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The core of large-scale drug virtual screening is to accurately and efficiently select the
binders with high affinity from large libraries of small molecules in which non-
binders are usually dominant. The protein pocket, ligand spatial information, and
residue types/atom types play a pivotal role in binding affinity. Here we used the
pocket residues or ligand atoms as nodes and constructed edges with the neighboring
information to comprehensively represent the protein pocket or ligand information.
Moreover, we find that the model with pre-trained molecular vectors performs better
than the onehot representation. The main advantage of DeepBindGCN is that it is
non-dependent on docking conformation and concisely keeps the spatial information
and physical-chemical feature. Notably, the DeepBindGCN_BC has high precision in
many DUD.E datasets, and DeepBindGCN_RG achieve a very low RMSE value in
most DUD.E datasets. Using TIPE3 and PD-L1 dimer as proof-of-concept examples,
we proposed a screening pipeline by integrating DeepBindGCN_BC,
DeepBindGCN_RG, and other methods to identify strong binding affinity compounds.
In addition, a DeepBindGCN_RG_x model has been used for comparing performance
with other methods in PDBbind v.2016 and v.2013 core set. It is the first time that a
non-complex dependent model achieves an RMSE value of 1.3843 and Pearson-R
value of 0.7719 in the PDBbind v.2016 core set, showing comparable prediction
power with the state-of-the-art affinity prediction models that rely upon the 3D
complex. Our DeepBindGCN provides a powerful tool to predict the protein-ligand
interaction and can be used in many important large-scale virtual screening

application scenarios.
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Introduction
Proteins play a key role in most cellular processes, meanwhile ligands can act as

mediators of protein and can combat diseases with their physical-chemical
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properties(Klebe, 2013). However, identifying active compounds experimentally on a
large scale is expensive and time-consuming. Hence, the computer aided lead
discovery is usually the initial stage of the drug discovery process to reduce the
experimental testing burden. Accurately and efficiently predicting the protein-ligand
interaction by the computational method is a core component of large-scale drug
screening. In recent years, deep learning and machine learning have be widely applied
in biology research (Savojardo et al., 2018; Z. Chen et al., 2021). With the
development of deep learning algorithms and increasing protein-ligand interaction
data, especially the high resolution atomic structure and experimental binding affinity
information, it is possible to apply deep learning to discriminate the binders from non-
binders and predict the affinity. Some affinity prediction models have already been
developed, such as pafnucy(Stepniewska-Dziubinska et al., 2018),
GraphDTA(Nguyen et al., 2021), GAT-Score(Yuan et al., 2021), BAPA(Seo et al.,
2021), and AttentionDTA(Zhao et al.,, 2019). Our group also developed
DeepBindRG(H. Zhang, Liao, Saravanan, et al., 2019) for protein-ligand affinity
prediction with the interface atomic contact information as input and
DeepBindBC(zZhang, Zhang, et al., 2021) for predicting whether protein-ligand
complexes are nativelike by creating a large protein-ligand decoy complex set as a
negative training set. Moreover, we also developed DFCNN for the preliminary stage
of virtual screening since it demonstrates predictable efficiency(H. Zhang, Liao, Cai,
et al., 2019; Zhang, Lin, et al., 2022). Some of our developed models are already
applied in drug candidates and target searching, and show huge potential in drug
development(Zhang, Li, et al., 2021; Zhang et al., 2020). However, several limitations
still need attention, both in terms of efficiency and accuracy.

The Graph Convolutional Network (GCN) is a kind of deep learning that can use
nodes to contain feature information and edges to contain spatial information between
nodes, which is a popular method in prediction relationships(S. Zhang et al., 2019).
GCN is already well applied to predicting the compound property, and molecular
fingerprint(Kojima et al., 2020; J. Chen et al., 2021). Also, the GCN was successfully

used for protein-ligand interaction prediction(Nguyen et al., 2021; Torng and Altman,
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2019). Wen et al. have applied the GCN to predict protein-ligand interactions and
achieved encouraging result in the test set. However, they used the DUD-E as a
training dataset and only contain 102 receptors, which is very limited diversity in
protein information(Torng and Altman, 2019), this strongly suggests their model still
has ample improvement space. Its under-trainings on the protein side also can
influence its performance significantly. Thin et al. have developed a GCN based
protein-ligand prediction model(Nguyen et al., 2021), but it used only GCN for the
ligand part, and the protein was represented as a sequence, comparing the pocket with
spatial information. This sequence lost spatial information and contained much
irrelevant information about the protein-ligand binding. Furthermore, Moesser et al.
have integrated protein-ligand contact information in ligand-shaped 3D interaction
Graphs to improve binding affinity prediction(Moesser et al., 2022). Still, it would
only be helpful if the protein-ligand complex is available or is accurately predicted by
docking.

It should be noted that many deep learning-based protein-ligand affinity
prediction models are rarely used in real applications. Even their RMSE value in the
testing set seems very small. One major reason is that the affinity model is trained
over a binding protein-ligand dataset and doesn’t learn anything about non-binding,
while in a real application; the non-binding compounds are dominant during screening
over a given target. Hence, purely developing a deep learning-based affinity
prediction model is not enough to fulfil the requirement of virtual screening.
Developing a model which trained with binding and non-binding data to identify
whether protein-ligand was binding is important in the real applications. For instance,
we have previous models DFCNN and DeepBindBC to identify whether protein and
ligand are binding. These two models successfully helped to identify a given target’s
inhibitors with experimental validation in our previous work(Zhang, Zhang, et al.,
2022; Zhang, Lin, et al., 2022; Zhang, Gong, et al., 2022; Zhang et al., 2020; Zhang,
Li, et al., 2021). Moreover, combining the protein-ligand binding prediction model
with the affinity prediction model can be more powerful in identifying strong affinity

candidates. As aforementioned, hybrid screening has been used to virtualize potential
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drugs for given targets. However, we still lack a model that can screen over a database
size of 100,000~1000,000 accurately and efficiently with the ability to distinguish
spatial and physical-chemical features of protein-ligand binding.

In our work, we have used a graph to represent the protein pocket and ligand,
respectively, and the GCN model with two inputs and one output to fully train over a
large protein-ligand dataset PDBbind. The diversified structure database PDBbind
guarantees the robustness of model performance. We also evaluate the model
performance using the known binding and nonbinding data. We also show its
application in drug candidate screening for target TIPE3 and PD-L1 dimers. Our
result shows DeepBindGCN can be a valuable tool to rapidly identify reliable, strong
binding protein-ligand pairs and can be an essential component of a hybrid large scale

screening pipeline.

Method

Data preparation

The training data is downloaded from PDBbind2019. The protein pocket was defined
as a cutoff value within the known ligand (any atom in the residue within the cutoff
value of the ligand will keep the residue as pocket residue). We tested cutoff values of
0.6 nm and 0.8nm in this work. The ligands were represented as molecule graphs by
converting the SMILES code to its corresponding molecular graph and extracting
atomic features using the open-source chemical informatics software RDKit(Landrum,
2006).

The pocket was represented as a graph by defining the residues as nodes and
contacting residue pairs as edges (the cutoff was set as 0.5 nm). We have tested
onehot and molecular vector representations for the node residue, respectively. A pre-

trained mol2vec model generated the molecular vector.

The dataset for a binary classification task.
Through cross-combination, we obtain 52200 protein-ligand pairs as a negative

dataset and divide them into 45000 as training negative data and 7200 as testing
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negative data. From the PDBbind2019 dataset, we obtained a total of 17400 protein-
ligand as positive data, divided into 15000 as training positive data, and 2400 as
testing data. During the training, the positive training and testing data are used 3 times

to keep the positive and negative data balanced.

The dataset for the affinity prediction task.

We obtained 16956 protein-ligand datasets with affinity from PDBbind2019 and
divided them into 15000 training and 1956 test datasets. In the PDBbind v2019
dataset, the binding affinities of protein-ligand complexes were provided with Ki, Kd,

and IC50. We transformed the binding affinities into pKa using the following equation:

pKa = —log, K, )

where K_represents IC50, K;, or K;.

Pre-train 30-dimension molecular vector to represent residues in pocket

We downloaded 9,216,175 onstock compounds from the ZINC15 database as a
training dataset, the mol2vec was used to do the training, and we finally obtained a
model that can generate a vector for each given chemical group, here we set the vector
dimension to 30. The obtained model was used to generate the vector of the 20

residues by adding the chemical group vectors within each residue.

Model construction

The model structure is shown in Figure 1. It has two inputs (drug-target pair) and one
output structure. The ligand and pocket graphic information flow into the two layers
of the graphic network. Then, the output of two graphic networks is merged into fully
connected layers. The final output was one node. The binary prediction uses the
sigmoid activation function, which gives a value range of 0~1; for the affinity

prediction, the output uses linear activation, which is a continuous measurement of
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binding affinity for that pair.

output

Linear output for . — Sigmoid activation
regression task. y and output 0~1 for
CTD binary
FC layer 2 classification task.
FC layer 1

Combined representation

4}

Graph-based SMILES l Graph-based pocket ‘
representation representation
| Global max pooling | " Global max pooling
T
‘ Graph convolutional layer ‘ ‘ Graph convolutional layer
‘ Graph convolutional layer ‘ ‘ Graph convolutional layer ‘

Residue

Atom as
node, bond as node,
Z as edge. z neighbor
s as edge.

4 4

- Onchot or
Q r pretrained
/7 vector to

[NH3+][C@H](C(=0)O)CCCC[NH3+] Sy ,
) 3:‘; /th " | represent
g (e " residue
: (node)
SMILES Pocket . e

Figure 1. The architecture of the DeepBindGCN model.

Model training
The torch_geometric module was used to create input data and construct the graphic
neural network. The input data was saved in PyTorch, InMemoryDataset format. The

PyTorch was used to do the training. The number of epochs that we finally chose was
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based on the performance convergences on the test set.

Model performance compared with other methods on the DUD.E dataset

We have downloaded 102 therapeutic-related proteins and their corresponding active
and inactive compounds from the DUD.E dataset(Mysinger et al., 2012). Those data
were processed into the input format and used as extra testing set to examine our
model performance. The performance matrix AUC, MCC, Accuracy, Precision, and
TPR were used to validate the BC model, and the rmse, mse, pearson correlation,
spearman correlation, and Concordance Index (Cl) were used to validate the RG

model.

Virtual screening of candidates against two targets (TIPE3 and PD-L1 dimer)

The atomic coordinates of TIPE3 were retrieved from PDB with id 4Q9V(Fayngerts
et al., 2014). The TIPE3-ligand complex was modeled by the cofactor method in
https://zhanggroup.org/COFACTOR/ web server(Roy et al., 2012). The PD-L1 dimer
was retrieved from PDB with id 5N2D(Guzik et al., 2017), these PDB structures
already contain ligands. The pocket was extracted as 0.8 nm from the predicted or
known ligands. The dataset Chemdiv with the size of 1,507,824 compounds, was used

as a virtual screening dataset.

Tools used in the analysis

The USCF Chimera, VMD, Schralinger, pymol, and Discovery Studio Visualizer
2019 were used to generate the structure and to visualize the 2D protein-ligand
interactions(Pettersen et al., 2004; Humphrey et al., 1996; Visualizer, 2005). Clusfps
(https://github.com/kaiwang0112006/clusfps), which depends on RDKit(Landrum,

2006), was used to cluster the drugs in the dataset. The drug fingerprint was used as
an input, with the algorithm of Murtagh(Murtagh and Contreras, 2012) being used for

clustering candidates into 6 groups.

Results
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The DeepBindGCN_BC and DeepBindGCN_RG workflow is shown in Figure S1, we
observed that during the application, their input preparation, and model architecture
are highly consistent, except that one is output 0~1 for binary classification, and the

other is output continuous value for affinity prediction.

The performance of DeepBindGCN_BC and DeepBindGCN_RG on training and
test set

The AUC, TPR, Precision, and accuracy of the training set and test set over the 2000
epoch training for the DeepBindGCN_BC are recorded and shown in Figure S2 and
Table S1. The AUC values fall around 0.86~0.87 and 0.84~0.85 after 400 epochs
when using pocket cutoff value 0.6nm and 0.8 nm, respectively, indicating the
training has fully converged in epoch 2000. The result also shows that the
DeepBindGCN_BC performs better on the testing set when using a pocket cutoff of
0.8nm according to the performance metrics AUC, TPR, precision, and accuracy. For
instance, the DeepBindGCN_BC has AUC, TPR, precision, and accuracy values of
DeepBindGCN_BC with cutoff 0.6nm at epoch 2000 are 0.8788, 0.6863, 0.6767, and
0.8396, respectively, corresponding to values 0.8537, 0.6175, 0.6552, and 0.8231
when with pocket cutoff 0.8nm, which all demonstrate slight better performance.

The rmse, mse, pearson correlation, spearman correlation, and Concordance
Index (CI, the larger, the better) of the training set and test set over the 2000 epoch
training for the DeepBindGCN_RG are shown in Figure S3, Table S2. We noted that
the RMSE has stayed around values 1.3 and 1.1~1.3 after 400 epochs when using
pocket cutoff values 0.6nm and 0.8 nm respectively, indicating that the training has
fully converged. The DeepBindGCN_RG has better performance with a pocket cutoff
of 0.8nm compared to a pocket cutoff of 0.6nm according to the performance metrics
rmse, mse, pearson correlation, spearman correlation, and CI. For instance,
DeepBindGCN_RG with the pocket cutoff of 0.8nm has rmse, mse, pearson
correlation, spearman correlation, and CI values of 1.2107, 1.4657, 0.7518, 0.7410,
and 0.7756 in epoch 2000, respectively, corresponding to values of 1.3361, 1.7852,
0.7141, 0.7098, and 0.7628 when the pocket cutoff is 0.6nm, which all demonstrate
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slight better performance in pocket cutoff 0.8nm.

Interestingly, we found that the pocket cutoff value of 0.6 nm has a better
performance for the DeepBindGCN_BC, while the cutoff value of 0.8 nm has a better
performance for the DeepBindGCN_RG. This suggests that the close contact ligand
and residue information is enough to accurately predict whether protein-ligand is
binding, and long-range contact information sometimes may mislead its prediction.
However, long-range pocket residue information is also important to accurately
predict how strong protein-ligand is binding. To accurately estimate the binding
affinity, most of the residues that have contributed to the binding should be considered.
Notably, we apply a pocket cutoff of 0.6 nm for DeepBindGCN_BC and apply a
pocket cutoff of 0.8 nm for the DeepBindGCN_RG in the rest of the work.

The performance of DeepBindGCN_BC and DeepBindGCN_RG on the DUD.E
dataset

We have considered experimental known inactive and active protein-compound pairs
or protein-compounds affinity information from the DUD.E dataset for our model
extra testing set. Precision is widely acknowledged to be an important performance
metric in large-scale virtual screening applications. The performances of
DeepBindGCN_BC and DeepBindGCN_RG on some DUD.E datasets are listed in
Table S3 and Table S4, respectively. We noticed that DeepBindGCN has a very high
precision (>0.9) over more than half of the cases from the DUD.E datasets, as shown
in Table 1. It should also be noted that many other performance metrics are not good
for DeepBindGCN in many cases, as shown in Tables 1 and S3. Some protein-ligand
datasets are predicted into all O values, which indicate no binding. A possible
explanation is that the binding pocket we selected cannot guarantee exactly binding
with those ligands. Also, the data may contain some false positive experimental
results since there are no crystal structures as strong proof of binding. To sum up, the
high precision of DeepBindGCN_BC in DUD.E data guarantees that the selected
compounds from large-scale virtual screening are likely to be binders.

Table 1. The performance of DeepBindGCN_BC on some of the DUD.E datasets
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with precision values larger than 0.9.

PDBID AUC TPR  Precision Accuracy MCC data_size pos_size neg_size
3BWM 1.0000  0.8537 1.0000 0.8571  0.3492 42 41 1
1ZW5 0.5765 0.0118 1.0000 0.2500  0.0535 112 85 27
2AA2 0.7052  0.2217 1.0000 0.2290 0.0515 214 212 2
3KRJ 0.9378  0.7558 1.0000 0.7589  0.1944 394 389 5
3L3M 0.8029  0.5301 1.0000 0.5355 0.1125 1057 1045 12
20WB 0.4205  0.0044 1.0000 0.1722  0.0273 273 227 46
3KBA 0.1230  0.3615 0.9975 0.3611 -0.0396 1127 1126 1
3CCW 0.7652  0.5878 0.9969 0.5920 0.1124 549 541 8
3PBL 0.6470  0.8780 0.9954 0.8748  0.0565 2228 2214 14
3BQD 0.5618  0.7802 0.9949 0.7776  0.0212 998 992 6
3GOE 0.8057  0.6887 0.9924 0.6899  0.1338 387 379 8
830C 0.6763  0.7968 0.9902 0.7922  0.0906 1670 1644 26
2CNK 0.7350  0.1928 0.9891 0.2495 0.1118 509 472 37
1XL2 0.8517  0.4639 0.9887 0.4910 0.1817 1607 1511 96
3EQH 0.6921  0.2403 0.9867 0.2656  0.0704 320 308 12
2ZEC 0.6770  0.3122 0.9857 0.3544  0.1373 237 221 16
2AM9 0.5055  0.8199 0.9835 0.8094  0.0103 1107 1088 19
1BCD 0.4933  0.1675 0.9822 0.1753 -0.0191 2002 1976 26
3DOE 0.8424  0.6498 0.9809 0.6692  0.3015 260 237 23
2010 0.5505 0.5676 0.9808 0.5665  0.0250 1384 1353 31
1IMV9 0.6055  0.8322 0.9806 0.8199  0.0465 311 304 7
3LPB 0.4851  0.3690 0.9789 0.3760 0.0112 258 252 6
20D9 0.6189  0.8174 0.9758 0.8036  0.0902 2291 2218 73
3HMM 0.5769  0.7489 0.9670 0.7314 -0.0420 242 235 7
2H7L 0.5769  0.7489 0.9670 0.7314 -0.0420 242 235 7
3L5D 0.8266  0.9133 0.9665 0.8892  0.3445 641 600 41
3EML 0.6269  0.4002 0.9665 0.4221  0.0847 3288 3096 192
2FSZ 0.8597  0.9173 0.9661 0.8948  0.4686 1492 1366 126
2AYW 0.7089  0.2182 0.9638 0.2946  0.1154 1093 976 117
3FRJ 0.4572  0.1207 0.9633 0.1446  -0.0093 899 870 29
2GTK 0.3925 0.7785 0.9626 0.7564 -0.0550 1334 1291 43
3LQ8 0.5867  0.6042 0.9621 0.6006  0.0583 353 336 17
1SJ0 0.8025  0.7057 0.9617 0.7078  0.2678 1451 1315 136
3BGS 0.5118  0.8109 0.9602 0.7863  0.0055 248 238 10
3CJO 0.6768  0.5109 0.9592 0.5377 0.1784 305 276 29
3CHP 0.6478  0.8295 0.9567 0.8038  0.1265 367 346 21
2P2I 0.6366  0.6983 0.9541 0.6840 0.0751 2462 2320 142
1UDT 0.7414  0.7536 0.9531 0.7413  0.2310 1063 970 93
3D4Q 0.7178  0.8202 0.9524 0.7971  0.2392 345 317 28
3KL6 0.5061  0.4785 0.9492 0.4817  0.0082 3340 3164 176
2ETR 0.5402  0.6804 0.9490 0.6667 0.0766 234 219 15
1YPE 0.6432  0.4269 0.9485 0.4636  0.1341 2541 2286 255
3HL5 0.5043  0.7300 0.9481 0.7103  0.0873 107 100 7
3BKL 0.6001  0.6494 0.9479 0.6382 0.0621 868 813 55
3BIZ 0.5069  0.9005 0.9476 0.8602  0.1302 236 221 15

2P54 0.6506  0.8819 0.9469 0.8441 0.1672 1174 1092 82
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1SQT 0.4882  0.1387 0.9455 0.2220  0.0640 419 375 44
2VT4 0.5656  0.4779 0.9429 0.5014  0.1192 726 657 69
2HZI 0.8138  0.6895 0.9400 0.7059  0.3660 493 409 84
3CQW 0.6763  0.6037 0.9367 0.5991  0.0845 641 588 53
1B9V 0.5898  0.5463 0.9333 0.5531  0.0962 226 205 21
2178 0.5760  0.8865 0.9330 0.8364  0.0924 2194 2027 167
2RGP 0.8190  0.7463 0.9322 0.7538  0.4423 2027 1620 407
1H00 0.6143  0.6033 0.9302 0.5992  0.0957 1462 1326 136
3G6Z 0.6409  0.8668 0.9299 0.8221  0.2480 444 398 46
3F07 0.7875  0.8307 0.9298 0.8112  0.4865 392 319 73
20F2 0.6871  0.5484 0.9265 0.5736  0.1923 1067 919 148
3E37 0.5940  0.5236 0.9249 0.5242  0.0298 1591 1459 132
1L14 0.5538  0.6769 0.9167 0.6429 -0.0683 70 65 5
2ICA 0.6365  0.8025 0.9155 0.7507 -0.0174 353 324 29
1C8K 0.5284  0.2530 0.9130 0.2889 -0.0201 90 83 7

We also tested the DeepBindGCN_RG on the DUD.E dataset with affinity values,
shown in Table S4. Interestingly, DeepBindGCN_RG performs well over most
datasets in terms of rmse values. The average rmse of 102 therapeutic targets related
datasets has reached 1.1893. We can see that more than 65 protein target-related
dataset has rmse smaller than 1.2, as shown in Table 2, which is extremely accurate
compared to most of the current affinity prediction methods. On the other hand, the
pearson correlation, spearman correlation, and Cl also demonstrate that prediction and
experimental measurement usually have a weak correlation. We believe this is mainly
because for each dataset, many compounds with affinity have similar structures,
hence making the model extremely challenging to detect the slightly binding affinity
difference. The low rmse and mse can guarantee that the DeepBindGCN_RG can
correctly select strong affinity binders out of the abundant candidates from
DeepBindGCN_BC.

Table 2. The performance of DeepBindGCN_RG on some DUD.E datasets with

rmse smaller than 1.2.

Pdbid Rmse Mse  Pearson spearman Cl data_size
3BIZ 0.6866 0.4714 0.1794 0.1800 0.5570 221
2AZR 0.7134 0.5089 0.2293 0.2654 0.5903 284
1UYG 0.7880 0.6209 0.3155 0.2981 0.6089 88
3M2W 0.7958 0.6334 0.3754 0.3063 0.6073 184

3EQH 0.8114 0.6584 0.3547 0.3277 0.6159 308



https://doi.org/10.1101/2023.03.16.528593
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.16.528593; this version posted March 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

2ETR 0.8119 0.6592 0.2780 0.2687 0.5961 219
3FOM 0.8177 0.6686 0.1705 0.1740 0.5611 144
1KVO 0.8184 0.6697 0.1789 0.1481 0.5510 176
1SQT 0.8194 0.6715 0.2473 0.2282 0.5777 375
3DOE 0.8439 0.7122 0.2704 0.2272 0.5797 237
3L5D 0.8480 0.7191 0.3180 0.3432 0.6187 600
1LRU 0.8956 0.8021 0.2213 0.2362 0.5805 173
3NF7 0.9010 0.8119 0.1790 0.1021 0.5353 185
3HMM 0.9035 0.8163 0.0380 0.0055 0.5010 235
2ICA 0.9056 0.8201 0.3269 0.3630 0.6210 324
2HZI 0.9088 0.8258 0.5412 0.5701 0.6958 409
3KGC 0.9121 0.8319 -0.0222 0.0049 0.5013 488
2HV5 0.9258 0.8572 0.0512 0.0530 0.5178 606
3EL8 0.9303 0.8654 0.2629 0.2570 0.5875 1271
20JG 0.9386 0.8810 0.5505 0.5713 0.7045 81
1D3G 0.9397 0.8831 0.0503 0.0742 0.5269 227
1BCD 0.9496 0.9017 0.3138 0.2846 0.5974 1976
2V3F 0.9621 0.9256 0.3420 0.2885 0.5987 55
3CCW 0.9665 0.9341 0.2556 0.2955 0.6004 541
2QD9 0.9730 0.9468 0.3492 0.3509 0.6196 2218
3KRJ 0.9770 0.9545 0.2654 0.2395 0.5826 389
3CQW 0.9779 0.9562 0.2804 0.2742 0.5933 588
2ZNP 0.9779 0.9564 0.1656 0.1517 0.5510 713
20F2 0.9816 0.9635 0.2678 0.2355 0.5797 919
830C 0.9833 0.9668 0.2000 0.1883 0.5641 1644
3LAN 0.9854 0.9709 0.1809 0.1732 0.5596 1201
20J9 0.9918 0.9836 0.4426 0.4041 0.6388 373
3MAX 0.9936 0.9873 0.0286 0.0379 0.5130 413
1J4H 0.9965 0.9930 -0.1850 -0.1821 0.4383 165
3GOE 0.9967 0.9935 0.0037 -0.0001 0.4966 379
1UDT 0.9988 0.9976 0.4255 0.4115 0.6419 970
3FRJ 1.0053 1.0107 0.3219 0.3558 0.6219 870
3LN1 1.0114 1.0229 0.1226 0.1406 0.5467 1724
20YU 1.0176 1.0356 0.0176 -0.0037 0.4991 542
1MV9 1.0219 1.0443 -0.0451 -0.0704 0.4770 302
2I0E 1.0248 1.0503 0.1046 0.0637 0.5211 368
3G6Z 1.0335 1.0681 0.3708 0.3808 0.6315 398
2P54 1.0358 1.0729 -0.0942 -0.0807 0.4732 1092
3C4F 1.0446 1.0912 0.2187 0.2043 0.5695 327
2010 1.0482 1.0987 0.2427 0.2715 0.5921 1353
3BZ3 1.0552 1.1134 0.4161 0.2853 0.5996 101
2FSZ 1.0561 1.1154 0.1761 0.1903 0.5635 1366
3L3M 1.0662 1.1368 0.2866 0.2893 0.5993 1045
2178 1.0709 1.1468 0.2367 0.2588 0.5878 2027
2NNQ 1.0723 1.1498 -0.0430 0.0930 0.5363 47
IW7X 1.0802 1.1669 -0.1663 -0.1278 0.4586 305
1HOO0 1.0811 1.1687 0.1471 0.1481 0.5504 1326
3CJO 1.1029 1.2165 0.0636 0.0040 0.5023 276
2GTK 1.1122 1.2370 0.1875 0.1640 0.5554 1291

3E37 1.1124 1.2374 0.3073 0.2869 0.5971 1458
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3LQ8 1.1194 1.2531 0.2573 0.2449 0.5826 336
2AA2 1.1231 1.2614 0.1248 0.1253 0.5415 212
3BQD 1.1239 1.2632 0.2318 0.2555 0.5849 992
2P2I 1.1261 1.2682 0.1844 0.1634 0.5554 2320
3KL6 1.1401 1.2998 0.3700 0.3639 0.6240 3164
3D4Q 1.1457 1.3127 0.3178 0.3248 0.6096 317
3NXU 1.1501 1.3226 0.1605 0.0808 0.5280 301
1L14 1.1507 1.3240 0.1877 0.1849 0.5623 65
3KBA 1.1584 1.3418 0.2295 0.1383 0.5450 1126
3BKL 1.1908 1.4180 0.1231 0.1792 0.5606 813

Virtual screening by DeepBindGCN against TIPE3 and PD-L1 dimer as self-
concept-approve examples

The screening application diagram with screening against TIPE3 as an example is
illustrated in Figure 2, which integrates many different methods, including
DeepBindGCN, docking, MD simulation, and Metadynamics-based binding free
energy landscape calculation. The MD and Metadynamics simulation details are

described in Supplementary material section 2.
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Figure 2. The virtual screening procedure integrates DeepBindGCN models with

other methods to identify highly reliable drug candidates for TIPE3.

The TIPES is a transfer protein for lipid second messengers and is upregulated in
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human lung cancer tissues (Fayngerts et al., 2014). Recent research reveals its
important role in cancer proliferation, which is believed to be a novel cancer
therapeutic target(Li et al., 2021). However, there are still no effective compounds
that can inhibit its function. In this work, we obtain 40 compound candidates with
DeepBindGCN_BC score > 0.99 and DeepBindGCN_RG > 9, shown in Table 3. We
also docked these candidates with TIPE3 by Schrdlinger software to obtain the
potential binding conformations. The docking score is listed in Table 3.

Table 3. The top predicted candidates from DeepBindGCN_BC and
DeepBindGCN_RG for the TIPE3.

Compound ID DeepBindGCN_BC DeepBindGCN_RG Schrddinger score
G858-0261 1.0000 9.0349 -9.5265
D491-8162 1.0000 9.0312 -7.7093
D307-0048 1.0000 9.0666 -8.1571
3192-2836 1.0000 9.0383 -9.2614
1000-1361 1.0000 9.0062 -11.0240
8014-2686 1.0000 9.0927 -7.5773
S049-0833 1.0000 9.1489 -8.6633
VV010-1363 1.0000 9.0040 -8.4298
F844-0391 1.0000 9.0815 -7.3199
S556-0709 1.0000 9.0541 -7.0894
C200-4178 1.0000 9.0407 -7.6719
F844-0420 1.0000 9.4370 -8.2764
J026-0862 1.0000 9.0249 -8.6472
C258-0578 1.0000 9.0228 -8.3843
C200-0812 0.9999 9.0793 -9.2365
S561-0589 0.9999 9.0254 -8.1083
P166-2237 0.9999 9.6668 -8.7043
\V006-0149 0.9999 9.0806 -8.3682
P074-3068 0.9999 9.0822 -9.0598
7238-2062 0.9999 9.0083 -8.6726
G702-4450 0.9998 9.0540 -9.5383
Y031-6037 0.9998 9.0993 -7.3331
L827-0130 0.9998 9.0523 -8.5650
F844-0390 0.9998 9.2186 -7.7939
K305-0239 0.9997 9.0028 None
7238-2058 0.9995 9.0692 -8.5960
P166-2138 0.9994 9.7564 -8.4074
8131-1510 0.9993 9.0366 -8.5564
S543-0517 0.9992 9.3285 -7.5612
F844-0389 0.9992 9.3423 -8.7665
L824-0015 0.9990 9.3347 -7.1463
G702-4471 0.9986 9.0317 -8.7210
P074-3101 0.9985 9.0468 -8.5187

Y043-1747 0.9980 9.0451 -7.2643
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VV008-1643 0.9972 9.0701 None
8015-5821 0.9964 9.0231 -9.7178
S431-1022 0.9954 9.3035 -8.2101
S591-0082 0.9952 9.0663 -6.7099
P166-2131 0.9944 9.3489 -6.5523
C301-8688 0.9939 9.3810 -8.3378

For the convenience of analysis, we have clustered the candidate’s list into Six
groups, and the structures of cluster center compounds are shown in Figure S4. We
observed clusters 1 and 2 have the largest number of group members. Notably, the
cluster center structure contains several benzene-like substructures, indicating that pi-
related interactions may be necessary for strong binding with TIPE3. We also notice
that the representative structures of clusters 1, 2, 3, 4, and 5 have a linear shape,
indicating that the linear shape molecules may easier enter the binding cavity and
achieve tightly binding. Also, all the representative structures are relatively flat, which

may help enter the binding cavity more easily.

To further explore the predicted TIPE3’s interaction details with the
representative structures, we have plotted its 3D and 2D pocket-ligand interaction
details, shown in Figure 3. Consistent with our previous assumption, we observed that
most interactions are strongly maintained by Pi-related interaction. Only F844-0389
has formed one hydrogen bond with TIPE3, while there are many pi-related
interactions for most of these compounds with TIPE3, indicating the hydrogen bond is
may not the dominant force for tightly TIPE3 binding. Compound-induced
dimerization of PD-L1 is an effective way to prevent PD-L1-PD-1 binding, leading to
inhibiting cancer cell proliferation. We have carried out DeepBindGCN screening
over the compounds database. The compounds with DeepBindGCN_BC > 0.99 and
DeepBindGCN_RG >8.6 were selected as candidates, shown in Table S5.
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Figure 3. The snapshot and 2D plot of TIPE3 with representative cluster center

compounds from docking.

We obtain 6 representative structures by clustering the candidates into six groups,
as shown in Figure S5. Cluster 5 has the largest group members. The representative
structures of clusters 1, 2 and 3 have a similar shape, while the representative clusters
3, 4, and 5 share similar linear shapes. Interestingly, except representative structure 2,

all other 5 representative structures are compounds with the pentacyclic ring. The 2D
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interaction of the predicted representative compounds with PD-L1 dimmer from
Schrodinger docking is shown in Figure S6. Most compounds interact with the PD-L1
pocket, including hydrogen bonds, Pi-related interaction, salt bridge interaction, etc. It
should be noted that Schrodinger has not successfully docked K305-0238 and E955-
0720 into the selected PD-L1 pocket.

We further carried out MD and Metadynamics simulations to check the binding
stability of the predicted protein-ligand pairs. The candidates that show favorable
binding with the 3 targets according to the free energy landscape from the
metadynamics simulation are selected to further analysis, as shown in Figure S7.

We noticed that except F844-0389 (RMSD around 0.3~0.5), the calculated RMSD of
these selected candidates for the TIPE3 have very small values (around 0.1~0.3nm)
and low fluctuation, as shown in Figure S8, indicating the candidates have very stable
binding. The protein-compound interaction details of the last frame from the MD

simulation are shown in Figure 4.
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Figure 4. The TIPE3 interaction details with candidate compounds for the last

frame from the MD simulation.

The RMSD of the selected candidates for the PD-L1 dimer is shown in Figure S9.
Notably, the RMSD values of 4376-0091 and P392-2143 have very small values
(around 0.1~0.2nm), indicating their binding is stable. The interaction details of
selected candidates with PD-L1 dimer are shown in Figure 5. We observed that the
binding pocket contains many non-polar residues, and the interaction between PD-L1
dimer with compounds is dominant with hydrophobic interactions, therefore, this
confirms that the compounds act as a molecular glue to promote and stable the PD-L1

dimerization.
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Figure 5. The PD-L1 dimer interaction details with candidate compounds for the last
frame from the MD simulation.

Discussion


https://doi.org/10.1101/2023.03.16.528593
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.16.528593; this version posted March 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

The proposed GCN-based model is extremely efficient compared to traditional
docking and deep learning-based methods. Since it does not depend on the protein-
ligand complex, it can save time and resources to preprocess the input by docking. In
many other complex structure-based models, most of the time is spent for exploring
binding conformation, and the prediction would be highly unreliable if the binding
conformations are incorrect. By using the pre-trained molecular vector to represent
the residues, the GCN-based model has an obvious improvement, indicating our
model can identify physical-chemical features and spatial information. The model’s
performance is good on the DUD.E dataset, indicating it’s highly advantageous in real
applications. This model has great potential as a core component of large-scale virtual
screening. The method is strongly complementary to many existing methods, such as
docking, MD simulation, and other deep learning methods; hence can easily be
integrated into a hybrid screening strategy. The methods can also be used to screen de
novo compounds by combining them with molecular generative models, similar to our
previous work(Zhang, Saravanan, et al., 2022).

To check its efficiency in virtual screening, we tested its time spent in virtual
screening. With CUDA acceleration, we find DeepBindGCN_BC and
DeepBindGCN_RG spent about 45.5s and 22.2s to complete the prediction of 50000
protein-ligand pairs, respectively, with an Intel CPU cores (2.00 GHz) and a GeForce
RTX 2080 Ti GPU card. With only CPU, it takes about 57.8s and 61.9s for
DeepBindGCN_BC and DeepBindGCN_RG to finish the prediction of 50000 protein-
ligand pairs, respectively, with 40 Intel CPU core (2.00 GHz). This indicates that
DeepBindGCN_BC or DeepBindGCN_RG only need 0.0004~0.0012s to complete a
prediction, which is at least ten thousand times faster than traditional docking (which
usually takes tens of seconds to several minutes) or docking-dependent deep learning-
based protein-ligand affinity prediction method. In summary, large-scale virtual
screening would greatly benefit from DeepBindGCN’s efficiency.

To compare the performance of the DeepBindGCN_RG-like model with other
affinity prediction models on the PDBBIND core set, we have trained a

DeepBindGCN_RG_x model over datasets without PDBBIND core set2013 and 2016
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(CASF-2016). The training details are in supplementary material section 1. The
performance of DeepBindGCN_RG_x with different epochs on PDBBIND core sets
2013 and 2016 (CASF-2016) are shown in Tables S6 and S7. We can see the model
has the best performance with epoch 1700 for both datasets. Hence, we are using a
model with a 1700 epoch as the final model. Since many other protein-ligand affinity
prediction models have widely tested these two datasets, we collected other methods’
performance from literature reports and showed them in Table 4. Those methods used
for comparison include KDEEP(Jiméez et al., 2018), Pafnucy(Stepniewska-
Dziubinska et al., 2018), midlevel fusion(Jones et al., 2021), GraphBAR(Son and
Kim, 2021), AK-score-ensemble(Kwon et al., 2020), DeepAtom(Li et al., 2019),
PointNet(B)(Wang et al., 2022), PointTransform(B)(Wang et al., 2022),
AEScore(Meli et al., 2021), ResAtom-Score(Y. Wang et al., 2021), DEELIG(Ahmed
et al., 2021), PIGNet (ensemble)(Moon et al., 2022), BAPA(Seo et al., 2021), SE-
OnionNet(S. Wang et al., 2021), DeepBindRG(H. Zhang, Liao, Saravanan, et al.,
2019). We can see that our DeepBindGCN_RG_x has comparable performance with
most state-of-art models. We noted that some methods have better RMSE or R-value
than our DeepBindGCN_RG_x, but they all have utilized interface information of
crystal 3D structure of the protein-ligand complex. Moreover, only our method in
Table 4 is independent of the protein-ligand complex, while others depend on the
experimental complex. The experimental complex is unavailable in a real application,
and the protein-ligand complex is obtained by docking. The method will perform
poorly in such a scenario due to some unreliable docking conformation. However, our
method’s performance is independent of the protein-ligand complex, and its
performance would be stable in such a real application. Its good performance in the
DUD.E dataset also strongly supports this assumption. It is the first time that a deep
learning-based model has achieved a rmse value of 1.3322 and Pearson R-value of
0.7922 in PDBbind v.2016 core set without any 3D protein-ligand complex. This
affinity prediction model is valuable in a wide range of real-case virtual screening
applications. In contrast, most current affinity prediction models are rarely used in

real applications.
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Table 4. Performance comparison of our DeepBindGCN_RG_x with other
methods in predicting experimental affinity on the PDBbind v.2016 core set

(CASF-2016 core set) and v.2013 core set.

Test set Methods Rmse  Pearson R zpearman
PDBbind DeepBindGCN_RG_x 1.3843 0.7719 0.7672
v.2016 KDEEP 1.27 0.82
core set Pafnucy 1.42 0.78
midlevel fusion 1.308 0.810 0.807
GraphBAR(dataset 4, Adj-2) 1.413 0.778
AK-score-ensemble 1.293
DeepAtom 1.23 0.831
PointNet(B) 1.26 0.831 0.827
PointTransform(B) 1.19 0.859 0.853
AEScore 1.22 0.83
ResAtom-Score 0.833
DEELIG 0.889
PIGNet (ensemble) 0.761
BAPA 1.308
PDBbind DeepBindGCN_RG_x 1.4864  0.7503 0.7358
v.2013 SE-OnionNet 1.692 0.812
core set DeepBindRG 1.817 0.6394
DEELIG 0.894
GraphBAR(dataset4, best) 1.636 0.704
BAPA 1.457

To explore whether the vector representation of the amino acid has a better
performance than the onehot representation, we have trained a model with onehot
representation with the same model architecture and training and validation set. The
performance over validation with different epochs is shown in Figure S10 and Table
S6 and S7. We can observe that its performance is not good as DeepBindGCN.

Like the DFCNN(Zhang, Lin, et al., 2022; H. Zhang, Liao, Cai, et al., 2019), the
DeepBindGCN can be applied to quickly and accurately identify the potential protein
target. The DeepBindGCN has inherited the efficiency of the DFCNN model, which is
also not dependent on protein-ligand docking structure. In the meantime, the
DeepBindGCN is much more efficient in keeping the spatial information within
ligands and pockets through graphic representation. Since spatial information is

critical in many protein-ligand interactions, the DeepBindGCN should be more useful
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in target identification for given compounds through inverse target searching.

Also, similar to DFCNN or autodock vina(Trott and Olson, 2010) being applied
in our previous work for specificity estimation of a given compound(Zhang, Gong, et
al., 2022), the DeepBindGCN can also be used to calculate the specificity similarly.
Our proposed scoring is shown in Figure 6. To estimate the specificity for large
amounts of compounds, we can first use the DeepBindGCN_BC to make the reverse
prediction against 102 proteins from DUD.E. We have defined a function to estimate

the DeepBindGCN_BC-based specificity. The formula is used as follows:
specificity=log,,(103/(N,, + 1))

Where N_, is the counted number of compounds that have a DeepBindGCN_BC score

larger than 0.9 during the reverse DFCNN prediction with 102 protein targets.
However, DeepBindGCN_BC doesn’t consider the binding affinity with these off-
target, hence we can carry a DeepBindGCN_RG for further relative specificity. The

relative specificity is calculated by following the formulas.

Relative specificity= log,,(103/(N_, + 1))

Where the N_, is the counted number of proteins that have a DeepBindGCN_RG
score smaller than the known target-ligand DeepBindGCN_RG score. For instance, if

we estimate the specificity of candidate compound G858-0261 of TIPE3, the N_, is

the counted number of proteins (belonging to 102 targets from DUD.E) that have
DeepBindGCN_RG score smaller than TIPE3-Y020-0019’s score 9.0349.
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Figure 6. Our proposed specificity calculation strategy for virtual screening.

There is still space for improvement of the model in the future. We can test other
model architectures, such as ATN, instead of GCN. We can apply molecular vectors in
compounds as well. For instance, each chemical group was represented as a node with
its molecular vector, and the edge was defined as chemical group neighbors. Also, we
can add compounds molecular vectors as independent input. Furthermore, we can also
integrate protein-ligand interaction pair information as graphic input, just as Moesser
et al. has done(Moesser et al., 2022). Moreover, a similar strategy can be applied to
protein-protein or protein-peptide interaction prediction. The protein interaction
interface can be represented by graphic representation in a very similar way. Hence
our work can provide helpful insight into protein-protein interaction or protein-

peptide interaction prediction.

Conclusion

We have developed DeepBindGCN_BC to identify accurate protein-ligand binding,
and DeepBindGCN_RG to further estimate the protein-ligand binding affinity. Our
GCN-based model not only help to identify binding ligands but also help to identify
strong binding ligands, which are often more likely to be developed into drugs. The

models have taken advantage of the graphic convolution network to represent spatial
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information efficiently. Also, we have added the molecular vector representation to
enhance the pocket physical-chemical feature. Furthermore, we have tested the model
in a much diversified DUD.E dataset and achieved good performance, indicating the
reliability and practicality of our method. Also, to demonstrate its application in
virtual screening, we have developed a pipeline and screened it over three cancer-
related therapeutic targets, TIPE3 and PD-L1 dimer, as proof-of-concept applications.
We also highlight its potential in other tasks, such as inverse target screening,
specificity calculation, and iteratively screening de novo compounds by integrating
with molecule generative models. We have deposited the source codes of our model
on GitHub for user’s convenience. The models and the screening pipeline presented

here would greatly help to facilitate computer-aided drug development.

Key Points
® The present work demonstrates that the resulting model is accurate and extremely
fast by using GCN and molecular vectors to represent the protein pocket

effectively and compounds spatial information and physico-chemical.

® \\We have developed a binary classifier model that includes negative data during
training to identify whether compounds will bind to a given target. Also, we have
developed an affinity prediction model, which can further identify high-affinity
binding compounds from the candidate list predicted by the binary classifier

model.

® The developed DeepBindGCN model is a generalized protein-ligand prediction
model, which is suitable for application to a wide range of therapeutic targets. In
this work, we have applied DeepBindGCN on virtual screening against TIPE3
and PD-L1 dimer as proof-of-concept examples. The obtained candidate lists

would help drug development against this target.

Availability of data and materials
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The proposed models and the scripts are available in GitHub public repositories

(https://github.com/haiping1010/DeepBindGCN).
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Figure legends:

Figure 1. The architecture of the DeepBindGCN model.

Figure 2. The virtual screening procedure integrates DeepBindGCN models with
other methods to identify highly reliable drug candidates for TIPE3.

Figure 3. The snapshot and 2D plot of TIPE3 with representative cluster center
compounds from docking.

Figure 4. The TIPE3 interaction details with candidate compounds for the last

frame from the MD simulation.

Figure 5. The PD-L1 dimer interaction details with candidate compounds for the
last frame from the MD simulation.

Figure 6. Our proposed specificity calculation strategy for virtual screening.

Table legends:

Table 1. The performance of DeepBindGCN_BC on some of the DUD.E datasets
with precision values larger than 0.9.

Table 2. The performance of DeepBindGCN_RG on some DUD.E datasets with
rmse smaller than 1.2.

Table 3. The top predicted candidates from DeepBindGCN_BC and
DeepBindGCN_RG for the TIPE3. Table 4. Performance comparison of our
DeepBindGCN_RG_x with other methods in predicting experimental affinity on
the PDBbind v.2016 core set (CASF-2016 core set) and v.2013 core set.
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