

1 **«*In vitro* and *in vivo* combination of lytic phages and octapeptin OPX10053 against**
2 **β-lactamase-producing clinical isolates of *Klebsiella pneumoniae*»**

3
4 Olga Pachos^{1,2}, Lucia Blasco^{1,2}, Ines Bleriot^{1,2}, Laura Fernández-García^{1,2}, María López^{1,2}, Concha Ortiz-
5 Cartagena^{1,2}, Antonio Barrio-Pujante^{1,2}, Felipe Fernández Cuenca^{2,3,6}, Belen Aracil^{4,6}, Jesús Oteo-
6 Iglesias^{4,6}, Karl A. Hansford^{4&} and María Tomás^{1,2*}&

7

8 1. Microbiology Department-Research Institute Biomedical A Coruña (INIBIC); Hospital A Coruña
9 (CHUAC); University of A Coruña (UDC), A Coruña, Spain.

10 2. Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of
11 the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain.

12 3. Clinical Unit of Infectious Diseases and Microbiology, Hospital Universitario Virgen Macarena,
13 Institute of Biomedicine of Seville (University Hospital Virgen Macarena/CSIC/University of
14 Seville), Seville, Spain.

15 4. Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections,
16 National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain.

17 5. Centre for Superbug Solutions, Institute for Molecular Bioscience, University of Queensland, St
18 Lucia, QLD. 4072. Australia.

19 6. CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain

20

21

22

23 & These researchers contributed equally to the work

24

25

26 * Correspondence: María Tomás
27 Email: MA.del.Mar.Tomas.Carmona@sergas.es;

28 * Correspondence: Karl Hansford
29 Email: k.hansford@uq.edu.au

30

31

32

33

34

35

36 **Running title:** Combination of lytic phages and octapeptin against *Klebsiella pneumoniae*

37 **Keywords:** Phages, octapeptin, synergy, *Klebsiella pneumoniae*.

38

39 **Abstract**

40 **Background:** novel approaches to treat *Klebsiella pneumoniae* infections are desperately
41 needed, such as the use of rationally designed combination therapies.

42 **Objectives:** to evaluate the *in vitro* and *in vivo* therapeutic potential of lytic phages against *K.*
43 *pneumoniae* in combination with octapeptin, a promising class of lipopeptides with broad
44 spectrum Gram-negative activity.

45 **Methods:** we determined the MICs to twenty-two lipopeptide compounds and chose one
46 octapeptin (OPX10053) for evaluation of potential synergism in combination with lytic phages
47 using checkerboard assays, optical density growth curves and time-kill (CFU enumeration).

48 Toxicity and efficacy *in vivo* assays were conducted on *Galleria mellonella* larvae.

49 **Results:** this study reports the synergy found *in vitro* between the octapeptin OPX10053 and
50 two lytic phages previously characterized by our research group (vB_KpnM-VAC13 and
51 vB_KpnM-VAC66) against clinical isolates of *K. pneumoniae*. This synergy was validated by the
52 FIC index, OD growth curves and time-kill assay when OPX10053 was added following 4 hours
53 of phage exposure. Preliminary evaluation of toxicity revealed that OPX10053, even at
54 subinhibitory concentrations and in phage combinations, exerts a toxic effect on larvae, which
55 requires further investigation.

56 **Conclusions:** The *in vitro* application of lytic phages in combination with octapeptin OPX10053
57 showed synergistic activity. Exposure of *G. mellonella* to the lytic phages was well tolerated,
58 whereas combination treatment with subinhibitory concentrations of OPX10053 did not
59 attenuate toxicity. Even so, this innovative approach of combining lytic phages could open the
60 door to some interesting associations between chemically synthesized drugs and biological
61 entities. Sequential or simultaneous application alongside time, dosing and stewardship
62 warrants further research.

63

64 Introduction

65 *Klebsiella pneumoniae* is an increasingly worrisome opportunistic pathogen that causes
66 severe to life-threatening infections in the urinary tract, lungs, blood and soft tissues of
67 immunocompromised patients^{1, 2}. *K. pneumoniae* infections are alarming because numerous
68 strains are resistant to many contemporary antibiotics, creating a scenario reminiscent of the
69 pre-antibiotic era³. In particular, carbapenem-resistant *K. pneumoniae* represents a serious
70 concern and is responsible for 600 deaths and 9000 infections in the United States annually⁴.
71 Persistent strains of this species display a plethora of altered mechanisms to overcome
72 antibiotic treatment by entering a dormant state, leading to chronic and recurrent infections
73 that are extremely difficult to eradicate⁵. Furthermore, clinical *K. pneumoniae* strains easily
74 acquire antibiotic resistance plasmids, form biofilms and overexpress efflux pumps^{6, 7}.
75 To combat this looming health threat, novel approaches to antimicrobial treatment are
76 desperately needed. Antimicrobial peptides (AMPs) are noteworthy as they have shown low
77 rates of resistance and display activity against many multidrug-resistant (MDR) isolates. One
78 of the best-studied peptide antibiotics are polymyxins, which have been reserved as a last-
79 resort treatment, albeit suffering from nephrotoxicity and neurotoxicity⁸⁻¹⁰. Efforts have been
80 made to generate lipopeptide analogues with improved toxicity profiles^{11, 12}.
81 One attractive type of lipopeptide class are the octapeptins, which differ from polymyxins by
82 possessing two fewer amino acids in the exocyclic tail with inverted stereochemistry in the
83 exocyclic diaminobutyric acid (Dab) residue¹³. Both classes retain a heptapeptide core, but in
84 the case of octapeptins this is bound to a lipophilic acyl monopeptide tail (β -hydroxy fatty
85 acid), exemplified by octapeptin C4, one of 18 congeners within this natural product class
86 (Figure 1)¹⁴. Despite the structural similarities of both classes, octapeptins are of considerable
87 interest due to their intrinsic *in vitro* activity against polymyxin-resistant Gram-negative
88 bacteria^{15, 16}. Moreover, the recent demonstration that repeated exposure of a clinical isolate
89 of *K. pneumoniae* to sub-lethal doses of polymyxin or octapeptin C4 over 20 days of daily
90 passage leads to divergent levels of resistance development (1000-fold increase in MIC for
91 polymyxin vs 5-fold increase for octapeptin) with no cross-resistance supports the further
92 development of the octapeptins as a unique class of antibiotics¹⁷.
93 Lipopeptide antibiotics such as polymyxin possess complex structure-activity and structure-
94 toxicity interrelationships, with nephrotoxicity and acute toxicity major contributors to
95 pipeline attrition. Strategies to ameliorate the toxic liabilities of polymyxin, including

96 medicinal chemistry optimisation and the application of truncated versions of polymyxins that
97 lack intrinsic antibacterial activity but facilitate entry of co-dosed partner antibiotics by
98 permeabilising the outer bacterial membrane, have identified promising pre-clinical
99 candidates^{11, 12, 18}. Currently, little is known about the toxicity of octapeptides, although
100 preliminary reports suggest that, in mice, octapeptin C4 and octapeptin B5 exhibit reduced
101 nephrotoxicity and/or acute toxicity compared to polymyxin^{16, 19}. In this context, we
102 considered a strategy in which the co-dosing of octapeptin in combination with lytic phages
103 might provide a cooperative killing effect against hard-to-treat *K. pneumoniae* isolates,
104 characterised by the use of sub-inhibitory concentrations of octapeptin as a means to
105 attenuate potential toxicity²⁰⁻²³ (Figure 1).

106 Phages (bacteriophages) are self-replicating, biological entities that specifically infect their
107 bacterial hosts, minimising the dysbiosis of the normal microbiota²⁴. Phages displaying a lytic
108 cycle are the ones prioritised for therapy, though interesting studies have shown the potential
109 of re-engineering lysogenic phages to produce novel lytic phages²⁵.

110 Our group recently characterized and compared two lytic phages (vB_KpnM-VAC13 and
111 vB_KpnM-VAC66) with a broad lytic spectrum against *K. pneumoniae* clinical isolates²⁶. These
112 phages belong to the “old” *Tevenvirinae* subfamily, proposed to target the deep sugar motifs
113 in the LPS core as secondary receptors²⁷. With this in mind, we aimed to search for
114 synergistic interactions between chemically synthesized octapeptides and the lytic phages
115 vB_KpnM-VAC13 and vB_KpnM-VAC66 in four heterogeneous clinical isolates of *K.*
116 *pneumoniae* and one reference strain (Table 1). Herein, we report the minimal inhibitory
117 concentrations (MIC) of 21 octapeptin analogues against five strains of *K. pneumoniae*
118 (K3320, K3324, K3325, K2534 and ATCC10031). From this pool, we identified the octapeptin
119 analogue OPX10053, which was further characterised *in vitro* and *in vivo*. Reduction in
120 viability was determined and compared to the monotherapies and the non-treated control,
121 and efficacy was assessed in *Galleria mellonella* larvae infection model.

122 **Material and methods**

123 **Bacterial strains, lytic phages and growth conditions**

124 Clinical strains of *K. pneumoniae* K3320, K3324 and K3325 were isolated in the University
125 Hospital Virgen Macarena (Sevilla, Spain), whereas K2534 was isolated in the National Centre
126 of Microbiology (Madrid, Spain). The lytic phages vB_KpnM-VAC13 and vB_KpnM-VAC66 were

127 isolated from sewage water in Valencia (Spain) and were further characterized and studied in
128 previous works by our group ²⁶. Luria-Bertani (LB) broth was used to grow the overnight
129 cultures and LB supplemented with 1mM of CaCl₂ was used when cultures were infected with
130 phages, to enhance adsorption ²⁸. For visualization of lysis plaques, TA (1% tryptone, 0.5%
131 NaCl, 1.5% agar) and semi-solid Soft (1% tryptone, 0.5% NaCl, 0.4% agar) media
132 supplemented with 1mM CaCl₂ were used.

133 **Chemically synthesized octapeptins used in this study**

134 A series of 21 lipopeptides, comprising 4 polymyxin and 17 octapeptin analogues, were
135 obtained from the University of Queensland. The polymyxin compounds included polymyxin
136 B, SPR-206 ¹², FADDI-287 ²⁹, and QPX-9003 ¹¹. Within the octapeptin series, 7 possessed a 3-
137 hydroxydecanoic acid tail, (designated “octapeptins”), 6 possessed different fatty acyl tail
138 substituents, (designated “tail modified”), and the remaining 4 were capped at the N-
139 terminus with an acyl group (designated “tailless”), combined with various ring modifications
140 at ring positions P8, P5, P4 and P1 (Figure 1b).

141 **MIC determinations to peptide compounds and lytic phages**

142 The MIC of every peptide compound used in this study was assessed by the broth
143 microdilution method following the EUCAST guidelines ³⁰. Briefly, 2-fold serial dilutions of the
144 peptides were tested in concentrations ranging from 32 to 0.125µg/mL, and with a starting
145 inoculum of 5·10⁵CFU/mL. 384-well flat-bottom plates and sterile Cation-Adjusted Muller
146 Hinton Broth were used, with a final volume of 50µL.

147 To assess the inundation threshold of the lytic phages (the phage titre required to cause a
148 decrease in the bacterial population), 10-fold dilutions were performed in SM buffer (20mM
149 Tris-HCl pH=7.5, 1mM MgSO₄ and 10mM NaCl) in 96-well polystyrene plates, based on other
150 works ^{31, 32}. As previously mentioned, we used LB+1mM CaCl₂. Every bacterial strain was
151 inoculated at a final concentration of 5·10⁵ CFU/mL per well. The OD_{600 nm} was measured
152 every hour to assess at which time-point phage resistance would arise.

153 In both cases, plates were statically incubated at 37°C in the plate reader instrument Infinite®
154 M1000 i-TecanTM and the MIC was defined as the minimal concentration of each compound
155 or lytic bacteriophage in which no growth was visible after 18h of incubation. Every MIC
156 determination was performed in technical duplicates and repeated in three independent
157 experiments.

158

159 **Checkerboard assay**

160 Among all the peptide compounds, OPX10053 was chosen for further experiments. This
161 peptide was 2-fold serially diluted in 50 μ L of LB+1mM CaCl₂, ranging from 32 to 0.03 μ g/mL
162 along the X-axis of 96-well microtiter plates. 25 μ L of either vB_KpnM-VAC13 or
163 vB_KpnM_VAC66 were added to the columns at concentrations ranging from 10⁹ to 10⁵
164 plaque-forming units (PFU)/mL, 10-fold diluted in SM buffer. Overnight cultures of *K.*
165 *pneumoniae* were diluted 1:100 in LB broth and incubated until OD_{600 nm} = 0.5-0.8, then 25 μ L
166 were added to the wells at a starting inoculum of 5x10⁵CFU/mL. The fractional inhibitory
167 concentration (FIC) for octapeptin OPX10053 was calculated using the following formula:
168 FIC_{OPX10053-Phage} = MIC_{OPX10053} in presence of phage / MIC_{OPX10053} alone, as described in other
169 works³¹. The plates were statically incubated at 37°C then the OD_{600 nm} was checked at 18h
170 using the Infinite® M1000 i-Tecan™ plate reader.

171 **Resazurin viability assay**

172 Checkerboard plates were incubated with 0.002% of resazurin, a cell-permeable redox
173 indicator that is reduced to a pink resorufin product within viable, actively metabolic cells.
174 10 μ L of water-diluted resazurin were added to each well. Plates were incubated for 2h at
175 37°C until colouration was visible. Blue-coloured wells indicate an absence of metabolically
176 active cells, whereas pink wells were indicators of bacterial metabolism.

177 **Optical density growth curves in presence of lytic phages and the peptide compound
178 sequentially applied**

179 Overnight cultures of *K. pneumoniae* K3324, K2534 and ATCC 10031™ were 1:100 diluted in
180 LB broth and incubated at 37°C for 2h until the culture reached an early exponential phase.
181 This assay was performed in 96-well microtiter plates, using LB+1mM CaCl₂. Phages were
182 inoculated at 10⁹PFU/mL and, for the first 4h of incubation, cells were exclusively exposed to
183 them. After that, the octapeptin OPX10053 was added at 2 μ g/mL final concentration for the
184 clinical strains K2534 and K3324 and at 1 μ g/mL for the reference strain ATCC 10031 (1/2 MIC,
185 respectively), to every well except to the growth controls and the only-bacteriophage control
186 group. The bacterial inoculum was 5·10⁵CFU/mL per well.

187 **Time-kill assay in presence of lytic phages and the peptide compound sequentially applied**

188 A spotting assay was performed to elucidate the dilutions in which individual colonies were
189 accountable. At the desired time-points (0, 4, 6 and 24 hours post-infection -hpi-), 50µL of
190 each well were transferred from the time-kill plate to the first row of the dilution plate,
191 containing 50µL of charcoal suspension to inactivate the compound (25mg/mL) in row A, and
192 90µL of 0.9% sterile saline in rows B-H. After the initial 1:2 dilution, 10µL were serially
193 transferred with a multichannel pipette, then 10µL of every dilution and condition was
194 spotted onto large Petri dishes containing LB-agar. The following day, we homogeneously
195 streaked 10µL in conventional-size LB-agar plates and calculated the CFU/mL considering
196 dilution factors relating to the charcoal inactivation, the plated dilution and the 10µL volume
197 streaked onto each plate.

198 **Toxicity and efficacy of combinations between lytic phages and the octapeptin OPX10053 in
199 the *G. mellonella* *in vivo* model**

200 *G. mellonella* larvae were acquired from DnatEcosistemas®, Spain. Only healthy larvae lacking
201 dark spots were chosen, randomly allocated into groups (n=15) and kept in dark and
202 starvation conditions in Petri dishes at 15°C for at least 24h prior to use. 10µL of the
203 inoculum, phage and/or peptide solutions were injected in the last left proleg using a
204 Hamilton micro-syringe. The inoculum was incubated overnight at 37°C at 180rpm,
205 centrifuged (4000g, 15min) and washed 3 times with saline. Suspensions containing
206 10⁸CFU/mL (K3324), 10⁹CFU/mL (K2534), the phages or the OPX10053 for the toxicity assay
207 were inoculated and, 90min after infection, the treatment groups were injected via the last
208 right proleg with either 10µL of the lytic phages and/or the OPX10053 at ½ MIC (2µg/mL). The
209 phages were previously purified using an Amicon® Centrifugal Filter Unit, following the
210 protocol described in ³³, and inoculated at MOI=1. We were unable to maintain the sequential
211 approach performed *in vitro* (in which bacteria were exposed only to phage for 4h and the
212 peptide was added later), since the larvae injected with sterile saline buffer 3 times showed
213 high mortality (data not shown).

214 **Results**

215 **MIC determination to peptide compounds**

216 The MIC of twenty-two peptide compounds was assessed by the broth microdilution method
217 and reported in Table 2. Meropenem and polymyxins (Pmx) were included as controls, and
218 the peptide compounds were categorized into classes according to their chemical structure:

219 the tailless compounds are devoid of the fatty acid tail, the octapeptins maintain a highly
220 similar structure to the natural products, and the tail-modified compounds contain additional
221 diversity within the fatty acyl tail (Figure 1b). All the strains were susceptible to the
222 polymyxins (MIC=0.25 μ g/mL) and to meropenem, except for the clinical isolate K2534, which
223 harbours a carbapenemase OXA-245 that confers resistance to carbapenems (MIC>2 μ g/mL).
224 K3325 is an imipenem-persister strain, which leads to the assumption that other
225 carbapenems such as meropenem would not be suitable for its treatment ³⁴. Among all the
226 peptide compounds, the tailless were inactive at the highest concentration tested (MIC
227 values \geq 16 μ g/mL), whereas the remainder of the lipopeptides exhibited variable MIC values
228 ranging from 1 to 32 μ g/mL. Of note, octapeptin OPX10053 consistently showed relatively low
229 MIC values for all the isolates (2-4 μ g/mL), warranting further investigation.

230 **Inundation threshold: “MIC” determination to lytic phages**

231 To comprehensively assess the infection kinetics for each *K. pneumoniae* isolate by both
232 phages, the OD_{600 nm} was measured every hour to have a better understanding of the precise
233 time-point at which the bacterial resistance starts. We observed that phages were effective at
234 cell lysis at the highest titre with no development of resistance until the titre was reduced
235 from 4 hpi onwards, after which the OD₆₀₀ increased dramatically (Figure 2).

236 **Checkerboard assays: FIC calculation**

237 Following the standardized guidelines ³⁵, a \geq 2-fold reduction in the MIC to the combination
238 compared to the MIC_{OPX10053} alone was considered a significant change in the bacterial strain
239 susceptibility to the compound (FIC \leq 0.5). K3324, K2534 and ATCC 10031 exhibited an increase
240 in susceptibility to the peptide OPX10053 in presence of phages, so they were selected for
241 further assays. Resazurin staining of a representative checkerboard microtiter plate, and the
242 plate layout together with the values obtained for each strain are reported in Figure 3.

243 **Optical density growth curves**

244 Considering the checkerboard assays and the FIC calculations, we used clinical isolates K3324
245 and K2534 together with the reference strain ATCC 10031 to confirm the synergistic effect
246 between the lytic phages and the peptide OPX10053. According to the infection kinetics
247 (Figure 2) and the previous determination of a considerably high frequency of resistance
248 mutants for both phages ^{26, 34}, we decided to sequentially apply the phage and lipopeptide

249 agents. We first exposed the bacterial cells to each bacteriophage for 4h, as we determined
250 this time-point to be the earliest in the appearance of resistance, followed by the addition of
251 OPX10053 at a $\frac{1}{2}$ MIC, providing a final concentration of 2 μ g/mL (for K3324 and K2534) or 1
252 μ g/mL (ATCC 10031), with the OD_{600 nm} being measured hourly. The growth of K3324 was
253 similarly inhibited by the phage vB_KpnM-VAC13 alone compared to the combination of this
254 phage with OPX10053; the same phenomenon was not true for the phage vB_KpnM-VAC66,
255 for which a regrowth started from 11 hpi onwards; this was inhibited with the combined
256 effect of vB_KpnM-VAC66 and OPX10053 (Figure 4a). Similarly, the combination of vB_KpnM-
257 VAC13+OPX10053 inhibited K2534 growth compared to the respective monotherapies (Figure
258 4a). The combination of vB_KpnM-VAC66+OPX10053 was not effective against K2534 *in vitro*.
259 Finally, testing against reference strain ATCC 10031 revealed that both the phages alone and
260 combined with OPX10053 produced a drastic reduction in the OD_{600 nm} of the population,
261 suggesting a high susceptibility of this strain towards the lytic activity of vB_KpnM-VAC13 and
262 vB_KpnM-VAC66 with no generation of resistance (Figure 4a).

263 **Time kill assay**

264 A time-kill assay was performed in order to assess the reduction in the viability of bacterial
265 cultures *in vitro*. The bacterial counts (colony forming units per mL, or CFU/mL) were
266 enumerated at 0, 4, 6 and 24 hpi, and the octapeptin OPX10053 was added after the 4h-
267 enumeration. Regarding the effect of vB_KpnM-VAC13, we observed a 5-log/4-log reduction
268 in the viability of K3324 and K2534 strains, respectively, after 4 hpi when compared to the
269 control or the OPX10053 alone (Figure 4b, blue bars); focusing on vB_KpnM-VAC66, a 6-log
270 reduction in the K3324 CFUs was assessed, in contrast to the absence of a statistically
271 significant decrease in the case of K2534 (Figure 4, light red bars). Most importantly,
272 combinations of both phages with OPX10053 reduced the CFU counts of both isolates to as
273 low as nearly 0 for K3324 (represented by orange and purple arrows in Figure 4b). Moreover,
274 vB_KpnM-VAC13+OPX10053 produced this same effect on K2534 strain (purple arrow in
275 Figure 4b), and this synergy was maintained until 24 hpi, as depicted in Figure 4b. The fact
276 that this decrease lasted until 24 hpi suggests that no resistant mutants could regrow. No
277 synergistic activity for any bacteriophage in combination with the compound OPX10053 was
278 observed for the reference isolate ATCC 10031, highlighting the dominant effect of the
279 phages alone.

280 **Toxicity and efficacy assay: *G. mellonella* infection model**

281 To determine if the octapeptin OPX10053 alone and combined with lytic phages at
282 subinhibitory concentrations was toxic and effective *in vivo*, *G. mellonella* larvae were
283 injected via their last left proleg with this compound and their survival was monitored for 48h
284 (Figure 5). Interestingly, when injected alone or combined with phages, OPX10053 was found
285 to be toxic, exhibiting high rates of mortality (Figure 5). In contrast, non-infected larvae
286 injected with a solution containing exclusively phages exhibited the same mortality rates as
287 the ones injected with saline, proving absence of toxicity. As shown in Figure 5 b, c, d and e,
288 the phages alone protected the larvae infected with either K3324 or K2534 in a statistically
289 significant way compared to the infection control group (p-values 0.019 and 0.0001 with
290 vB_KpnM-VAC13 and vB_KpnM-VAC66 for K3324, and p-values 0.005 and 0.008 for K2534).
291 For K3324 isolate, vB_KpnM-VAC13 alone protected against the combined treatment (p-value
292 0.027), just as vB_KpnM-VAC66 did (p-value 0.0006). This latter also conferred protection
293 compared to the OPX10053 alone (p-value 0.0006).

294 **Discussion**

295 In the actual crisis of increasing antimicrobial resistance, combinations of two or more
296 antimicrobial agents could become a good strategy to counteract infections²³. The renewed
297 interest in lytic phages as a possible therapeutic solution has one major drawback, which is
298 the highly resistant profiles that bacteria display to them.

299 By combining lytic phages with the octapeptin OPX10053, we observed a synergistic effect
300 assessed by MIC and FIC calculations, growth curves and time-kill assay. For K3324, both
301 vB_KpnM-VAC13 and vB_KpnM-VAC66 synergized with the octapeptin OPX10053 *in vitro*,
302 whereas for K2534 this synergy was only found for the former bacteriophage, probably due to
303 its ability to establish a very fast infection of this strain, as previously characterized³⁴. We
304 hypothesized that the reason for this synergy is that preliminary exposure to phages
305 drastically reduces bacterial density, with the sequential addition of octapeptin preventing
306 the rise of resistant mutants. Similar works combining lytic phages (PEV20, an anti-*P.*
307 *aeruginosa* phage) with amikacin, colistin and ciprofloxacin also showed synergism against
308 highly phage-susceptible isolates whereas no synergistic effect was achieved in the lowest
309 phage-susceptible strain. Akturk *et al.* found that the simultaneous addition of gentamicin
310 and ciprofloxacin with phages resulted in no synergistic effect against a dual biofilm of *P.*

311 *aeruginosa* and *S. aureus*, whereas sequential addition led to significant reduction of the
312 biofilm biomass when the antibiotics were added after 6h of phage exposure ³⁶. Other works
313 have combined a phage-derived product, an endolysin from an *Acinetobacter baumannii*
314 phage, with colistin (structurally and mechanistically similar to the OPX10053 reported here),
315 with a good therapeutic potential both *in vitro* and *in vivo* ³⁷. In a different study, Han *et al.*
316 combined a lytic phage with polymyxin B against *K. pneumoniae* and found a synergistic killing
317 *in vitro* with no cross-resistance events ²⁸.

318 We wanted to assess the efficacy of OPX10053 combined with lytic phages *in vivo*, so we
319 inoculated both agents into *G. mellonella* larvae and monitored their survival. Many articles
320 report the use of this model to validate the efficacy of phages and peptides in the *in vivo*
321 system, as it allows flexibility to test different strains and therapeutic combinations more
322 easily and cheaply than the murine model ³⁸⁻⁴². Furthermore, the immune systems of
323 invertebrates and humans share some elements concerning the primary innate immune
324 response. In our experiments, the octapeptin OPX10053 did not protect larvae against the
325 two *K. pneumoniae* strains tested. We hypothesized that the peptide was exerting a toxic
326 effect on the larval hemocytes, which could explain the high rates of mortality observed in the
327 groups treated either with OPX10053 alone or in combination with the phages, comparable to
328 the infection control group (Figure 5). Nonetheless, when the larvae were treated with
329 vB_KpnM-VAC13 or vB_KpnM-VAC66 alone, a slight but statistically significant protection was
330 conferred compared to the infection control group and the groups treated with OPX10053
331 alone and combined with phages (Figure 5).

332 The most striking protection was conferred by vB_KpnM-VAC66 in the K3324-infected larvae,
333 consistent with the 6-log reduction in the CFU enumerated at 4 hpi with vB_KpnM-VAC66,
334 assessed by the time-kill assay (Figure 4b, light red bars). In contrast, the combination of
335 vB_KpnM-VAC66 and OPX10053 was ineffective in reducing the viability of K2534 *in vivo*,
336 contrary to the drastic synergistic effect between vB_KpnM-VAC13 and OPX10053 in this
337 isolate (Figure 4b). However, a major limitation in the comparison of these two assays is the
338 fact that in the *in vivo* experiment, phages and OPX10053 had to be simultaneously applied,
339 as three injections were not feasible.

340 To our knowledge, this is the first time that synergism between lytic phages and chemically
341 synthesized octapeptides has been demonstrated *in vitro* and *in vivo*. This suggests that phages
342 might increase the susceptibility to octapeptides, which could be used in sub-inhibitory

343 concentrations to promote safer dosing. However, our studies did not show a decrease of the
344 toxicity of octapeptin in combination with phages in *G. mellonella* model. Even so, this
345 innovative combination approach could open the door to some effective drug-biological
346 entity associations.

347 **Acknowledgements**

348 We would like to acknowledge Raghu Bolisetti for the synthesis and purification of octapeptin
349 analogues, to Dr Alysha Elliott, Angela Kavanagh and Maite Amado for their assistance with
350 the experiments, and to the Institute for Molecular Biosciences and the University of
351 Queensland for providing a safe space where most of the experiments here related could
352 have been conducted.

353 **Funding**

354 This study was funded by the grants PI19/00878 and PI22/00323 awarded to M. Tomás within
355 the State Plan for R+D+I 2013-2016 (National Plan for Scientific Research, Technological
356 Development and Innovation 2008-2011) and co-financed by the ISCIII-Deputy General
357 Directorate for Evaluation and Promotion of Research-European Regional Development Fund
358 "A way of Making Europe" and Instituto de Salud Carlos III FEDER, (CIBER, PMP22/00092 and
359 the grant PMP22/00092, Personalized Precision Medicine Project MePRAM), the Study Group
360 on Mechanisms of Action and Resistance to Antimicrobials, GEMARA
361 (SEIMC, <http://www.seimc.org/>) and PIRASOA program for prevention and control of
362 infections related to health care and appropriate use of antimicrobials in Andalusia. M. Tomás
363 was financially supported by the Miguel Servet Research Programme (SERGAS and ISCIII). I.
364 Bleriot was financially supported by the pFIS program (ISCIII, FI20/00302). O. Pacios, L.
365 Fernández-García and M. López were financially supported by the grants IN606A-2020/035,
366 IN606B-2021/013 and IN606C-2022/002, respectively (GAIN, Xunta de Galicia).

367 **Transparency declaration**

368 Nothing to declare

369

370 References

- 371 1. Hitt SJ, Bishop BM, van Hoek ML. Komodo-dragon cathelicidin-inspired peptides are
372 antibacterial against carbapenem-resistant *Klebsiella pneumoniae*. *J Med Microbiol* 2020; **69**: 1262-72.
- 373 2. Bachiri T, Bakour S, Lalaoui R et al. Occurrence of Carbapenemase-Producing
374 Enterobacteriaceae Isolates in the Wildlife: First Report of OXA-48 in Wild Boars in Algeria. *Microb*
375 *Drug Resist* 2018; **24**: 337-45.
- 376 3. Golkar Z, Bagasra O, Pace DG. Bacteriophage therapy: a potential solution for the antibiotic
377 resistance crisis. *J Infect Dev Ctries* 2014; **8**: 129-36.
- 378 4. Prevention CfDCa. Antibiotic resistant threats in the United States. 2019.
- 379 5. Trastoy R, Manso T, Fernandez-Garcia L et al. Mechanisms of Bacterial Tolerance and
380 Persistence in the Gastrointestinal and Respiratory Environments. *Clin Microbiol Rev* 2018; **31**.
- 381 6. Clegg S, Murphy CN. Epidemiology and Virulence of *Klebsiella pneumoniae*. *Microbiol Spectr*
382 2016; **4**.
- 383 7. Pachos O, Fernández-García L, Blierot I et al. Adaptation of clinical isolates of *Klebsiella*
384 *pneumoniae* to the combination of niclosamide with the efflux pump inhibitor phenyl-arginine-β-
385 naphthylamide (PaβN): co-resistance to antimicrobials. *J Antimicrob Chemother* 2022; **77**: 1272-81.
- 386 8. Spapen H, Jacobs R, Van Gorp V et al. Renal and neurological side effects of colistin in critically
387 ill patients. *Ann Intensive Care* 2011; **1**: 14.
- 388 9. Justo JA, Bosso JA. Adverse reactions associated with systemic polymyxin therapy.
389 *Pharmacotherapy* 2015; **35**: 28-33.
- 390 10. Kelesidis T, Falagas ME. The safety of polymyxin antibiotics. *Expert Opin Drug Saf* 2015; **14**:
391 1687-701.
- 392 11. Roberts KD, Zhu Y, Azad MAK et al. A synthetic lipopeptide targeting top-priority multidrug-
393 resistant Gram-negative pathogens. *Nat Commun* 2022; **13**: 1625.
- 394 12. Brown P, Abbott E, Abdulle O et al. Design of Next Generation Polymyxins with Lower Toxicity:
395 The Discovery of SPR206. *ACS Infect Dis* 2019; **5**: 1645-56.
- 396 13. Blaskovich MAT, Pitt ME, Elliott AG et al. Can octapeptin antibiotics combat extensively drug-
397 resistant (XDR) bacteria? *Expert Rev Anti Infect Ther* 2018; **16**: 485-99.
- 398 14. Becker B, Butler MS, Hansford KA et al. Synthesis of octapeptin C4 and biological profiling
399 against NDM-1 and polymyxin-resistant bacteria. *Bioorg Med Chem Lett* 2017; **27**: 2407-9.
- 400 15. Han ML, Shen HH, Hansford KA et al. Investigating the Interaction of Octapeptin A3 with
401 Model Bacterial Membranes. *ACS Infect Dis* 2017; **3**: 606-19.
- 402 16. Velkov T, Gallardo-Godoy A, Swarbrick JD et al. Structure, Function, and Biosynthetic Origin of
403 Octapeptin Antibiotics Active against Extensively Drug-Resistant Gram-Negative Bacteria. *Cell Chem*
404 *Biol* 2018; **25**: 380-91.e5.

405 17. Pitt ME, Cao MD, Butler MS et al. Octapeptin C4 and polymyxin resistance occur via distinct
406 pathways in an epidemic XDR *Klebsiella pneumoniae* ST258 isolate. *J Antimicrob Chemother* 2019; **74**:
407 582-93.

408 18. Zabawa TP, Pucci MJ, Parr TR et al. Treatment of Gram-negative bacterial infections by
409 potentiation of antibiotics. *Curr Opin Microbiol* 2016; **33**: 7-12.

410 19. Qian CD, Wu XC, Teng Y et al. Battacin (Octapeptin B5), a new cyclic lipopeptide antibiotic
411 from *Paenibacillus tianmuensis* active against multidrug-resistant Gram-negative bacteria. *Antimicrob
412 Agents Chemother* 2012; **56**: 1458-65.

413 20. Gordillo Altamirano FL, Barr JJ. Phage Therapy in the Postantibiotic Era. *Clin Microbiol Rev*
414 2019; **32**.

415 21. Chan BK, Abedon ST, Loc-Carrillo C. Phage cocktails and the future of phage therapy. *Future
416 Microbiol* 2013; **8**: 769-83.

417 22. Dabrowska K, Abedon ST. Pharmacologically Aware Phage Therapy: Pharmacodynamic and
418 Pharmacokinetic Obstacles to Phage Antibacterial Action in Animal and Human Bodies. *Microbiol Mol
419 Biol Rev* 2019; **83**.

420 23. Pachios O, Blasco L, Blieriot I et al. Strategies to Combat Multidrug-Resistant and Persistent
421 Infectious Diseases. *Antibiotics (Basel)* 2020; **9**.

422 24. Mu A, McDonald D, Jarmusch AK et al. Assessment of the microbiome during bacteriophage
423 therapy in combination with systemic antibiotics to treat a case of staphylococcal device infection.
424 *Microbiome* 2021; **9**: 92.

425 25. Blasco L, Ambroa A, Lopez M et al. Combined Use of the Ab105-2phiDeltaCl Lytic Mutant
426 Phage and Different Antibiotics in Clinical Isolates of Multi-Resistant *Acinetobacter baumannii*.
427 *Microorganisms* 2019; **7**.

428 26. Pachios O, Fernández-García L, Blieriot I et al. Phenotypic and Genomic Comparison of *Klebsiella
429 pneumoniae* Lytic Phages: vB_KpnM-VAC66 and vB_KpnM-VAC13. *Viruses* 2021; **14**.

430 27. Maffei E, Shaidullina A, Burkholder M et al. Systematic exploration of *Escherichia coli* phage-host
431 interactions with the BASEL phage collection. *PLoS Biol* 2021; **19**: e3001424.

432 28. Han ML, Nang SC, Lin YW et al. Comparative metabolomics revealed key pathways associated
433 with the synergistic killing of multidrug-resistant *Klebsiella pneumoniae* by a bacteriophage-polymyxin
434 combination. *Comput Struct Biotechnol J* 2022; **20**: 485-95.

435 29. Jiang X, Patil NA, Azad MAK et al. A novel chemical biology and computational approach to
436 expedite the discovery of new-generation polymyxins against life-threatening *Acinetobacter
437 baumannii*. *Chem Sci* 2021; **12**: 12211-20.

438 30. Leclercq R, Cantón R, Brown DF et al. EUCAST expert rules in antimicrobial susceptibility
439 testing. *Clin Microbiol Infect* 2013; **19**: 141-60.

440 31. Engeman E, Freyberger HR, Corey BW et al. Synergistic Killing and Re-Sensitization
441 of *Pseudomonas aeruginosa* to Antibiotics by Phage-Antibiotic Combination Treatment.
442 *Pharmaceuticals (Basel)* 2021; **14**.

443 32. Aradhana V, Srividya ND, Raghu PJ et al. Determining the Minimum Inhibitory Concentration
444 of Bacteriophages: Potential Advantages. *Advances in Microbiology*, 2013.

445 33. Bonilla N, Rojas MI, Netto Flores Cruz G et al. Phage on tap-a quick and efficient protocol for
446 the preparation of bacteriophage laboratory stocks. *PeerJ* 2016; **4**: e2261.

447 34. Pacios O, Fernández-García L, Blierot I et al. Enhanced Antibacterial Activity of Repurposed
448 Mitomycin C and Imipenem in Combination with the Lytic Phage vB_KpnM-VAC13 against Clinical
449 Isolates of *Klebsiella pneumoniae*. *Antimicrob Agents Chemother* 2021; **65**: e0090021.

450 35. Odds FC. Synergy, antagonism, and what the chequerboard puts between them. *J Antimicrob
451 Chemother* 2003; **52**: 1.

452 36. Akturk E, Oliveira H, Santos SB et al. Synergistic Action of Phage and Antibiotics: Parameters to
453 Enhance the Killing Efficacy Against Mono and Dual-Species Biofilms. *Antibiotics (Basel)* 2019; **8**.

454 37. Blasco L, Ambroa A, Trastoy R et al. In vitro and in vivo efficacy of combinations of colistin and
455 different endolysins against clinical strains of multi-drug resistant pathogens. *Sci Rep* 2020; **10**: 7163.

456 38. Tkhilaishvili T, Wang L, Tavanti A et al. Antibacterial Efficacy of Two Commercially Available
457 Bacteriophage Formulations, Staphylococcal Bacteriophage and PYO Bacteriophage, Against
458 Methicillin-Resistant *Staphylococcus aureus* : Prevention and Eradication of Biofilm Formation and
459 Control of a Systemic Infection of *Galleria mellonella* Larvae. *Front Microbiol* 2020; **11**: 110.

460 39. Tsai CJ, Loh JM, Proft T. *Galleria mellonella* infection models for the study of bacterial diseases
461 and for antimicrobial drug testing. *Virulence* 2016; **7**: 214-29.

462 40. Thiry D, Passet V, Danis-Włodarczyk K et al. New Bacteriophages against Emerging Lineages
463 ST23 and ST258 of *Klebsiella pneumoniae* and Efficacy Assessment in *Galleria mellonella* Larvae.
464 *Viruses* 2019; **11**.

465 41. Forti F, Roach DR, Cafora M et al. Design of a Broad-Range Bacteriophage Cocktail That
466 Reduces *Pseudomonas aeruginosa* Biofilms and Treats Acute Infections in Two Animal Models.
467 *Antimicrob Agents Chemother* 2018; **62**.

468 42. Pompilio A, Geminiani C, Mantini P et al. Peptide dendrimers as "lead compounds" for the
469 treatment of chronic lung infections by *Pseudomonas aeruginosa* in cystic fibrosis patients: *in vitro* and
470 *in vivo* studies. *Infect Drug Resist* 2018; **11**: 1767-82.

471

472

473

474 **Legends of tables and figures:**

475 **Table 1:** Genomic and epidemiologic characteristics of *K. pneumoniae* isolates used in this study.

476 **Table 2:** MIC values of the peptide compounds tested over the five *K. pneumoniae* strains, grouped
477 according to their chemical properties.

478

479 **Figure 1:** a) Proposed mechanism of action for synergy between this drug-biologic combination. b)
480 Chemical structures of polymyxins and octapeptins.

481 **Figure 2:** Kinetics of infection of *K. pneumoniae* isolates by the lytic phage vB_KpnM-VAC13 (a) and
482 vB_KpnM-VAC66 (b) during time. Numbers represent the concentration of each phage in PFU/mL, and
483 control means absence of phage.

484 **Figure 3:** Checkerboard assay in the isolate K2534 (a) and resazurin staining (b) for assessment of
485 metabolically active cells in presence of phages and the octapeptin OPX10053. A representative plate
486 is shown. c) Fractional inhibitory concentration (FIC) of OPX10053 in presence of lytic phages
487 vB_KpnM-VAC13 and vB_KpnM-VAC66. All MIC values are expressed in μ g/mL

488 **Figure 4:** a) Optical density growth curves after combination with both vB_KpnM-VAC13 and
489 vB_KpnM-VAC66 phages and the octapeptin OPX10053. B) Time kill assay after combination with both
490 vB_KpnM-VAC13 and vB_KpnM-VAC66 phages and the octapeptin OPX10053 on K3324, K2534 and
491 ATCC 10031. The dark red arrow indicates the addition of the compound OPX10053 to the medium.
492 ***: p-value <0.001. All the assays were performed in triplicate and statistically analysed with
493 GraphPrism 9.0.

494 **Figure 5:** *Galleria mellonella* toxicity and efficacy assays. Kaplan-Meier curves indicate the percentage
495 of survival; the statistical significance was assessed using the Mantel-Cox test (GraphPrism 9.0), where
496 * indicates p-value <0.05, ** corresponds to p-value <0.01 and *** p-value <0.001.

497

498

499

500

501

502

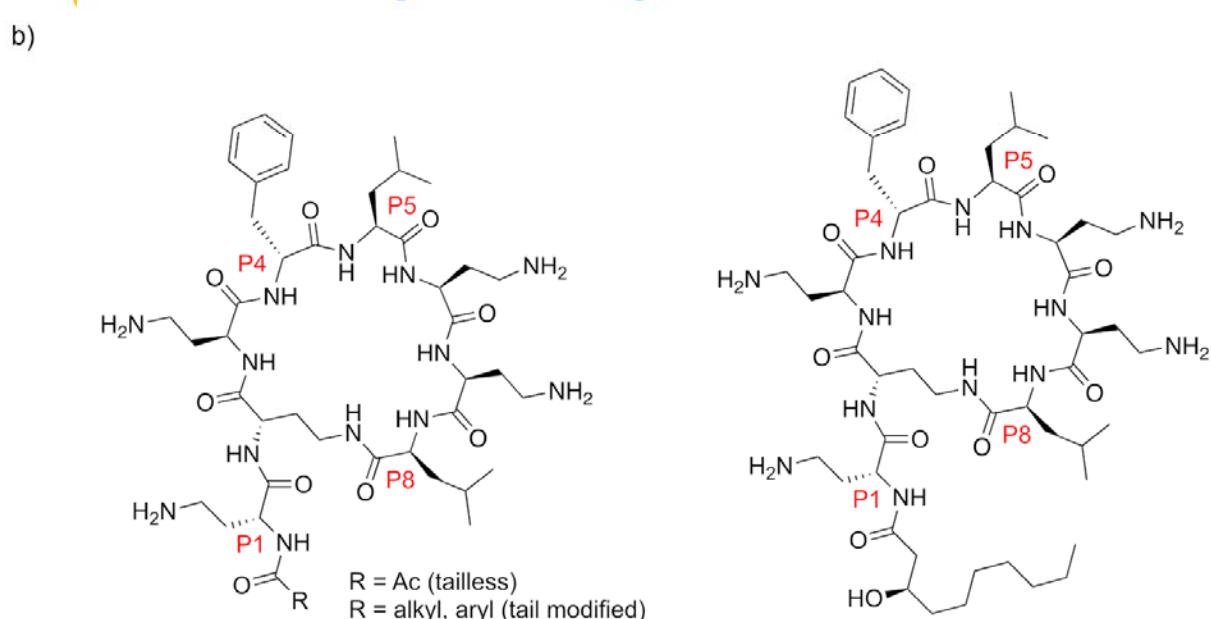
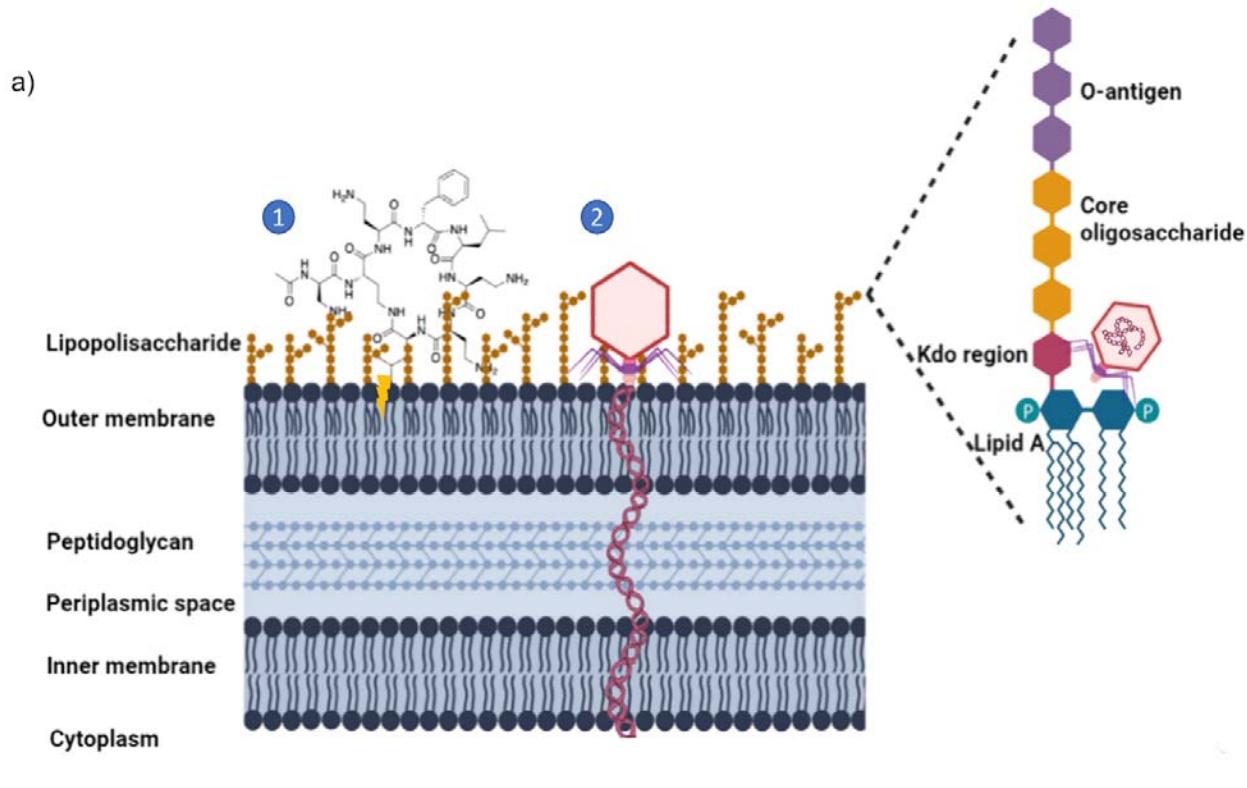
503

504 **Table 1.**

505 ST: sequence type; OXA-245: oxacillinase carbapenemase; KL: K-locus

<i>K. pneumoniae</i> strain	ST	β-lactamase genes (<i>bla</i>)	Hospital	Biological origin	Capsular type
ATCC 10031		-	Commercial	Commercial	No genome publicly available
K3320	163	SHV-36	Virgen Macarena (Spain)	Blood	KL139
K3324	542	SHV-1	Virgen Macarena (Spain)	Blood	KL8
K3325	42	SHV-1	Virgen Macarena (Spain)	Blood	KL64
K2534	437	OXA-245, CMY2, SHV-182	National Centre of Microbiology (Spain)	Rectal	KL36

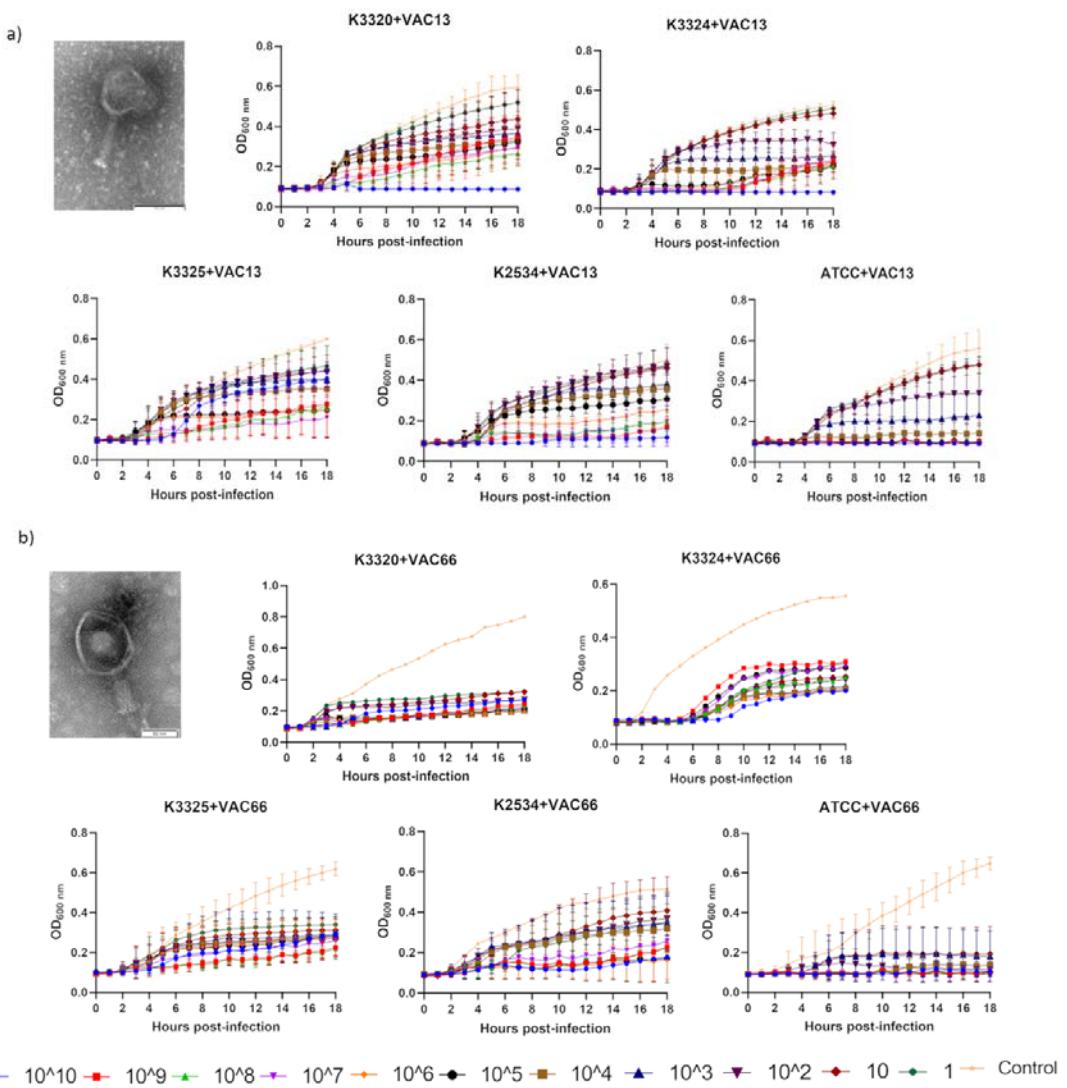
506



Table 2.507
508

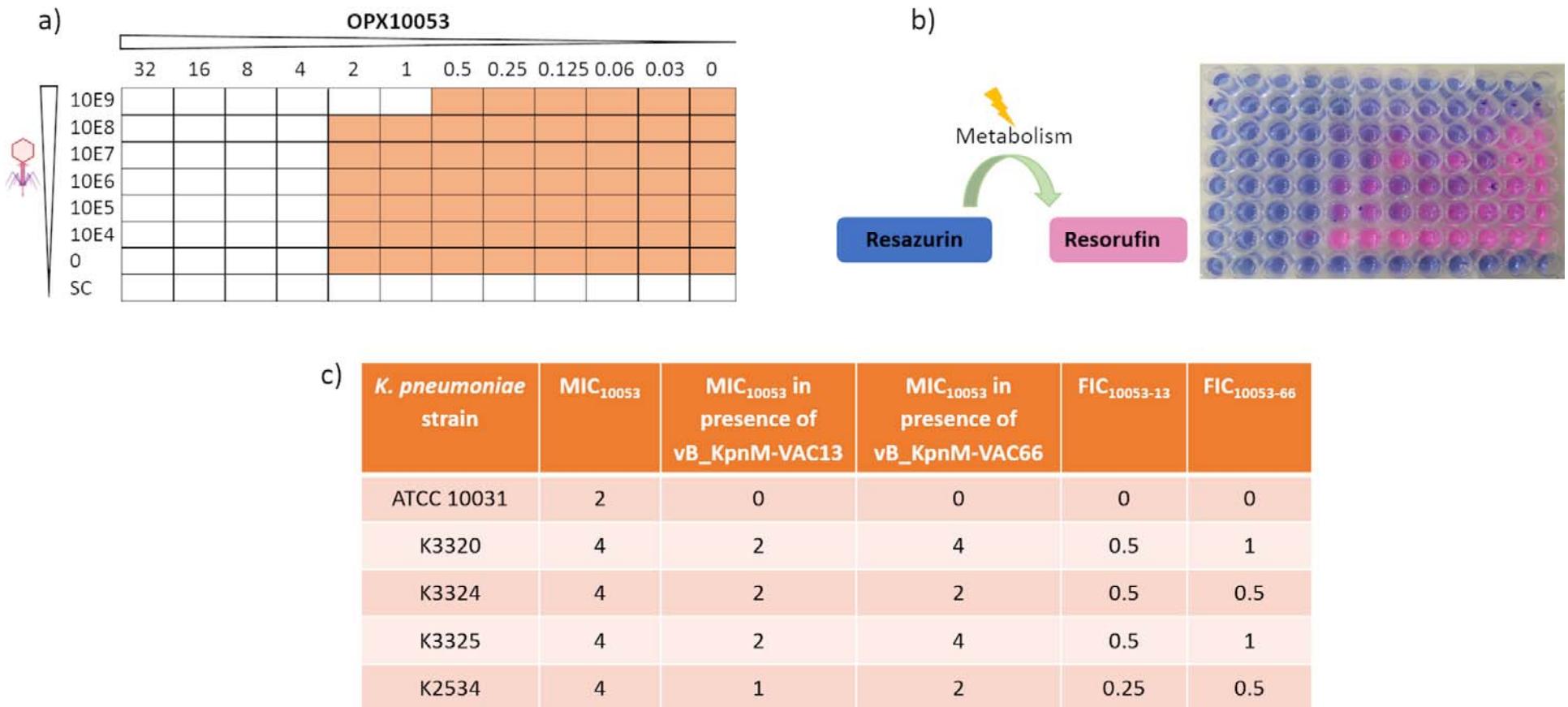
	Carbapenem	Pmx				Tailless				Octapeptins							Exotic						
	Meropenem	636	9490	10041	9476	8980	9833	10030	9222	6442	631	5561	9295	9292	9628	9630	10050	10049	10057	9872	10053	9908	
ATCC	0.23	0.25	0.25	0.25	0.25	16	>32	>32	16	2	4	2	1	1	1	1	1	4	2	1	2	2	
K3320	0.23	0.25	0.25	0.25	0.25	>32	>32	>32	32	8	8	8	8	8	8	8	8	16	8	8	4	8	
K3324	0.23	0.25	0.25	0.25	0.25	>32	>32	>32	>32	16	16	16	16	16	8	8	32	32	32	16	4	32	
K3325	0.23	0.25	0.25	0.25	0.25	32	>32	>32	>32	8	8	8	8	8	8	8	16	16	16	16	4	16	
K2534	7.25	0.25	0.25	0.25	0.25	>32	>32	>32	>32	16	16	16	16	8	16	8	8	32	32	8	4	16	

509 MIC values (µg/mL) of the peptide compounds tested on *K. pneumoniae* strains. Pmx: polymyxins; tailless compounds: polymyxins derivatives without fatty acid
510 tail; octapeptins: polymyxins derivatives showing slight amino acid changes; exotic compounds: polymyxins derivatives with other substitutions.

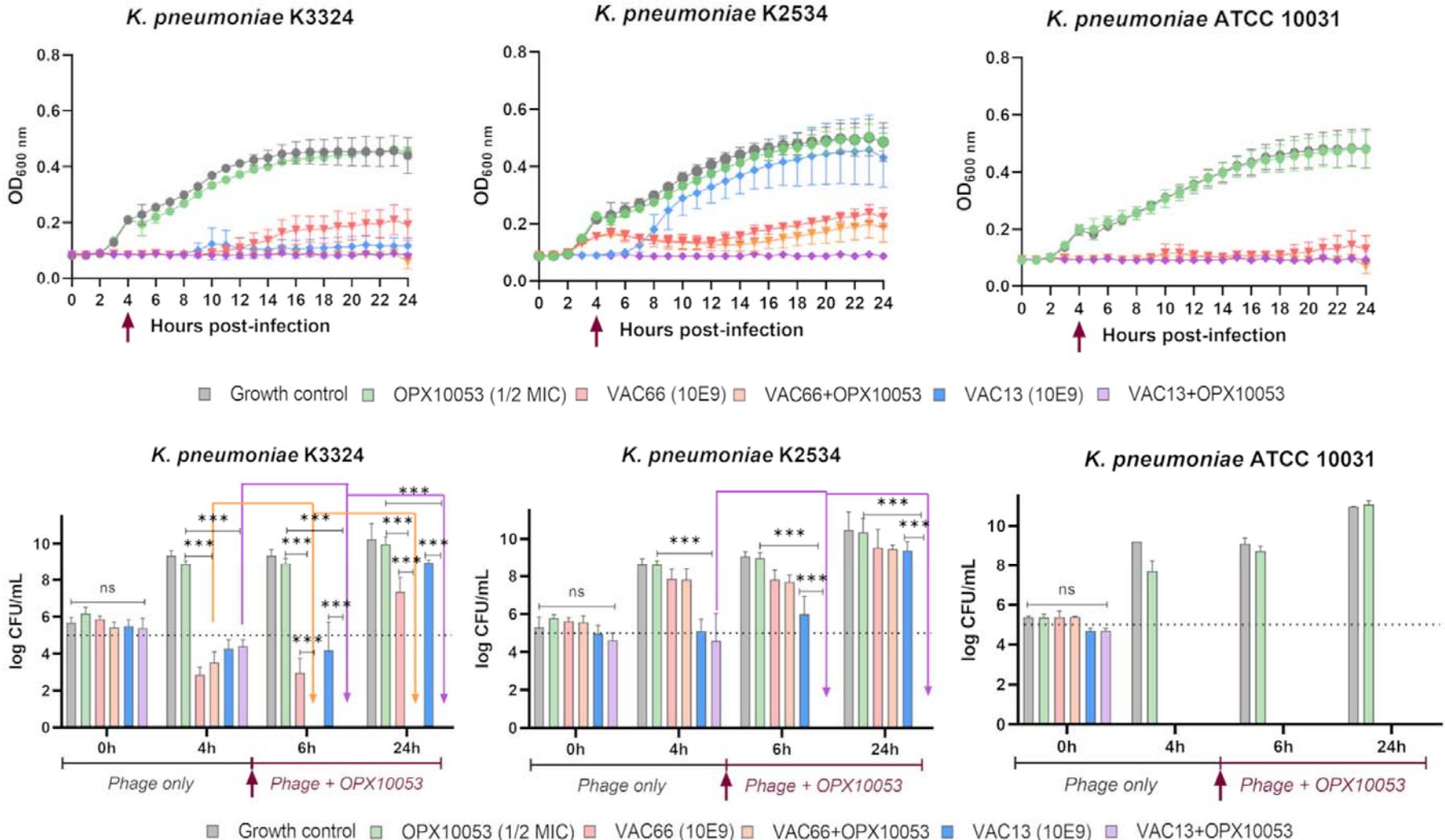
511


512 **Figure 1.**

513


514

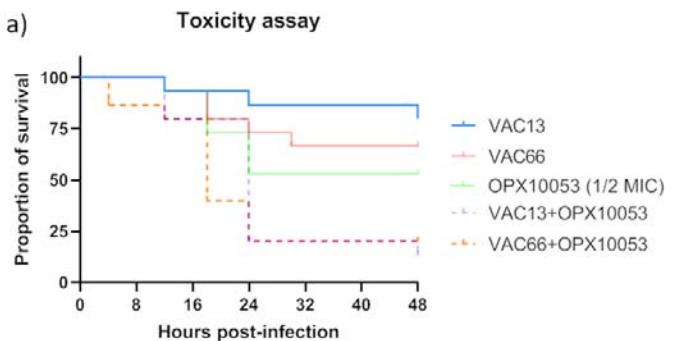
515 **Figure 2.**


516

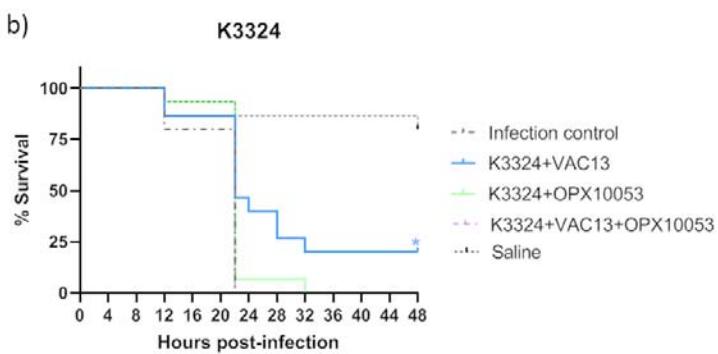
517 **Figure 3.**

518

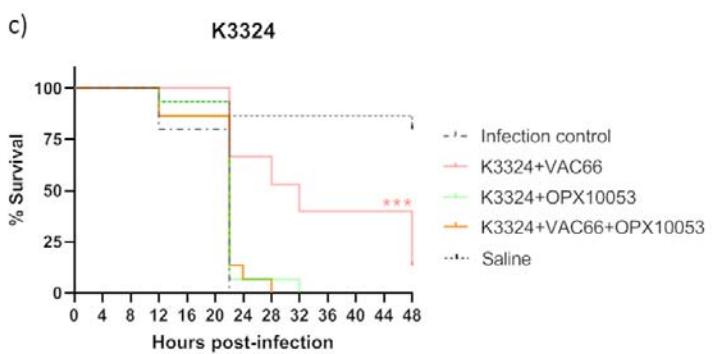
Figure 4.

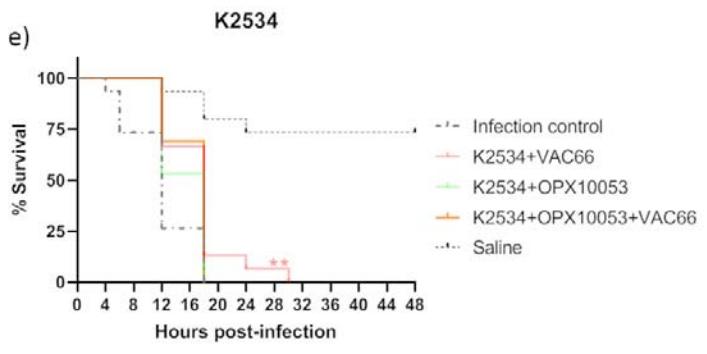
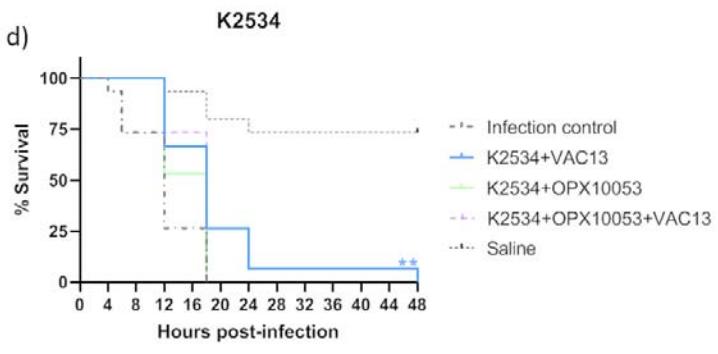


519


5.

520 **Figure**


521



527

527

527

