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Abstract 27 
 28 
Epilepsy is one of the most common neurological disorders in children. Diagnosing epilepsy in 29 
children can be very challenging, especially as it often coexists with neurodevelopmental conditions 30 
like autism and ADHD. Functional brain networks obtained from neuroimaging and 31 
electrophysiological data in wakefulness and sleep have been shown to contain signatures of 32 
neurological disorders, and can potentially support the diagnosis and management of co-occurring 33 
neurodevelopmental conditions. In this work, we use electroencephalography (EEG) recordings from 34 
children, in restful wakefulness and sleep, to extract functional connectivity networks in different 35 
frequency bands. We explore the relationship of these networks with epilepsy diagnosis and with 36 
measures of neurodevelopmental traits, obtained from questionnaires used as screening tools for 37 
autism and ADHD. We explore differences in network markers between children with and without 38 
epilepsy in wake and sleep, and quantify the correlation between such markers and measures of 39 
neurodevelopmental traits. Our findings highlight the importance of considering the interplay between 40 
epilepsy and neurodevelopmental traits when exploring network markers of epilepsy. 41 
 42 
 43 
 44 
Introduction 45 
 46 
Epilepsy is estimated to impact nearly 10.5 million children worldwide1. In addition to the personal, 47 
social, and economic impact of epilepsy on children and their families, seizures have been shown to 48 
be detrimental to brain development2, potentially leading to cognitive dysfunction, and the condition 49 
is often associated with lifelong disabilities and poor quality of life3,4. Therefore, early and accurate 50 
diagnosis of epilepsy is paramount. Unfortunately, epilepsy diagnosis can be very challenging. The 51 
rate of epilepsy misdiagnosis is estimated to be near 20% generally5 and, due to a wide range of non-52 
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epileptic paroxysmal disorders and co-occurrences affecting children6, misdiagnosis in children is 53 
believed to be even greater than for adults7. 54 
 55 
Diagnosis and management of neurological and neurodevelopmental conditions are made more 56 
challenging when they coexist. This is frequently the case with epilepsy, where its prevalence in 57 
children with Autism Spectrum Disorder and ADHD is 20% and 15%, respectively, which is 58 
significantly higher than in neurotypical children (~1%)8. The complex relationship between epilepsy 59 
and co-occurring neurodevelopmental conditions remains an important open question, the resolution 60 
of which could improve clinical outcomes and provide optimal and individualised care. 61 
 62 
Epilepsy is increasingly conceptualised as a condition of aberrant brain networks9,10. Scalp 63 
electroencephalography (EEG) is one of the most widespread methods used to quantify these networks. 64 
Functional networks obtained from scalp EEG have shown fundamental differences between people 65 
with epilepsy and healthy controls, for both adults11,12,13 and children14,15. Neurodevelopmental 66 
conditions, such as autism and ADHD, have also been investigated using the framework of network 67 
science16, although these methods are less well stablished in this context. Moreover, very few studies 68 
have investigated the joint effect of epilepsy and co-occurring neurodevelopmental conditions on 69 
functional brain networks17. This is necessary to understand network signatures that are specific either 70 
to epilepsy, or to neurodevelopmental conditions, rather than being sensitive to their co-occurrences. 71 
Network markers of epilepsy may be influenced by the presence of neurodevelopmental traits, 72 
potentially leading to erroneous interpretations of the relationship between these markers and seizure 73 
propensity. 74 
 75 
Another important factor when exploring network markers of co-occurring neurological and 76 
neurodevelopmental conditions is the influence of sleep. A growing number of studies support the 77 
association between poor sleep and both epilepsy and neurodevelopmental conditions 18,19,20,21,22. This 78 
relationship tends to be bidirectional, where sleep disruption can increase seizure propensity and 79 
presentation of neurodevelopmental conditions, which can in turn result in poor sleep23. At the same 80 
time, graph metric analysis has shown that several aspects of sleep, such as the wake-sleep transition 81 
itself as well as sleep deprivation, are associated with connectivity changes in functional brain 82 
networks24,25,26,27,28. Markers of epilepsy might also be influenced by stages of awareness (wake and 83 
sleep), given the known changes to the propensity for epileptic discharges with sleep stage29,30. 84 
 85 
In this work we explore the combined effects of epilepsy and neurodevelopmental traits on functional 86 
connectivity networks obtained from EEG recordings from children in waking restfulness and sleep. 87 
We identify differences in functional connectivity between subjects with and without epilepsy, which 88 
are consistent across frequency bands. We also show that such differences are less pronounced during 89 
sleep. Finally, we quantify the correlation between neurodevelopmental traits and network measures, 90 
identifying similar effects as seen for epilepsy. These results highlight the importance of considering 91 
the co-occurrence of neurodevelopmental traits when a graph metric approach is implemented in this 92 
context. 93 
 94 
 95 
Methods 96 
 97 
Data acquisition and participants 98 
The data used in this study were acquired at Birmingham Children’s Hospital and Worcestershire 99 
Royal Hospital. Written informed consent and assent were obtained from parents and children and the 100 
study received NHS ethical approval from the Northwest - Preston Research Ethics Committee (REC 101 
reference 19/NW/0337).  EEG recordings were collected in “nap sleep EEG” sessions (i.e., recordings 102 
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taken during a short period where the child falls asleep) from children suspected of having epilepsy, 103 
as part of the diagnostic process. Sixty-two recordings, collected between September 2019 and 104 
December 2021, were retrieved. EEG data were acquired from 19 electrodes positioned according to 105 
the 10-20 system and sampled at 512Hz. In some participants, melatonin or mild sleep deprivation 106 
were used to encourage sleep, according to clinical protocols. Families also completed the Social 107 
Communication Questionnaire (SCQ)31 and the Conners’ 3AI Questionnaires32, which are standard 108 
tools to describe autism and ADHD characteristics, respectively.  All questionnaires were evaluated 109 
by experienced psychologists (AW and CR) to provide continuous indices associated with 110 
autism/ADHD traits. Raw scales of the SCQ and Conners’ questionnaires can have values in the ranges 111 
of [0,40] and [0,20], respectively.  112 
 113 
In order to define a quantity that represented overall neurodevelopmental traits (𝑁𝑇), we combined 114 
SCQ and Conners’ raw scores as: 115 

𝑁𝑇 = 	
1
2 '
𝑆𝐶𝑄
40 +

𝐶𝑜𝑛𝑛𝑒𝑟𝑠′
20 4 116 

With this definition, 𝑁𝑇 ranges in [0,1], where 0 means a null score in both tests while 1 means 117 
maximum scores in both tests. This index allows us to quantify the overall level of neurodevelopmental 118 
traits in a single dimension33. It is important to clarify here that 𝑁𝑇 should not be interpreted as a 119 
detailed quantification of autism and ADHD diagnosis. These conditions have complex diagnostic 120 
pathways, which go beyond the interpretation of these questionnaires. However, despite its limitations, 121 
these questionnaires (and therefore 𝑁𝑇) constitute an accessible and informative marker for the 122 
characteristics associated with these conditions. 123 
 124 
EEG Analysis 125 
EEG annotation was performed by two experienced electrophysiologists (Neuronostics Ltd). For each 126 
participant, electrophysiologists were provided with the complete EEG recording from the nap sleep 127 
session (recording duration between 00:28:00 and 03:48:49 [hh:mm:ss]) and asked to identify the 128 
cleanest and most “uneventful” 30-second long EEG segments (avoiding major artifacts or clear 129 
epileptiform activity) in wakefulness, and sleep stages N1 - N3, when available. Sleep stages were 130 
defined according to AASM guidelines34. Very few epochs were identified in sleep stage N3, so those 131 
were not considered in this analysis. Electrophysiologists were blind to epilepsy diagnosis and to any 132 
metadata associated with neurodevelopmental traits. 133 
 134 
Final Cohort 135 
From the original 62 participants, 34 had at least one EEG epoch identified and complete metadata 136 
available (age, sex, epilepsy diagnosis, SCQ score and Conners’ score) and were included in this study. 137 
These participants were aged between 4 and 15 years old (median 9 y) and included 13 females and 138 
21 males. 24 participants were diagnosed with epilepsy (11 focal, 7 generalised, 4 Rolandic, and 2 139 
Encephalopathy) while 10 were not. These groups will be referred to as “epilepsy” and “controls”, 140 
respectively. Raw scores for the SCQ ranged between 0 and 27 (median 9), while Conners’ raw score 141 
ranged between 0 and 20 (median 9.5). See Supplemental Material for detailed metadata. 142 
 143 
Functional Networks 144 
We derived weighted undirected functional networks from each EEG epoch using the phase locking 145 
factor (PLF). To do this, we first downsampled the data to 256 Hz and band-pass filtered between the 146 
desired frequencies. A 4th order Butterworth filter was used with forward and backward filtering to 147 
minimise phase distortions. Functional networks were calculated in five frequency bands: delta (1Hz-148 
4Hz), theta (4Hz-7Hz), alpha (7Hz-13Hz) and beta (13Hz-30Hz), as well as low alpha (6Hz-9Hz). 149 
Low alpha was used as networks calculated in this frequency band in adults have shown different 150 
properties in healthy individuals and those with generalized epilepsy11. 151 
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 152 
For a pair of signals 𝑘 and 𝑙, the 𝑃𝐿𝐹!" is given by 𝑃𝐿𝐹!" =

#
$
| ∑ 𝑒%('!(()*'"(())$

(+# |, where 𝑇 is the 153 
number of equally-spaced time samples in an epoch and 𝜃! is the phase of the Hilbert transform of 154 
signal 𝑘. We also calculated the time-averaged lag, 𝜏!" = arg	(∑ 𝑒%('!(()*'"(())$

(+# ). Only nonzero time 155 
lags (|𝜏!"| > 0) were considered to avoid spurious connections due to volume conduction. We then 156 
computed 99 surrogate epochs from each of the EEG signals using a univariate iterated amplitude 157 
adjusted Fourier transform (iAAFT). Functional networks were then calculated for the EEG epochs 158 
and for the surrogates. For each epoch, we rejected connections that did not exceed a 95% significance 159 
level compared to the same connection weights computed from the surrogates calculated for that 160 
epoch. This method results in a weighted, undirected network 𝑎!", which we used to calculate graph 161 
metrics. Details about the methods used to calculate the network mean degree (MD), degree standard 162 
deviation (DStd), average local clustering coefficient (ALCC) and global efficiency (GE) can be found 163 
in the Supplemental Material. 164 
 165 
Statistical Analysis 166 
We explored the weighted mean degree of different classes (controls and epilepsy types) using 167 
boxplots (see Fig. 1), where the median (red line), 25th - 75th percentiles (blue box), non-outlier 168 
extremes (black dashed lines) and outliers (red crosses) of the distributions are presented. Effect size 169 
was quantified using the rank-biserial correlation35 (|𝑟| ∈ [0,1], where 0 means no rank correlation 170 
and 1 means perfect separation between groups), and significance was calculated using the Wilcoxon 171 
rank-sum and Kruskal-Wallis tests. To further quantify the differences between classes, receiver 172 
operating characteristic (ROC) curves were calculated for all frequency bands. The area under the 173 
ROC curve (AUC) was calculated and uncertainty (error bars) was quantified using a leave-one-out 174 
approach. To quantify the relationship between mean degree and neurodevelopmental traits 175 
(continuous index), we used the nonparametric Spearman rank correlation measure. 176 
 177 
When comparing controls and epilepsy groups, the age distributions were not significantly different 178 
(p-value: 0.79), however there was a clear sex imbalance (controls: 60% female, epilepsy: 29% 179 
female), so we corrected the marker values for sex in all comparisons presented below by subtracting 180 
the mean over the respective sex. Regarding the correction for confounding factors for the NT index, 181 
no significant differences were observed between epilepsy and controls, or between males and females. 182 
Also, no significant correlation was observed between the NT index and age. Nevertheless, to avoid 183 
cumulative effects of potential confounding factors, when considering relationships between 𝑁𝑇 and 184 
mean degree, we corrected this network marker for age, sex, and epilepsy diagnosis using linear 185 
regression. 186 
 187 
 188 
Results 189 
 190 
Mean degree is smaller in epilepsy compared to controls 191 
The mean node degree calculated using functional connectivity networks obtained from EEG epochs 192 
during wakefulness is presented in Fig. 1. Each plot describes the summary statistics of the mean 193 
degree distribution for the different frequency bands of interest. The first two boxes in each plot 194 
indicate the mean degree distribution for control and epilepsy subjects, respectively. The subsequent 195 
boxes, in faded colours, indicate results for the sub-groups of epilepsy types (Ge: generalised, Ro: 196 
Rolandic, Fo: focal, and EE: encephalopathy). For all frequency bands, the median mean degree 197 
calculated for subjects with epilepsy was lower than for controls. This result was not only consistent 198 
across frequency bands, but also held when controls were compared with most epilepsy types 199 
individually. Rolandic epilepsy presented mean degree values similar to controls in the low-alpha and 200 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.15.530959doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.15.530959
http://creativecommons.org/licenses/by/4.0/


 5 

alpha bands. However, it is important to note that this group consisted of only 4 subjects, so any 201 
comparison for this group in isolation has to be considered carefully. The rank-biserial correlations 202 
presented in each plot indicate that the difference between the mean degree for controls and subjects 203 
with epilepsy was clearer in the beta band. We also quantified the differences between controls and 204 
epilepsy in degree standard deviation (DStd), average weighted clustering coefficient (AWCC), and 205 
global efficiency (GE). We observed trends that were consistent over all frequency bands (elevated 206 
DStd and GE for controls and elevated AWCC for children with epilepsy). However, the effect sizes 207 
were small (see Fig. S1 in the Supplemental Material) and these metrics were not considered further. 208 
 209 
To further quantify the differences between the mean degree for controls and epilepsy, and to estimate 210 
its classification power as a marker, we calculated the receiver operating characteristic (ROC) curve, 211 
presented in Fig. 2. The area under the ROC curve (AUC) varied between 0.66 and 0.84, depending 212 
on the frequency band used to calculate the networks, reflecting the consistent difference observed in 213 
the mean degree for controls and epilepsy in Fig. 1. 214 
 215 

 216 
Figure 1: Summary statistics of the functional connectivity networks’ mean degree (corrected for sex), 217 
calculated for different frequency bands and using wake epochs. The first two boxes in each plot 218 
(“Cont” and “Epi”) indicate the comparison between subjects without and with epilepsy, respectively. 219 
Subsequent boxes show the breakdown of different epilepsy types (Ge: generalised, Ro: Rolandic, Fo: 220 
focal, and EE: encephalopathy). The rank-biserial correlation and p-value (two-tailed Wilcoxon rank 221 
sum test, uncorrected for multiple comparisons) for the difference between “Cont” and “Epi” are also 222 
shown. 223 
 224 
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 225 
Figure 2: Receiver operating characteristic (ROC) curve calculated using the mean degree to classify 226 
subjects without and with epilepsy (wake epochs).  227 
 228 
Differences in mean degree are smaller in sleep compared to wakefulness 229 
As sleep has been shown to be an important factor impacting seizure susceptibility in different types 230 
of epilepsy 23,18, one important question is how it impacts functional brain networks of children with 231 
epilepsy. To answer this question, we calculated differences in mean degree between controls and 232 
children with epilepsy for epochs obtained from sleep stages N1 and N2. Following the calculation of 233 
the area under the ROC curve for epochs obtained from wakefulness, presented in Fig. 2, we used the 234 
AUC to quantify the differences between mean degree for controls and children with epilepsy in sleep 235 
(Fig. 3). As subjects transition from wakefulness into sleep (N1 and N2), the differences in mean 236 
degree between cases and controls decrease, as evidenced by the decrease in the AUC from wake to 237 
N1 and N2 in Fig. 3. For the delta, theta and beta bands, significant differences were observed between 238 
wake and N1/N2, while no significant differences were observed between N1 and N2. In the low alpha 239 
and alpha bands, no significant differences were observed between wake and N1, while both stages 240 
have significantly different AUC than N2 (Kruskal-Wallis test, Bonferroni correction for multiple 241 
comparisons). 242 
 243 
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 244 
Figure 3: Area under the ROC curve for the mean degree, calculated in different stages of awareness 245 
(wake, N1 and N2). 246 
 247 
Neurodevelopmental traits correlate with decrease in mean degree 248 
The effect of autism and ADHD traits on functional brain networks is explored in Fig. 4. In this figure, 249 
the network mean degree (corrected for age, sex and epilepsy diagnosis), calculated for wake epochs, 250 
was plotted as a function of the neurodevelopmental trait index (see Methods), for all frequency bands. 251 
Figure 4 shows a negative correlation between neurodevelopmental traits and mean degree, for all 252 
frequency bands. The correlation is clearer for higher frequencies, and remains significant when 253 
corrected for multiple comparisons in the low alpha, alpha and beta bands. It is important to note that 254 
the mean degree values here are corrected for epilepsy diagnosis (see Methods), so the correlation 255 
between mean degree and neurodevelopmental trait index is independent of epilepsy diagnosis. When 256 
we consider N1 and N2 epochs, the correlation was generally less clear but followed a similar trend 257 
(see Figs. S2 and S3 in the Supplemental Material). 258 
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 259 
Figure 4: Spearman correlation and p-value (C and p) between neurodevelopmental trait index (𝑁𝑇)  260 
and mean degree (MD) corrected for age, sex, and epilepsy diagnosis. MD calculated using wake 261 
epochs. 262 
 263 
 264 
The influence of the neurodevelopmental trait index (𝑁𝑇) on the mean degree affects the classification 265 
of controls and epilepsy subjects using this marker. Fig. 5 (left) shows 𝑁𝑇 and mean degree (corrected 266 
for sex), calculated for controls and epilepsy in the low alpha band (which had the highest correlation 267 
with 𝑁𝑇). For the MD threshold of maximum balanced accuracy (dashed line), some subjects were 268 
misclassified (blue dots below the dashed line, and red dots above it). When we analysed the 𝑁𝑇 of 269 
the misclassified subjects (Fig. 5 - right), we noticed that controls misclassified as epilepsy have a 270 
larger median 𝑁𝑇 than controls correctly classified. The opposite effect was seen for epilepsy. The 271 
number of misclassified subjects was small, but the trend was clear and consistent across all frequency 272 
bands (see Fig. S4 in the Supplemental Material). When estimating the classification power of MD 273 
through the calculation of the AUC, if instead of only correcting this marker for sex imbalance (as in 274 
Fig. 3) we also correct it for 𝑁𝑇, the AUC generally improves, especially for wake epochs, as shown 275 
in Fig. 6. 276 
 277 
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 278 
Figure 5: (Left) mean degree corrected for age, calculated using wake epochs, as a function of 279 
neurodevelopmental traits. Cont (Epi) are shown in blue (red). The dashed line represents the threshold 280 
of optimal balanced accuracy for the separation between Cont and Epi. (Right) Comparison between 281 
neurodevelopmental traits of subjects classified correctly (Cont > threshold / Epi < threshold) and 282 
incorrectly (Cont < threshold / Epi > threshold). Shown here only for low alpha band (6Hz – 9Hz). 283 
See Supplemental Material for the same calculation in other frequency bands. 284 
 285 
 286 

 287 
Figure 6: Comparison between AUC calculated using MD only corrected for sex (as in Fig. 3) and 288 
corrected for sex and neurodevelopmental traits index (𝑁𝑇).  289 
 290 
 291 
Discussion 292 
 293 
In this work, we investigated how paediatric epilepsy and co-occurring traits of neurodevelopmental 294 
conditions impact functional brain networks obtained from EEG in wakeful rest and sleep. We showed 295 
that, for networks obtained from wake resting-state epochs, epilepsy diagnosis correlates with a 296 
decreased mean degree within different frequency bands, with this effect being most apparent in the 297 
beta band. For epochs obtained in sleep stages N1 and N2, this effect is generally less pronounced. We 298 
have also shown that a marker associated with autism and ADHD characteristics (𝑁𝑇) has a negative 299 
correlation with mean degree, which is consistent across frequency bands and stages of awareness. We 300 
also quantified how neurodevelopmental traits can influence the classification power of mean degree 301 
when separating controls and epilepsy subjects. We showed that children without epilepsy and with 302 
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high 𝑁𝑇 have a higher risk of being misclassified than those with low 𝑁𝑇. Conversely, children with 303 
epilepsy with low 𝑁𝑇 might have a higher risk of being classified as not having epilepsy if the 304 
influence of 𝑁𝑇 is not accounted for when identifying optimal classification thresholds. 305 
 306 
Functional networks extracted from resting-state EEG have been studied in the context of epilepsy 307 
previously, and various markers have been explored. Chowdhury et al.11 compared functional 308 
networks from adult controls and adults diagnosed with idiopathic generalised epilepsy. They showed 309 
that, in the low-alpha band, network mean degree and degree variance are elevated in epilepsy, while 310 
clustering coefficient is lower in epilepsy. These results differ from what has been observed in this 311 
work. However, it is important to point out that changes in the pre-processing and calculation of 312 
functional networks can have a significant effect on network markers, as can type of epilepsy, so 313 
comparisons across different studies need to be interpreted carefully. Potential differences between the 314 
effects of epilepsy on network markers in children and adults can result from the intricate influence of 315 
brain maturation in the paediatric brain. Resting-state functional EEG networks have been shown to 316 
present complex band-specific changes during the maturation period (e.g., positive correlation between 317 
network segregation and age in the upper alpha band)36. These results evidence the importance of 318 
considering the influence of brain maturation in the study of epileptogenic brain networks in children. 319 
The effects of age were accounted for in the present study, but comparisons were made considering a 320 
relatively broad age range (4 to 15 years old). Further studies with larger sample sizes, clustering 321 
participants in narrower age ranges, are needed to clarify the influence of brain maturation on EEG 322 
networks in the context of epilepsy and neurodevelopmental disorders. 323 
 324 
The results described above, observed in networks derived from wakeful rest, were also consistent 325 
with those from epochs from sleep stages N1 and N2, however the effect size was generally smaller 326 
during sleep. This result is interesting since NREM sleep has been shown to activate interictal 327 
epileptiform discharges (IED) in many types of epilepsies37, which actually underpins the use of nap 328 
studies to support epilepsy diagnosis. However, it is important to notice that smaller control-epilepsy 329 
differences for markers in sleep than in wake does not imply that ictal or interictal activity should be 330 
less frequent in sleep. The relationship between IEDs and seizure susceptibility is still unclear, with 331 
some works suggesting that IEDs can have anti-seizure effects, depending on the underlying 332 
physiological mechanisms leading to seizures38,39. In this scenario, states where IEDs are more 333 
frequent could lead to network representations with features associated to low ictogenicity. The 334 
detailed relationship between IEDs and network markers would require long wake and sleep 335 
recordings, rich in IEDs, and is beyond the scope of this work. 336 
 337 
The influence of neurodevelopmental conditions, like autism and ADHD, on functional networks 338 
extracted from EEG data is still an open question. Evidence suggests that autism is characterised by 339 
long-range underconnectivity40, but this has been challenged and the diversity in methodology makes 340 
it difficult to evaluate and compare across studies41. In this study we have shown that network mean 341 
degree presents a negative correlation with the neurodevelopmental trait index 𝑁𝑇 (autism and ADHD 342 
characteristics). This relationship does not comprehensively describe the effect of autism and/or 343 
ADHD on functional brain networks, but it shows how the traits associated with these conditions can 344 
influence network-based biomarkers and, therefore, their potential clinical value. The trend observed 345 
in the relationship between mean degree and 𝑁𝑇 is also observed for the SCQ and Conners’ raw scores 346 
separately (data not shown). In order to disentangle the influences of autism and ADHD on network 347 
markers, future studies should extend the analysis presented here by considering cases with confirmed 348 
clinical diagnoses of these conditions, and focus on the main characteristics that differentiate their 349 
classification. 350 
 351 
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Most studies that explore network markers of epilepsy from EEG recordings tend to exclude subjects 352 
with co-occurring conditions from the analysis, especially neurodevelopmental conditions. However, 353 
it is often unclear how and to what extent subjects have been tested, especially when sub-clinical traits 354 
of neurodevelopmental conditions are considered. The results presented in this work show that 355 
ignoring this information can lead to skewed model calibration and inaccurate classification, especially 356 
for children with high 𝑁𝑇. Such inaccuracies could lead to even longer diagnostic delays, 357 
misdiagnosis, and inappropriate treatment strategies. 358 
 359 
Some limitations of this work need to be considered when interpreting the results presented above. 360 
Our analysis was implemented considering a relatively small number of subjects, especially in the 361 
control group. Additionally, autism and ADHD traits was not different between the control and 362 
epilepsy groups. Previous works suggest that both conditions have a higher prevalence in epilepsy than 363 
in typically developing children8, indicating that the data used in this study might not be representative 364 
of the general population. However, it is important to point out that the “control” group in this work 365 
represents children suspected of having epilepsy who had a differential diagnosis. To the best of our 366 
knowledge, the expected prevalence of autism and/or ADHD in such a group is unknown. Future works 367 
should also focus on stratifying the analyses above in different epilepsy types, presenting a detailed 368 
quantification of the influence of each epilepsy syndrome in network markers and their 369 
interrelationship with co-occurring conditions. 370 
 371 
 372 
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