

24 **Abstract**

25 As photosynthetic producers, phytoplankton form the foundation of aquatic food webs.
26 Understanding the relationships among photosynthetic traits in phytoplankton is essential to
27 revealing how diversification of these traits allow phytoplankton to harvest energy from different
28 light environments. We investigated whether the diversification of 15 species of cryptophytes, a
29 phylum of phytoplankton with diverse light-capturing pigments, showed evidence of trade-offs
30 among photosynthetic performance traits as predicted by the gleaner-opportunist resource
31 exploitation framework. We constructed photosynthesis vs. irradiance (P-E) curves and rapid
32 light curves (RLCs) to estimate parameters characterizing photosynthetic performance and
33 electron transport rate. We inferred the evolutionary relationships among the 15 species with
34 ultraconserved genomic elements and used a phylogenetically controlled approach to test for
35 trade-offs. Contrary to our prediction, we observed a positive correlation between maximum
36 photosynthetic rate, P_{max} , and $P-E \alpha$, an indicator of a species' sensitivity to increases in light
37 intensity when light is a scarce resource. This result could not be explained by electron transfer
38 traits, which were uncorrelated with photosynthetic rate. Together, our results suggest that
39 ecological diversification of light exploitation in cryptophytes has escaped the constraints of a
40 gleaner-opportunist tradeoff. Photosynthetic trade-offs may be context or scale dependent,
41 thereby only emerging when investigated in situations different from the one used here.

42

43

44

45

46

47 **Introduction**

48 Trade-offs among traits can limit evolutionary diversification while simultaneously
49 promoting ecological diversity (Buckling et al., 2003; Kneitel & Chase 2004; Blanchard &
50 Moreau, 2016). Trade-offs constrain diversification by limiting the combinations of traits that are
51 available to an organism, thereby restricting its ability to adapt to a novel environment.
52 Conversely, trade-offs promote ecological diversity by preventing the emergence of a
53 “Darwinian demon,” i.e., an organism that is optimally adapted to its environment in all respects
54 and therefore outcompetes all other species in its community (Kneitel & Chase, 2004). Resource
55 allocation trade-offs have been extensively studied because they are expected to strongly
56 influence patterns of phenotypic variation. There has been less attention to trade-offs in resource
57 acquisition and assimilation, however, even though these processes provide the foundation for
58 allocation decisions and can confound predictions about allocation trade-offs (Van Noordwijk &
59 de Jong, 1986). What work has been done has largely addressed consumers (Llandres et al.,
60 2011), which potentially overlooks the importance of resource acquisition and assimilation trade-
61 offs for primary producers.

62 The gleaner-opportunist trade-off describes a trade-off between maximum growth rate
63 and minimum resource requirement, R^* (Grover, 1990; Bernhardt et al., 2020). A gleaner grows
64 relatively well at low resource levels but relatively poorly at high resource levels (Figure 1a). In
65 contrast, an opportunist grows relatively poorly at low resource levels but relatively well at high
66 resource levels (Figure 1a). A gleaner, therefore, has a lower R^* value for the resource while an
67 opportunist has a higher per-capita maximum growth rate. A lower R^* value indicates the ability
68 for a population to persist at low levels of a resource, whereas a higher per-capita maximum
69 growth rate indicates the ability to dominate a community when resources are abundant. Later,

70 the gleaner-opportunist framework was extended to include species-specific mortality rates
71 (Litchman & Klaulsmeyer, 2001).

72 Gleaner-opportunist trade-offs are believed to be important in the maintenance of
73 diversity in ecological communities (Litchman et al., 2007; Yamamichi & Letten, 2022). The
74 underlying assumption is that this trade-off allows for the coexistence of multiple species when
75 they are competing for a variable resource. Recent work, however, has called into question the
76 existence and relative importance of the gleaner-opportunist trade-off in structuring communities
77 (Kiørboe & Thomas, 2020; but see Letten & Yamamichi, 2021).

78 Here, we envision phytoplankton as consumers of light, and apply the gleaner-
79 opportunist framework to the photosynthetic and physiological dynamics of light capture and
80 exploitation. We take the view that evolutionary diversification is an important structuring force
81 in ecological communities (McPeek, 1996). Thus, our aim is to test the predictions of this
82 resource acquisition and assimilation framework as applied to the diversification of
83 photosynthetic traits.

84

85 *Phytoplankton and photosynthesis*

86 Phytoplankton form the foundation of most aquatic food webs (Field, 1998), thereby
87 determining how much energy is available and influencing diversity at higher trophic levels.
88 Phytoplankton show substantial variation of light capture and photosynthetic abilities. This
89 includes variability of photosynthetic rates (Glover et al., 1987), of the wavelengths of light they
90 can capture (Stomp et al., 2004), and of competitive abilities for light when light intensity
91 fluctuates (Guislain et al., 2019). Light capture and subsequent photosynthetic performance can
92 be considered key resource acquisition and assimilation traits (Richardson et al., 1983).

93 To investigate a potential gleaner-opportunist trade-off between photosynthetic traits, we
94 performed a phylogenetically controlled analysis across a phylum of phytoplankton with diverse
95 light capture abilities, the Cryptophyta. Cryptophytes are ideally suited to testing general
96 predictions about photosynthetic trade-offs because they encompass substantial photosynthetic
97 diversity, they are monophyletic, and they are commonly found in environments where
98 competition for light may be strong. Cryptophytes' diverse light capture abilities stem from
99 evolutionary diversification of their pigmentation (Doust et al., 2006; Greenwold et al., 2019).
100 Cryptophyte light capture pigments include chlorophyll *a*, chlorophyll *c₂*, and eight
101 phycobiliproteins that are unique to cryptophytes (Hoef-Emden & Archibald, 2016). As a taxon,
102 cryptophytes are defined as a monophyletic group by a unique secondary endosymbiosis event
103 (Hoef-Emden & Archibald, 2016). Most other photosynthetic taxa have limited pigment
104 diversity (if any at all), and analyses at higher taxonomic scales are complicated by reticulate
105 evolution. Taken together, these characteristics of cryptophytes allow for comparative
106 investigation of photosynthetic traits while controlling for shared evolutionary history.
107 Furthermore, as frequent inhabitants of low-light environments, cryptophytes face strong
108 pressure to optimize photosynthetic capabilities, making them a good model for investigating
109 adaptive hypotheses about photosynthetic diversification. Other photosynthetic organisms that
110 live in low-light environments such as shade-tolerant trees in northern hardwood forests (Walters
111 & Reich, 1996), understory plants in forests (Craine & Dybzinski, 2013; Onoda et al., 2015), and
112 coral symbionts (Anthony & Hoegh-Guldberg, 2003) lack either known pigment diversity or
113 monophyly.

114 We estimated cryptophyte photosynthetic parameters using photosynthesis vs. irradiance
115 curves (P-E curves; "E" is the standard symbol for irradiance in photophysiology; Kirk, 1994)

116 and rapid light curves (RLCs). P-E curves provide an estimate of an organism's maximum
117 photosynthetic rate, P_{max} , when light is abundant, along with information about how rapidly rates
118 of photosynthesis rise with increasing light intensity at low levels (Figure 1b). The initial slope
119 of a P-E curve, α (here referred to as $P\text{-}E \alpha$), is the rate of photosynthesis per unit biomass per
120 unit of incident light (Figure 1b). $P\text{-}E \alpha$ measures how effectively an organism responds to light
121 at sub-saturating intensities (Kirk, 1994).

122 RLCs provide information about photosynthesis on a short time scale and provide
123 measurements of relative electron transport rate ($rETR$), and effective quantum yield (Ralph &
124 Gademann, 2005). Effective quantum yield is the proportion of absorbed photons that are used to
125 drive electrons through photosystem II, whereas $rETR$ is calculated by multiplying the quantum
126 yield of photosynthesis by the photosynthetically active radiation. RLCs also provide estimates
127 of the maximum relative electron transport rate, $rETR_{max}$, between photosystems II and I during
128 the light-dependent reactions, and of the initial slope of a RLC (here referred to as $RLC \alpha$)
129 (Ralph & Gademann, 2005). $RLC \alpha$ is an estimate of the sensitivity of electron transfer to
130 variation of light intensity at sub-saturating intensities (Ralph & Gademann, 2005) whereas
131 $rETR_{max}$ is analogous to P_{max} ; it describes the maximum rate of electron transfer between
132 photosystem II and photosystem I under saturating light. As electron transport underpins
133 photosynthesis more broadly, measuring electron transport traits allows us to investigate
134 mechanisms in more detail than P-E curves.

135

136 *Terminology and hypotheses*

137 One challenge for applying the gleaner-opportunist trade-off framework to
138 photophysiology is that the use of photosynthetic traits and terminology may cloud any

139 discussion. For our study, maximum photosynthetic rate and maximum electron transport will
140 take the place of maximum growth rate in the gleaner-opportunist framework. In the
141 photosynthesis literature, prior authors have called $P-E \alpha$ and $RLC \alpha$ “efficiency” (Kirk, 1994;
142 Ralph & Gademann, 2005), which may cause confusion with other uses in the literature on the
143 ecology of resource exploitation (Watt, 1986; Raubenheimer & Simpson; 1996, Tessier et al.,
144 2000). To avoid this confusion, we will use “sensitivity” to light intensity to refer to the
145 biological interpretation of both $P-E \alpha$ and $RLC \alpha$. Additionally, we have physiological rather
146 than demographic data for our species, so we define a gleaner as one that performs better at low
147 light levels but worse at high light levels (greater $P-E \alpha/RLC \alpha$ but lower $P_{max}/rETR_{max}$)
148 whereas an opportunist performs better at high light levels but worse at low light levels (lower $P-$
149 $E \alpha/RLC \alpha$ but higher $P_{max}/rETR_{max}$,).

150 We hypothesized, that if a gleaner-opportunist trade-off exists, it would manifest as a
151 negative linear relationship between P_{max} and $P-E \alpha$. Given that we found the opposite (see
152 below), we hypothesized that this could be explained by a trade-off between the two parameters
153 describing electron transport, $rETR_{max}$ and $RLC \alpha$. Lastly, after examining both P-E curve and
154 RLC data, we tested whether there was a positive relationship between photosynthetic rates and
155 relative electron transport rates, predicting that greater electron transport would be correlated
156 with a greater rate of carbon fixation.

157

158 **Methods**

159 *Culture conditions*

160 We used 15 species of cryptophytes in this experiment, 14 of which were obtained from
161 culture repositories (Appendix S1: Section S1). We chose species to represent a wide range of

162 taxonomic, phylogenetic, and functional diversity. Each of the eight unique cryptophyte
163 phycobilins are represented by at least one species in our dataset. We isolated one species from
164 Congaree National Park, Congaree, SC, USA. Of the 15 species, 11 are identified to the species
165 level, two to the genus level, while one, our new field isolate, is an undescribed species of
166 *Cryptomonas* (Greenwold et al., unpublished data) Nine species are marine and six are
167 freshwater. Additionally, we used *Goniomonas avonlea* (CCMP 3327), a non-photosynthetic
168 cryptophyte, as an outgroup for phylogenetic estimation. More detailed culture information can
169 be found in Appendix S1: Section S1.

170

171 *Photosynthesis vs. irradiance (P-E) curves*

172 A modified method of Lewis and Smith (1983) was used to measure photosynthesis as a
173 function of irradiance (P-E). In short, NaH¹⁴CO₃ was added to a 20mL sample of each species,
174 taken when cultures were growing at mid-exponential phase, to achieve a final activity of
175 approximately 3 μ Ci mL⁻¹. One mL of sample was then dispensed into each of 16 scintillation
176 vials and vials were exposed to light intensities ranging from 0 -1400 μ mol photons m⁻² s⁻¹ and
177 irradiance was measured with a quantum scalar irradiance sensor (Biospherical Instruments, Inc.,
178 San Diego, CA, USA) inserted into an empty scintillation vial. Samples were incubated with ¹⁴C
179 for 20 minutes. After incubation, samples were terminated with 50 μ L buffered formalin while
180 dissolved inorganic carbon was driven off by adding 200 μ L of 50% HCl and shaking the open
181 vials for at least 12 h (usually overnight) in a fume hood. Five mL of scintillation cocktail
182 (EcoLumeTM; MP Biomedicals, Solon, OH, USA) were then added to each vial, vials were
183 mixed, and radioactive decay was counted using a Beckman LS-6500 scintillation counter
184 (Beckman Coulter Inc., Brea, CA, USA). Photosynthetic rate for each species was measured

185 within a four-hour window (between 14:00 and 18:00 each day). Disintegrations per minute were
186 then converted to chlorophyll *a*-specific primary productivity (Knap et al., 1996). Chlorophyll-
187 specific rates of photosynthesis were plotted against light intensity and curves were fit with the
188 equation of Platt et al. 1980 (Appendix S1: Equation S1). P_{max} and $P-E \alpha$, were calculated
189 following Platt et al. 1980 (Appendix S1: Equation S2). More details about the P-E curve
190 methods can be found in Appendix S1: Section S1.

191

192 *Rapid light curves and electron transport activity*

193 Parameters of electron transport for each species were assessed via the generation of
194 RLCs using pulse-amplitude-modulated (PAM) chlorophyll *a* fluorescence with a Walz Water-
195 PAM (PAM, Heinz-Walz, Germany). 20mL samples of each species, again taken at mid-
196 exponential phase, were dark-adapted for 20 minutes and then 3mL sub-samples of each species
197 were exposed to nine pulses of actinic light increasing in intensity with a range from 30 to 1300
198 $\mu\text{mol photons m}^{-2}\text{s}^{-1}$ with a 30 second interval between each light pulse. Curves were fit like
199 Equation S1, with P_S^B being replaced by $rETR_{mPot}$ and P^B being replaced by $rETR$ (Appendix S1:
200 Equation S3). Estimates of $rETR_{max}$ and $RLC \alpha$ were calculated in the same manner as P_{max} and
201 $P-E \alpha$ (Appendix S1: Equation S4). Electron transport traits were measured in triplicate for each
202 species. More details about the RLC methods can be found in Appendix S1: Section S1.

203

204 *Phylogenetic estimation and comparisons across species*

205 Any relationships among photosynthetic traits in cryptophytes may be influenced by the
206 species' shared evolutionary history, a problem that can be avoided with phylogenetic
207 comparative approaches (Felsenstein, 1985). Therefore, we used phylogenetic generalized least

208 squares (PGLS) to control for phylogenetic history when testing for trade-offs (Martins &
209 Hansen, 1997; Mundry, 2016). We first needed to reconstruct the evolutionary history of our
210 species, which we did with ultraconserved elements (UCEs; Faircloth et al., 2012; 2015). This
211 approach provides a genome-wide perspective on evolutionary relationships with thousands of
212 loci, providing clear benefits over work with only one or two loci (Pamilo & Nei, 1988).

213 We extracted DNA from each of our species and sent DNA samples to RAPiD
214 Genomics, LLC (Gainesville, Florida) where target enrichment sequencing was performed using
215 Illumina 2 X 150 bp reads. We used RAxML version 8.0.19 for phylogenetic inference
216 (Stamatakis, 2014) with sequence data from 1,868 conserved nuclear genome loci. Details of
217 UCE probe design, DNA extraction and sequencing, and phylogenetic inference can be found in
218 the supplementary material (Appendix S1: Section S1).

219

220 *Statistical analysis*

221 Photosynthetic and electron transport trait values were estimated with a non-linear least
222 squares method using the *minpack.lm* package (Elzhov et al., 2016). We performed PGLS
223 analyses in R version 3.6.2 (R Core Team, 2020) using the package *caper* (Orme et al., 2018).
224 We tested for correlations between P_{max} and $P-E \alpha$ and mean $rETR_{max}$ and mean $RLC \alpha$. An
225 analysis comparing P_{max} and $rETR_{max}$ was also done post-hoc after examination of the P-E curve
226 and RLC data. PGLS models were run with habitat, phycobiliprotein absorption peak, and cell
227 volume as predictor variables. These were all non-significant predictors for all models
228 (Appendix S1: Table S3), therefore all models are shown using only the single variable of
229 interest as a predictor (Table 2). We used FigTree version 1.4.0
230 (<https://github.com/rambaut/figtree/releases>) to produce the phylogenetic diagram (Figure 2),

231 rooting the phylogeny with *Goniomonas avonlea* (CCMP3327). All other figures were created
232 using *ggplot2* (Wickham, 2016).

233

234 **Results**

235 *Photosynthetic parameter estimates*

236 Our estimates for P_{max} spanned two orders of magnitude, ranging from 0.071-7.10 μgC
237 $\mu\text{Chl}^{-1} \text{h}^{-1}$. Estimates for $P-E \alpha$ almost spanned two orders of magnitude, ranging from 0.0035-
238 0.11 $\mu\text{gC} \mu\text{Chl}^{-1} \text{h}^{-1}$ ($\mu\text{mol photons m}^{-2} \text{s}^{-1}$) (Table 1). Variation of photosynthetic parameters
239 estimated from the RLCs were constrained to less than one order of magnitude, ranging from
240 16.96-89.66 $\mu\text{mol electrons m}^{-2} \text{s}^{-1}$ for $rETR_{max}$ and 0.19-0.37 $\mu\text{mol electrons photons}^{-1}$ for $RLC \alpha$
241 (Table 1). We also compared our estimates to photosynthetic parameter values estimated by the
242 Marine Primary Production: Model Parameters from Space (MAPPS) project, which contains
243 estimates of photosynthetic parameters from a global set of 5,711 P-E experiments with marine
244 phytoplankton (Bouman et al., 2018). Our estimates for P_{max} and $P-E \alpha$ for the 15 species of
245 cryptophytes used in this study are in the typical range of estimates from the MAPPS project,
246 indicating that cryptophytes do not have extreme photosynthetic traits (Appendix S1: Section S2,
247 Figure S2).

248

249 *Cryptophyte phylogeny*

250 We inferred a phylogeny (Figure 2) with two main clades: 1) a *Hemiselmis/Chroomonas*
251 clade, and 2) a *Cryptomonas/Rhodomonas* clade. All nodes were strongly supported. To our
252 knowledge, the phylogeny presented here is the first to apply a broad genome-wide data set to
253 Cryptophyta.

254 *Tests of trade-offs between photosynthetic traits*

255 P_{max} and $P-E \alpha$ are positively correlated (Figure 3a, Table 2) with the correlation having a
256 negligible phylogenetic signal (Table 2). We found no evidence of a correlation between the
257 maximum relative electron transport rate, $rETR_{max}$ of a species and the initial slope of its RLC,
258 $RLC \alpha$ (Figure 3b, Table 2). There was, however, a strong phylogenetic signal (Table 2). We did
259 not find evidence of a correlation between P_{max} and $rETR_{max}$ (Figure 3c, Table 2) however a
260 phylogenetic signal was detected (Table 2).

261

262 **Discussion**

263 *No evidence of a gleaner-opportunist trade-off*

264 We investigated whether diversification of cryptophyte algae shows a trade-off between
265 photosynthetic traits in the context of a gleaner-opportunist framework. We accounted for
266 evolutionary history in our analyses, allowing us to exclude evolutionary history as a driver of
267 the presence or absence of correlations among traits.

268 We found no evidence of a gleaner-opportunist trade-off between photosynthetic
269 performance traits in cryptophytes. In fact, we found the opposite: a significant positive
270 correlation between P_{max} and $P-E \alpha$ (Figure 3a). Cryptophytes that respond better to variation of
271 light at low levels also perform better at high light levels, suggesting that photosynthesis is
272 optimized simultaneously across a broad range of light intensities. All species were exposed to
273 light intensities that ranged from 0 -1400 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$, which reflect light intensity levels
274 that marine and freshwater algae encounter in natural environments (Kirk, 1994). The intensities
275 on the higher end of this range are sufficient to induce photoinhibition in many algae, which is
276 when P_{max} begins to decrease as light intensity increases (Kirk, 1994). The P-E curves for our

277 species, however, do not show evidence of photoinhibition (Appendix S2). Cryptophytes are
278 usually described as low light specialists (Gervais, 1997; Hoef-Emden & Archibald, 2016) but
279 our data suggest that at least some cryptophytes photosynthesize relatively well at high light
280 levels.

281 Photosynthetic rate often correlates with population growth rate (Falkowski et al., 1985;
282 Coles & Jones, 2000) and is argued to represent the relative fitness of photosynthetic organisms
283 (Violle et al., 2007). Therefore, species with the largest values for $P-E \alpha$ and P_{max} are expected to
284 have higher average fitness in across a wide range of light intensities, compared against species
285 with lower trait values.

286 Prior work has shown that the relationship between maximum growth rate and the initial
287 slope of a functional response is strongly positively correlated with body size (Kiørboe &
288 Thomas, 2020). We accounted for this potential allometric relationship by including cell volume
289 as a fixed effect in our PGLS models and did not see a significant correlation between it and the
290 initial slope of a P-E curve or RLC. (Appendix S1: Table S3). Therefore, differences of cells'
291 volumes cannot explain the observed lack of a gleaner-opportunist trade-off.

292 There have been disagreements in the literature as to the relative importance, and even
293 existence, of the gleaner-opportunist trade-off (Kiørboe & Thomas, 2020). It has long been
294 assumed to play a crucial role in structuring ecological communities by allowing for coexistence
295 between unequal competitors. We took a novel approach to evaluate the potential origin of this
296 type of trade-off through evolutionary diversification of the traits themselves by using
297 phylogenetic comparative methods to control for the evolutionary history of our focal species. As
298 we did not find a gleaner-opportunist trade-off between photosynthetic traits our work supports

299 the view that this trade-off may not be as widespread as previously assumed (Litchman et al.,
300 2007; Isanta-Navarro et al., 2022; Yamamichi & Letten, 2022).

301 There are, however, caveats to our results. One is that we did not incorporate species-
302 specific mortality rates into our experiment. With the inclusion of mortality rates, an opportunist
303 is defined by the ratio of its maximum growth rate to its mortality rate rather than simply being
304 the species with the higher maximum growth rate when a resource is abundant (Litchman &
305 Klausmeier, 2001). The trade-off could then potentially emerge between a species with a low
306 resource requirement and one with a high ratio of maximum growth rate to mortality rate
307 (Litchman & Klausmeier, 2001). In the context of our study, the ratio for defining an opportunist
308 would be the ratio of maximum photosynthetic rate to mortality rate. By ignoring mortality rates
309 we are potentially overlooking a condition through which a gleaner-opportunist trade-off may
310 manifest.

311

312 *No evidence of electron transport trade-offs*

313 A possible explanation for the lack of a trade-off at the scale of overall photosynthesis is
314 that an assimilation trade-off may exist in the electron transport chain of the light reactions but is
315 masked by compensation in other parts of photosynthesis. This explanation is however excluded
316 by our electron transport rate data, which showed no relationship between the initial slope of a
317 species' RLC and its maximum relative electron transport rate (Figure 3b).

318 The positive relationship between $P-E \alpha$ and P_{max} could have arisen due to a mechanistic
319 link between photosynthesis and electron transport. We expected species that were transferring
320 more electrons between photosystems II and I to show a higher maximum photosynthetic rate as
321 a higher rate of electron transport which would allow for more carbon to be fixed during the

322 Calvin Cycle (Falkowski & Raven, 2007). We tested whether maximum photosynthetic rate was
323 positively correlated with maximum rate of electron transfer. Somewhat surprisingly, we found
324 no evidence of a relationship (Figure 3c), indicating that greater electron transport between
325 photosystems does not yield greater photosynthesis. This relationship, however, would really be
326 expected only if all the energy generated by electron transport is being used to fix carbon.
327 Physiological plasticity in diverting energy generated through electron transport to alternative
328 metabolic pathways may explain the absence of this correlation (Halsey & Jones, 2015).

329

330 *An escape from photosynthetic trade-offs?*

331 Trade-offs promote ecological diversity by allowing competing species to coexist.
332 Competitors may experience trade-offs in resource acquisition, resource allocation, differential
333 predation, or dispersal ability; all these mechanisms can create the conditions necessary for
334 stable coexistence (Chesson, 2000; Chase & Leibold, 2003; Ellner et al., 2019). Our data shows
335 no evidence for a gleaner-opportunist trade-off between photosynthetic traits in cryptophytes.
336 Thus, some cryptophytes should be strong competitors across a wide range of light
337 environments. This lack of a trade-off, specifically between P_{max} and $P-E \alpha$, has been observed
338 before and physiological mechanisms have been suggested as the cause of this relationship
339 (Behrenfeld et al., 2008; Halsey et al., 2010).

340 In ecological comparisons of phytoplankton growing in different nutrient environments,
341 Halsey et al. (2011; 2013; 2014) suggested positive covariation between P_{max} and $P-E \alpha$ is driven
342 by carbon metabolism occurring via different pathways. These researchers manipulated nitrogen
343 or light to limit growth rates in green algae and diatoms, thereby producing positive covariation
344 of P_{max} and $P-E \alpha$ across environments due to changes in carbon metabolism. They argue that at

345 low growth rates, induced by nitrogen or light limitation, a fixed transient carbon pool is quickly
346 used for synthesis of ATP or NADPH, nucleic acids, and lipids. In contrast, at high growth rates
347 fixed transient carbon is mostly stored as polysaccharides and used over a longer timescale.
348 Thus, these within-species environmental manipulations recovered the same pattern as our
349 across-species evaluation of evolutionary diversification, but it is unclear whether the proposed
350 mechanism could be the same. First, in our study, all cultures were grown in nutrient-rich media
351 for short periods of time, and thus none should have been nitrogen-limited. This is particularly
352 true because our measurements were taken at mid-exponential phase. Second, we do not have
353 information on the transient carbon pool or polysaccharide storage to characterize carbon
354 metabolism in cryptophytes. Knowing a positive relationship exists, acquiring these types of data
355 becomes a priority for future work.

356 The carbon metabolism hypothesis provides a potential explanation for the observed lack
357 of gleaner-opportunist and power-efficiency trade-offs but does not rule out the possibility that
358 trade-offs occur between other resource acquisition traits that we did not investigate. In fact, its
359 empirical link to nitrogen limitation points to the importance of considering different types of
360 resources. Trade-offs among resource acquisition traits in phytoplankton are well known, such as
361 being a strong competitor for light but a weak competitor for nutrients (Tilman, 1977; Litchman
362 & Klausmeier, 2008). Phytoplankton resource acquisition traits are remarkably plastic (Stomp et
363 al., 2008; Hattich et al., 2016) so environmental variability such as intermittent predation
364 pressure, sporadic nutrient limitation, interspecific competition, or temperature shifts could
365 potentially drive the emergence of photosynthetic trade-offs. Over evolutionary timescales,
366 cryptophytes that display low trait values for both P_{max} and $P-E \alpha$ may have optimized other

367 aspects of fitness to be excellent competitors for other resources, leading to trade-offs among
368 traits not investigated in this study.

369

370 *Implications for natural phytoplankton communities*

371 While our study aimed to broadly examine photosynthetic trade-offs through the gleaner-
372 opportunist framework, our results also imply that the niches of cryptophytes in natural
373 phytoplankton communities may be misunderstood. In particular, the realized niche of
374 cryptophytes may have historically been interpreted as their fundamental niche. Cryptophytes are
375 often described as low-light specialists (Hoef-Emden & Archibald, 2016) and frequently occur at
376 deeper depths where less light is available (Gervais, 1997). At these depths, light attenuation
377 leads to a decrease in the number of photons available for photosynthesis and alters the color of
378 available light. Absorption by chlorophyll *a* and colored dissolved organic matter reduces the
379 blue light present in the environment while green and red light are absorbed by accessory
380 pigments like phycoerythrin and phycocyanin. In conjunction with the MAPPS data (Appendix
381 S1: Figure S2), our results suggest that cryptophytes are not exceptional at capturing photons at
382 low light intensities when compared to other taxa of phytoplankton, in contrast to expectations
383 for low-light specialists. Furthermore, our P-E curves (Appendix S2) provide no evidence for
384 photoinhibition at high light intensities. Cryptophytes instead have a broad fundamental niche
385 with respect to light intensity and are better thought of as low-light tolerant rather than
386 specialists. Cryptophytes may use their unique pigmentation to absorb colors of light that are not
387 absorbed by taxa present at the surface. They could be exploiting fine gradations of light color
388 rather than light intensity to carve out realized niches in different aquatic ecosystems. In addition
389 to being able to exploit different colors of light, cryptophytes may succeed at deeper depths

390 because due to greater nutrient availability than surface waters. Cryptophytes require nitrogen for
391 phycobiliprotein synthesis (Doust et al., 2006) and have been shown to rapidly degrade these
392 nitrogen-containing pigments when nitrogen is scarce (Da Silva et al., 2009). Living deeper may
393 provide cryptophytes with access to sufficient nitrogen to synthesize phycobiliproteins, which
394 then allows them to exploit wavelengths of light for photosynthesis that are not absorbed by
395 other taxa.

396

397 *Future directions for trade-off research*

398 Trade-offs may be dependent on the scale at which they are investigated (i.e., at the level
399 of phenotype, genotype, population, or species) (Agrawal, 2020). For example, a relationship
400 may be seen from a within-species comparison, but the same relationship may not manifest at the
401 among-species level. This pattern of trade-offs occurring across different scales can be seen in
402 trade-offs between milkweed leaf traits (Agrawal, 2020). A trade-off between leaf mass per area
403 and cardenolide concentration can be seen between populations but is not apparent at the level of
404 genotype or species (Agrawal, 2020). For plant traits, the general expectation is that trade-offs or
405 predicted trade-offs will not be persistent across different scales (Agrawal, 2020). This paradigm
406 of scale-dependent trade-offs may also be applicable to phytoplankton and may provide an
407 investigative framework for future work on photosynthetic trait trade-offs.

408 Our study tested for photosynthetic trade-offs within an explicit resource exploitation
409 framework while controlling for evolutionary history via phylogenetic comparative methods.
410 This approach should be applicable for researchers working in systems where competition for
411 light among photosynthetic organisms plays a strong role in structuring communities. This may
412 include aquatic macrophytes (Sand-Jensen et al., 2007), forest communities (Onoda et al., 2015),

413 grassland communities (Dybinski & Tilman, 2007; Hautier et al., 2009), and coral
414 endosymbionts (McIlroy et al., 2019). Examining strategies for light capture through pre-existing
415 ecological frameworks can provide new perspectives and insights on how photosynthetic
416 organisms interact with light in their environment.

417

418 **Acknowledgments**

419 We thank Kristin Heidenreich, Krista Harmon, Cameron Riddick, and Patrick Lawson for
420 help with culture maintenance and Jay Pinckney for the inspiration and equipment for measuring
421 electron transport rate via rapid light curves. This study was supported by the National Science
422 Foundation (NSF) Dimensions of Biodiversity program under grant #1542555 to T.L.
423 Richardson and J. L. Dudycha.

424

425 **Author Contributions**

426 The experiment was designed by JAS, TLR, and JLD. Data for the P-E curves and RLCs
427 were collected by JAS. DNA extractions and phylogeny creation was done by MJG. Statistical
428 analyses were done by JAS. The manuscript was written by JAS, MJG, and JLD with all authors
429 contributing to the editing process.

430

431 **Conflicts of Interest**

432 The authors declare no conflicts of interest.

433 **References**

434 Anthony, K.R.N., and O. Hoegh-Guldberg. 2003. "Variation in Coral Photosynthesis,
435 Respiration and Growth Characteristics in Contrasting Light Microhabitats: An Analogue
436 to Plants in Forest Gaps and Understoreys?". *Functional Ecology* 17: 246-259.

437 Behrenfeld, M.J., K.H. Halsey, and A.J. Milligan. 2008. "Evolved Physiological Responses
438 of Phytoplankton to their Integrated Growth Environment". *Philosophical Transactions
439 of the Royal Society B* 363: 2687-2703.

440 Bernhardt, J.R., P. Kratina, A.L., Pereira, M. Tamminen, M.K., Thomas, and A. Narwani
441 2020. "The Evolution of Competitive Ability for Essential Resources". *Philosophical
442 Transactions of the Royal Society B* 375: 20190247.

443 Blanchard, B. D., and C.S. Moreau. 2017. "Defensive Traits Exhibit an Evolutionary Trade-Off
444 and Drive Diversification in Ants". *Evolution* 71: 315–328.

445 Bouman, H. A., T. Platt, M. Doblin, F.G. Figueiras, K. Gudmundsson, H.G. Gudfinnsson, B.
446 Huang, et al. 2018. "Photosynthesis–Irradiance Parameters of Marine Phytoplankton:
447 Synthesis of a Global Data Set". *Earth System Science Data* 10: 251–266.

448 Buckling, A. 2003. "Adaptation Limits Diversification of Experimental Bacterial Populations".
449 *Science* 302: 2107–2109.

450 Chase, J. M., and M.A. Leibold. 2003. *Ecological Niches: Linking Classical and Contemporary
451 Approaches*. Chicago, IL: University of Chicago Press.

452 Chesson, P. 2000. "Mechanisms of Maintenance of Species Diversity". *Annual Review of
453 Ecology and Systematics* 31: 43-366.

454 Craine, J.M., and R. Dybzinski. 2013. "Mechanisms of Plant Competition for Nutrients, Water,
455 and Light". *Functional Ecology* 27: 833-840.

456 Doust, A. B., K.E. Wilk, P.M.G. Curmi, and G.D. Scholes. 2006. "The Photophysics of
457 Cryptophyte Light-Harvesting". *Journal of Photochemistry and Photobiology, A* 184: 1–
458 17.

459 Dybzinski, R., and D. Tilman. 2007. "Resource Use Patterns Predict Long-Term Outcomes of
460 Plant Competition for Nutrients and Light". *The American Naturalist* 170: 305-318.

461 Ellner, S. P., R.E. Snyder, P.B Adler, and G. Hooker. 2019. "An Expanded Modern Coexistence
462 Theory for Empirical Applications". *Ecology Letters* 22: 3-18.

463 Elzhov, T.V, K.M, Mullen, A.N. Speiss, and B. Bolker. 2016. "minpack.lm: R Interface to the
464 Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus
465 Support for Bounds. R package version 1.2-1".
466 <https://CRAN.Rproject.org/package=minpack.lm>

467 Faircloth, B. C., M.G. Branstetter, N.D. White, and S.G. Brady. 2015. "Target Enrichment of
468 Ultraconserved Elements from Arthropods Provides a Genomic Perspective on
469 Relationships among Hymenoptera". *Molecular Ecology Resources* 15: 489-501.

470 Faircloth B.C., J.E. McCormack, N.G Crawford, M.G. Harvey, R.T. Brumfield, and T.C. Glenn.
471 2012. "Ultraconserved Elements Anchor Thousands of Genetic Markers Spanning
472 Multiple Evolutionary Timescales". *Systematic Biology* 61: 717-726.

473 Felsenstein, J. 1985. "Phylogenies and the Comparative Method". *The American Naturalist* 125:
474 1–15.

475 Field, C. B. 1998. "Primary Production of the Biosphere: Integrating Terrestrial and Oceanic
476 Components". *Science* 281: 237–240.

477 Gervais, F. 1997. "Light-Dependent Growth, Dark Survival, and Glucose Uptake by
478 Cryptophytes Isolated from a Freshwater Chemocline". *Journal of Phycology* 33: 18–25.

479 Glover, H. E., M.D. Keller, and R.W. Spinrad. 1987. "The Effects of Light Quality and Intensity
480 on Photosynthesis and Growth of Marine Eukaryotic and Prokaryotic Phytoplankton
481 Clones". *Journal of Experimental Marine Biology and Ecology* 105: 137–159.

482 Greenwold, M. J., B.R. Cunningham, E.M. Lachenmyer, J.M. Pullman, T.L. Richardson, and J.L.
483 Dudycha. 2019. "Diversification of Light Capture Ability was Accompanied by the
484 Evolution of Phycobiliproteins in Cryptophyte Algae". *Proceedings of the Royal Society
485 B* 286: 20190655.

486 Grover, J. P. 1990. "Resource Competition in a Variable Environment: Phytoplankton Growing
487 According to Monod's Model". *The American Naturalist* 136: 771–789.

488 Guislain, A., B.E. Beisner, and J. Köhler. 2019. "Variation in Species Light Acquisition Traits
489 Under Fluctuating Light Regimes: Implications for Non-Equilibrium Coexistence". *Oikos*
490 128: 716–728.

491 Halsey, K. H., and B.M. Jones. 2015. "Phytoplankton Strategies for Photosynthetic Energy
492 Allocation". *Annual Review of Marine Science* 7: 265–297.

493 Halsey, K.H., A.J. Milligan, and M.J. Behrenfeld. 2010. "Physiological Optimization Underlies
494 Growth Rate-Independent Chlorophyll-Specific Gross and Net Primary Production".
495 *Photosynthesis Research* 103: 125–137.

496 Halsey, K.H., A.J. Milligan, and M.J. Behrenfeld. 2011. "Linking Time-Dependent Carbon-
497 Fixation Efficiencies in *Dunaliella Tertiolecta* (Chlorophyceae) to Underlying Metabolic
498 Pathways". *Journal of Phycology* 47: 66-76.

499 Halsey, K.H., R.T. O'Malley, J.R. Graff, A.J. Milligan, and M.J. Behrenfeld. 2013. "A Common
500 Partitioning Strategy for Photosynthetic Products in Evolutionarily Distinct
501 Phytoplankton Species". *New Phytologist* 198: 1030-1038.

502 Hattich, G. S. I., L. Listmann, J. Raab, D. Ozod-Seradj, T.B.H. Reusch, and B. Matthiessen.

503 2017. "Inter- and Intraspecific Phenotypic Plasticity of Three Phytoplankton Species in

504 Response to Ocean Acidification". *Biology Letters* 13: 20160774.

505 Hautier, Y., P.A. Niklaus, and A. Hector. 2009. "Competition for Light Causes Plant

506 Biodiversity Loss After Eutrophication". *Science* 324: 636-638.

507 Hoef-Emden, K., and J.M. Archibald. 2016. "Cryptophyta (Cryptomonads)". In *Handbook of the*

508 *Protists*, edited by J.M. Archibald, A.G.B. Simpson, C.H. Slamovits, L. Margulis, M.

509 Melkonian, D.J. Chapman, and J.O. Corliss, 1-41. Springer International Publishing.

510 Isanta-Navarro, J., T. Klauschies, A. Wacker, and D. Martin-Creuzburg. 2022. "A Sterol-

511 Mediated Gleaner–Opportunist Trade-Off Underlies the Evolution of Grazer Resistance

512 to Cyanobacteria". *Proceedings of the Royal Society B* 289: 20220178.

513 Kiørboe, T., and M.K. Thomas. 2020. "Heterotrophic Eukaryotes Show a Slow-Fast Continuum,

514 Not a Gleaner–Exploiter Trade-Off". *Proceedings of the National Academy of Sciences*

515 117: 24893-24899.

516 Kirk, J. T. O. 1994. *Light & Photosynthesis in Aquatic Ecosystems*. Cambridge, UK: Cambridge

517 University Press.

518 Knap, A., A. Michaels, A. Close, H.W. Ducklow, and H. Dickson. 1996. "Protocols for the Joint

519 Global Ocean Flux Study (JGOFS) Core Measurements. Report no. 19, Reprint from

520 the IOC Manuals and Guides no. 29". Bergen: UNESCO.

521 Kneitel, J. M., and J.M. Chase. 2004. "Trade-Offs in Community Ecology: Linking Spatial

522 Scales and Species Coexistence". *Ecology Letters* 7: 69–80.

523 Letten, A.D., and M. Yamamichi. 2021. "Gleaning, Fast and Slow: In Defense of a Canonical
524 Ecological Trade-Off". *Proceedings of the National Academy of Sciences*, 118:
525 e2022754118.

526 Lewis, M., and J. Smith. 1983. "A Small Volume, Short-Incubation-Time Method for
527 Measurement of Photosynthesis as a Function of Incident Irradiance". *Marine Ecology
528 Progress Series* 13: 99–102.

529 Litchman, E., and C.A. Klausmeier. 2001. "Competition of Phytoplankton Under Fluctuating
530 Light". *The American Naturalist* 157: 170–187.

531 Litchman, E., C.A. Klausmeier, O.M. Schofield, and P.G. Falkowski. 2007. "The Role of
532 Functional Traits and Trade-Offs in Structuring Phytoplankton Communities: Scaling
533 from Cellular to Ecosystem Level". *Ecology Letters* 10: 1170-1181.

534 Llandres, A. L., E. De Mas, and M.A. Rodríguez-Gironés. 2012. "Response of Pollinators to the
535 Tradeoff between Resource Acquisition and Predator Avoidance". *Oikos* 121: 687–696.

536 Martins, E.P., and T.F. Hansen. 1997. "A General Approach to Incorporating Phylogenetic
537 Information into the Analysis of Interspecific Data". *The American Naturalist* 149: 646–
538 667.

539 McIlroy, S.E., R. Cunning, A.C. Baker, and M.A. Coffroth. 2019. "Competition and Succession
540 Among Coral Endosymbionts". *Ecology and Evolution* 9: 12767-12778.

541 McPeek, M. A. 1996. "Linking Local Species Interactions to Rates of Speciation in
542 Communities". *Ecology* 77: 1355-1366.

543 Mundry, R. 2014. "Statistical Issues and Assumptions of Phylogenetic Generalized Least
544 Squares". In *Modern Phylogenetic Comparative Methods and their Application in*

545 *Evolutionary Biology*, edited by L.Z. Garamszegi, 131-153. Springer-Verlag Berlin
546 Heidelberg.

547 van Noordwijk, A. J., and G. de Jong. 1986. "Acquisition and Allocation of Resources: Their
548 Influence on Variation in Life History Tactics". *The American Naturalist* 128: 137–142.

549 Onoda, Y., J.B. Saluñga, K. Akutsu, S. Aiba, T. Yahara., and N.P.R. Anten. 2014. "Trade-off
550 between Light Interception Efficiency and Light Use Efficiency: Implications for Species
551 Coexistence in One-Sided Light Competition". *Journal of Ecology* 102: 167-175.

552 Orme, D., R. Freckleton, G. Thomas, T. Petzoldt, S. Fritz, N. Isaac, and W. Pearse. 2018.
553 "caper: Comparative Analyses of Phylogenetics and Evolution in R. R Package Version
554 1.0.1". <https://CRAN.R-project.org/package=caper>

555 Pamilo, P., and M. Nei. 1988. "Relationships between Gene Trees and Species Trees". *Molecular
556 Biology and Evolution* 5: 568-583.

557 Platt, T., C.L. Gallegos, and W.G. Harrison. 1980. "Photoinhibition of Photosynthesis in Natural
558 Assemblage of Marine Phytoplankton". *Journal of Marine Research* 38: 687-701.

559 Ralph, P. J., and R. Gademann. 2005. Rapid Light Curves: A Powerful Tool to Assess
560 Photosynthetic Activity. *Aquatic Botany* 82: 222–237.

561 Raubenheimer, D., and S.J. Simpson. 1996. "Meeting Nutrient Requirements: The Roles of
562 Power and Efficiency". *Entomologia Experimentalis et Applicata*, 80, 65–68.

563 Richardson, K., J. Beardall, and J.A. Raven. 1983. Adaptation of Unicellular Algae to Irradiance:
564 an Analysis of Strategies. *New Phytologist* 93: 157–191.

565 R Core Team 2020. R: A Language and Environment for Statistical Computing. R
566 Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.

567 Sand-Jensen, K., T. Binzer, and A.L. Middelboe. 2007. "Scaling of Photosynthetic Production of

568 Aquatic Macrophytes – A Review". *Oikos* 116: 280-294.

569 da Silva, A. F., S.O. Lourenço, and R.M. Chaloub. 2009. Effects of Nitrogen Starvation on the
570 Photosynthetic Physiology of a Tropical Marine Microalga *Rhodomonas* sp.
571 (Cryptophyceae). *Aquatic Botany* 91: 291–297.

572 Stamatakis, A. 2014. "RAxML version 8: a tool for phylogenetic analysis and post-analysis of
573 large phylogenies". *Bioinformatics* 30: 1312-1313.

574 Stomp, M., M.A. van Dijk, H.M.J. van Overzee, M.T. Wortel, C.A.M. Sigon, M. Egas, H.
575 Hoogveld, H.J. Gons, and J. Huisman. 2008. "The Timescale of Phenotypic Plasticity and
576 its Impact on Competition in Fluctuating Environments". *The American Naturalist* 172:
577 E169–E185.

578 Stomp, M., J. Huisman, D. Gerla, M. Rijkeboer, B.W. Ibelings, U.I.A. Wollenzien, and L.J. Stal.
579 2004. "Adaptive Divergence in Pigment Composition Promotes Phytoplankton
580 Biodiversity". *Nature* 432: 104-107.

581 Tessier, A. J., M.A. Leibold, and J. Tsao. 2000. "A Fundamental Trade-Off in Resource
582 Exploitation by *Daphnia* and Consequences to Plankton Communities". *Ecology* 81:
583 826–841.

584 Tilman, D. 1977. "Resource Competition between Plankton Algae: An Experimental and
585 Theoretical Approach". *Ecology* 58: 338–348.

586 Violette, C., M.L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel, and E. Garnier. 2007. "Let
587 the Concept of Trait Be Functional!" *Oikos* 116: 882–892.

588 Walters, M.B., and P.B. Reich. 1996. "Are Shade Tolerance, Survival, and Growth Linked? Low
589 Light and Nitrogen Effects on Hardwood Seedlings". *Ecology* 77: 841-853.

590 Watt, W. B. 1986. "Power and Efficiency as Indexes of Fitness in Metabolic Organization". *The*
591 *American Naturalist* 127: 629–653.

592 Wickham, H. 2016. "ggplot2: elegant graphics for data analysis". Springer-Verlag New
593 York.

594 Yamamichi, M., and A.D. Letten. 2021. "Rapid Evolution Promotes Fluctuation-Dependent
595 Species Coexistence". *Ecology Letters* 24: 812-818.

596 Yamamichi, M., and A.D. Letten. 2022. "Extending the Gleaner-Opportunist Trade-Off".
597 *Journal of Animal Ecology* 00:1-8.

598

599

600

601

602

603

604

605

606

607

608

609

610 **Table 1:** Values for photosynthetic performance traits and electron transport rate traits for each
 611 cryptophyte species

Species	$P-E \alpha$ ($\mu\text{gC} \mu\text{Chl} \text{a}^{-1} \text{h}^{-1}$ (μmol photons $\text{m}^{-2} \text{s}^{-1}$) $^{-1}$)	P_{max} ($\mu\text{gC} \mu\text{Chl} \text{a}^{-1} \text{h}^{-1}$)	$RLC \alpha$ (μmol electrons photons $^{-1}$)	$rETR_{max}$ ($\mu\text{mol electrons}$ $\text{m}^{-2} \text{s}^{-1}$)
<i>Cryptomonas ovata</i>	0.030	3.07	0.323	58.86
<i>Chroomonas mesostigmatica</i>	0.065	2.84	0.205	21.28
<i>Chroomonas nordstedtii</i>	0.0035	0.072	0.297	35.86
<i>Chroomonas placoidea</i>	0.023	2.67	0.194	21.83
<i>Chroomonas sp.</i>	0.015	0.24	0.222	20.78
<i>Cryptomonas sp.</i>	0.048	1.93	-	-
<i>Guillardia theta</i>	0.024	3.19	0.301	67.06
<i>Hemiselmis cryptochromatica</i>	0.11	2.66	0.256	27.06
<i>Hemiselmis pacifica</i>	0.031	1.79	0.356	16.96
<i>Hemiselmis tepida</i>	0.030	1.43	0.212	19.04
<i>Proteomonas sulcata</i>	0.058	3.05	0.367	29.31
<i>Rhodomonas minuta</i>	0.061	3.47	0.323	89.66
<i>Rhodomonas salina</i>	0.018	1.56	0.374	30.29
<i>Teleaulax sp.</i>	0.039	2.24	0.374	77.74
<i>Unid. sp.</i>	0.10	7.10	0.328	35.89

612

613

614

615

616

617 **Table 2:** Summary of results from PGLS regression models. Significant p -values are in bold.

618

619

PGLS Model	Intercept	F	Df	Adjusted R^2	p	N	Pagel's λ
$P_{\max} \sim P\text{-}E\text{-}\alpha$	0.88	12.12	1,13	0.44	0.0041	15	0.054
$r\text{ETR}_{\max} \sim$ $\text{RLC}\text{-}\alpha$	20.66	0.53	1,12	-0.038	0.48	14	1
$P_{\max} \sim r\text{ETR}_{\max}$	2.64	0.038	1,12	-0.080	0.85	14	1

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641 **Figure 1:** a) Visualization of the gleaner-opportunist framework, adapted from Litchman &
642 Klausmeier, 2001. A gleaner (blue line) has a higher per-capita growth rate at low resource
643 concentrations while an opportunist (gold line) has a higher per-capita growth when resources
644 are abundant. b) Example photosynthesis vs. irradiance curve for the cryptophyte *Rhodomonas*
645 *salina* indicating the initial slope of the P-E curve, $P\text{-}E \alpha$, and the maximum photosynthetic rate,
646 P_{max}

647

648 **Figure 2:** Phylogeny for the 15 cryptophyte species constructed using ultra-conserved elements.
649 Bootstrap values shown at each node.

650

651 **Figure 3:** Relationships between photosynthetic parameters derived from P-E curves and RLC.
652 a) Maximum photosynthetic rate, P_{max} ($\mu\text{g C} (\mu\text{ chl } a)^{-1} \text{ h}^{-1}$), of a species and $P\text{-}E \alpha$ ($\mu\text{g C} (\mu\text{ chl } a)^{-1} \text{ h}^{-1} (\mu\text{mol photons m}^{-2} \text{ s}^{-1})^{-1}$), the initial slope of its P-E curve. b) Maximum relative electron
653 transport rate, $rETR_{max}$ ($\mu\text{mol electrons m}^{-2} \text{ s}^{-1}$) and the initial slope of a RLC, $RLC \alpha$ (electrons
654 photons $^{-1}$). Points are the mean values of triplicate estimates for $rETR_{max}$ and $RLC \alpha$ for each
655 species or species. c) No correlation between the maximum photosynthetic rate of a species, P_{max}
656 ($\mu\text{g C} (\mu\text{ chl } a)^{-1} \text{ h}^{-1}$), and its maximum relative electron transport rate, $rETR_{max}$ ($\mu\text{mol electrons}$
657 $\text{m}^{-2} \text{ s}^{-1}$). $rETR_{max}$ values represent the mean of triplicate estimates for each species or species.

659

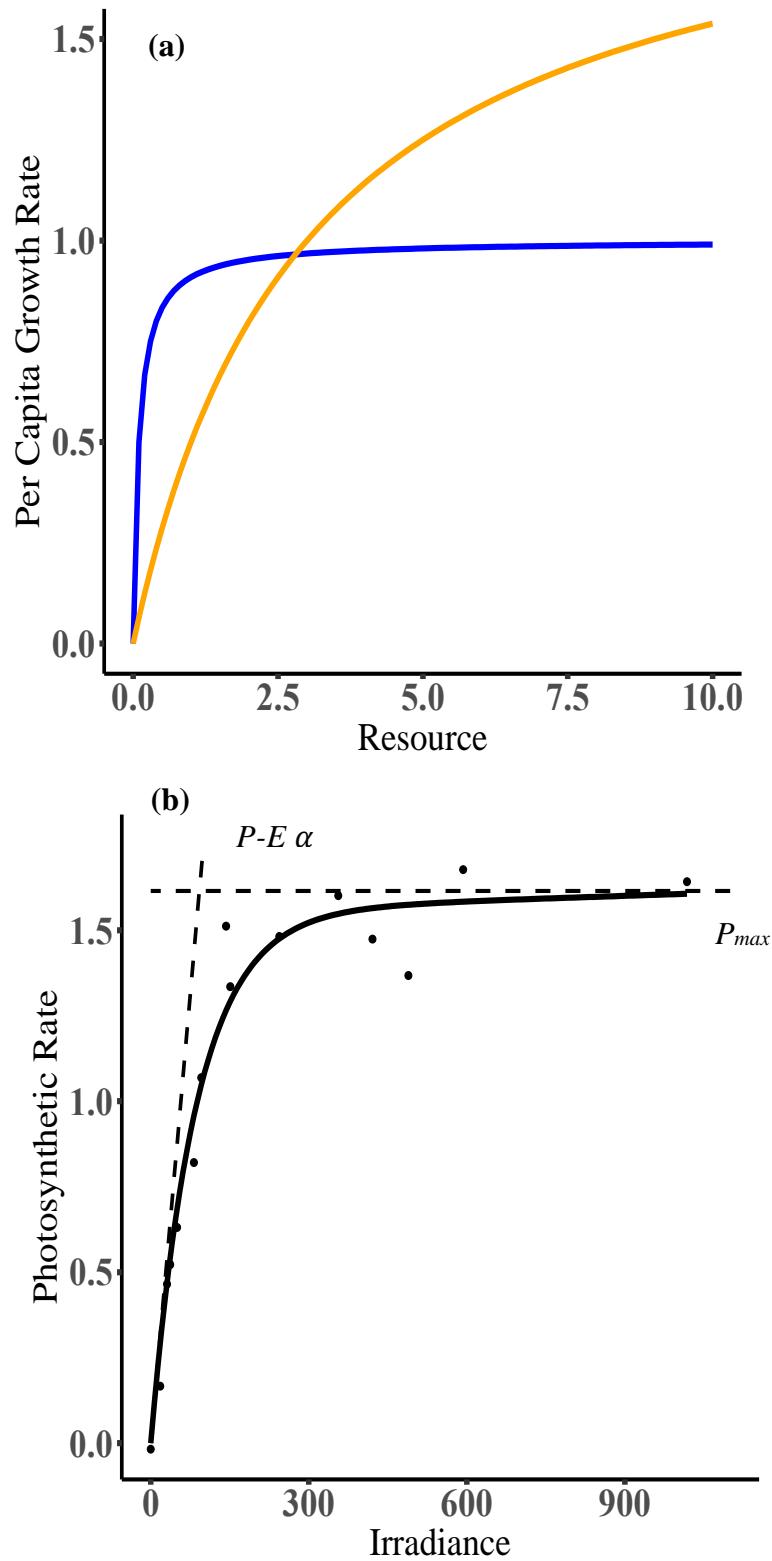
660

661

662

663

664


665

666

667

668

669 **Figure 1**
670

715 **Figure 2**

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

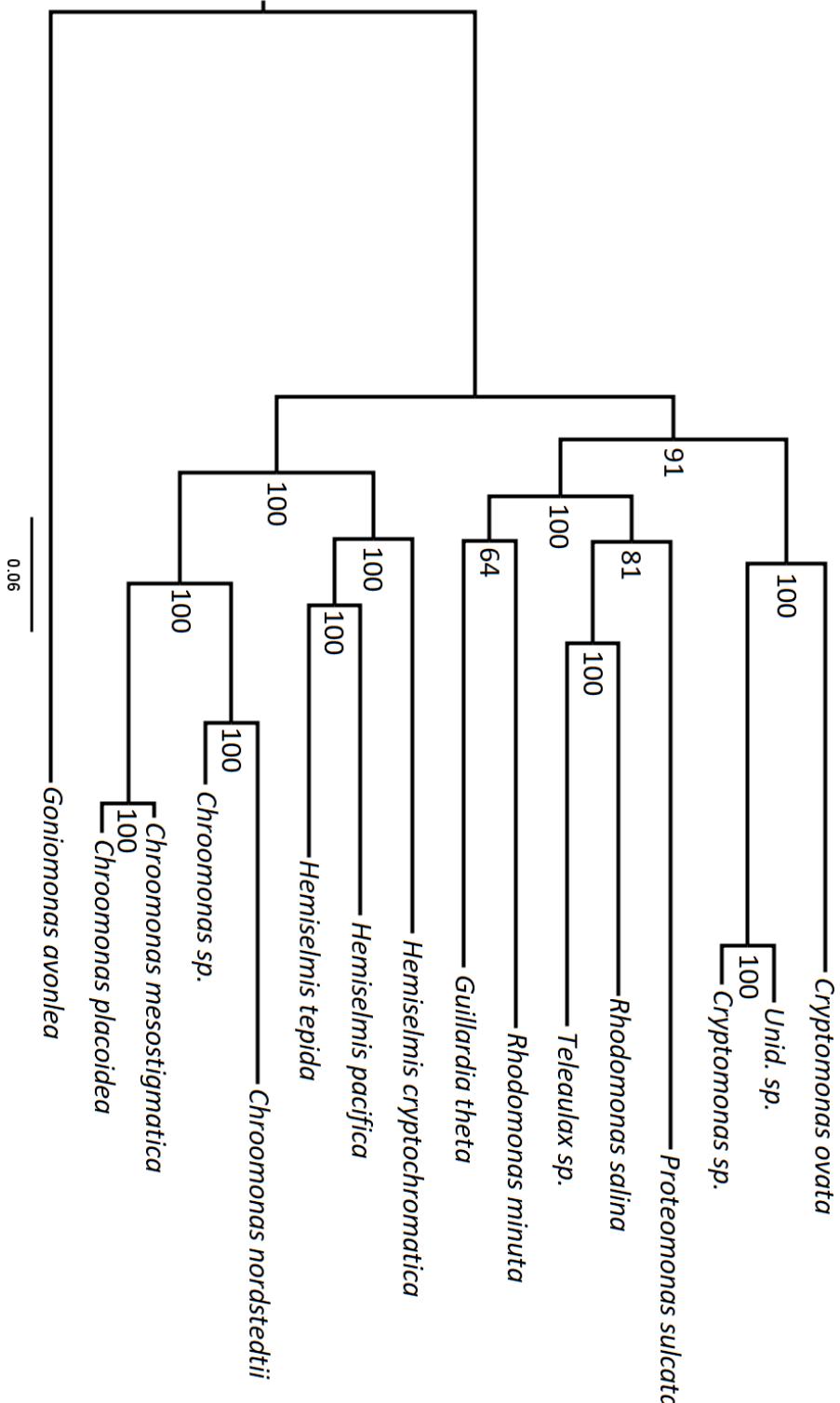
751

752

753

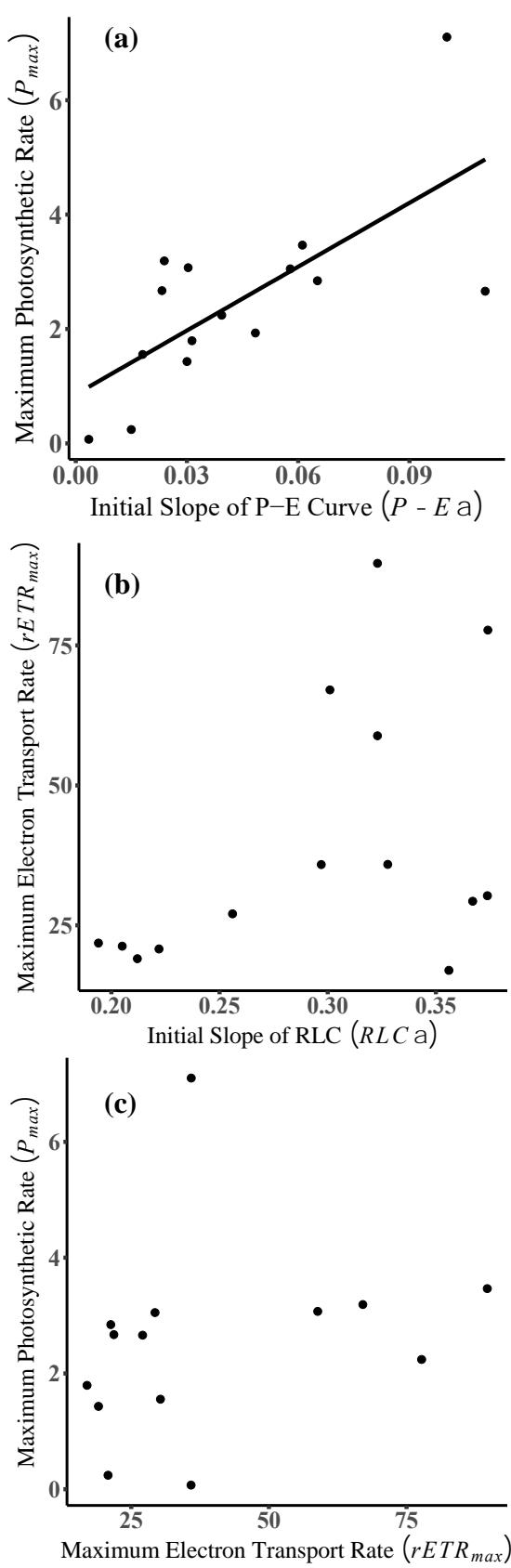
754

755


756

757

758


759

760

761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

Figure 3

