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The core of large-scale drug virtual screening is to accurately and efficiently select the 

binders with high affinity from large libraries of small molecules in which non-

binders are usually dominant. The protein pocket, ligand spatial information, and 

residue types/atom types play a pivotal role in binding affinity. Here we used the 

pocket residues or ligand atoms as nodes and constructed edges with the neighboring 

information to comprehensively represent the protein pocket or ligand information. 

Moreover, we find that the model with pre-trained molecular vectors performs better 

than the onehot representation. The main advantage of DeepBindGCN is that it is 

non-dependent on docking conformation and concisely keeps the spatial information 

and physical-chemical feature. Notably, the DeepBindGCN_BC has high precision in 

many DUD.E datasets, and DeepBindGCN_RG achieve a very low RMSE value in 

most DUD.E datasets. Using TIPE3 and PD-L1 dimer as proof-of-concept examples, 

we proposed a screening pipeline by integrating DeepBindGCN_BC, 

DeepBindGCN_RG, and other methods to identify strong binding affinity compounds. 

In addition, a DeepBindGCN_RG_x model has been used for comparing performance 

with other methods in PDBbind v.2016 and v.2013 core set. It is the first time that a 

non-complex dependent model achieves an RMSE value of 1.3843 and Pearson-R 

value of 0.7719 in the PDBbind v.2016 core set, showing comparable prediction 

power with the state-of-the-art affinity prediction models that rely upon the 3D 

complex. Our DeepBindGCN provides a powerful tool to predict the protein-ligand 

interaction and can be used in many important large-scale virtual screening 

application scenarios. 

 

Keywords 

GCN; Protein-ligand binding prediction; Drug virtual screening; Deep learning; 

DeepBindGCN. 

 

Introduction 

Proteins play a key role in most cellular processes, meanwhile ligands can act as 

mediators of protein and can combat diseases with their physical-chemical 
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properties(Klebe, 2013). However, identifying active compounds experimentally on a 

large scale is expensive and time-consuming. Hence, the computer aided lead 

discovery is usually the initial stage of the drug discovery process to reduce the 

experimental testing burden. Accurately and efficiently predicting the protein-ligand 

interaction by the computational method is a core component of large-scale drug 

screening. In recent years, deep learning and machine learning have be widely applied 

in biology research (Savojardo et al., 2018; Z. Chen et al., 2021). With the 

development of deep learning algorithms and increasing protein-ligand interaction 

data, especially the high resolution atomic structure and experimental binding affinity 

information, it is possible to apply deep learning to discriminate the binders from non-

binders and predict the affinity. Some affinity prediction models have already been 

developed, such as pafnucy(Stepniewska-Dziubinska et al., 2018), 

GraphDTA(Nguyen et al., 2021), GAT-Score(Yuan et al., 2021), BAPA(Seo et al., 

2021), and AttentionDTA(Zhao et al., 2019). Our group also developed 

DeepBindRG(H. Zhang, Liao, Saravanan, et al., 2019) for protein-ligand affinity 

prediction with the interface atomic contact information as input and 

DeepBindBC(Zhang, Zhang, et al., 2021) for predicting whether protein-ligand 

complexes are nativelike by creating a large protein-ligand decoy complex set as a 

negative training set. Moreover, we also developed DFCNN for the preliminary stage 

of virtual screening since it demonstrates predictable efficiency(H. Zhang, Liao, Cai, 

et al., 2019; Zhang, Lin, et al., 2022). Some of our developed models are already 

applied in drug candidates and target searching, and show huge potential in drug 

development(Zhang, Li, et al., 2021; Zhang et al., 2020). However, several limitations 

still need attention, both in terms of efficiency and accuracy. 

The Graph Convolutional Network (GCN) is a kind of deep learning that can use 

nodes to contain feature information and edges to contain spatial information between 

nodes, which is a popular method in prediction relationships(S. Zhang et al., 2019). 

GCN is already well applied to predicting the compound property, and molecular 

fingerprint(Kojima et al., 2020; J. Chen et al., 2021). Also, the GCN was successfully 

used for protein-ligand interaction prediction(Nguyen et al., 2021; Torng and Altman, 
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2019). Wen et al. have applied the GCN to predict protein-ligand interactions and 

achieved encouraging result in the test set. However, they used the DUD-E as a 

training dataset and only contain 102 receptors, which is very limited diversity in 

protein information(Torng and Altman, 2019), this strongly suggests their model still 

has ample improvement space. Its under-trainings on the protein side also can 

influence its performance significantly. Thin et al. have developed a GCN based 

protein-ligand prediction model(Nguyen et al., 2021), but it used only GCN for the 

ligand part, and the protein was represented as a sequence, comparing the pocket with 

spatial information. This sequence lost spatial information and contained much 

irrelevant information about the protein-ligand binding. Furthermore, Moesser et al. 

have integrated protein-ligand contact information in ligand-shaped 3D interaction 

Graphs to improve binding affinity prediction(Moesser et al., 2022). Still, it would 

only be helpful if the protein-ligand complex is available or is accurately predicted by 

docking. 

It should be noted that many deep learning-based protein-ligand affinity 

prediction models are rarely used in real applications. Even their RMSE value in the 

testing set seems very small. One major reason is that the affinity model is trained 

over a binding protein-ligand dataset and doesn’t learn anything about non-binding, 

while in a real application; the non-binding compounds are dominant during screening 

over a given target. Hence, purely developing a deep learning-based affinity 

prediction model is not enough to fulfil the requirement of virtual screening. 

Developing a model which trained with binding and non-binding data to identify 

whether protein-ligand was binding is important in the real applications. For instance, 

we have previous models DFCNN and DeepBindBC to identify whether protein and 

ligand are binding. These two models successfully helped to identify a given target’s 

inhibitors with experimental validation in our previous work(Zhang, Zhang, et al., 

2022; Zhang, Lin, et al., 2022; Zhang, Gong, et al., 2022; Zhang et al., 2020; Zhang, 

Li, et al., 2021). Moreover, combining the protein-ligand binding prediction model 

with the affinity prediction model can be more powerful in identifying strong affinity 

candidates. As aforementioned, hybrid screening has been used to virtualize potential 
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drugs for given targets. However, we still lack a model that can screen over a database 

size of 100,000~1000,000 accurately and efficiently with the ability to distinguish 

spatial and physical-chemical features of protein-ligand binding. 

In our work, we have used a graph to represent the protein pocket and ligand, 

respectively, and the GCN model with two inputs and one output to fully train over a 

large protein-ligand dataset PDBbind. The diversified structure database PDBbind 

guarantees the robustness of model performance. We also evaluate the model 

performance using the known binding and nonbinding data. We also show its 

application in drug candidate screening for target TIPE3 and PD-L1 dimers. Our 

result shows DeepBindGCN can be a valuable tool to rapidly identify reliable, strong 

binding protein-ligand pairs and can be an essential component of a hybrid large scale 

screening pipeline.  

 

Method 

Data preparation 

The training data is downloaded from PDBbind2019. The protein pocket was defined 

as a cutoff value within the known ligand (any atom in the residue within the cutoff 

value of the ligand will keep the residue as pocket residue). We tested cutoff values of 

0.6 nm and 0.8nm in this work. The ligands were represented as molecule graphs by 

converting the SMILES code to its corresponding molecular graph and extracting 

atomic features using the open-source chemical informatics software RDKit(Landrum, 

2006). 

The pocket was represented as a graph by defining the residues as nodes and 

contacting residue pairs as edges (the cutoff was set as 0.5 nm). We have tested 

onehot and molecular vector representations for the node residue, respectively. A pre-

trained mol2vec model generated the molecular vector.  

 

The dataset for a binary classification task. 

Through cross-combination, we obtain 52200 protein-ligand pairs as a negative 

dataset and divide them into 45000 as training negative data and 7200 as testing 
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negative data. From the PDBbind2019 dataset, we obtained a total of 17400 protein-

ligand as positive data, divided into 15000 as training positive data, and 2400 as 

testing data. During the training, the positive training and testing data are used 3 times 

to keep the positive and negative data balanced. 

 

The dataset for the affinity prediction task. 

We obtained 16956 protein-ligand datasets with affinity from PDBbind2019 and 

divided them into 15000 training and 1956 test datasets. In the PDBbind v2019 

dataset, the binding affinities of protein-ligand complexes were provided with Ki, Kd, 

and IC50. We transformed the binding affinities into pKa using the following equation: 

 

              (1) 

 

where represents IC50, , or . 

 

Pre-train 30-dimension molecular vector to represent residues in pocket 

We downloaded 9,216,175 onstock compounds from the ZINC15 database as a 

training dataset, the mol2vec was used to do the training, and we finally obtained a 

model that can generate a vector for each given chemical group, here we set the vector 

dimension to 30. The obtained model was used to generate the vector of the 20 

residues by adding the chemical group vectors within each residue.  

 

Model construction 

The model structure is shown in Figure 1. It has two inputs (drug–target pair) and one 

output structure. The ligand and pocket graphic information flow into the two layers 

of the graphic network. Then, the output of two graphic networks is merged into fully 

connected layers. The final output was one node. The binary prediction uses the 

sigmoid activation function, which gives a value range of 0~1; for the affinity 

prediction, the output uses linear activation, which is a continuous measurement of 
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binding affinity for that pair. 

 

 

Figure 1. The architecture of the DeepBindGCN model.  

 

Model training 

The torch_geometric module was used to create input data and construct the graphic 

neural network. The input data was saved in PyTorch, InMemoryDataset format. The 

PyTorch was used to do the training. The number of epochs that we finally chose was 
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based on the performance convergences on the test set. 

 

Model performance compared with other methods on the DUD.E dataset 

We have downloaded 102 therapeutic-related proteins and their corresponding active 

and inactive compounds from the DUD.E dataset(Mysinger et al., 2012). Those data 

were processed into the input format and used as extra testing set to examine our 

model performance. The performance matrix AUC, MCC, Accuracy, Precision, and 

TPR were used to validate the BC model, and the rmse, mse, pearson correlation, 

spearman correlation, and Concordance Index (CI) were used to validate the RG 

model. 

 

Virtual screening of candidates against two targets (TIPE3 and PD-L1 dimer) 

The atomic coordinates of TIPE3 were retrieved from PDB with id 4Q9V(Fayngerts 

et al., 2014). The TIPE3-ligand complex was modeled by the cofactor method in 

https://zhanggroup.org/COFACTOR/ web server(Roy et al., 2012). The PD-L1 dimer 

was retrieved from PDB with id 5N2D(Guzik et al., 2017), these PDB structures 

already contain ligands. The pocket was extracted as 0.8 nm from the predicted or 

known ligands. The dataset Chemdiv with the size of 1,507,824 compounds, was used 

as a virtual screening dataset. 

 

Tools used in the analysis 

The USCF Chimera, VMD, Schrödinger, pymol, and Discovery Studio Visualizer 

2019 were used to generate the structure and to visualize the 2D protein-ligand 

interactions(Pettersen et al., 2004; Humphrey et al., 1996; Visualizer, 2005). Clusfps 

(https://github.com/kaiwang0112006/clusfps), which depends on RDKit(Landrum, 

2006), was used to cluster the drugs in the dataset. The drug fingerprint was used as 

an input, with the algorithm of Murtagh(Murtagh and Contreras, 2012) being used for 

clustering candidates into 6 groups. 

 

Results 
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The DeepBindGCN_BC and DeepBindGCN_RG workflow is shown in Figure S1, we 

observed that during the application, their input preparation, and model architecture 

are highly consistent, except that one is output 0~1 for binary classification, and the 

other is output continuous value for affinity prediction. 

 

The performance of DeepBindGCN_BC and DeepBindGCN_RG on training and 

test set 

The AUC, TPR, Precision, and accuracy of the training set and test set over the 2000 

epoch training for the DeepBindGCN_BC are recorded and shown in Figure S2 and 

Table S1. The AUC values fall around 0.86~0.87 and 0.84~0.85 after 400 epochs 

when using pocket cutoff value 0.6nm and 0.8 nm, respectively, indicating the 

training has fully converged in epoch 2000. The result also shows that the 

DeepBindGCN_BC performs better on the testing set when using a pocket cutoff of 

0.8nm according to the performance metrics AUC, TPR, precision, and accuracy. For 

instance, the DeepBindGCN_BC has AUC, TPR, precision, and accuracy values of 

DeepBindGCN_BC with cutoff 0.6nm at epoch 2000 are 0.8788, 0.6863, 0.6767, and 

0.8396, respectively, corresponding to values 0.8537, 0.6175, 0.6552, and 0.8231 

when with pocket cutoff 0.8nm, which all demonstrate slight better performance.   

The rmse, mse, pearson correlation, spearman correlation, and Concordance 

Index (CI, the larger, the better) of the training set and test set over the 2000 epoch 

training for the DeepBindGCN_RG are shown in Figure S3, Table S2. We  noted that 

the RMSE has stayed around values 1.3 and 1.1~1.3 after 400 epochs when using 

pocket cutoff values 0.6nm and 0.8 nm respectively, indicating that the training has 

fully converged. The DeepBindGCN_RG has better performance with a pocket cutoff 

of 0.8nm compared to a pocket cutoff of 0.6nm according to the performance metrics 

rmse, mse, pearson correlation, spearman correlation, and CI. For instance, 

DeepBindGCN_RG with the pocket cutoff of 0.8nm has rmse, mse, pearson 

correlation, spearman correlation, and CI values of 1.2107, 1.4657, 0.7518, 0.7410, 

and 0.7756 in epoch 2000, respectively, corresponding to values of 1.3361, 1.7852, 

0.7141, 0.7098, and 0.7628 when the pocket cutoff is 0.6nm, which all demonstrate 
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slight better performance in pocket cutoff  0.8nm. 

Interestingly, we found that the pocket cutoff value of 0.6 nm has a better 

performance for the DeepBindGCN_BC, while the cutoff value of 0.8 nm has a better 

performance for the DeepBindGCN_RG. This suggests that the close contact ligand 

and residue information is enough to accurately predict whether protein-ligand is 

binding, and long-range contact information sometimes may mislead its prediction. 

However, long-range pocket residue information is also important to accurately 

predict how strong protein-ligand is binding. To accurately estimate the binding 

affinity, most of the residues that have contributed to the binding should be considered. 

Notably, we apply a pocket cutoff of 0.6 nm for DeepBindGCN_BC and apply a 

pocket cutoff of 0.8 nm for the DeepBindGCN_RG in the rest of the work. 

 

The performance of DeepBindGCN_BC and DeepBindGCN_RG on the DUD.E 

dataset 

We have considered experimental known inactive and active protein-compound pairs 

or protein-compounds affinity information from the DUD.E dataset for our model 

extra testing set. Precision is widely acknowledged to be an important performance 

metric in large-scale virtual screening applications. The performances of 

DeepBindGCN_BC and DeepBindGCN_RG on some DUD.E datasets are listed in 

Table S3 and Table S4, respectively. We noticed that DeepBindGCN has a very high 

precision (>0.9) over more than half of the cases from the DUD.E datasets, as shown 

in Table 1. It should also be noted that many other performance metrics are not good 

for DeepBindGCN in many cases, as shown in Tables 1 and S3. Some protein-ligand 

datasets are predicted into all 0 values, which indicate no binding. A possible 

explanation is that the binding pocket we selected cannot guarantee exactly binding 

with those ligands. Also, the data may contain some false positive experimental 

results since there are no crystal structures as strong proof of binding. To sum up, the 

high precision of DeepBindGCN_BC in DUD.E data guarantees that the selected 

compounds from large-scale virtual screening are likely to be binders. 

Table 1. The performance of DeepBindGCN_BC on some of the DUD.E datasets 
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with precision values larger than 0.9.  

 

PDBID AUC TPR Precision Accuracy MCC data_size pos_size neg_size 

3BWM 1.0000  0.8537  1.0000  0.8571  0.3492  42 41 1 

1ZW5 0.5765  0.0118  1.0000  0.2500  0.0535  112 85 27 

2AA2 0.7052  0.2217  1.0000  0.2290  0.0515  214 212 2 

3KRJ 0.9378  0.7558  1.0000  0.7589  0.1944  394 389 5 

3L3M 0.8029  0.5301  1.0000  0.5355  0.1125  1057 1045 12 

2OWB 0.4205  0.0044  1.0000  0.1722  0.0273  273 227 46 

3KBA 0.1230  0.3615  0.9975  0.3611  -0.0396  1127 1126 1 

3CCW 0.7652  0.5878  0.9969  0.5920  0.1124  549 541 8 

3PBL 0.6470  0.8780  0.9954  0.8748  0.0565  2228 2214 14 

3BQD 0.5618  0.7802  0.9949  0.7776  0.0212  998 992 6 

3G0E 0.8057  0.6887  0.9924  0.6899  0.1338  387 379 8 

830C 0.6763  0.7968  0.9902  0.7922  0.0906  1670 1644 26 

2CNK 0.7350  0.1928  0.9891  0.2495  0.1118  509 472 37 

1XL2 0.8517  0.4639  0.9887  0.4910  0.1817  1607 1511 96 

3EQH 0.6921  0.2403  0.9867  0.2656  0.0704  320 308 12 

2ZEC 0.6770  0.3122  0.9857  0.3544  0.1373  237 221 16 

2AM9 0.5055  0.8199  0.9835  0.8094  0.0103  1107 1088 19 

1BCD 0.4933  0.1675  0.9822  0.1753  -0.0191  2002 1976 26 

3D0E 0.8424  0.6498  0.9809  0.6692  0.3015  260 237 23 

2OI0 0.5505  0.5676  0.9808  0.5665  0.0250  1384 1353 31 

1MV9 0.6055  0.8322  0.9806  0.8199  0.0465  311 304 7 

3LPB 0.4851  0.3690  0.9789  0.3760  0.0112  258 252 6 

2QD9 0.6189  0.8174  0.9758  0.8036  0.0902  2291 2218 73 

3HMM 0.5769  0.7489  0.9670  0.7314  -0.0420  242 235 7 

2H7L 0.5769  0.7489  0.9670  0.7314  -0.0420  242 235 7 

3L5D 0.8266  0.9133  0.9665  0.8892  0.3445  641 600 41 

3EML 0.6269  0.4002  0.9665  0.4221  0.0847  3288 3096 192 

2FSZ 0.8597  0.9173  0.9661  0.8948  0.4686  1492 1366 126 

2AYW 0.7089  0.2182  0.9638  0.2946  0.1154  1093 976 117 

3FRJ 0.4572  0.1207  0.9633  0.1446  -0.0093  899 870 29 

2GTK 0.3925  0.7785  0.9626  0.7564  -0.0550  1334 1291 43 

3LQ8 0.5867  0.6042  0.9621  0.6006  0.0583  353 336 17 

1SJ0 0.8025  0.7057  0.9617  0.7078  0.2678  1451 1315 136 

3BGS 0.5118  0.8109  0.9602  0.7863  0.0055  248 238 10 

3CJO 0.6768  0.5109  0.9592  0.5377  0.1784  305 276 29 

3CHP 0.6478  0.8295  0.9567  0.8038  0.1265  367 346 21 

2P2I 0.6366  0.6983  0.9541  0.6840  0.0751  2462 2320 142 

1UDT 0.7414  0.7536  0.9531  0.7413  0.2310  1063 970 93 

3D4Q 0.7178  0.8202  0.9524  0.7971  0.2392  345 317 28 

3KL6 0.5061  0.4785  0.9492  0.4817  0.0082  3340 3164 176 

2ETR 0.5402  0.6804  0.9490  0.6667  0.0766  234 219 15 

1YPE 0.6432  0.4269  0.9485  0.4636  0.1341  2541 2286 255 

3HL5 0.5043  0.7300  0.9481  0.7103  0.0873  107 100 7 

3BKL 0.6001  0.6494  0.9479  0.6382  0.0621  868 813 55 

3BIZ 0.5069  0.9005  0.9476  0.8602  0.1302  236 221 15 

2P54 0.6506  0.8819  0.9469  0.8441  0.1672  1174 1092 82 
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1SQT 0.4882  0.1387  0.9455  0.2220  0.0640  419 375 44 

2VT4 0.5656  0.4779  0.9429  0.5014  0.1192  726 657 69 

2HZI 0.8138  0.6895  0.9400  0.7059  0.3660  493 409 84 

3CQW 0.6763  0.6037  0.9367  0.5991  0.0845  641 588 53 

1B9V 0.5898  0.5463  0.9333  0.5531  0.0962  226 205 21 

2I78 0.5760  0.8865  0.9330  0.8364  0.0924  2194 2027 167 

2RGP 0.8190  0.7463  0.9322  0.7538  0.4423  2027 1620 407 

1H00 0.6143  0.6033  0.9302  0.5992  0.0957  1462 1326 136 

3G6Z 0.6409  0.8668  0.9299  0.8221  0.2480  444 398 46 

3F07 0.7875  0.8307  0.9298  0.8112  0.4865  392 319 73 

2OF2 0.6871  0.5484  0.9265  0.5736  0.1923  1067 919 148 

3E37 0.5940  0.5236  0.9249  0.5242  0.0298  1591 1459 132 

1LI4 0.5538  0.6769  0.9167  0.6429  -0.0683  70 65 5 

2ICA 0.6365  0.8025  0.9155  0.7507  -0.0174  353 324 29 

1C8K 0.5284  0.2530  0.9130  0.2889  -0.0201  90 83 7 

 

We also tested the DeepBindGCN_RG on the DUD.E dataset with affinity values, 

shown in Table S4. Interestingly, DeepBindGCN_RG performs well over most 

datasets in terms of rmse values. The average rmse of 102 therapeutic targets related 

datasets has reached 1.1893. We can see that more than 65 protein target-related 

dataset has rmse smaller than 1.2, as shown in Table 2, which is extremely accurate 

compared to most of the current affinity prediction methods. On the other hand, the 

pearson correlation, spearman correlation, and CI also demonstrate that prediction and 

experimental measurement usually have a weak correlation. We believe this is mainly 

because for each dataset, many compounds with affinity have similar structures, 

hence making the model extremely challenging to detect the slightly binding affinity 

difference. The low rmse and mse can guarantee that the DeepBindGCN_RG can 

correctly select strong affinity binders out of the abundant candidates from 

DeepBindGCN_BC. 

Table 2. The performance of DeepBindGCN_RG on some DUD.E datasets with 

rmse smaller than 1.2. 

 

Pdbid Rmse Mse Pearson spearman CI data_size 

3BIZ 0.6866  0.4714  0.1794  0.1800  0.5570  221 

2AZR 0.7134  0.5089  0.2293  0.2654  0.5903  284 

1UYG 0.7880  0.6209  0.3155  0.2981  0.6089  88 

3M2W 0.7958  0.6334  0.3754  0.3063  0.6073  184 

3EQH 0.8114  0.6584  0.3547  0.3277  0.6159  308 
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2ETR 0.8119  0.6592  0.2780  0.2687  0.5961  219 

3F9M 0.8177  0.6686  0.1705  0.1740  0.5611  144 

1KVO 0.8184  0.6697  0.1789  0.1481  0.5510  176 

1SQT 0.8194  0.6715  0.2473  0.2282  0.5777  375 

3D0E 0.8439  0.7122  0.2704  0.2272  0.5797  237 

3L5D 0.8480  0.7191  0.3180  0.3432  0.6187  600 

1LRU 0.8956  0.8021  0.2213  0.2362  0.5805  173 

3NF7 0.9010  0.8119  0.1790  0.1021  0.5353  185 

3HMM 0.9035  0.8163  0.0380  0.0055  0.5010  235 

2ICA 0.9056  0.8201  0.3269  0.3630  0.6210  324 

2HZI 0.9088  0.8258  0.5412  0.5701  0.6958  409 

3KGC 0.9121  0.8319  -0.0222  0.0049  0.5013  488 

2HV5 0.9258  0.8572  0.0512  0.0530  0.5178  606 

3EL8 0.9303  0.8654  0.2629  0.2570  0.5875  1271 

2OJG 0.9386  0.8810  0.5505  0.5713  0.7045  81 

1D3G 0.9397  0.8831  0.0503  0.0742  0.5269  227 

1BCD 0.9496  0.9017  0.3138  0.2846  0.5974  1976 

2V3F 0.9621  0.9256  0.3420  0.2885  0.5987  55 

3CCW 0.9665  0.9341  0.2556  0.2955  0.6004  541 

2QD9 0.9730  0.9468  0.3492  0.3509  0.6196  2218 

3KRJ 0.9770  0.9545  0.2654  0.2395  0.5826  389 

3CQW 0.9779  0.9562  0.2804  0.2742  0.5933  588 

2ZNP 0.9779  0.9564  0.1656  0.1517  0.5510  713 

2OF2 0.9816  0.9635  0.2678  0.2355  0.5797  919 

830C 0.9833  0.9668  0.2000  0.1883  0.5641  1644 

3LAN 0.9854  0.9709  0.1809  0.1732  0.5596  1201 

2OJ9 0.9918  0.9836  0.4426  0.4041  0.6388  373 

3MAX 0.9936  0.9873  0.0286  0.0379  0.5130  413 

1J4H 0.9965  0.9930  -0.1850  -0.1821  0.4383  165 

3G0E 0.9967  0.9935  0.0037  -0.0001  0.4966  379 

1UDT 0.9988  0.9976  0.4255  0.4115  0.6419  970 

3FRJ 1.0053  1.0107  0.3219  0.3558  0.6219  870 

3LN1 1.0114  1.0229  0.1226  0.1406  0.5467  1724 

2OYU 1.0176  1.0356  0.0176  -0.0037  0.4991  542 

1MV9 1.0219  1.0443  -0.0451  -0.0704  0.4770  302 

2I0E 1.0248  1.0503  0.1046  0.0637  0.5211  368 

3G6Z 1.0335  1.0681  0.3708  0.3808  0.6315  398 

2P54 1.0358  1.0729  -0.0942  -0.0807  0.4732  1092 

3C4F 1.0446  1.0912  0.2187  0.2043  0.5695  327 

2OI0 1.0482  1.0987  0.2427  0.2715  0.5921  1353 

3BZ3 1.0552  1.1134  0.4161  0.2853  0.5996  101 

2FSZ 1.0561  1.1154  0.1761  0.1903  0.5635  1366 

3L3M 1.0662  1.1368  0.2866  0.2893  0.5993  1045 

2I78 1.0709  1.1468  0.2367  0.2588  0.5878  2027 

2NNQ 1.0723  1.1498  -0.0430  0.0930  0.5363  47 

1W7X 1.0802  1.1669  -0.1663  -0.1278  0.4586  305 

1H00 1.0811  1.1687  0.1471  0.1481  0.5504  1326 

3CJO 1.1029  1.2165  0.0636  0.0040  0.5023  276 

2GTK 1.1122  1.2370  0.1875  0.1640  0.5554  1291 

3E37 1.1124  1.2374  0.3073  0.2869  0.5971  1458 
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3LQ8 1.1194  1.2531  0.2573  0.2449  0.5826  336 

2AA2 1.1231  1.2614  0.1248  0.1253  0.5415  212 

3BQD 1.1239  1.2632  0.2318  0.2555  0.5849  992 

2P2I 1.1261  1.2682  0.1844  0.1634  0.5554  2320 

3KL6 1.1401  1.2998  0.3700  0.3639  0.6240  3164 

3D4Q 1.1457  1.3127  0.3178  0.3248  0.6096  317 

3NXU 1.1501  1.3226  0.1605  0.0808  0.5280  301 

1LI4 1.1507  1.3240  0.1877  0.1849  0.5623  65 

3KBA 1.1584  1.3418  0.2295  0.1383  0.5450  1126 

3BKL 1.1908  1.4180  0.1231  0.1792  0.5606  813 

 

 

 

Virtual screening by DeepBindGCN against TIPE3 and PD-L1 dimer as self-

concept-approve examples 

The screening application diagram with screening against TIPE3 as an example is 

illustrated in Figure 2, which integrates many different methods, including 

DeepBindGCN, docking, MD simulation, and Metadynamics-based binding free 

energy landscape calculation. The MD and Metadynamics simulation details are 

described in Supplementary material section 2. 

 

Figure 2. The virtual screening procedure integrates DeepBindGCN models with 

other methods to identify highly reliable drug candidates for TIPE3. 

 

The TIPE3 is a transfer protein for lipid second messengers and is upregulated in 
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human lung cancer tissues (Fayngerts et al., 2014). Recent research reveals its 

important role in cancer proliferation, which is believed to be a novel cancer 

therapeutic target(Li et al., 2021). However, there are still no effective compounds 

that can inhibit its function. In this work, we obtain 40 compound candidates with 

DeepBindGCN_BC score > 0.99 and DeepBindGCN_RG > 9, shown in Table 3. We 

also docked these candidates with TIPE3 by Schrödinger software to obtain the 

potential binding conformations. The docking score is listed in Table 3. 

Table 3. The top predicted candidates from DeepBindGCN_BC and 

DeepBindGCN_RG for the TIPE3. 

Compound ID DeepBindGCN_BC  DeepBindGCN_RG Schrödinger score 

G858-0261 1.0000  9.0349  -9.5265  

D491-8162 1.0000  9.0312  -7.7093  

D307-0048 1.0000  9.0666  -8.1571  

3192-2836 1.0000  9.0383  -9.2614  

1000-1361 1.0000  9.0062  -11.0240  

8014-2686 1.0000  9.0927  -7.5773  

S049-0833 1.0000  9.1489  -8.6633  

V010-1363 1.0000  9.0040  -8.4298  

F844-0391 1.0000  9.0815  -7.3199  

S556-0709 1.0000  9.0541  -7.0894  

C200-4178 1.0000  9.0407  -7.6719  

F844-0420 1.0000  9.4370  -8.2764  

J026-0862 1.0000  9.0249  -8.6472  

C258-0578 1.0000  9.0228  -8.3843  

C200-0812 0.9999  9.0793  -9.2365  

S561-0589 0.9999  9.0254  -8.1083  

P166-2237 0.9999  9.6668  -8.7043  

V006-0149 0.9999  9.0806  -8.3682  

P074-3068 0.9999  9.0822  -9.0598  

7238-2062 0.9999  9.0083  -8.6726  

G702-4450 0.9998  9.0540  -9.5383  

Y031-6037 0.9998  9.0993  -7.3331  

L827-0130 0.9998  9.0523  -8.5650  

F844-0390 0.9998  9.2186  -7.7939  

K305-0239 0.9997  9.0028  None 

7238-2058 0.9995  9.0692  -8.5960  

P166-2138 0.9994  9.7564  -8.4074  

8131-1510 0.9993  9.0366  -8.5564  

S543-0517 0.9992  9.3285  -7.5612  

F844-0389 0.9992  9.3423  -8.7665  

L824-0015 0.9990  9.3347  -7.1463  

G702-4471 0.9986  9.0317  -8.7210  

P074-3101 0.9985  9.0468  -8.5187  

Y043-1747 0.9980  9.0451  -7.2643  
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V008-1643 0.9972  9.0701  None 

8015-5821 0.9964  9.0231  -9.7178  

S431-1022 0.9954  9.3035  -8.2101  

S591-0082 0.9952  9.0663  -6.7099  

P166-2131 0.9944  9.3489  -6.5523  

C301-8688 0.9939  9.3810  -8.3378  

 

 

For the convenience of analysis, we have clustered the candidate’s list into six 

groups, and the structures of cluster center compounds are shown in Figure S4. We 

observed clusters 1 and 2 have the largest number of group members. Notably, the 

cluster center structure contains several benzene-like substructures, indicating that pi-

related interactions may be necessary for strong binding with TIPE3. We also notice 

that the representative structures of clusters 1, 2, 3, 4, and 5 have a linear shape, 

indicating that the linear shape molecules may easier enter the binding cavity and 

achieve tightly binding. Also, all the representative structures are relatively flat, which 

may help enter the binding cavity more easily. 

 

To further explore the predicted TIPE3’s interaction details with the 

representative structures, we have plotted its 3D and 2D pocket-ligand interaction 

details, shown in Figure 3. Consistent with our previous assumption, we observed that 

most interactions are strongly maintained by Pi-related interaction. Only F844-0389 

has formed one hydrogen bond with TIPE3, while there are many pi-related 

interactions for most of these compounds with TIPE3, indicating the hydrogen bond is 

may not the dominant force for tightly TIPE3 binding. Compound-induced 

dimerization of PD-L1 is an effective way to prevent PD-L1-PD-1 binding, leading to 

inhibiting cancer cell proliferation. We have carried out DeepBindGCN screening 

over the compounds database. The compounds with DeepBindGCN_BC > 0.99 and 

DeepBindGCN_RG >8.6 were selected as candidates, shown in Table S5.  
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Figure 3. The snapshot and 2D plot of TIPE3 with representative cluster center 

compounds from docking. 

 

We obtain 6 representative structures by clustering the candidates into six groups, 

as shown in Figure S5. Cluster 5 has the largest group members. The representative 

structures of clusters 1, 2 and 3 have a similar shape, while the representative clusters 

3, 4, and 5 share similar linear shapes. Interestingly, except representative structure 2, 

all other 5 representative structures are compounds with the pentacyclic ring. The 2D 
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interaction of the predicted representative compounds with PD-L1 dimmer from 

Schrodinger docking is shown in Figure S6. Most compounds interact with the PD-L1 

pocket, including hydrogen bonds, Pi-related interaction, salt bridge interaction, etc. It 

should be noted that Schrodinger has not successfully docked K305-0238 and E955-

0720 into the selected PD-L1 pocket. 

 

We further carried out MD and Metadynamics simulations to check the binding 

stability of the predicted protein-ligand pairs. The candidates that show favorable 

binding with the 3 targets according to the free energy landscape from the 

metadynamics simulation are selected to further analysis, as shown in Figure S7. 

We noticed that except F844-0389 (RMSD around 0.3~0.5), the calculated RMSD of 

these selected candidates for the TIPE3 have very small values (around 0.1~0.3nm) 

and low fluctuation, as shown in Figure S8, indicating the candidates have very stable 

binding. The protein-compound interaction details of the last frame from the MD 

simulation are shown in Figure 4. 
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Figure 4. The TIPE3 interaction details with candidate compounds for the last 

frame from the MD simulation. 

 

The RMSD of the selected candidates for the PD-L1 dimer is shown in Figure S9. 

Notably, the RMSD values of 4376-0091 and P392-2143 have very small values 

(around 0.1~0.2nm), indicating their binding is stable. The interaction details of 

selected candidates with PD-L1 dimer are shown in Figure 5. We observed that the 

binding pocket contains many non-polar residues, and the interaction between PD-L1 

dimer with compounds is dominant with hydrophobic interactions, therefore, this 

confirms that the compounds act as a molecular glue to promote and stable the PD-L1 

dimerization. 
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Figure 5. The PD-L1 dimer interaction details with candidate compounds for the last 

frame from the MD simulation. 

 

Discussion 
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The proposed GCN-based model is extremely efficient compared to traditional 

docking and deep learning-based methods. Since it does not depend on the protein-

ligand complex, it can save time and resources to preprocess the input by docking. In 

many other complex structure-based models, most of the time is spent for exploring 

binding conformation, and the prediction would be highly unreliable if the binding 

conformations are incorrect. By using the pre-trained molecular vector to represent 

the residues, the GCN-based model has an obvious improvement, indicating our 

model can identify physical-chemical features and spatial information. The model’s 

performance is good on the DUD.E dataset, indicating it’s highly advantageous in real 

applications. This model has great potential as a core component of large-scale virtual 

screening. The method is strongly complementary to many existing methods, such as 

docking, MD simulation, and other deep learning methods; hence can easily be 

integrated into a hybrid screening strategy. The methods can also be used to screen de 

novo compounds by combining them with molecular generative models, similar to our 

previous work(Zhang, Saravanan, et al., 2022). 

To check its efficiency in virtual screening, we tested its time spent in virtual 

screening. With CUDA acceleration, we find DeepBindGCN_BC and 

DeepBindGCN_RG spent about 45.5s and 22.2s to complete the prediction of 50000 

protein-ligand pairs, respectively, with an Intel CPU cores (2.00 GHz) and a GeForce 

RTX 2080 Ti GPU card. With only CPU, it takes about 57.8s and 61.9s for 

DeepBindGCN_BC and DeepBindGCN_RG to finish the prediction of 50000 protein-

ligand pairs, respectively, with 40 Intel CPU core (2.00 GHz). This indicates that 

DeepBindGCN_BC or DeepBindGCN_RG only need 0.0004~0.0012s to complete a 

prediction, which is at least ten thousand times faster than traditional docking (which 

usually takes tens of seconds to several minutes) or docking-dependent deep learning-

based protein-ligand affinity prediction method. In summary, large-scale virtual 

screening would greatly benefit from DeepBindGCN’s efficiency. 

To compare the performance of the DeepBindGCN_RG-like model with other 

affinity prediction models on the PDBBIND core set, we have trained a 

DeepBindGCN_RG_x model over datasets without PDBBIND core set2013 and 2016 
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(CASF-2016). The training details are in supplementary material section 1. The 

performance of DeepBindGCN_RG_x with different epochs on PDBBIND core sets 

2013 and 2016 (CASF-2016) are shown in Tables S6 and S7. We can see the model 

has the best performance with epoch 1700 for both datasets. Hence, we are using a 

model with a 1700 epoch as the final model. Since many other protein-ligand affinity 

prediction models have widely tested these two datasets, we collected other methods’ 

performance from literature reports and showed them in Table 4. Those methods used 

for comparison include KDEEP(Jiménez et al., 2018), Pafnucy(Stepniewska-

Dziubinska et al., 2018), midlevel fusion(Jones et al., 2021), GraphBAR(Son and 

Kim, 2021), AK-score-ensemble(Kwon et al., 2020), DeepAtom(Li et al., 2019), 

PointNet(B)(Wang et al., 2022), PointTransform(B)(Wang et al., 2022), 

AEScore(Meli et al., 2021), ResAtom-Score(Y. Wang et al., 2021), DEELIG(Ahmed 

et al., 2021), PIGNet (ensemble)(Moon et al., 2022), BAPA(Seo et al., 2021), SE-

OnionNet(S. Wang et al., 2021), DeepBindRG(H. Zhang, Liao, Saravanan, et al., 

2019). We can see that our DeepBindGCN_RG_x has comparable performance with 

most state-of-art models. We noted that some methods have better RMSE or R-value 

than our DeepBindGCN_RG_x, but they all have utilized interface information of 

crystal 3D structure of the protein-ligand complex. Moreover, only our method in 

Table 4 is independent of the protein-ligand complex, while others depend on the 

experimental complex. The experimental complex is unavailable in a real application, 

and the protein-ligand complex is obtained by docking. The method will perform 

poorly in such a scenario due to some unreliable docking conformation. However, our 

method’s performance is independent of the protein-ligand complex, and its 

performance would be stable in such a real application. Its good performance in the 

DUD.E dataset also strongly supports this assumption. It is the first time that a deep 

learning-based model has achieved a rmse value of 1.3322 and Pearson R-value of 

0.7922 in PDBbind v.2016 core set without any 3D protein-ligand complex. This 

affinity prediction model is valuable in a wide range of real-case virtual screening 

applications. In contrast, most current affinity prediction models are rarely used in 

real applications. 
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Table 4. Performance comparison of our DeepBindGCN_RG_x with other 

methods in predicting experimental affinity on the PDBbind v.2016 core set 

(CASF-2016 core set) and v.2013 core set.  

Test set 
Methods Rmse Pearson R 

Spearman 

R 

PDBbind 

v.2016 

core set 

DeepBindGCN_RG_x 1.3843  0.7719  0.7672 

KDEEP 1.27 0.82  

Pafnucy 1.42 0.78  

midlevel fusion  1.308 0.810  0.807 

GraphBAR(dataset 4, Adj-2) 1.413 0.778  

AK-score-ensemble 1.293   

DeepAtom 1.23 0.831  

PointNet(B) 1.26 0.831 0.827 

PointTransform(B) 1.19 0.859 0.853 

AEScore 1.22 0.83  

ResAtom-Score  0.833  

DEELIG  0.889  

PIGNet (ensemble)   0.761  

BAPA 1.308   

PDBbind 

v.2013 

core set 

DeepBindGCN_RG_x 1.4864 0.7503 0.7358 

SE-OnionNet 1.692 0.812  

DeepBindRG 1.817 0.6394  

DEELIG  0.894  

GraphBAR(dataset4, best) 1.636 0.704  

BAPA 1.457   

 

To explore whether the vector representation of the amino acid has a better 

performance than the onehot representation, we have trained a model with onehot 

representation with the same model architecture and training and validation set. The 

performance over validation with different epochs is shown in Figure S10 and Table 

S6 and S7. We can observe that its performance is not good as DeepBindGCN.  

Like the DFCNN(Zhang, Lin, et al., 2022; H. Zhang, Liao, Cai, et al., 2019), the 

DeepBindGCN can be applied to quickly and accurately identify the potential protein 

target. The DeepBindGCN has inherited the efficiency of the DFCNN model, which is 

also not dependent on protein-ligand docking structure. In the meantime, the 

DeepBindGCN is much more efficient in keeping the spatial information within 

ligands and pockets through graphic representation. Since spatial information is 

critical in many protein-ligand interactions, the DeepBindGCN should be more useful 
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in target identification for given compounds through inverse target searching.  

Also, similar to DFCNN or autodock vina(Trott and Olson, 2010) being applied 

in our previous work for specificity estimation of a given compound(Zhang, Gong, et 

al., 2022), the DeepBindGCN can also be used to calculate the specificity similarly. 

Our proposed scoring is shown in Figure 6. To estimate the specificity for large 

amounts of compounds, we can first use the DeepBindGCN_BC to make the reverse 

prediction against 102 proteins from DUD.E. We have defined a function to estimate 

the DeepBindGCN_BC-based specificity. The formula is used as follows: 

specificity=  

Where  is the counted number of compounds that have a DeepBindGCN_BC score 

larger than 0.9 during the reverse DFCNN prediction with 102 protein targets. 

However, DeepBindGCN_BC doesn’t consider the binding affinity with these off-

target, hence we can carry a DeepBindGCN_RG for further relative specificity. The 

relative specificity is calculated by following the formulas. 

Relative specificity=  

Where the  is the counted number of proteins that have a DeepBindGCN_RG 

score smaller than the known target-ligand DeepBindGCN_RG score. For instance, if 

we estimate the specificity of candidate compound G858-0261 of TIPE3, the   is 

the counted number of proteins (belonging to 102 targets from DUD.E) that have 

DeepBindGCN_RG score smaller than TIPE3-Y020-0019’s score 9.0349. 
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Figure 6. Our proposed specificity calculation strategy for virtual screening.  

 

There is still space for improvement of the model in the future. We can test other 

model architectures, such as ATN, instead of GCN. We can apply molecular vectors in 

compounds as well. For instance, each chemical group was represented as a node with 

its molecular vector, and the edge was defined as chemical group neighbors. Also, we 

can add compounds molecular vectors as independent input. Furthermore, we can also 

integrate protein-ligand interaction pair information as graphic input, just as Moesser 

et al. has done(Moesser et al., 2022). Moreover, a similar strategy can be applied to 

protein-protein or protein-peptide interaction prediction. The protein interaction 

interface can be represented by graphic representation in a very similar way. Hence 

our work can provide helpful insight into protein-protein interaction or protein-

peptide interaction prediction. 

 

Conclusion 

We have developed DeepBindGCN_BC to identify accurate protein-ligand binding, 

and DeepBindGCN_RG to further estimate the protein-ligand binding affinity. Our 

GCN-based model not only help to identify binding ligands but also help to identify 

strong binding ligands, which are often more likely to be developed into drugs. The 

models have taken advantage of the graphic convolution network to represent spatial 
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information efficiently. Also, we have added the molecular vector representation to 

enhance the pocket physical-chemical feature. Furthermore, we have tested the model 

in a much diversified DUD.E dataset and achieved good performance, indicating the 

reliability and practicality of our method. Also, to demonstrate its application in 

virtual screening, we have developed a pipeline and screened it over three cancer-

related therapeutic targets, TIPE3 and PD-L1 dimer, as proof-of-concept applications. 

We also highlight its potential in other tasks, such as inverse target screening, 

specificity calculation, and iteratively screening de novo compounds by integrating 

with molecule generative models. We have deposited the source codes of our model 

on GitHub for user’s convenience. The models and the screening pipeline presented 

here would greatly help to facilitate computer-aided drug development. 

 

Key Points 

⚫ The present work demonstrates that the resulting model is accurate and extremely 

fast by using GCN and molecular vectors to represent the protein pocket 

effectively and compounds spatial information and physico-chemical. 

 

⚫ We have developed a binary classifier model that includes negative data during 

training to identify whether compounds will bind to a given target. Also, we have 

developed an affinity prediction model, which can further identify high-affinity 

binding compounds from the candidate list predicted by the binary classifier 

model. 

 

⚫ The developed DeepBindGCN model is a generalized protein-ligand prediction 

model, which is suitable for application to a wide range of therapeutic targets. In 

this work, we have applied DeepBindGCN on virtual screening against TIPE3 

and PD-L1 dimer as proof-of-concept examples. The obtained candidate lists 

would help drug development against this target. 

 

Availability of data and materials 
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Figure legends: 

 

Figure 1. The architecture of the DeepBindGCN model.  

Figure 2. The virtual screening procedure integrates DeepBindGCN models with 

other methods to identify highly reliable drug candidates for TIPE3. 

Figure 3. The snapshot and 2D plot of TIPE3 with representative cluster center 

compounds from docking. 

Figure 4. The TIPE3 interaction details with candidate compounds for the last 

frame from the MD simulation. 

Figure 5. The PD-L1 dimer interaction details with candidate compounds for the 

last frame from the MD simulation. 

Figure 6. Our proposed specificity calculation strategy for virtual screening.  

 

Table legends: 

 

Table 1. The performance of DeepBindGCN_BC on some of the DUD.E datasets 

with precision values larger than 0.9.  

Table 2. The performance of DeepBindGCN_RG on some DUD.E datasets with 

rmse smaller than 1.2. 

Table 3. The top predicted candidates from DeepBindGCN_BC and 

DeepBindGCN_RG for the TIPE3. Table 4. Performance comparison of our 

DeepBindGCN_RG_x with other methods in predicting experimental affinity on 

the PDBbind v.2016 core set (CASF-2016 core set) and v.2013 core set.  
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