S8**) is

573 much lower than the range of variation observed for polymorphism along the genome (factor
574 5 to 80, depending on the species, **Fig. 3B**). If a mutagenic effect of recombination cannot
575 be ruled out, it is clearly insufficient to explain the magnitude of the correlation between π_S
576 and recombination. This mere observation suggested that linked selection could strongly
577 reduce π_S by at least one or two orders of magnitude.

578 To quantify more directly the effect of linked selection, we fitted a model similar to
579 Corbett-Detig *et al.* (2015) and Elyashiv *et al.* (2016) that we adapted to partially selfing
580 species but only considering background selection (see **Supplementary Table S6** for full
581 results). From the fit of the model, we obtained the maximum π_S that could be reached in the
582 absence of linked selection, π_{\max} , which ranged between 0.028 to 5.82 (**Fig. 4**). Note that,
583 here $\pi_{\max} = 4N_{e_{\max}}u$, so can be higher than 1. We estimated that linked selection reduced π_S
584 by 3.5 in *Ae. speltoides* and 5.6 in *Ae. mutica*, the two self-incompatible species. For other
585 species, π_S was reduced by a few tens or even a few hundreds (from 7 to 888), but without a
586 clear relationship with the mating system. In contrast to π_S , π_{\max} did not correlate with PC1.
587 Surprisingly, it correlated negatively with species range, but the correlation was mainly
588 driven by the species of the *Sitopsis* section and was no longer significant after phylogenetic
589 correction (**Fig. 4**). It can be difficult to properly fit a realistic linked selection model for selfing
590 species and the results can be sensitive to the fact that we did not use the reference
591 genome of each species. In particular, some π_{\max} values were very high and could be
592 overestimated, but fitting the model using the three subgenomes A, B and D of *T. aestivum*
593 gave similar results (**Supplementary Fig. S9**). Overall, although they must be viewed with
594 caution, the results strongly suggested that linked selection is a main driver of the effect of
595 selfing on genetic diversity whereas species range has only a minor effect, and if any, not in
596 the predicted direction. When recombination maps will be available in all species, it will be
597 possible to re-assess this result.

598

599 **Deleterious mutations accumulate and adaptation is reduced under
600 selfing and low recombination**

601 Another central prediction of the effect of genetic linkage is that selection should be
602 less efficient in genomic regions of low recombination, which can extend genome wide in
603 highly selfing species. In agreement with this expectation, the efficacy of purifying selection
604 at the genome wide level clearly decreased with the selfing rate (**Fig. 2B**). All species also
605 showed a negative relationship between recombination rates and the π_N/π_S ratio (**Fig. 3B**),
606 indicating that purifying selection was more efficient in highly recombining regions. More
607 precisely, the π_N/π_S ratio sharply dropped with increasing recombination in outcrossing
608 species but more and more smoothly with increasing selfing rate, which supports the
609 prediction that reduced selection efficacy extended to larger genomic regions in selfing
610 species.

611 The π_N/π_S ratio is a rather crude proxy for the efficacy of purifying selection, and can
612 be affected by several factors such as non-equilibrium population dynamics that can lead to
613 spurious signature of relaxed selection (Brandvain and Wright 2016). To better characterize
614 how selection efficacy varies with mating system and recombination, we estimated the full
615 distribution of fitness effects (DFE) of mutations - i.e. including both deleterious and
616 beneficial mutations - using the *polyDFE* method (Tataru *et al.*, 2017). This approach
617 leverages information from unfolded synonymous and non-synonymous site frequency
618 spectra to infer the DFE of each species. It takes into account factors that can distort the
619 SFS such as non-equilibrium demography and linked selection, in addition to potential
620 polarization errors. The method requires a sufficient number of chromosomes sampled (say
621 >10), so we applied it only to the four species with the largest sample sizes, which
622 correspond to the extreme mating systems used to calibrate the selfing syndrome: the two

623 self-incompatible *Ae. speltoïdes* and *Ae. mutica* and two highly selfing *Ae. tauschii* and *T.*
624 *urartu*. In agreement with the π_N/π_S ratio analysis, we found that the two selfers suffered from
625 a higher load than the two outcrossers, with 22% to 25% of mutations not being efficiently
626 selected against ($-10 < Ne s < 0$), versus only 9 to 15% in the outcrossers (**Fig. 5**). We also
627 found a strong difference between regions of low and high recombination (higher vs lower
628 than the median) for all species. However, the difference was stronger in outcrossers (more
629 than two-fold) than in selfers (30-60% difference only) (**Fig. 5**). Interestingly, purifying
630 selection appeared as efficient in low-recombination regions of outcrossing genomes than in
631 high-recombination regions of highly selfing genomes (**Fig. 5**).

632 Another striking result is that we estimated an adaptive substitution rate not different
633 from zero in the two selfers, but a quite high value in the two outcrossers and only in highly
634 recombining regions (**Fig. 5**). We verified that this signature of positive selection was not due
635 to the spurious effect of GC-biased gene conversion (**Supplementary Fig. S10**), which is
636 known to happen in recombining regions of grass genomes (Muyle *et al.* 2011). Overall,
637 selection appeared to be much less efficient, both on beneficial and against deleterious
638 mutations, in low-recombination regions of outcrossing species, and throughout the genome
639 of highly selfing ones. When the proportion of weakly deleterious mutations is estimated with
640 the DFE-alpha method (Keightley and Eyre-Walker 2007) it was shown that selfing could
641 overestimate it (Gilbert *et al.* 2022). Here, we used polyDFE, which was claimed to be less
642 sensitive to linked selection effects (Tataru *et al.* 2017). As a control, we run simulations with
643 linked selection and varying degree of selfing and applied polyDFE. In contrast with DFE-
644 alpha (see Gilbert *et al.* 2022), we found that polyDFE tended to underestimate the
645 proportion of weakly deleterious mutations (**Supplementary Fig. S11**). We also found that
646 the method did not estimate spurious signatures of beneficial mutations in outcrossers.
647 Overall, the results were conservative to the effects of linked selection and selfing.

648

649

650 **Discussion**

651

652 We compared the patterns of genetic diversity and selection across the genome in
653 thirteen species with contrasted mating systems. We found far less polymorphism and far
654 less selection efficacy in selfing than in outcrossing species, as observed in previous studies
655 (e.g., Glémén *et al.*, 2006; Hazzouri *et al.*, 2013; Slotte *et al.*, 2013; Barrett *et al.*, 2014;
656 Burgarella *et al.*, 2015; Chen *et al.*, 2017; Laenen *et al.*, 2018). We also showed that these
657 genomic effects depend on the interplay between linked selection and mating systems, and
658 vary with self-fertilization rates. For this, we leveraged a study design tailored to go beyond
659 global patterns and decipher their underlying causes. First, differently from previous general
660 comparisons among plant species (Glémén *et al.*, 2006; Chen *et al.*, 2017), we compared
661 related species with similar life history traits, ecology and genomic features, which allows
662 more direct testing of the effect of the mating system. Second, we investigated all species of
663 a clade covering a large range of mating systems, including intermediate mixed mating
664 species, whereas previous studies addressing sister (or closely related) species mainly
665 focused on extreme outcrossing vs selfing comparisons (e.g., Hazzouri *et al.*, 2013; Slotte *et*
666 *al.*, 2013; Burgarella *et al.*, 2015; Teterina *et al.*, 2023). Third, by using recombination maps
667 we quantified the effect of linked selection in a comparative way.

668

669 Linked selection appears to be a main mechanism shaping levels of diversity in wild
670 wheats, as it can reduce polymorphism to three to five-fold in outcrossing species (**Fig. 3B**)
671 and to one or two orders of magnitude in selfing species. This is in agreement with but
672 higher than observed by Corbett-Detig *et al.* (2015), who found a quantitatively limited effect

673 of linked selection except in selfing species (see the re-analysis of Coop 2016). These
674 quantitative values must be viewed with caution because it is difficult to properly fit a model
675 of linked selection in selfing species. In addition to the complexity of the interaction between
676 recombination, selfing and selection, it is not clear whether the species scale or a more local
677 population scale is the most relevant. Another expected consequence of linkage and selfing
678 is a reduction in selection efficacy, both against deleterious and in favor of beneficial
679 mutations. We observed a striking contrast between regions of high and low recombination
680 in self-incompatible species, with twice more weakly selected deleterious mutations and no
681 beneficial mutation expected to fix in regions of low recombination (**Fig. 5, Supplementary**
682 **Fig. S10**). In highly selfing species, instead, recombination had a weaker effect and only for
683 deleterious mutations (**Fig. 5**). Interestingly, the regions of high recombination in selfers
684 exhibited a similar amount of weakly deleterious mutations as regions of low recombination
685 in outcrossers, and we detected no signature of adaptive evolution at all in the two highly
686 selfing species. Simulations showed that these results were not artefactual and may even
687 underestimate the effect of selfing (**Supplementary Fig. S11**). Overall, the cross
688 comparison between mating systems and recombination levels clearly showed that the main
689 quantitative effect of selfing is due to high linkage and linked selection.

690

691 Although our studied species share life history traits and have similar ecology, other
692 factors than the mating system could affect genetic diversity, for example, factors generating
693 contrasted geographic ranges unrelated to mating systems. However, we showed that the
694 geographic range has no effect on polymorphism patterns (**Fig. 2, Supplementary Fig. S7**).
695 More generally, we cannot exclude that other factors could play a role, but they could hardly
696 generate the very strong relationship between the mating system and genetic diversity we
697 observed. Strikingly, this strong relationship holds despite the use of an indirect measure of

698 the selfing rates through phenotypic proxies.

699

700 Our results help better understand the evolution of selfing species. In the short term,
701 selfing is known to recurrently evolve from outcrossing, depending on reproductive
702 assurance and gene transmission advantage balanced by inbreeding depression, which can
703 be partly purged during such transitions. In the long run, selfing lineages tend to diversify
704 less than outcrossing ones and selfing is considered an evolutionary dead-end, likely
705 because of higher probability of extinction (Stebbins, 1957; Igic *et al.*, 2008; Goldberg and
706 Igić, 2012). The very causes of higher extinction rates in selfers remain unclear, but
707 increased load and loss of genetic diversity and adaptive potential are possible drivers.
708 However, the pace at which the effects of selfing manifest is still poorly known, although it is
709 likely rapid as in the selfing *Capsella rubella* recently derived from the self-incompatible *C.*
710 *grandiflora* (Slotte *et al.*, 2013) or within the species *Arabis alpina* among populations with
711 contrasted mating systems (Laenen *et al.*, 2018).

712 In the *Aegilops/Triticum* genus, several instances of evolution towards different
713 degrees of selfing likely occurred in a short evolutionary time period, which manifested by
714 wide variations in floral traits associated with specific genetic diversity patterns. At the short
715 phylogenetically scale we studied, we thus found a clear signature of the joint evolution of
716 morphological traits and population genomic patterns, suggesting that the negative effects of
717 selfing manifests rapidly. It is tempting to propose that the strong and rapid deleterious
718 effects of selfing we detected will accelerate the extinction of the most selfing lineages.
719 However, so far there is no approach to properly test this hypothesis (Wright *et al.*, 2013;
720 Glémin *et al.*, 2019a). Genomic degradation certainly accompanies the transition towards
721 selfing, but we still do not know whether it is the ultimate cause of selfing lineages extinction.

722

723 Finally, our results also bear more general implications about the central question of
724 the determinants of genetic diversity, beyond the case of selfing species. In line with
725 previous comparative analyses of polymorphism at the genome scale (Romiguier *et al.*,
726 2014; Chen *et al.*, 2017), we showed that life history traits, here the mating system, are a
727 much stronger determinant of genetic diversity than proxies for census population sizes,
728 here species range. Species range had no effect either after globally controlling for the
729 mating system (**Supplementary Fig. S7**), or after removing specifically the effect of linked
730 selection (no significant correlation between species range and π_{\max} or, if so, in the
731 unpredicted direction). In contrast to previous studies, however, the range of genetic
732 diversity is particularly large despite species being closely related and recently diverged
733 (about 6 MYA), with similar genomes and life-history traits (wind-pollinated annual herbs)
734 except mating system. In these wild wheats, species nucleotide polymorphism varies with a
735 factor 20 (from 0.0011 to 0.022). For comparison, a clade of selfing and outcrossing
736 *Caenorhabditis* nematodes species diverged less than 30 MYA show even wider disparities
737 in polymorphism, up to a factor 80 (Cutter 2008; Li *et al.* 2014). In contrast, in a butterfly
738 family that diverged around 120 MYA, with four-fold variation in body mass and two-fold
739 variation in chromosome numbers, only a factor ten was observed (from 0.0044 to 0.043)
740 (Mackintosh *et al.*, 2019). Similarly, among 28 species widely covering the seed-plant
741 phylogeny and life forms (from annual herbs to trees), the observed range was only slightly
742 higher than in wild wheats, with a factor 28 (from 0.00064 to 0.018) (Chen *et al.*, 2017). This
743 points to mating systems as a main determinant of variation in genetic diversity among
744 species.

745 However, variation in genetic diversity is still narrower than predicted from variation in
746 species range, which varies by a factor 500 here. This is in line with the “Lewontin’s
747 paradox”, the general observation that genetic diversity varies much less across species

748 than census size does (Lewontin, 1974; Charlesworth and Jensen, 2022). Variation in π_{\max} is
749 around 60, so higher than variation in π_S , around 20, but only by a factor three. Despite its
750 strong effect, linked selection is thus unlikely to explain alone the limited range of variation in
751 π_S , in agreement with previous results (Corbett-Detig *et al.*, 2015; Coop, 2016; Buffalo, 2021;
752 Charlesworth and Jensen, 2022).

753

754

755 **References**

756

757 Agrawal, A.F. & Hartfield, M. (2016) Coalescence with Background and Balancing Selection
758 in Systems with Bi- and Uniparental Reproduction: Contrasting Partial Asexuality and
759 Selfing. *Genetics*, **202**, 313–326.

760 Barrett, S.C.H., Arunkumar, R. & Wright, S.I. (2014) The demography and population
761 genomics of evolutionary transitions to self-fertilization in plants. *Philosophical
762 Transactions of the Royal Society B: Biological Sciences*, **369**, 20130344.

763 Brandvain, Y. & Wright, S.I. (2016) The Limits of Natural Selection in a Nonequilibrium
764 World. *Trends in Genetics*, **32**, 201–210.

765 Brazier, T. & Glémén, S. (2022) Diversity and determinants of recombination landscapes in
766 flowering plants. *PLOS Genetics*, **18**, e1010141.

767 Buffalo, V. (2021) Quantifying the relationship between genetic diversity and population size
768 suggests natural selection cannot explain Lewontin's Paradox. *eLife*, **10**, e67509.

769 Burgarella, C., Gayral, P., Ballenghien, M., Bernard, A., David, P., Jarne, P., *et al.* (2015)
770 Molecular Evolution of Freshwater Snails with Contrasting Mating Systems. *Molecular
771 Biology and Evolution*, **32**, 2403–2416.

772 Burgarella, C. & Glémén, S. (2017) Population Genetics and Genome Evolution of Selfing

773 Species. In *eLS* (ed. by John Wiley and Sons Ltd). John Wiley and Sons, Ltd, Chichester,
774 UK, pp. 1–8.

775 Charlesworth, B. (2012) The Effects of deleterious Mutations on Evolution at Linked Sites.
776 *Genetics*, **190**, 5–22.

777 Charlesworth, B. & Jensen, J.D. (2021) Effects of Selection at Linked Sites on Patterns of
778 Genetic Variability. *Annual Review of Ecology, Evolution, and Systematics*, **52**, 177–197.

779 Charlesworth, B. & Jensen, J.D. (2022) How Can We Resolve Lewontin's Paradox?
780 *Genome Biology and Evolution*, **14**, evac096.

781 Charlesworth, D., Morgan, M.T. and Charlesworth, B. (1993) Mutation accumulation in finite
782 outbreeding and inbreeding populations. *Genetics Research*, **61**, 39–56.

783 Chen, J., Glémin, S. & Lascoux, M. (2017) Genetic Diversity and the Efficacy of Purifying
784 Selection across Plant and Animal Species. *Molecular Biology and Evolution*, **34**, 1417–
785 1428.

786 Chen, J., Glémin, S. & Lascoux, M. (2020) From Drift to Draft: How Much Do Beneficial
787 Mutations Actually Contribute to Predictions of Ohta's Slightly deleterious Model of
788 Molecular Evolution? *Genetics*, **214**, 1005–1018.

789 Clément, Y., Sarah, G., Holtz, Y., Homa, F., Pointet, S., Contreras, S., *et al.* (2017)
790 Evolutionary forces affecting synonymous variations in plant genomes. *PLOS Genetics*,
791 **13**, e1006799.

792 Comadran, J., Kilian, B., Russell, J., Ramsay, L., Stein, N., Ganal, M., *et al.* (2012) Natural
793 variation in a homolog of *Antirrhinum CENTRORADIALIS* contributed to spring growth
794 habit and environmental adaptation in cultivated barley. *Nature Genetics*, **44**, 1388–1392.

795 Coop, G. (2016) Does linked selection explain the narrow range of genetic diversity across
796 species? *bioRxiv*, 042598.

797 Corbett-Detig, R.B., Hartl, D.L. & Sackton, T.B. (2015) Natural Selection Constrains Neutral

798 Diversity across A Wide Range of Species. *PLOS Biology*, **13**, e1002112.

799 Cutter, A.D., 2008. Divergence Times in *Caenorhabditis* and *Drosophila* Inferred from Direct
800 Estimates of the Neutral Mutation Rate. *Mol. Biol. Evol.* **25**, 778–786.

801 Cutter, A.D. & Payseur, B.A. (2013) Genomic signatures of selection at linked sites: unifying
802 the disparity among species. *Nature Reviews. Genetics*, **14**, 262–274.

803 Dray, S. & Dufour, A.-B. (2007) The ade4 Package: Implementing the Duality Diagram for
804 Ecologists. *Journal of Statistical Software*, **22**, 1–20.

805 Dvořák, J., Luo, M.-C. & Yang, Z.-L. (1998) Restriction Fragment Length Polymorphism and
806 Divergence in the Genomic Regions of High and Low Recombination in Self-Fertilizing
807 and Cross-Fertilizing *Aegilops* Species. *Genetics*, **148**, 423–434.

808 Ellegren, H. & Galtier, N. (2016) Determinants of genetic diversity. *Nature Reviews.*
809 *Genetics*, **17**, 422–433.

810 Elyashiv, E., Sattath, S., Hu, T.T., Strutsovsky, A., McVicker, G., Andolfatto, P., et al. (2016)
811 A Genomic Map of the Effects of Linked Selection in *Drosophila*. *PLOS Genet*, **12**,
812 e1006130.

813 Escobar, J.S., Cenci, A., Bolognini, J., Haudry, A., Laurent, S., David, J., et al. (2010) An
814 integrative test of the dead-end hypothesis of selfing evolution in Triticeae (poaceae).
815 *Evolution*, **64**, 2855–2872.

816 Excoffier, L., Foll, M. & Petit, R.J. (2009) Genetic Consequences of Range Expansions.
817 *Annual Review of Ecology, Evolution, and Systematics*, **40**, 481–501.

818 Eyre-Walker, A., Woolfit, M. & Phelps, T. (2006) The distribution of fitness effects of new
819 deleterious amino acid mutations in humans. *Genetics*, **173**, 891–900.

820 Felsenstein, J. (1985) Phylogenies and the comparative method. *American Naturalist*, **125**,
821 1–15.

822 Friedman, J. & Harder, L.D. (2005) Functional associations of floret and inflorescence traits

823 among grass species. *American Journal of Botany*, **92**, 1862–1870.

824 Gayral, P., Melo-Ferreira, J., Glémin, S., Bierne, N., Carneiro, M., Nabholz, B., *et al.* (2013)

825 Reference-free population genomics from next-generation transcriptome data and the

826 vertebrate–invertebrate gap. *PLoS Genetics*, **9**, e1003457.

827 Gilbert, K.J., Zdraljevic, S., Cook, D.E., Cutter, A.D., Andersen, E.C., Baer, C.F., 2022. The

828 distribution of mutational effects on fitness in *Caenorhabditis elegans* inferred from

829 standing genetic variation. *Genetics* 220, iyab166.

830 Glémin, S. (2007) Mating systems and the efficacy of selection at the molecular level.

831 *Genetics*, **177**, 905–916.

832 Glémin, S., Bazin, E. & Charlesworth, D. (2006) Impact of mating systems on patterns of

833 sequence polymorphism in flowering plants. *Proceedings of the Royal Society B:*

834 *Biological Sciences*, **273**, 3011–3019.

835 Glémin, S., François, C.M. & Galtier, N. (2019a) Genome Evolution in Outcrossing vs.

836 Selfing vs. Asexual Species. In *Evolutionary Genomics: Statistical and Computational*

837 *Methods*, Methods in Molecular Biology (ed. by Anisimova, M.). Springer, New York, NY,

838 pp. 331–369.

839 Glémin, S., Scornavacca, C., Dainat, J., Burgarella, C., Viader, V., Ardisson, M., *et al.*

840 (2019b) Pervasive hybridizations in the history of wheat relatives. *Science Advances*, **5**,

841 eaav9188.

842 Goldberg, E.E. & Igić, B. (2012) Tempo and Mode in Plant Breeding System Evolution.

843 *Evolution*, **66**, 3701–3709.

844 Grossenbacher, D., Runquist, R.B., Goldberg, E.E. and Brandvain, Y. (2015) Geographic

845 range size is predicted by plant mating system. *Ecology Letters*, **18**, 706–713.

846 Guéguen, L., Gaillard, S., Boussau, B., Gouy, M., Groussin, M., Rochette, N.C., *et al.* (2013)

847 Bio++: Efficient Extensible Libraries and Tools for Computational Molecular Evolution.

848 *Molecular Biology and Evolution*, **30**, 1745–1750.

849 Haller, B.C. & Messer, P.W. (2019) SLiM 3: Forward Genetic Simulations Beyond the
850 Wright–Fisher Model. *Molecular Biology and Evolution*, **36**, 632–637.

851 Hartfield, M. & Bataillon, T. (2020) Selective Sweeps Under Dominance and Inbreeding. *G3*
852 *Genes|Genomes|Genetics*, **10**, 1063–1075.

853 Hazzouri, K.M., Escobar, J.S., Ness, R.W., Killian Newman, L., Randle, A.M., Kalisz, S., *et*
854 *al.* (2013) Comparative population genomics in *Collinsia* sister species reveals Evidence
855 for reduced effective population size, relaxed selection, and evolution of biased gene
856 conversion with an ongoing mating system shift. *Evolution*, **67**, 1263–1278.

857 Huang, S., Sirikhachornkit, A., Su, X., Faris, J., Gill, B., Haselkorn, R., *et al.* (2002) Genes
858 encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the
859 *Triticum/Aegilops* complex and the evolutionary history of polyploid wheat. *Proceedings*
860 *of the National Academy of Sciences*, **99**, 8133–8138.

861 Huang, X. & Madan, A. (1999) CAP3: A DNA Sequence Assembly Program. *Genome*
862 *Research*, **9**, 868–877.

863 Igic, B., Lande, R. and Kohn, J.R. (2008) Loss of Self-Incompatibility and Its Evolutionary
864 Consequences. *International Journal of Plant Sciences*, **169**, 93–104.

865 Ingvarsson, Pärk. (2002) A metapopulation perspective on genetic diversity and
866 differentiation in partially self-fertilizing plants. *Evolution*, **56**, 2368–2373.

867 Jarne, P. (1995) Mating system, bottlenecks and genetic polymorphism in hermaphroditic
868 animals. *Genetics Research*, **65**, 193–207.

869 Josse, J. & Husson, F. (2016) missMDA: A Package for Handling Missing Values in
870 Multivariate Data Analysis. *Journal of Statistical Software*, **70**, 1–31.

871 Kilian, B., Mammen, K., Millet, E., Sharma, R., Graner, A., Salamini, F., *et al.* (2011)
872 *Aegilops*. In *Wild Crop Relatives: Genomic and Breeding Resources: Cereals* (ed. by

873 Kole, C.). Springer, Berlin, Heidelberg, pp. 1–76.

874 Kimura, M. (1983) Rare variant alleles in the light of the neutral theory. *Molecular Biology*
875 and Evolution, **1**, 84–93.

876 Kulathinal, R.J., Bennett, S.M., Fitzpatrick, C.L. and Noor, M.A.F. (2008) Fine-scale mapping
877 of recombination rate in *Drosophila* refines its correlation to diversity and divergence.
878 *Proceedings of the National Academy of Sciences*, **105**, 10051–10056.

879 Laenen, B., Tedder, A., Nowak, M.D., Toräng, P., Wunder, J., Wötzl, S., et al. (2018)
880 Demography and mating system shape the genome-wide impact of purifying selection in
881 *Arabis alpina*. *Proceedings of the National Academy of Sciences*, **115**, 816–821.

882 Leffler, E.M., Bullaughey, K., Matute, D.R., Meyer, W.K., Ségurel, L., Venkat, A., et al.
883 (2012) Revisiting an Old Riddle: What Determines Genetic Diversity Levels within
884 Species? *PLoS Biol*, **10**, e1001388.

885 Lewontin, R.C. (1974) *The genetic basis of evolutionary change*. Columbia University Press.

886 Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-Wheeler
887 transform. *Bioinformatics (Oxford, England)*, **25**, 1754–1760.

888 Li, S., Jovelin, R., Yoshiga, T., Tanaka, R., Cutter, A.D., 2014. Specialist versus generalist
889 life histories and nucleotide diversity in *Caenorhabditis* nematodes. *Proc. R. Soc. B Biol.*
890 *Sci.* **281**, 20132858.

891 Mackintosh, A., Laetsch, D.R., Hayward, A., Charlesworth, B., Waterfall, M., Vila, R., et al.
892 (2019) The determinants of genetic diversity in butterflies. *Nature Communications*, **10**,
893 3466.

894 Marcussen, T., Sandve, S.R., Heier, L., Spannagl, M., Pfeifer, M., The International Wheat
895 Genome Sequencing Consortium, et al. (2014) Ancient hybridizations among the
896 ancestral genomes of bread wheat. *Science*, **345**, 1250092.

897 Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing

898 reads. *EMBnet.journal*, **17**, 10–12.

899 Mayer, K.F.X., Martis, M., Hedley, P.E., Šimková, H., Liu, H., Morris, J.A., *et al.* (2011)

900 Unlocking the Barley Genome by Chromosomal and Comparative Genomics. *The Plant*

901 *Cell*, **23**, 1249–1263.

902 Muyle, A., Martin, H., Zemp, N., Mollion, M., Gallina, S., Tavares, R., *et al.* (2021) Dioecy Is

903 Associated with High Genetic Diversity and Adaptation Rates in the Plant Genus *Silene*.

904 *Molecular Biology and Evolution*, **38**, 805–818.

905 Muyle, A., Serres-Giardi, L., Ressayre, A., Escobar, J. and Glémin, S. (2011) GC-biased

906 gene conversion and selection affect GC content in the *Oryza* genus (rice). *Molecular*

907 *Biology and Evolution*, **28**, 2695–2706.

908 Nordborg, M. (2000) Linkage disequilibrium, gene trees and selfing: an Ancestral

909 recombination graph with partial self-fertilization. *Genetics*, **154**, 923–929.

910 Pannell, J.R. and Charlesworth, B. (1999) Neutral genetic diversity in a metapopulaiton with

911 recurrent local extinction and recolonization. *Evolution*, **53**, 664–676.

912 Paradis, E. & Schliep, K. (2019) ape 5.0: an environment for modern phylogenetics and

913 evolutionary analyses in R. *Bioinformatics*, **35**, 526–528.

914 Parisod, C. & Badaeva, E.D. (2020) Chromosome restructuring among hybridizing wild

915 wheats. *New Phytologist*, **226**, 1263–1273.

916 Pollak, E. (1987) On the theory of partially inbreeding finite populations. I. Partial selfing.

917 *Genetics*, **117**, 353–360.

918 R Core Team. (2018) *R: A language and environment for statistical computing*. R

919 Foundation for Statistical Computing, Vienna, Austria.

920 Ranwez, V., Harispe, S., Delsuc, F. & Douzery, E.J.P. (2011) MACSE: Multiple Alignment of

921 Coding SEquences accounting for frameshifts and stop codons. *PLoS ONE*, **6**, e22594.

922 Rezvov, C., Charif, D., Guéguen, L. & Marais, G.A.B. (2007) MareyMap: an R-based tool

923 with graphical interface for estimating recombination rates. *Bioinformatics*, **23**, 2188–
924 2189.

925 Rodgers-Melnick, E., Vera, D.L., Bass, H.W. and Buckler, E.S. (2016) Open chromatin
926 reveals the functional maize genome. *Proceedings of the National Academy of Sciences*,
927 **113**, E3177–E3184.

928 Romiguier, J., Gayral, P., Ballenghien, M., Bernard, A., Cahais, V., Chenuil, A., et al. (2014)
929 Comparative population genomics in animals uncovers the determinants of genetic
930 diversity. *Nature*, **515**, 261–263.

931 Roze, D. (2016) Background Selection in Partially Selfing Populations. *Genetics*, **203**, 937–
932 957.

933 Sarah, G., Homa, F., Pointet, S., Contreras, S., Sabot, F., Nabholz, B., et al. (2017) A large
934 set of 26 new reference transcriptomes dedicated to comparative population genomics in
935 crops and wild relatives. *Molecular Ecology Resources*, **17**, 565–580.

936 Schoen, D.J. & Brown, A.H. (1991) Intraspecific variation in population gene diversity and
937 effective population size correlates with the mating system in plants. *Proceedings of the
938 National Academy of Sciences*, **88**, 4494–4497.

939 Sicard, A. & Lenhard, M. (2011) The selfing syndrome: a model for studying the genetic and
940 evolutionary basis of morphological adaptation in plants. *Annals of Botany*, **107**, 1433–
941 1443.

942 Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J.M. and Birol, I. (2009)
943 ABySS: A parallel assembler for short read sequence data. *Genome Research*, **19**,
944 1117–1123.

945 Slageren, M.W. van. (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum
946 (Jaub. and Spach) Eig (Poaceae). *Wageningen Agricultural University Papers*, **94–7**.

947 Slotte, T., Hazzouri, K.M., Ågren, J.A., Koenig, D., Maumus, F., Guo, Y.-L., et al. (2013) The

948 Capsella rubella genome and the genomic consequences of rapid mating system
949 evolution. *Nature Genetics*, **45**, 831–835.

950 Stebbins, G.L. (1957) Self fertilization and population variability in the higher plants.
951 *American Naturalist*, **91**, 337–54.

952 Tataru, P. & Bataillon, T. (2019) polyDFEv2.0: testing for invariance of the distribution of
953 fitness effects within and across species. *Bioinformatics*, **35**, 2868–2869.

954 Tataru, P., Mollion, M., Glémén, S. & Bataillon, T. (2017) Inference of Distribution of Fitness
955 Effects and Proportion of Adaptive Substitutions from Polymorphism Data. *Genetics*, **207**,
956 1103–1119.

957 Teterina, A.A., Willis, J.H., Lukac, M., Jovelin, R., Cutter, A.D., Phillips, P.C. (2023) Genomic
958 diversity landscapes in outcrossing and selfing *Caenorhabditis* nematodes. *PLOS
959 Genetics* **19**, e1010879.

960 Tsagkogeorga, G., Cahais, V. & Galtier, N. (2012) The population genomics of a fast
961 evolver: high levels of diversity, functional constraint, and molecular adaptation in the
962 tunicate *Ciona intestinalis*. *Genome Biology and Evolution*, **4**, 852–861.

963 Wasmuth, J.D. & Blaxter, M.L. (2004) prot4EST: Translating Expressed Sequence Tags
964 from neglected genomes. *BMC Bioinformatics*, **5**, 187.

965 Wright, S.I., Kalisz, S. & Slotte, T. (2013) Evolutionary consequences of self-fertilization in
966 plants. *Proceedings of the Royal Society B: Biological Sciences*, **280**, 20130133.

967 Yang, Z. (2007) PAML 4: Phylogenetic Analysis by Maximum Likelihood. *Molecular Biology
968 and Evolution*, **24**, 1586–1591.

969 Ye, Y., Choi, J.-H. & Tang, H. (2011) RAPSearch: a fast protein similarity search tool for
970 short reads. *BMC Bioinformatics*, **12**, 159.

971

972

973 Acknowledgements

974 We thank G. Sarah, Y. Holtz and P. Joncour for help with bioinformatic analyses and
975 T. Bataillon, M. Lascoux and D. Schoen for helpful discussions and suggestions on the
976 manuscript. The work was funded by the French Agence Nationale de la Recherche (ANR)
977 (ANR-11-BSV7-013-03). CB has also received funding from the European Union's Horizon
978 2020 research and innovation programme under the Marie Skłodowska-Curie grant
979 agreement No. 839643. The authors declare no conflicts of interest.

980

981

982 Data and code availability

983 Custom R and bash codes used for the analyses are available on
984 <https://github.com/sylvainglemin/ms-rec-triticeae> along with input files. Software for genotype
985 calling (reads2snps v. 2.0.64, ORF_extractor.pl) and polymorphism estimates (dNdSpNpS
986 v.3) are available at <https://kimura.univ-montp2.fr/PopPhyl/index.php?section=tools>.
987 Morphological traits measures are provided as Supplementary Tables S2 and S3.

988 Filtered and cleaned sequence alignments to perform polymorphism analyses are
989 available at <https://bioweb.supagro.inra.fr/WheatRelativeHistory/index.php?menu=downloadMating>. Raw data are deposited at the Sequence Read Archives (SRA)
990 under project PRJNA945064 (submission number SUB12943046).
991

992

993

994 Supplementary Information

995 Figures S1 to S14

996 Supplementary tables:

997 Supplementary Table S1. Passport information for the accessions of Triticum/Aegilops
998 species and outgroups used in this study.

999 Supplementary Table S2. Dataset 1: Morphofunctional traits linked to reproduction
1000 measured in 13 Triticum/Aegilops species and three outgroups.

1001 Supplementary Table S3. Dataset 2: Morphofunctional traits linked to reproduction
1002 measured in 13 Triticum/Aegilops species and three outgroups where missing data were
1003 imputed with package missMDA under R environment (see Materials and Methods).

1004 Supplementary Table S4. List of morphological traits measured and used for the analysis.

1005 Supplementary Table S5. Sequencing and genome summary statistics per species (13
1006 Triticum/Aegilops species and three outgroups).

1007 Supplementary Table S6. Comparison of genes mapped on the Hordeum genome with the
1008 characteristics of the three Triticum sub-genomes (A, B and D).

1009 Supplementary Table S7. Results of the linked-selection model.

1010

1011

1012

1013

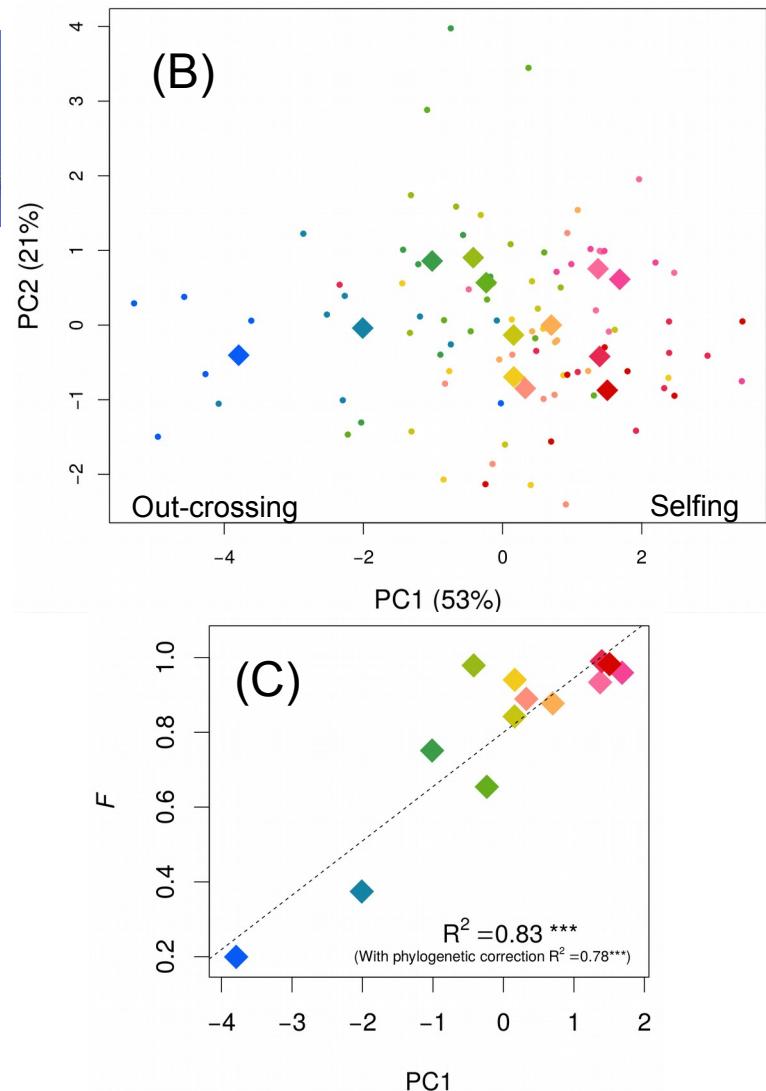
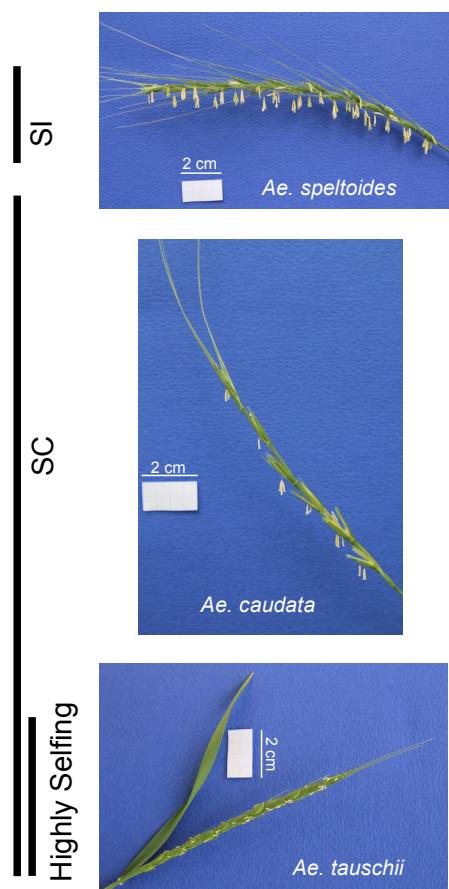
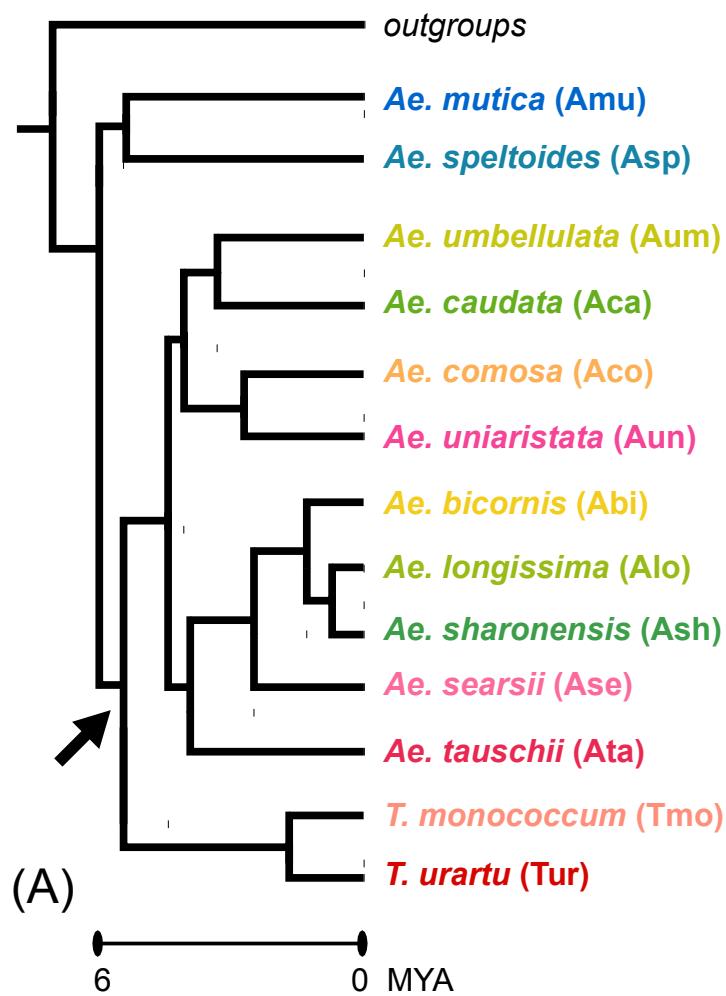
1014 **Figure 1. Mating system diversity in the genus *Aegilops/Triticum*.** (A) Phylogenetic
1015 relationships among the 13 diploid species of the genus, following Glémin *et al.* (2019b).
1016 Colors have been assigned to represent a gradient of self fertilization: Ae. *speltoides* and
1017 Ae. *mutica* have previously been described as self-incompatible (SI, blue tone colors), Ae.
1018 *tauschii* and *Triticum* sp. are known to be prevalently self-fertilizing species (pink-purple
1019 colors), while the remaining species are self-compatible (SC, yellow-green colors). The
1020 arrow indicates when self-compatibility may have appeared, if we assume that it appeared
1021 once according to a parsimony approach. Pictures illustrate the phenotypes associated with
1022 different mating systems: SI Ae. *speltoides*, highly selfing Ae. *tauschii* and self-compatible
1023 Ae. *caudata*. (B) Principal Component Analysis of morphological measures of reproductive
1024 organs. PC1 resumes the morphological selfing syndrome. On one side there are the self-
1025 incompatible species, which show bigger anther and stigmas, higher male investment, lower
1026 spikelet compactness and lower autonomous seed set. On the other side there are
1027 predominately selfing species, with opposite states of the traits. (C) Positive correlation
1028 between PC1 of reproductive traits and the inbreeding coefficient F estimated on the
1029 genomic data shows that species with stronger morphological selfing syndrome have also
1030 higher F values.

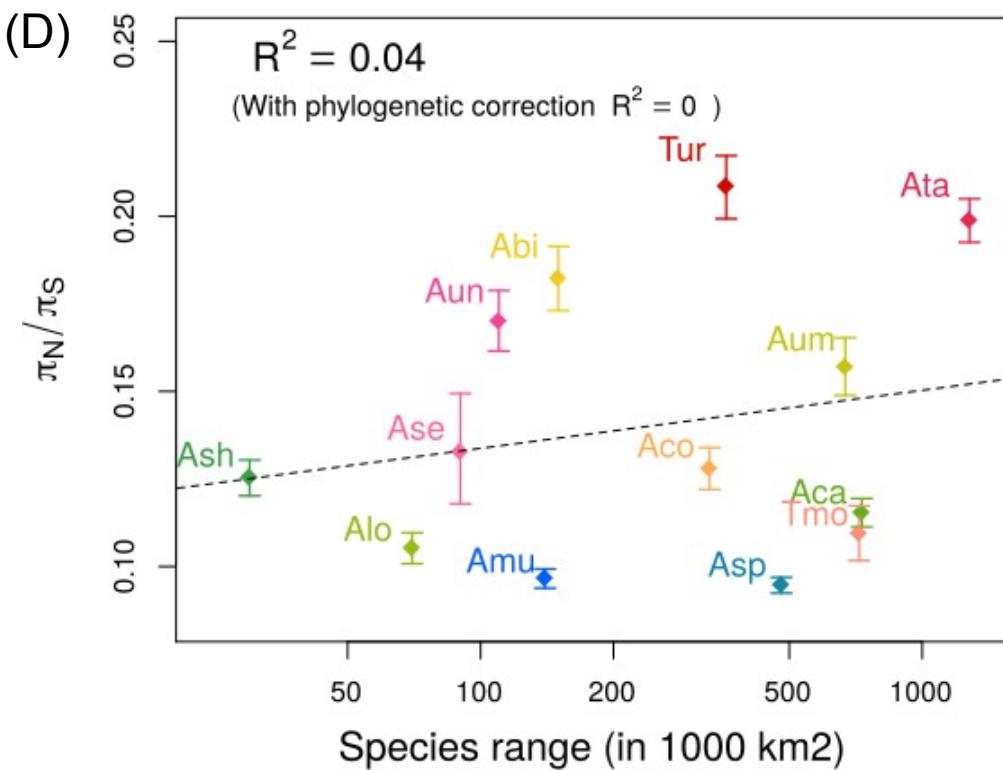
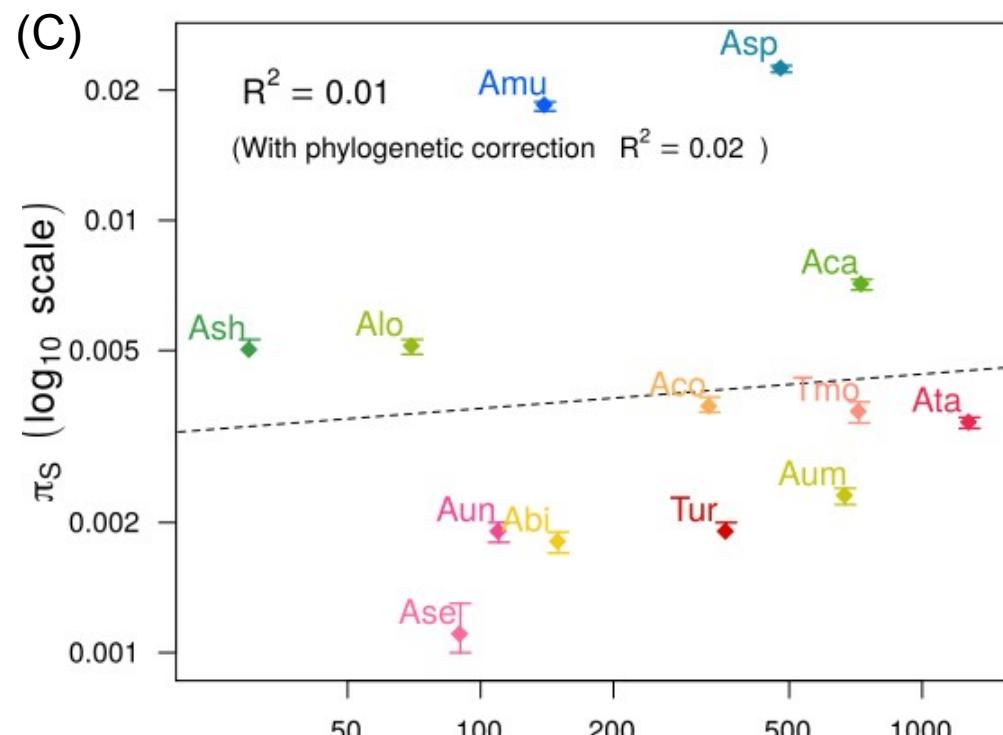
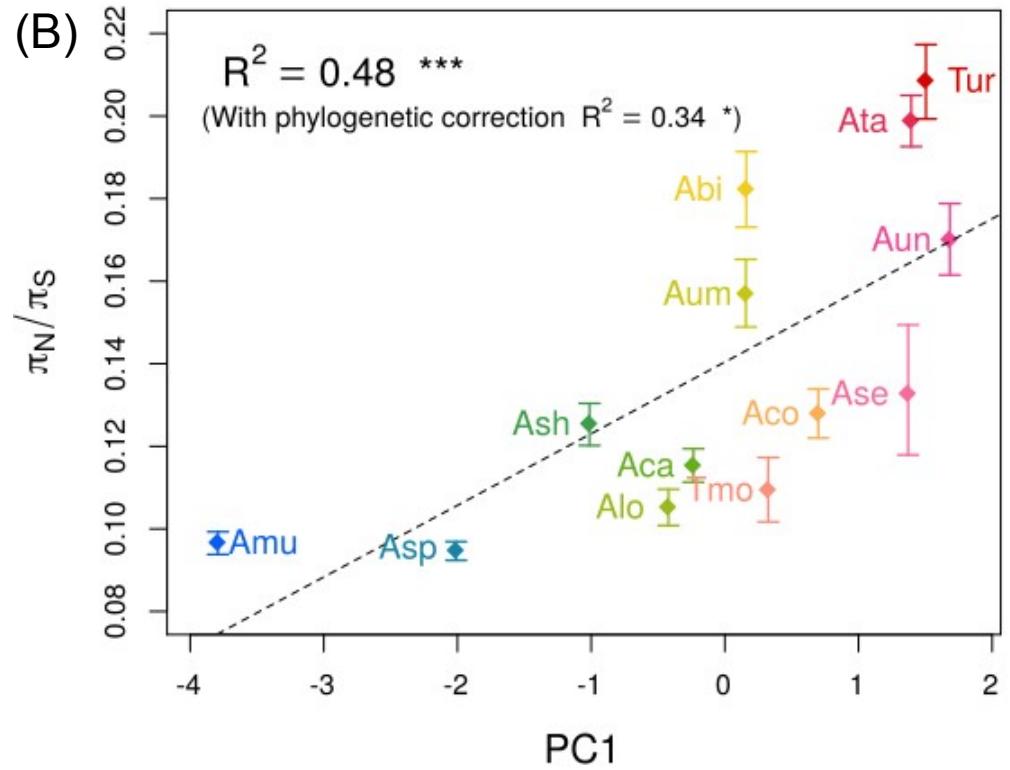
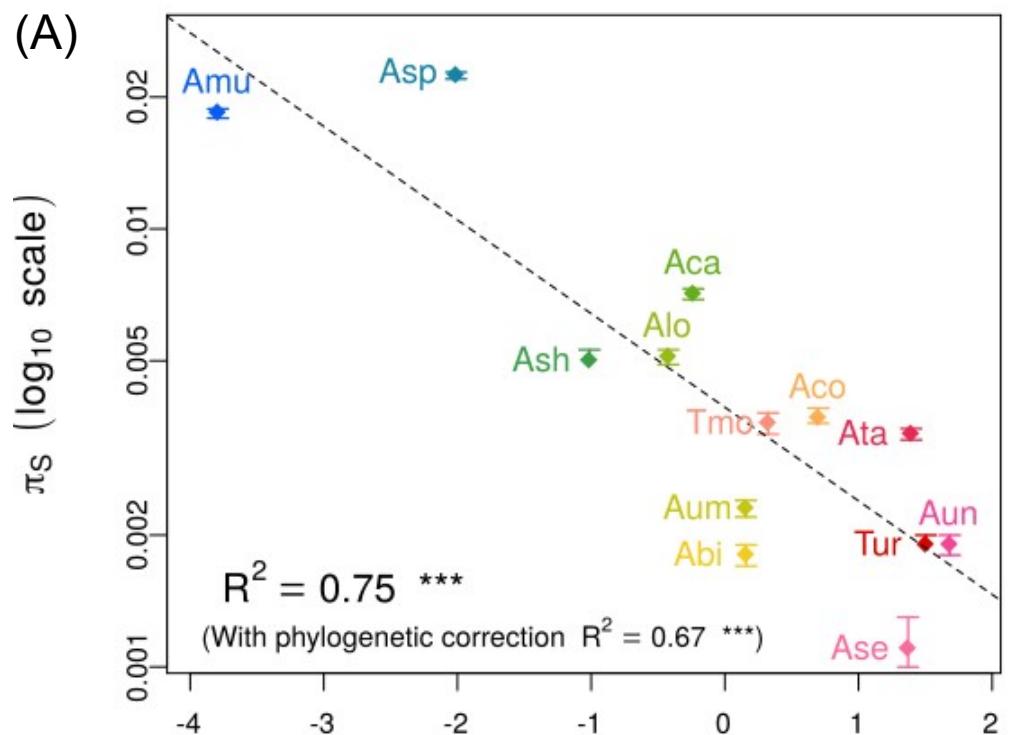
1031

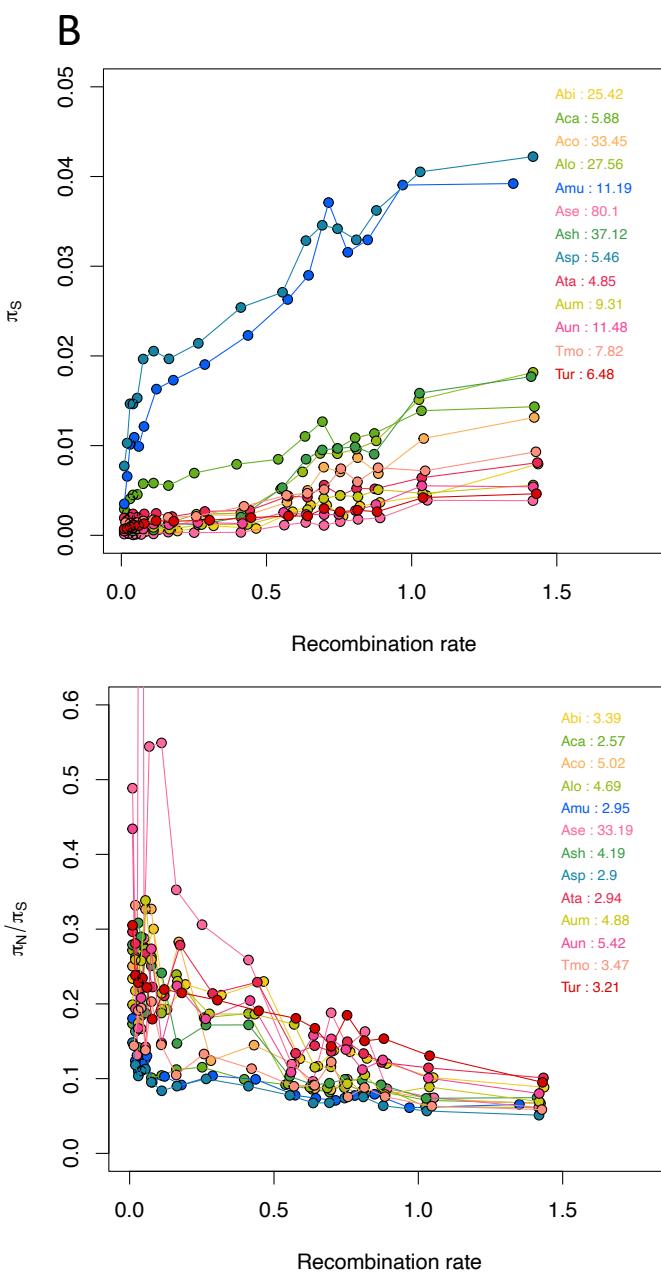
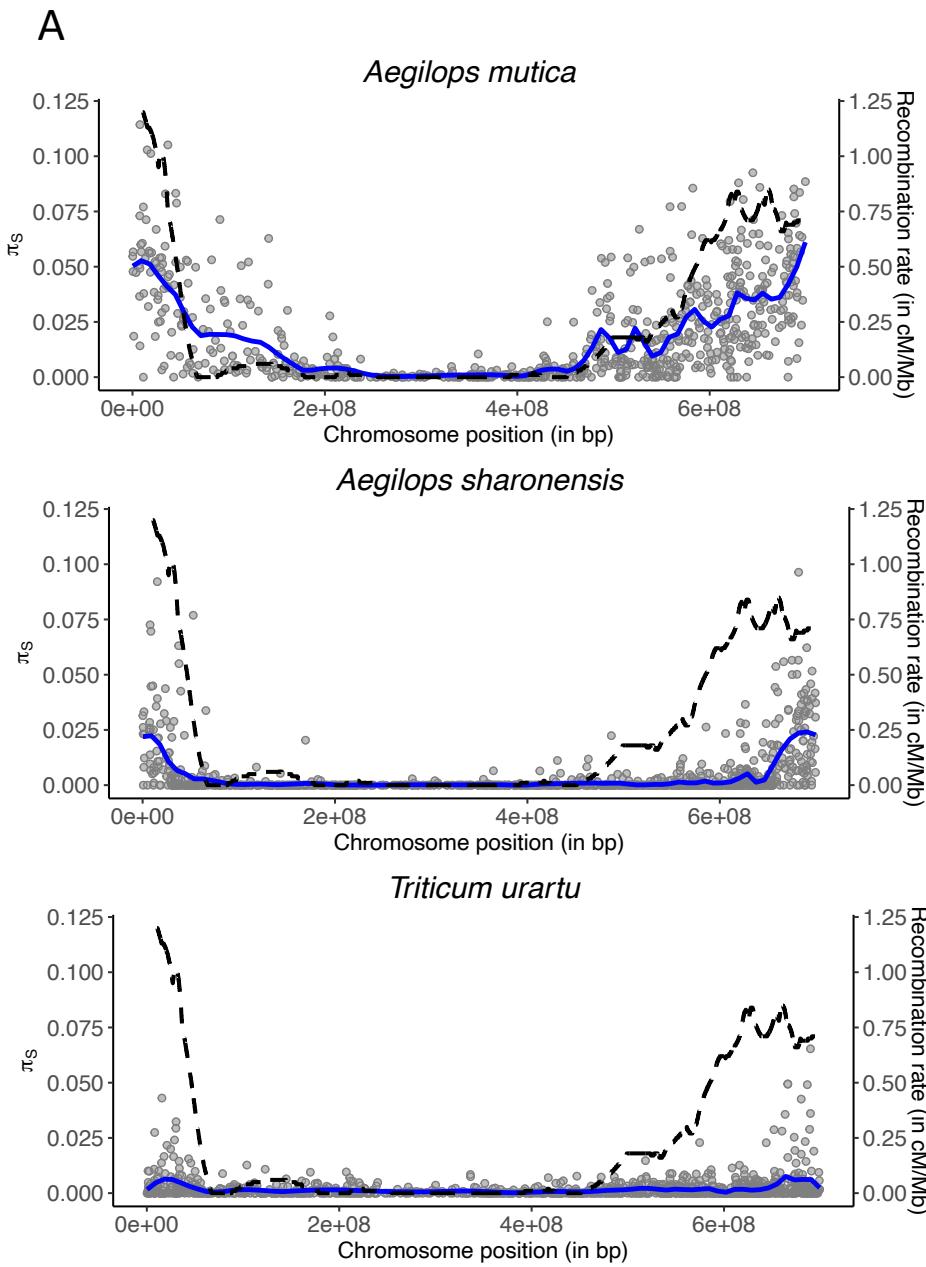
1032 **Figure 2. Mating systems traits and global polymorphism patterns.** Neutral genetic
1033 diversity π_S is negatively correlated with the first axis of a PCA of morphofunctional traits
1034 associated with reproduction (A), while the efficacy of selection estimated with π_N/π_S ratio is
1035 positively correlated with the same PC1 axis (B). Species geographical range estimated from
1036 GBIF occurrence data cannot explain the variation observed neither in π_S (C) nor π_N/π_S (D).

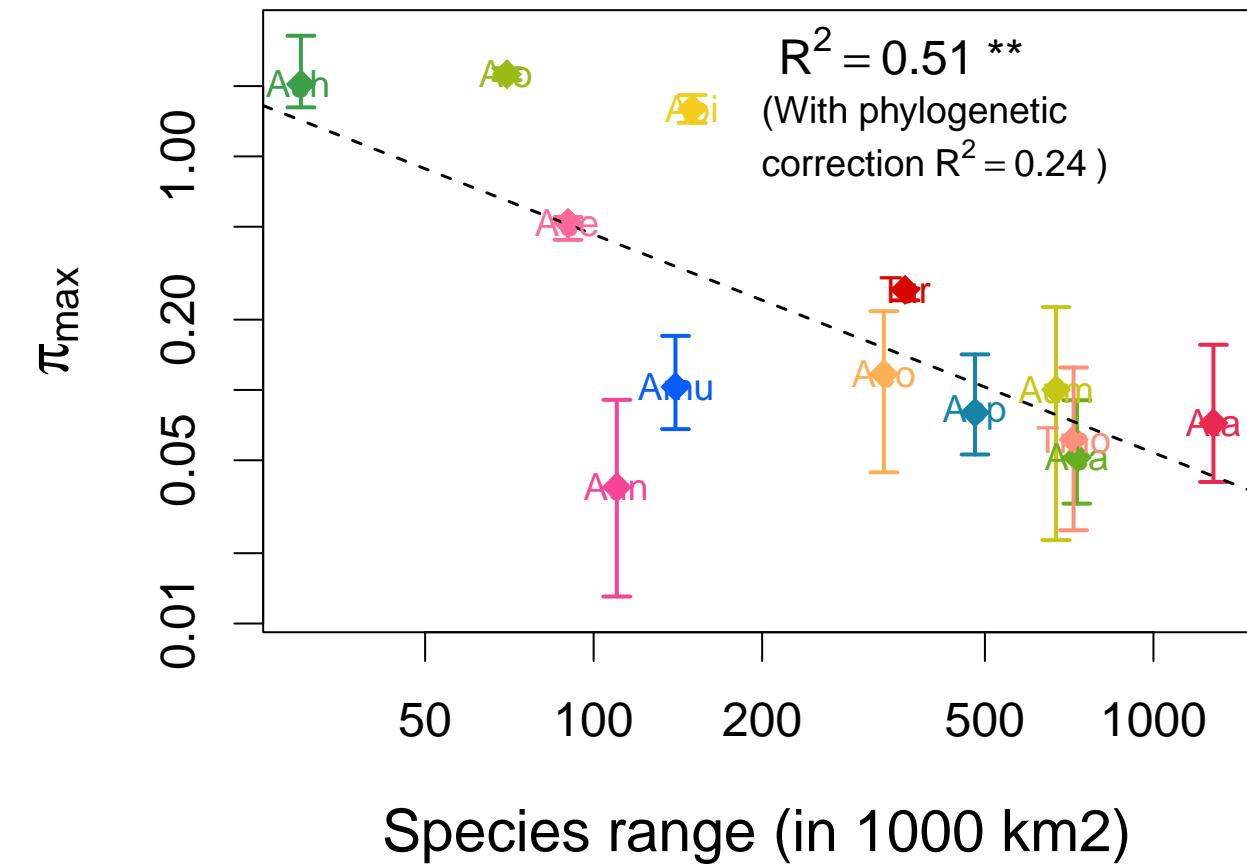
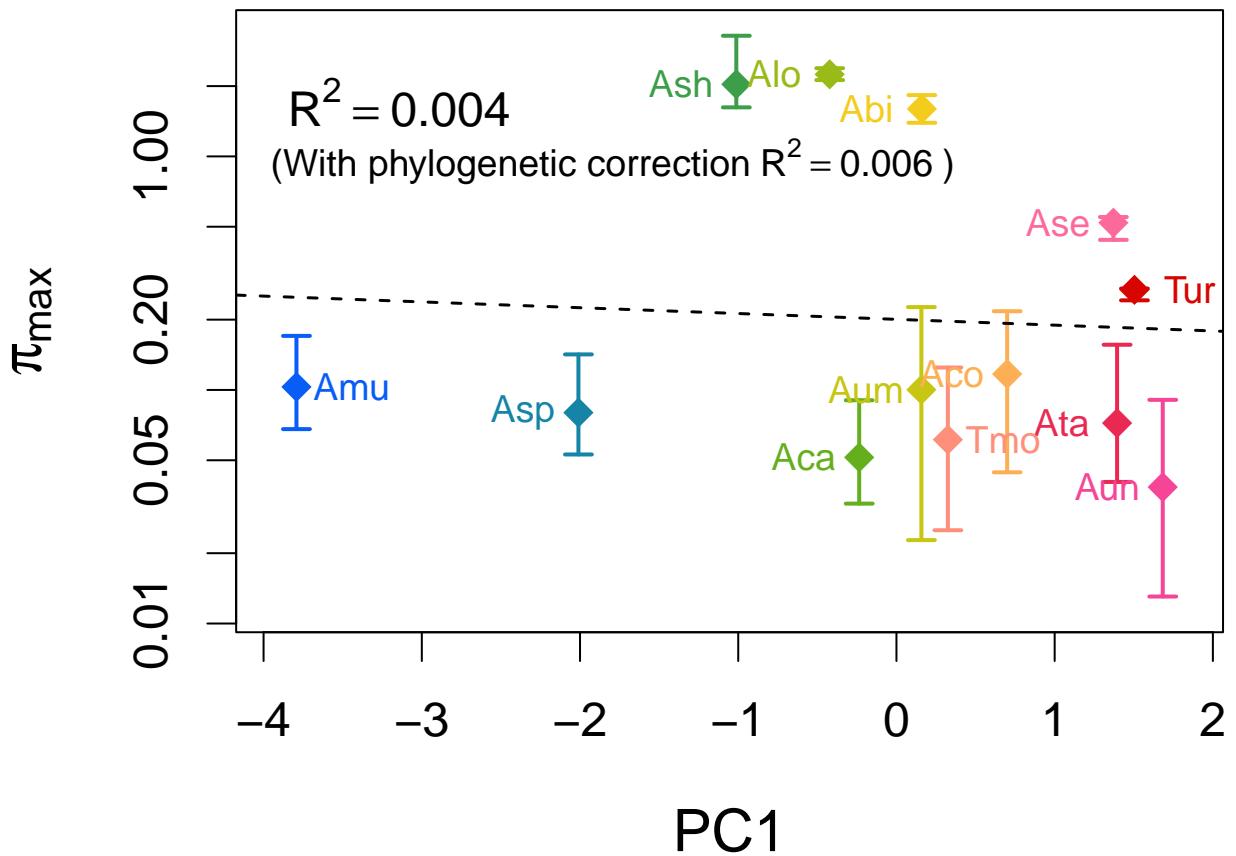
1037

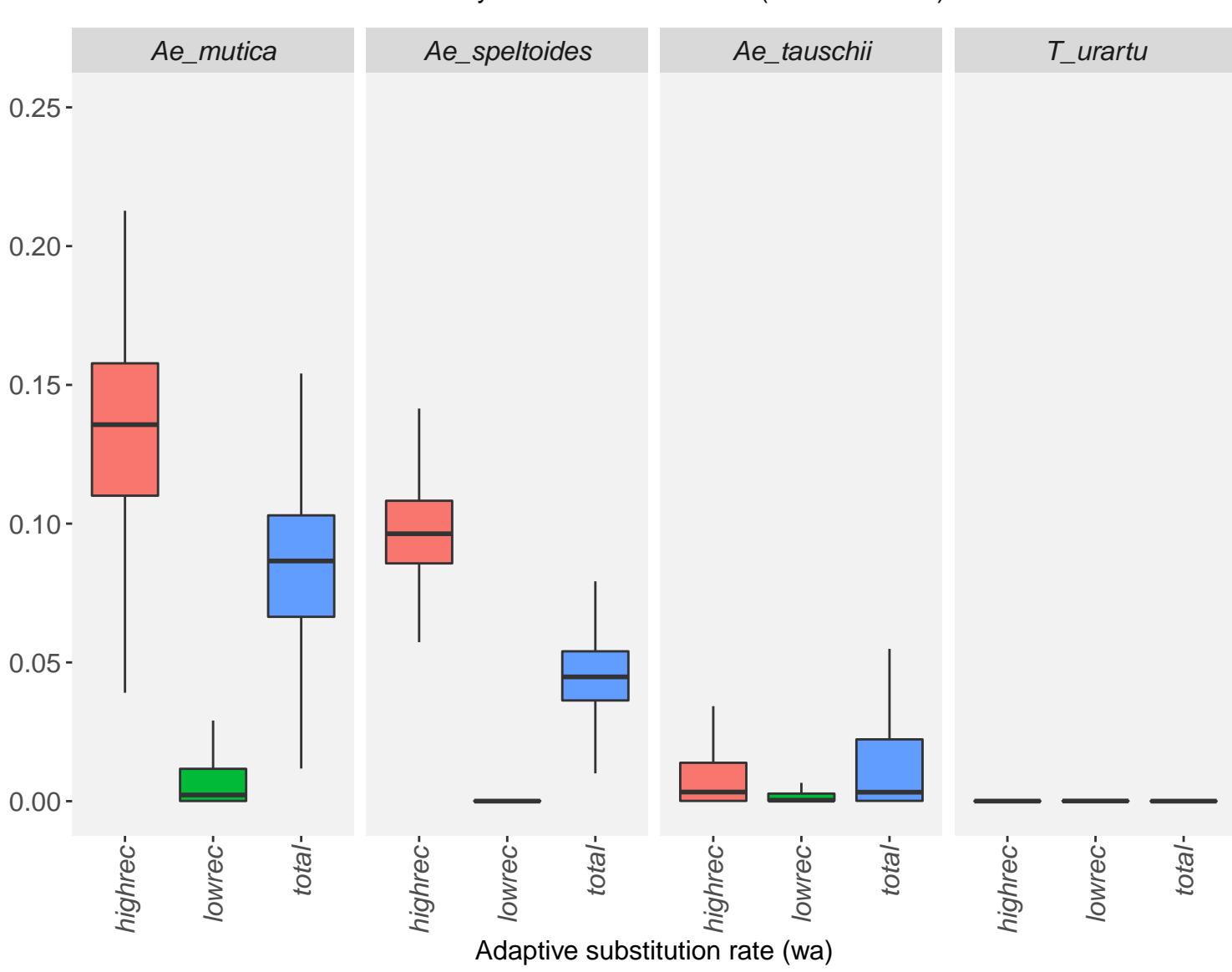
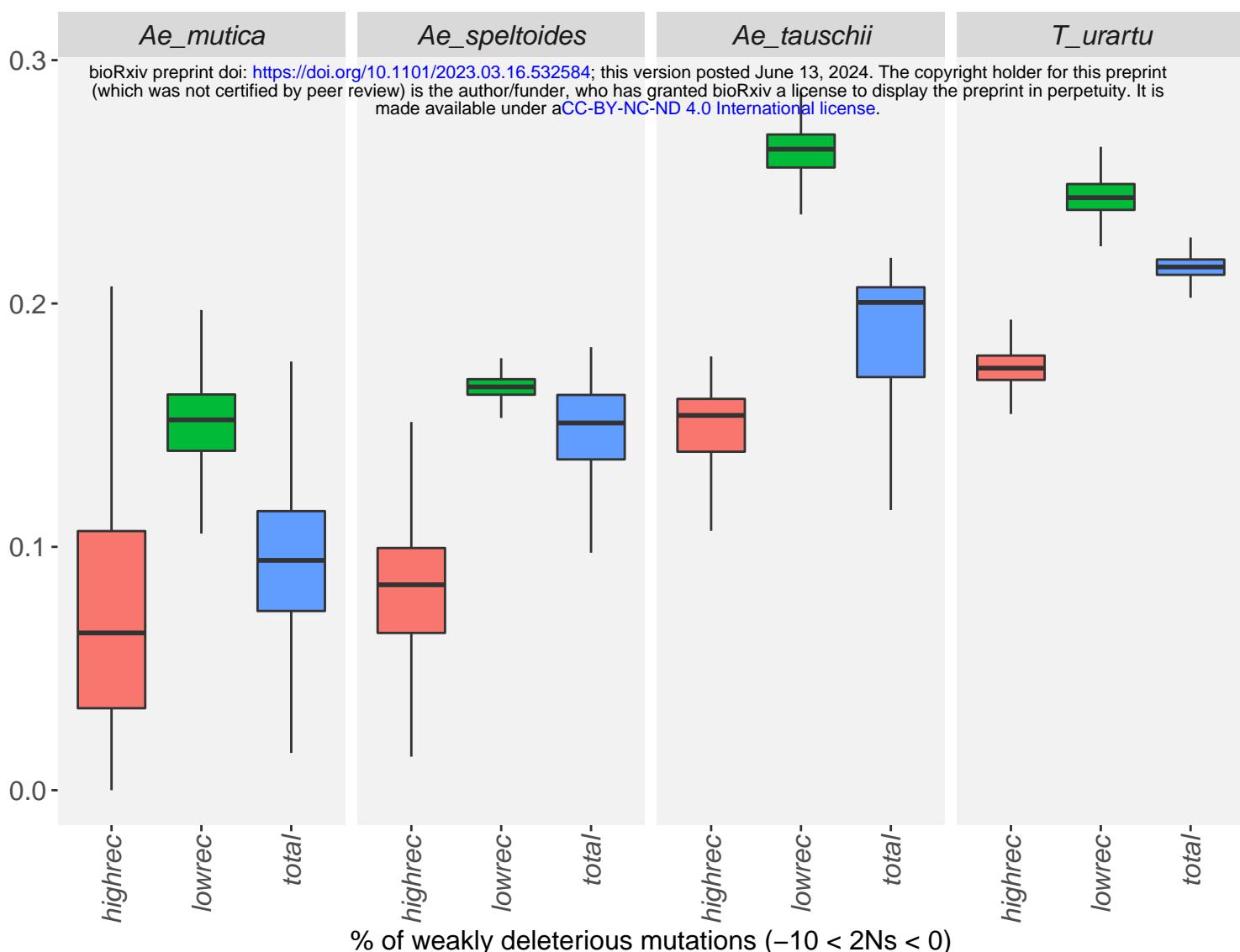
1038 **Figure 3. Recombination and patterns of genetic polymorphism across the genome.**




1039 (A) Mean synonymous diversity (π_S) along chromosome 3 for three species with contrasted
1040 mating system: self-incompatible (*Ae. mutica*), mixed-mating (*Ae. sharonensis*) and highly
1041 selfing (*T. urartu*); same scales for the three species. Each point corresponds to a contig
1042 mapped on the *Hordeum vulgare* genome. The blue line is the loess fitting function
1043 (degree=2, span=0.1). The dashed black line indicates *H. vulgare* recombination map (in
1044 cM/Mb). (B) π_S and π_N/π_S as a function of recombination rate. Contigs have been grouped in
1045 20 quantiles of recombination. The value associated with each species corresponds to the
1046 ratio between the highest and the lowest value among the quantiles: from about 5 to 80 for
1047 π_S and from 2.5 to 33 for π_N/π_S . Curves correspond to loess fitting functions (degree = 2,
1048 span = 0.2).





1049



1050 **Figure 4. Relation of estimated maximum polymorphism in absence of linked-**
1051 **selection and mating system.** π_{\max} does not correlate with the first axis of the PCA of
1052 morphofunctional traits (left). π_{\max} correlates negatively with species range (right), but the
1053 correlation is mainly driven by the species of the *Sitopsis* section and is no longer significant
1054 after phylogenetic correction.



1055



1056 **Figure 5. Mating systems, recombination and the efficacy of selection.** The distribution
1057 of fitness effect of mutations was estimated in two self-incompatible species (*Ae. mutica* and
1058 *Ae. speltoides*) and in two highly selfing species (*A. tauschii* and *T. urartu*) at the whole
1059 genome scale (blue) and for regions of low (green) and high (red) recombination. (A)
1060 Proportion of weakly selected deleterious mutations ($-10 < 2N_e s < 0$). (B) Rate of adaptive
1061 substitution, i.e. the expected D_N/D_S ratio due to the flux of beneficial mutations.

