OCooONOY LT A W N -

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.15.530959; this version posted March 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

The impact of paediatric epilepsy and co-occurring neurodevelopmental
disorders on functional brain networks in wake and sleep

Leandro Junges'?, Daniel Galvis'?, Alice Winsor**>, Grace Treadwell**®, Caroline Richards*’,
Stefano Seri®?, Samuel Johnson!%!!, John R. Terry!>!2, Andrew P. Bagshaw 3*

! Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, UK
2 Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, UK
3 Centre for Human Brain Health, University of Birmingham, Birmingham, UK
4 School of Psychology, University of Birmingham, Birmingham, UK
5 Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
¢ School of Psychology, Keele University, Staffordshire, UK
7 Centre for Developmental Sciences, University of Birmingham, Birmingham, UK
8 Aston Institute of Health and Neurodevelopment, Aston University, Birmingham, UK

® Department of Clinical Neurophysiology, Birmingham Women’s and Children’s Hospital, Birmingham, UK

10'School of Mathematics, University of Birmingham, Birmingham, UK

' The Alan Turing Institute, London, UK
2Neuronostics Ltd, Engine Shed, Station Approach, Bristol, UK

Keywords: Paediatric epilepsy, Neurodevelopmental disorders, Sleep, Functional brain networks

Abstract

Epilepsy is one of the most common neurological disorders in children. Diagnosing epilepsy in
children can be very challenging, especially as it often coexists with neurodevelopmental conditions
like autism and ADHD. Functional brain networks obtained from neuroimaging and
electrophysiological data in wakefulness and sleep have been shown to contain signatures of
neurological disorders, and can potentially support the diagnosis and management of co-occurring
neurodevelopmental conditions. In this work, we use electroencephalography (EEG) recordings from
children, in restful wakefulness and sleep, to extract functional connectivity networks in different
frequency bands. We explore the relationship of these networks with epilepsy diagnosis and with
measures of neurodevelopmental traits, obtained from questionnaires used as screening tools for
autism and ADHD. We explore differences in network markers between children with and without
epilepsy in wake and sleep, and quantify the correlation between such markers and measures of
neurodevelopmental traits. Our findings highlight the importance of considering the interplay between
epilepsy and neurodevelopmental traits when exploring network markers of epilepsy.

Introduction

Epilepsy is estimated to impact nearly 10.5 million children worldwide'. In addition to the personal,
social, and economic impact of epilepsy on children and their families, seizures have been shown to
be detrimental to brain development?, potentially leading to cognitive dysfunction, and the condition
is often associated with lifelong disabilities and poor quality of life*#. Therefore, early and accurate
diagnosis of epilepsy is paramount. Unfortunately, epilepsy diagnosis can be very challenging. The
rate of epilepsy misdiagnosis is estimated to be near 20% generally® and, due to a wide range of non-


https://doi.org/10.1101/2023.03.15.530959
http://creativecommons.org/licenses/by/4.0/

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.15.530959; this version posted March 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

epileptic paroxysmal disorders and co-occurrences affecting children®, misdiagnosis in children is
believed to be even greater than for adults’.

Diagnosis and management of neurological and neurodevelopmental conditions are made more
challenging when they coexist. This is frequently the case with epilepsy, where its prevalence in
children with Autism Spectrum Disorder and ADHD is 20% and 15%, respectively, which is
significantly higher than in neurotypical children (~1%)8. The complex relationship between epilepsy
and co-occurring neurodevelopmental conditions remains an important open question, the resolution
of which could improve clinical outcomes and provide optimal and individualised care.

Epilepsy is increasingly conceptualised as a condition of aberrant brain networks®!?. Scalp
electroencephalography (EEG) is one of the most widespread methods used to quantify these networks.
Functional networks obtained from scalp EEG have shown fundamental differences between people
with epilepsy and healthy controls, for both adults!!%13 and children'#!. Neurodevelopmental
conditions, such as autism and ADHD, have also been investigated using the framework of network
science!®, although these methods are less well stablished in this context. Moreover, very few studies
have investigated the joint effect of epilepsy and co-occurring neurodevelopmental conditions on
functional brain networks!”. This is necessary to understand network signatures that are specific either
to epilepsy, or to neurodevelopmental conditions, rather than being sensitive to their co-occurrences.
Network markers of epilepsy may be influenced by the presence of neurodevelopmental traits,
potentially leading to erroneous interpretations of the relationship between these markers and seizure
propensity.

Another important factor when exploring network markers of co-occurring neurological and
neurodevelopmental conditions is the influence of sleep. A growing number of studies support the
association between poor sleep and both epilepsy and neurodevelopmental conditions 819202122 Thig
relationship tends to be bidirectional, where sleep disruption can increase seizure propensity and
presentation of neurodevelopmental conditions, which can in turn result in poor sleep?. At the same
time, graph metric analysis has shown that several aspects of sleep, such as the wake-sleep transition
itself as well as sleep deprivation, are associated with connectivity changes in functional brain
networks?#2%-2627.28 'Markers of epilepsy might also be influenced by stages of awareness (wake and
sleep), given the known changes to the propensity for epileptic discharges with sleep stage?-°.

In this work we explore the combined effects of epilepsy and neurodevelopmental traits on functional
connectivity networks obtained from EEG recordings from children in waking restfulness and sleep.
We identify differences in functional connectivity between subjects with and without epilepsy, which
are consistent across frequency bands. We also show that such differences are less pronounced during
sleep. Finally, we quantify the correlation between neurodevelopmental traits and network measures,
identifying similar effects as seen for epilepsy. These results highlight the importance of considering
the co-occurrence of neurodevelopmental traits when a graph metric approach is implemented in this
context.

Methods

Data acquisition and participants

The data used in this study were acquired at Birmingham Children’s Hospital and Worcestershire
Royal Hospital. Written informed consent and assent were obtained from parents and children and the
study received NHS ethical approval from the Northwest - Preston Research Ethics Committee (REC
reference 19/NW/0337). EEG recordings were collected in “nap sleep EEG” sessions (i.e., recordings
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taken during a short period where the child falls asleep) from children suspected of having epilepsy,
as part of the diagnostic process. Sixty-two recordings, collected between September 2019 and
December 2021, were retrieved. EEG data were acquired from 19 electrodes positioned according to
the 10-20 system and sampled at 512Hz. In some participants, melatonin or mild sleep deprivation
were used to encourage sleep, according to clinical protocols. Families also completed the Social
Communication Questionnaire (SCQ)?! and the Conners’ 3AI Questionnaires*?, which are standard
tools to describe autism and ADHD characteristics, respectively. All questionnaires were evaluated
by experienced psychologists (AW and CR) to provide continuous indices associated with
autism/ADHD traits. Raw scales of the SCQ and Conners’ questionnaires can have values in the ranges
0f [0,40] and [0,20], respectively.

In order to define a quantity that represented overall neurodevelopmental traits (NT), we combined
SCQ and Conners’ raw scores as:

NT =320 * 20

With this definition, NT ranges in [0,1], where 0 means a null score in both tests while 1 means
maximum scores in both tests. This index allows us to quantify the overall level of neurodevelopmental
traits in a single dimension. It is important to clarify here that NT should not be interpreted as a
detailed quantification of autism and ADHD diagnosis. These conditions have complex diagnostic
pathways, which go beyond the interpretation of these questionnaires. However, despite its limitations,
these questionnaires (and therefore NT) constitute an accessible and informative marker for the
characteristics associated with these conditions.

1 (.S'CQ Conners’)

EEG Analysis

EEG annotation was performed by two experienced electrophysiologists (Neuronostics Ltd). For each
participant, electrophysiologists were provided with the complete EEG recording from the nap sleep
session (recording duration between 00:28:00 and 03:48:49 [hh:mm:ss]) and asked to identify the
cleanest and most “uneventful” 30-second long EEG segments (avoiding major artifacts or clear
epileptiform activity) in wakefulness, and sleep stages N1 - N3, when available. Sleep stages were
defined according to AASM guidelines®*. Very few epochs were identified in sleep stage N3, so those
were not considered in this analysis. Electrophysiologists were blind to epilepsy diagnosis and to any
metadata associated with neurodevelopmental traits.

Final Cohort

From the original 62 participants, 34 had at least one EEG epoch identified and complete metadata
available (age, sex, epilepsy diagnosis, SCQ score and Conners’ score) and were included in this study.
These participants were aged between 4 and 15 years old (median 9 y) and included 13 females and
21 males. 24 participants were diagnosed with epilepsy (11 focal, 7 generalised, 4 Rolandic, and 2
Encephalopathy) while 10 were not. These groups will be referred to as “epilepsy” and “controls”,
respectively. Raw scores for the SCQ ranged between 0 and 27 (median 9), while Conners’ raw score
ranged between 0 and 20 (median 9.5). See Supplemental Material for detailed metadata.

Functional Networks

We derived weighted undirected functional networks from each EEG epoch using the phase locking
factor (PLF). To do this, we first downsampled the data to 256 Hz and band-pass filtered between the
desired frequencies. A 4" order Butterworth filter was used with forward and backward filtering to
minimise phase distortions. Functional networks were calculated in five frequency bands: delta (1Hz-
4Hz), theta (4Hz-7Hz), alpha (7Hz-13Hz) and beta (13Hz-30Hz), as well as low alpha (6Hz-9Hz).
Low alpha was used as networks calculated in this frequency band in adults have shown different
properties in healthy individuals and those with generalized epilepsy'!.
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For a pair of signals k and [, the PLF,; is given by PLF},; = %| YT el@®-0u0) | where T is the

number of equally-spaced time samples in an epoch and 8y, is the phase of the Hilbert transform of
signal k. We also calculated the time-averaged lag, 7,; = arg (¥1_, e!@x®=01)) Only nonzero time
lags (|t;| > 0) were considered to avoid spurious connections due to volume conduction. We then
computed 99 surrogate epochs from each of the EEG signals using a univariate iterated amplitude
adjusted Fourier transform (iAAFT). Functional networks were then calculated for the EEG epochs
and for the surrogates. For each epoch, we rejected connections that did not exceed a 95% significance
level compared to the same connection weights computed from the surrogates calculated for that
epoch. This method results in a weighted, undirected network ay;, which we used to calculate graph
metrics. Details about the methods used to calculate the network mean degree (MD), degree standard
deviation (DStd), average local clustering coefficient (ALCC) and global efficiency (GE) can be found
in the Supplemental Material.

Statistical Analysis

We explored the weighted mean degree of different classes (controls and epilepsy types) using
boxplots (see Fig. 1), where the median (red line), 25" - 75" percentiles (blue box), non-outlier
extremes (black dashed lines) and outliers (red crosses) of the distributions are presented. Effect size
was quantified using the rank-biserial correlation®® (|r| € [0,1], where 0 means no rank correlation
and 1 means perfect separation between groups), and significance was calculated using the Wilcoxon
rank-sum and Kruskal-Wallis tests. To further quantify the differences between classes, receiver
operating characteristic (ROC) curves were calculated for all frequency bands. The area under the
ROC curve (AUC) was calculated and uncertainty (error bars) was quantified using a leave-one-out
approach. To quantify the relationship between mean degree and neurodevelopmental traits
(continuous index), we used the nonparametric Spearman rank correlation measure.

When comparing controls and epilepsy groups, the age distributions were not significantly different
(p-value: 0.79), however there was a clear sex imbalance (controls: 60% female, epilepsy: 29%
female), so we corrected the marker values for sex in all comparisons presented below by subtracting
the mean over the respective sex. Regarding the correction for confounding factors for the N7 index,
no significant differences were observed between epilepsy and controls, or between males and females.
Also, no significant correlation was observed between the N7 index and age. Nevertheless, to avoid
cumulative effects of potential confounding factors, when considering relationships between NT and
mean degree, we corrected this network marker for age, sex, and epilepsy diagnosis using linear
regression.

Results

Mean degree is smaller in epilepsy compared to controls

The mean node degree calculated using functional connectivity networks obtained from EEG epochs
during wakefulness is presented in Fig. 1. Each plot describes the summary statistics of the mean
degree distribution for the different frequency bands of interest. The first two boxes in each plot
indicate the mean degree distribution for control and epilepsy subjects, respectively. The subsequent
boxes, in faded colours, indicate results for the sub-groups of epilepsy types (Ge: generalised, Ro:
Rolandic, Fo: focal, and EE: encephalopathy). For all frequency bands, the median mean degree
calculated for subjects with epilepsy was lower than for controls. This result was not only consistent
across frequency bands, but also held when controls were compared with most epilepsy types
individually. Rolandic epilepsy presented mean degree values similar to controls in the low-alpha and
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alpha bands. However, it is important to note that this group consisted of only 4 subjects, so any
comparison for this group in isolation has to be considered carefully. The rank-biserial correlations
presented in each plot indicate that the difference between the mean degree for controls and subjects
with epilepsy was clearer in the beta band. We also quantified the differences between controls and
epilepsy in degree standard deviation (DStd), average weighted clustering coefficient (AWCC), and
global efficiency (GE). We observed trends that were consistent over all frequency bands (elevated
DStd and GE for controls and elevated AWCC for children with epilepsy). However, the effect sizes
were small (see Fig. S1 in the Supplemental Material) and these metrics were not considered further.

To further quantify the differences between the mean degree for controls and epilepsy, and to estimate
its classification power as a marker, we calculated the receiver operating characteristic (ROC) curve,
presented in Fig. 2. The area under the ROC curve (AUC) varied between 0.66 and 0.84, depending
on the frequency band used to calculate the networks, reflecting the consistent difference observed in
the mean degree for controls and epilepsy in Fig. 1.
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Figure 1: Summary statistics of the functional connectivity networks’ mean degree (corrected for sex),
calculated for different frequency bands and using wake epochs. The first two boxes in each plot
(“Cont” and “Epi”) indicate the comparison between subjects without and with epilepsy, respectively.
Subsequent boxes show the breakdown of different epilepsy types (Ge: generalised, Ro: Rolandic, Fo:
focal, and EE: encephalopathy). The rank-biserial correlation and p-value (two-tailed Wilcoxon rank
sum test, uncorrected for multiple comparisons) for the difference between “Cont” and “Epi” are also
shown.
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Figure 2: Receiver operating characteristic (ROC) curve calculated using the mean degree to classify
subjects without and with epilepsy (wake epochs).

Differences in mean degree are smaller in sleep compared to wakefulness

As sleep has been shown to be an important factor impacting seizure susceptibility in different types
of epilepsy 2*!'¥, one important question is how it impacts functional brain networks of children with
epilepsy. To answer this question, we calculated differences in mean degree between controls and
children with epilepsy for epochs obtained from sleep stages N1 and N2. Following the calculation of
the area under the ROC curve for epochs obtained from wakefulness, presented in Fig. 2, we used the
AUC to quantify the differences between mean degree for controls and children with epilepsy in sleep
(Fig. 3). As subjects transition from wakefulness into sleep (N1 and N2), the differences in mean
degree between cases and controls decrease, as evidenced by the decrease in the AUC from wake to
N1 and N2 in Fig. 3. For the delta, theta and beta bands, significant differences were observed between
wake and N1/N2, while no significant differences were observed between N1 and N2. In the low alpha
and alpha bands, no significant differences were observed between wake and N1, while both stages
have significantly different AUC than N2 (Kruskal-Wallis test, Bonferroni correction for multiple
comparisons).
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Figure 3: Area under the ROC curve for the mean degree, calculated in different stages of awareness
(wake, N1 and N2).

Neurodevelopmental traits correlate with decrease in mean degree

The effect of autism and ADHD traits on functional brain networks is explored in Fig. 4. In this figure,
the network mean degree (corrected for age, sex and epilepsy diagnosis), calculated for wake epochs,
was plotted as a function of the neurodevelopmental trait index (see Methods), for all frequency bands.
Figure 4 shows a negative correlation between neurodevelopmental traits and mean degree, for all
frequency bands. The correlation is clearer for higher frequencies, and remains significant when
corrected for multiple comparisons in the low alpha, alpha and beta bands. It is important to note that
the mean degree values here are corrected for epilepsy diagnosis (see Methods), so the correlation
between mean degree and neurodevelopmental trait index is independent of epilepsy diagnosis. When
we consider N1 and N2 epochs, the correlation was generally less clear but followed a similar trend
(see Figs. S2 and S3 in the Supplemental Material).
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Figure 4: Spearman correlation and p-value (C and p) between neurodevelopmental trait index (NT)
and mean degree (MD) corrected for age, sex, and epilepsy diagnosis. MD calculated using wake
epochs.

The influence of the neurodevelopmental trait index (NT) on the mean degree affects the classification
of controls and epilepsy subjects using this marker. Fig. 5 (left) shows NT and mean degree (corrected
for sex), calculated for controls and epilepsy in the low alpha band (which had the highest correlation
with NT). For the MD threshold of maximum balanced accuracy (dashed line), some subjects were
misclassified (blue dots below the dashed line, and red dots above it). When we analysed the NT of
the misclassified subjects (Fig. 5 - right), we noticed that controls misclassified as epilepsy have a
larger median NT than controls correctly classified. The opposite effect was seen for epilepsy. The
number of misclassified subjects was small, but the trend was clear and consistent across all frequency
bands (see Fig. S4 in the Supplemental Material). When estimating the classification power of MD
through the calculation of the AUC, if instead of only correcting this marker for sex imbalance (as in
Fig. 3) we also correct it for NT, the AUC generally improves, especially for wake epochs, as shown
in Fig. 6.
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Figure 5: (Left) mean degree corrected for age, calculated using wake epochs, as a function of
neurodevelopmental traits. Cont (Epi) are shown in blue (red). The dashed line represents the threshold
of optimal balanced accuracy for the separation between Cont and Epi. (Right) Comparison between
neurodevelopmental traits of subjects classified correctly (Cont > threshold / Epi < threshold) and
incorrectly (Cont < threshold / Epi > threshold). Shown here only for low alpha band (6Hz — 9Hz).
See Supplemental Material for the same calculation in other frequency bands.
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Figure 6: Comparison between AUC calculated using MD only corrected for sex (as in Fig. 3) and
corrected for sex and neurodevelopmental traits index (NT).

Discussion

In this work, we investigated how paediatric epilepsy and co-occurring traits of neurodevelopmental
conditions impact functional brain networks obtained from EEG in wakeful rest and sleep. We showed
that, for networks obtained from wake resting-state epochs, epilepsy diagnosis correlates with a
decreased mean degree within different frequency bands, with this effect being most apparent in the
beta band. For epochs obtained in sleep stages N1 and N2, this effect is generally less pronounced. We
have also shown that a marker associated with autism and ADHD characteristics (NT) has a negative
correlation with mean degree, which is consistent across frequency bands and stages of awareness. We
also quantified how neurodevelopmental traits can influence the classification power of mean degree
when separating controls and epilepsy subjects. We showed that children without epilepsy and with
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high NT have a higher risk of being misclassified than those with low NT. Conversely, children with
epilepsy with low NT might have a higher risk of being classified as not having epilepsy if the
influence of NT is not accounted for when identifying optimal classification thresholds.

Functional networks extracted from resting-state EEG have been studied in the context of epilepsy
previously, and various markers have been explored. Chowdhury et al.!! compared functional
networks from adult controls and adults diagnosed with idiopathic generalised epilepsy. They showed
that, in the low-alpha band, network mean degree and degree variance are elevated in epilepsy, while
clustering coefficient is lower in epilepsy. These results differ from what has been observed in this
work. However, it is important to point out that changes in the pre-processing and calculation of
functional networks can have a significant effect on network markers, as can type of epilepsy, so
comparisons across different studies need to be interpreted carefully. Potential differences between the
effects of epilepsy on network markers in children and adults can result from the intricate influence of
brain maturation in the paediatric brain. Resting-state functional EEG networks have been shown to
present complex band-specific changes during the maturation period (e.g., positive correlation between
network segregation and age in the upper alpha band)*. These results evidence the importance of
considering the influence of brain maturation in the study of epileptogenic brain networks in children.
The effects of age were accounted for in the present study, but comparisons were made considering a
relatively broad age range (4 to 15 years old). Further studies with larger sample sizes, clustering
participants in narrower age ranges, are needed to clarify the influence of brain maturation on EEG
networks in the context of epilepsy and neurodevelopmental disorders.

The results described above, observed in networks derived from wakeful rest, were also consistent
with those from epochs from sleep stages N1 and N2, however the effect size was generally smaller
during sleep. This result is interesting since NREM sleep has been shown to activate interictal
epileptiform discharges (IED) in many types of epilepsies®’, which actually underpins the use of nap
studies to support epilepsy diagnosis. However, it is important to notice that smaller control-epilepsy
differences for markers in sleep than in wake does not imply that ictal or interictal activity should be
less frequent in sleep. The relationship between IEDs and seizure susceptibility is still unclear, with
some works suggesting that IEDs can have anti-seizure effects, depending on the underlying
physiological mechanisms leading to seizures®®3°. In this scenario, states where IEDs are more
frequent could lead to network representations with features associated to low ictogenicity. The
detailed relationship between IEDs and network markers would require long wake and sleep
recordings, rich in IEDs, and is beyond the scope of this work.

The influence of neurodevelopmental conditions, like autism and ADHD, on functional networks
extracted from EEG data is still an open question. Evidence suggests that autism is characterised by
long-range underconnectivity*’, but this has been challenged and the diversity in methodology makes
it difficult to evaluate and compare across studies*!. In this study we have shown that network mean
degree presents a negative correlation with the neurodevelopmental trait index NT (autism and ADHD
characteristics). This relationship does not comprehensively describe the effect of autism and/or
ADHD on functional brain networks, but it shows how the traits associated with these conditions can
influence network-based biomarkers and, therefore, their potential clinical value. The trend observed
in the relationship between mean degree and NT is also observed for the SCQ and Conners’ raw scores
separately (data not shown). In order to disentangle the influences of autism and ADHD on network
markers, future studies should extend the analysis presented here by considering cases with confirmed
clinical diagnoses of these conditions, and focus on the main characteristics that differentiate their
classification.
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Most studies that explore network markers of epilepsy from EEG recordings tend to exclude subjects
with co-occurring conditions from the analysis, especially neurodevelopmental conditions. However,
it is often unclear how and to what extent subjects have been tested, especially when sub-clinical traits
of neurodevelopmental conditions are considered. The results presented in this work show that
ignoring this information can lead to skewed model calibration and inaccurate classification, especially
for children with high NT. Such inaccuracies could lead to even longer diagnostic delays,
misdiagnosis, and inappropriate treatment strategies.

Some limitations of this work need to be considered when interpreting the results presented above.
Our analysis was implemented considering a relatively small number of subjects, especially in the
control group. Additionally, autism and ADHD traits was not different between the control and
epilepsy groups. Previous works suggest that both conditions have a higher prevalence in epilepsy than
in typically developing children?, indicating that the data used in this study might not be representative
of the general population. However, it is important to point out that the “control” group in this work
represents children suspected of having epilepsy who had a differential diagnosis. To the best of our
knowledge, the expected prevalence of autism and/or ADHD in such a group is unknown. Future works
should also focus on stratifying the analyses above in different epilepsy types, presenting a detailed
quantification of the influence of each epilepsy syndrome in network markers and their
interrelationship with co-occurring conditions.
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