

1 The impact of paediatric epilepsy and co-occurring neurodevelopmental 2 disorders on functional brain networks in wake and sleep

3
4 Leandro Junges^{1,2}, Daniel Galvis^{1,2}, Alice Winsor^{3,4,5}, Grace Treadwell^{3,4,6}, Caroline Richards^{4,7},
5 Stefano Seri^{8,9}, Samuel Johnson^{10,11}, John R. Terry^{1,2,12}, Andrew P. Bagshaw^{3,4}

6
7
8 ¹ Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, UK

9 ² Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, UK

10 ³ Centre for Human Brain Health, University of Birmingham, Birmingham, UK

11 ⁴ School of Psychology, University of Birmingham, Birmingham, UK

12 ⁵ Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK

13 ⁶ School of Psychology, Keele University, Staffordshire, UK

14 ⁷ Centre for Developmental Sciences, University of Birmingham, Birmingham, UK

15 ⁸ Aston Institute of Health and Neurodevelopment, Aston University, Birmingham, UK

16 ⁹ Department of Clinical Neurophysiology, Birmingham Women's and Children's Hospital, Birmingham, UK

17 ¹⁰ School of Mathematics, University of Birmingham, Birmingham, UK

18 ¹¹ The Alan Turing Institute, London, UK

19 ¹²Neuronostics Ltd, Engine Shed, Station Approach, Bristol, UK

20
21
22
23 **Keywords:** Paediatric epilepsy, Neurodevelopmental disorders, Sleep, Functional brain networks

24 25 26 27 **Abstract**

28
29 Epilepsy is one of the most common neurological disorders in children. Diagnosing epilepsy in
30 children can be very challenging, especially as it often coexists with neurodevelopmental conditions
31 like autism and ADHD. Functional brain networks obtained from neuroimaging and
32 electrophysiological data in wakefulness and sleep have been shown to contain signatures of
33 neurological disorders, and can potentially support the diagnosis and management of co-occurring
34 neurodevelopmental conditions. In this work, we use electroencephalography (EEG) recordings from
35 children, in restful wakefulness and sleep, to extract functional connectivity networks in different
36 frequency bands. We explore the relationship of these networks with epilepsy diagnosis and with
37 measures of neurodevelopmental traits, obtained from questionnaires used as screening tools for
38 autism and ADHD. We explore differences in network markers between children with and without
39 epilepsy in wake and sleep, and quantify the correlation between such markers and measures of
40 neurodevelopmental traits. Our findings highlight the importance of considering the interplay between
41 epilepsy and neurodevelopmental traits when exploring network markers of epilepsy.

42 43 44 45 **Introduction**

46
47 Epilepsy is estimated to impact nearly 10.5 million children worldwide¹. In addition to the personal,
48 social, and economic impact of epilepsy on children and their families, seizures have been shown to
49 be detrimental to brain development², potentially leading to cognitive dysfunction, and the condition
50 is often associated with lifelong disabilities and poor quality of life^{3,4}. Therefore, early and accurate
51 diagnosis of epilepsy is paramount. Unfortunately, epilepsy diagnosis can be very challenging. The
52 rate of epilepsy misdiagnosis is estimated to be near 20% generally⁵ and, due to a wide range of non-

53 epileptic paroxysmal disorders and co-occurrences affecting children⁶, misdiagnosis in children is
54 believed to be even greater than for adults⁷.

55
56 Diagnosis and management of neurological and neurodevelopmental conditions are made more
57 challenging when they coexist. This is frequently the case with epilepsy, where its prevalence in
58 children with Autism Spectrum Disorder and ADHD is 20% and 15%, respectively, which is
59 significantly higher than in neurotypical children (~1%)⁸. The complex relationship between epilepsy
60 and co-occurring neurodevelopmental conditions remains an important open question, the resolution
61 of which could improve clinical outcomes and provide optimal and individualised care.

62
63 Epilepsy is increasingly conceptualised as a condition of aberrant brain networks^{9,10}. Scalp
64 electroencephalography (EEG) is one of the most widespread methods used to quantify these networks.
65 Functional networks obtained from scalp EEG have shown fundamental differences between people
66 with epilepsy and healthy controls, for both adults^{11,12,13} and children^{14,15}. Neurodevelopmental
67 conditions, such as autism and ADHD, have also been investigated using the framework of network
68 science¹⁶, although these methods are less well established in this context. Moreover, very few studies
69 have investigated the joint effect of epilepsy and co-occurring neurodevelopmental conditions on
70 functional brain networks¹⁷. This is necessary to understand network signatures that are specific either
71 to epilepsy, or to neurodevelopmental conditions, rather than being sensitive to their co-occurrences.
72 Network markers of epilepsy may be influenced by the presence of neurodevelopmental traits,
73 potentially leading to erroneous interpretations of the relationship between these markers and seizure
74 propensity.

75
76 Another important factor when exploring network markers of co-occurring neurological and
77 neurodevelopmental conditions is the influence of sleep. A growing number of studies support the
78 association between poor sleep and both epilepsy and neurodevelopmental conditions^{18,19,20,21,22}. This
79 relationship tends to be bidirectional, where sleep disruption can increase seizure propensity and
80 presentation of neurodevelopmental conditions, which can in turn result in poor sleep²³. At the same
81 time, graph metric analysis has shown that several aspects of sleep, such as the wake-sleep transition
82 itself as well as sleep deprivation, are associated with connectivity changes in functional brain
83 networks^{24,25,26,27,28}. Markers of epilepsy might also be influenced by stages of awareness (wake and
84 sleep), given the known changes to the propensity for epileptic discharges with sleep stage^{29,30}.

85
86 In this work we explore the combined effects of epilepsy and neurodevelopmental traits on functional
87 connectivity networks obtained from EEG recordings from children in waking restfulness and sleep.
88 We identify differences in functional connectivity between subjects with and without epilepsy, which
89 are consistent across frequency bands. We also show that such differences are less pronounced during
90 sleep. Finally, we quantify the correlation between neurodevelopmental traits and network measures,
91 identifying similar effects as seen for epilepsy. These results highlight the importance of considering
92 the co-occurrence of neurodevelopmental traits when a graph metric approach is implemented in this
93 context.

94

95

96 **Methods**

97

98 **Data acquisition and participants**

99 The data used in this study were acquired at Birmingham Children's Hospital and Worcestershire
100 Royal Hospital. Written informed consent and assent were obtained from parents and children and the
101 study received NHS ethical approval from the Northwest - Preston Research Ethics Committee (REC
102 reference 19/NW/0337). EEG recordings were collected in "nap sleep EEG" sessions (i.e., recordings

103 taken during a short period where the child falls asleep) from children suspected of having epilepsy,
104 as part of the diagnostic process. Sixty-two recordings, collected between September 2019 and
105 December 2021, were retrieved. EEG data were acquired from 19 electrodes positioned according to
106 the 10-20 system and sampled at 512Hz. In some participants, melatonin or mild sleep deprivation
107 were used to encourage sleep, according to clinical protocols. Families also completed the Social
108 Communication Questionnaire (SCQ)³¹ and the Conners' 3AI Questionnaires³², which are standard
109 tools to describe autism and ADHD characteristics, respectively. All questionnaires were evaluated
110 by experienced psychologists (AW and CR) to provide continuous indices associated with
111 autism/ADHD traits. Raw scales of the SCQ and Conners' questionnaires can have values in the ranges
112 of [0,40] and [0,20], respectively.

113

114 In order to define a quantity that represented overall neurodevelopmental traits (*NT*), we combined
115 SCQ and Conners' raw scores as:

116

$$NT = \frac{1}{2} \left(\frac{SCQ}{40} + \frac{Conners'}{20} \right)$$

117 With this definition, *NT* ranges in [0,1], where 0 means a null score in both tests while 1 means
118 maximum scores in both tests. This index allows us to quantify the overall level of neurodevelopmental
119 traits in a single dimension³³. It is important to clarify here that *NT* should not be interpreted as a
120 detailed quantification of autism and ADHD diagnosis. These conditions have complex diagnostic
121 pathways, which go beyond the interpretation of these questionnaires. However, despite its limitations,
122 these questionnaires (and therefore *NT*) constitute an accessible and informative marker for the
123 characteristics associated with these conditions.

124

125 EEG Analysis

126 EEG annotation was performed by two experienced electrophysiologists (Neuronostics Ltd). For each
127 participant, electrophysiologists were provided with the complete EEG recording from the nap sleep
128 session (recording duration between 00:28:00 and 03:48:49 [hh:mm:ss]) and asked to identify the
129 cleanest and most "uneventful" 30-second long EEG segments (avoiding major artifacts or clear
130 epileptiform activity) in wakefulness, and sleep stages N1 - N3, when available. Sleep stages were
131 defined according to AASM guidelines³⁴. Very few epochs were identified in sleep stage N3, so those
132 were not considered in this analysis. Electrophysiologists were blind to epilepsy diagnosis and to any
133 metadata associated with neurodevelopmental traits.

134

135 Final Cohort

136 From the original 62 participants, 34 had at least one EEG epoch identified and complete metadata
137 available (age, sex, epilepsy diagnosis, SCQ score and Conners' score) and were included in this study.
138 These participants were aged between 4 and 15 years old (median 9 y) and included 13 females and
139 21 males. 24 participants were diagnosed with epilepsy (11 focal, 7 generalised, 4 Rolandic, and 2
140 Encephalopathy) while 10 were not. These groups will be referred to as "epilepsy" and "controls",
141 respectively. Raw scores for the SCQ ranged between 0 and 27 (median 9), while Conners' raw score
142 ranged between 0 and 20 (median 9.5). See Supplemental Material for detailed metadata.

143

144 Functional Networks

145 We derived weighted undirected functional networks from each EEG epoch using the phase locking
146 factor (PLF). To do this, we first downsampled the data to 256 Hz and band-pass filtered between the
147 desired frequencies. A 4th order Butterworth filter was used with forward and backward filtering to
148 minimise phase distortions. Functional networks were calculated in five frequency bands: delta (1Hz-
149 4Hz), theta (4Hz-7Hz), alpha (7Hz-13Hz) and beta (13Hz-30Hz), as well as low alpha (6Hz-9Hz).
150 Low alpha was used as networks calculated in this frequency band in adults have shown different
151 properties in healthy individuals and those with generalized epilepsy¹¹.

152

153 For a pair of signals k and l , the PLF_{kl} is given by $PLF_{kl} = \frac{1}{T} |\sum_{t=1}^T e^{i(\theta_k(t)-\theta_l(t))}|$, where T is the
154 number of equally-spaced time samples in an epoch and θ_k is the phase of the Hilbert transform of
155 signal k . We also calculated the time-averaged lag, $\tau_{kl} = \arg(\sum_{t=1}^T e^{i(\theta_k(t)-\theta_l(t))})$. Only nonzero time
156 lags ($|\tau_{kl}| > 0$) were considered to avoid spurious connections due to volume conduction. We then
157 computed 99 surrogate epochs from each of the EEG signals using a univariate iterated amplitude
158 adjusted Fourier transform (iAAFT). Functional networks were then calculated for the EEG epochs
159 and for the surrogates. For each epoch, we rejected connections that did not exceed a 95% significance
160 level compared to the same connection weights computed from the surrogates calculated for that
161 epoch. This method results in a weighted, undirected network a_{kl} , which we used to calculate graph
162 metrics. Details about the methods used to calculate the network mean degree (MD), degree standard
163 deviation (DStd), average local clustering coefficient (ALCC) and global efficiency (GE) can be found
164 in the Supplemental Material.

165

166 Statistical Analysis

167 We explored the weighted mean degree of different classes (controls and epilepsy types) using
168 boxplots (see Fig. 1), where the median (red line), 25th - 75th percentiles (blue box), non-outlier
169 extremes (black dashed lines) and outliers (red crosses) of the distributions are presented. Effect size
170 was quantified using the rank-biserial correlation³⁵ ($|r| \in [0,1]$, where 0 means no rank correlation
171 and 1 means perfect separation between groups), and significance was calculated using the Wilcoxon
172 rank-sum and Kruskal-Wallis tests. To further quantify the differences between classes, receiver
173 operating characteristic (ROC) curves were calculated for all frequency bands. The area under the
174 ROC curve (AUC) was calculated and uncertainty (error bars) was quantified using a leave-one-out
175 approach. To quantify the relationship between mean degree and neurodevelopmental traits
176 (continuous index), we used the nonparametric Spearman rank correlation measure.

177

178 When comparing controls and epilepsy groups, the age distributions were not significantly different
179 (p-value: 0.79), however there was a clear sex imbalance (controls: 60% female, epilepsy: 29%
180 female), so we corrected the marker values for sex in all comparisons presented below by subtracting
181 the mean over the respective sex. Regarding the correction for confounding factors for the NT index,
182 no significant differences were observed between epilepsy and controls, or between males and females.
183 Also, no significant correlation was observed between the NT index and age. Nevertheless, to avoid
184 cumulative effects of potential confounding factors, when considering relationships between NT and
185 mean degree, we corrected this network marker for age, sex, and epilepsy diagnosis using linear
186 regression.

187

188

189 Results

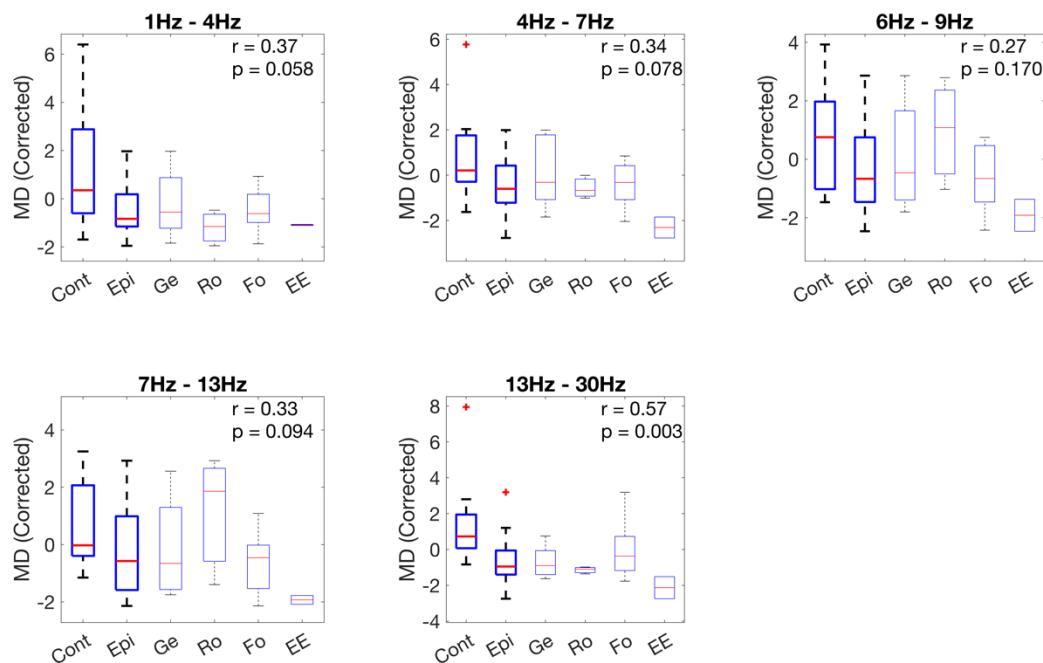
190

191 Mean degree is smaller in epilepsy compared to controls

192 The mean node degree calculated using functional connectivity networks obtained from EEG epochs
193 during wakefulness is presented in Fig. 1. Each plot describes the summary statistics of the mean
194 degree distribution for the different frequency bands of interest. The first two boxes in each plot
195 indicate the mean degree distribution for control and epilepsy subjects, respectively. The subsequent
196 boxes, in faded colours, indicate results for the sub-groups of epilepsy types (Ge: generalised, Ro:
197 Rolandic, Fo: focal, and EE: encephalopathy). For all frequency bands, the median mean degree
198 calculated for subjects with epilepsy was lower than for controls. This result was not only consistent
199 across frequency bands, but also held when controls were compared with most epilepsy types
200 individually. Rolandic epilepsy presented mean degree values similar to controls in the low-alpha and

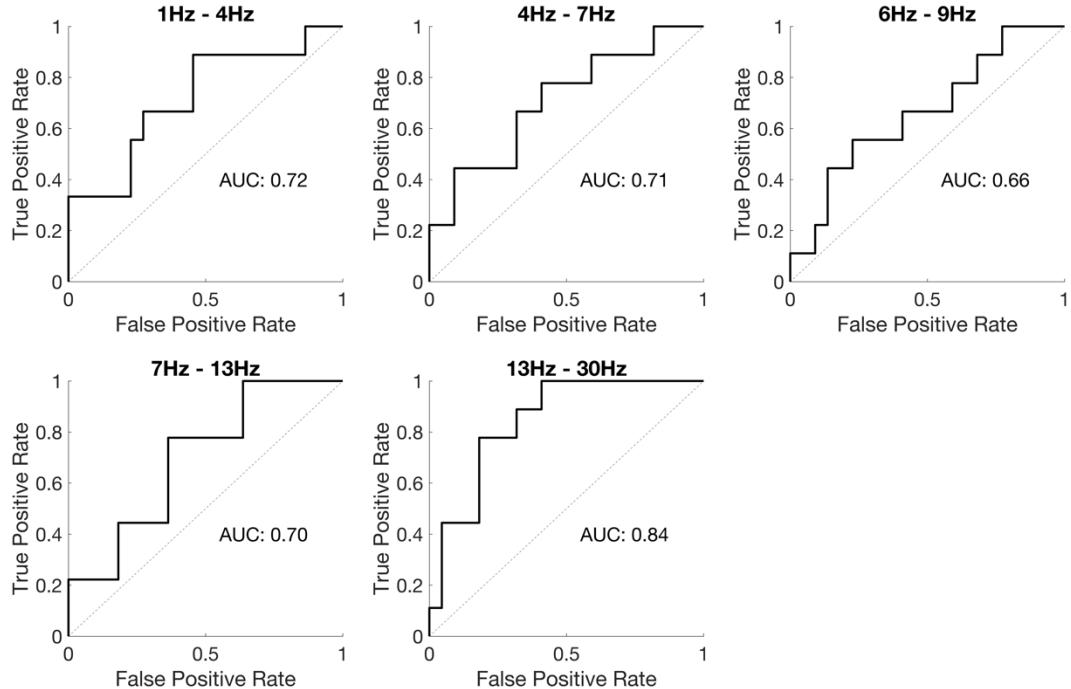
201 alpha bands. However, it is important to note that this group consisted of only 4 subjects, so any
202 comparison for this group in isolation has to be considered carefully. The rank-biserial correlations
203 presented in each plot indicate that the difference between the mean degree for controls and subjects
204 with epilepsy was clearer in the beta band. We also quantified the differences between controls and
205 epilepsy in degree standard deviation (DStd), average weighted clustering coefficient (AWCC), and
206 global efficiency (GE). We observed trends that were consistent over all frequency bands (elevated
207 DStd and GE for controls and elevated AWCC for children with epilepsy). However, the effect sizes
208 were small (see Fig. S1 in the Supplemental Material) and these metrics were not considered further.
209

210 To further quantify the differences between the mean degree for controls and epilepsy, and to estimate
211 its classification power as a marker, we calculated the receiver operating characteristic (ROC) curve,
212 presented in Fig. 2. The area under the ROC curve (AUC) varied between 0.66 and 0.84, depending
213 on the frequency band used to calculate the networks, reflecting the consistent difference observed in
214 the mean degree for controls and epilepsy in Fig. 1.
215



216 **Figure 1:** Summary statistics of the functional connectivity networks' mean degree (corrected for sex),
217 calculated for different frequency bands and using wake epochs. The first two boxes in each plot
218 ("Cont" and "Epi") indicate the comparison between subjects without and with epilepsy, respectively.
219 Subsequent boxes show the breakdown of different epilepsy types (Ge: generalised, Ro: Rolandic,
220 Fo: focal, and EE: encephalopathy). The rank-biserial correlation and p-value (two-tailed Wilcoxon rank
221 sum test, uncorrected for multiple comparisons) for the difference between "Cont" and "Epi" are also
222 shown.
223

224



225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

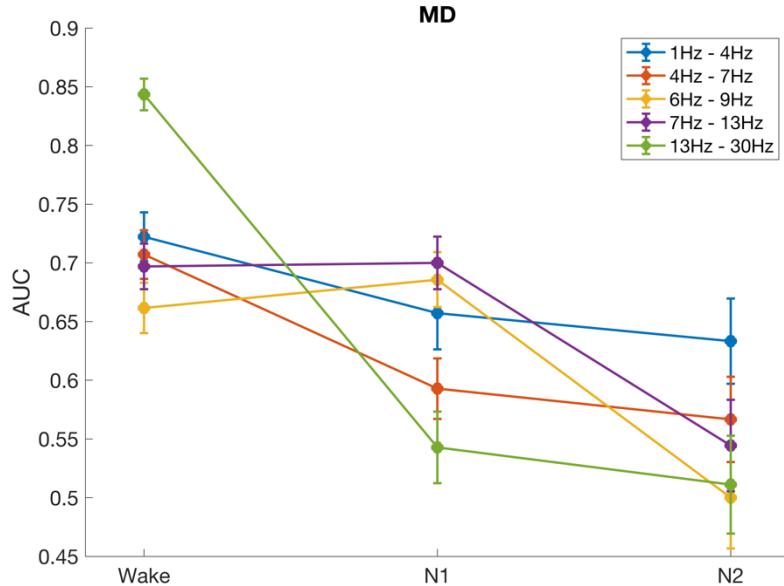
242

243

Figure 2: Receiver operating characteristic (ROC) curve calculated using the mean degree to classify subjects without and with epilepsy (wake epochs).

Differences in mean degree are smaller in sleep compared to wakefulness

As sleep has been shown to be an important factor impacting seizure susceptibility in different types of epilepsy^{23,18}, one important question is how it impacts functional brain networks of children with epilepsy. To answer this question, we calculated differences in mean degree between controls and children with epilepsy for epochs obtained from sleep stages N1 and N2. Following the calculation of the area under the ROC curve for epochs obtained from wakefulness, presented in Fig. 2, we used the AUC to quantify the differences between mean degree for controls and children with epilepsy in sleep (Fig. 3). As subjects transition from wakefulness into sleep (N1 and N2), the differences in mean degree between cases and controls decrease, as evidenced by the decrease in the AUC from wake to N1 and N2 in Fig. 3. For the delta, theta and beta bands, significant differences were observed between wake and N1/N2, while no significant differences were observed between N1 and N2. In the low alpha and alpha bands, no significant differences were observed between wake and N1, while both stages have significantly different AUC than N2 (Kruskal-Wallis test, Bonferroni correction for multiple comparisons).



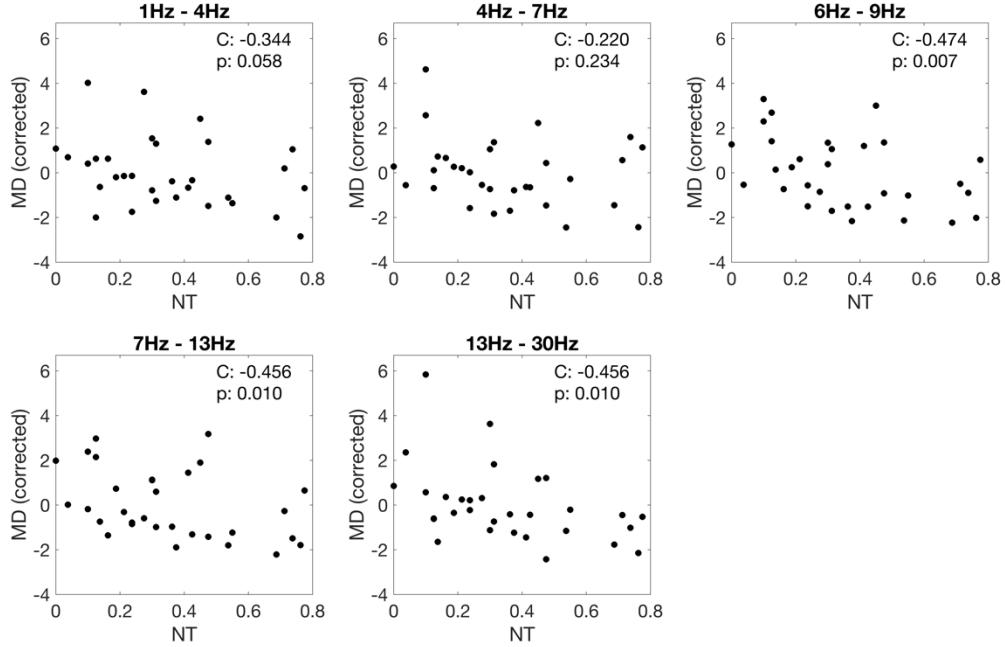
244

245 **Figure 3:** Area under the ROC curve for the mean degree, calculated in different stages of awareness
246 (wake, N1 and N2).

247

248 **Neurodevelopmental traits correlate with decrease in mean degree**

249 The effect of autism and ADHD traits on functional brain networks is explored in Fig. 4. In this figure,
250 the network mean degree (corrected for age, sex and epilepsy diagnosis), calculated for wake epochs,
251 was plotted as a function of the neurodevelopmental trait index (see Methods), for all frequency bands.
252 Figure 4 shows a negative correlation between neurodevelopmental traits and mean degree, for all
253 frequency bands. The correlation is clearer for higher frequencies, and remains significant when
254 corrected for multiple comparisons in the low alpha, alpha and beta bands. It is important to note that
255 the mean degree values here are corrected for epilepsy diagnosis (see Methods), so the correlation
256 between mean degree and neurodevelopmental trait index is independent of epilepsy diagnosis. When
257 we consider N1 and N2 epochs, the correlation was generally less clear but followed a similar trend
258 (see Figs. S2 and S3 in the Supplemental Material).



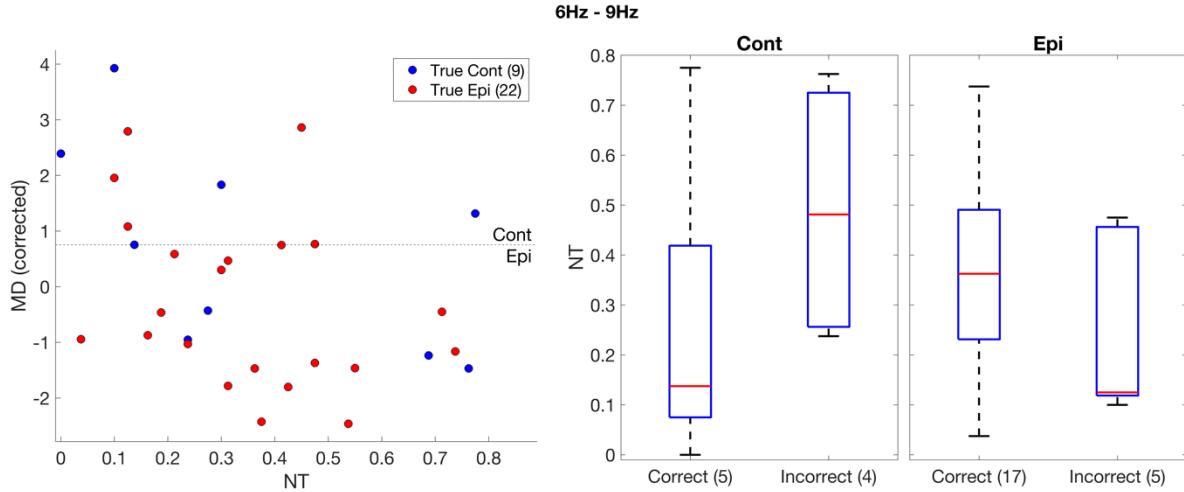
259
260
261
262

Figure 4: Spearman correlation and p-value (C and p) between neurodevelopmental trait index (NT) and mean degree (MD) corrected for age, sex, and epilepsy diagnosis. MD calculated using wake epochs.

263
264

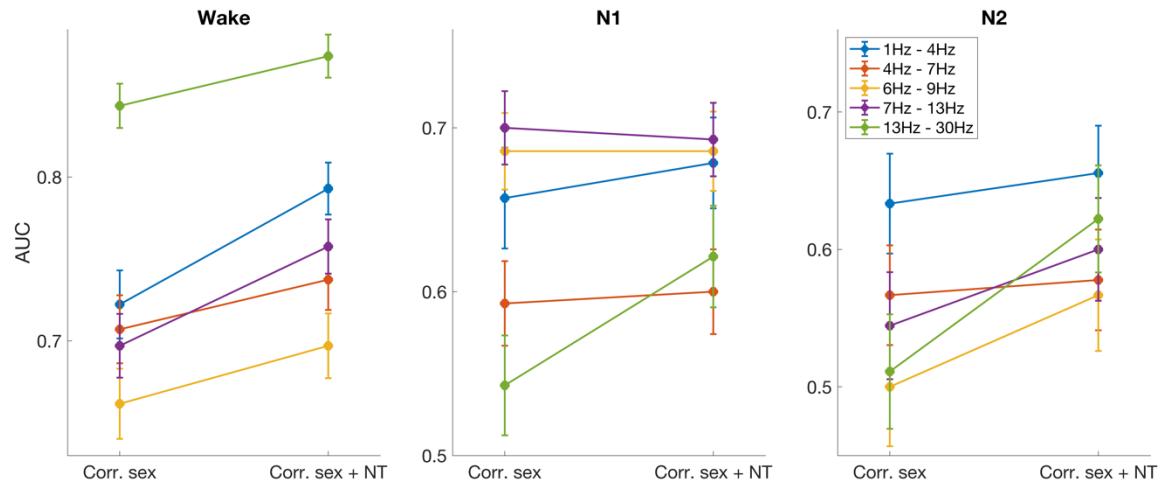
265 The influence of the neurodevelopmental trait index (NT) on the mean degree affects the classification
266 of controls and epilepsy subjects using this marker. Fig. 5 (left) shows NT and mean degree (corrected
267 for sex), calculated for controls and epilepsy in the low alpha band (which had the highest correlation
268 with NT). For the MD threshold of maximum balanced accuracy (dashed line), some subjects were
269 misclassified (blue dots below the dashed line, and red dots above it). When we analysed the NT of
270 the misclassified subjects (Fig. 5 - right), we noticed that controls misclassified as epilepsy have a
271 larger median NT than controls correctly classified. The opposite effect was seen for epilepsy. The
272 number of misclassified subjects was small, but the trend was clear and consistent across all frequency
273 bands (see Fig. S4 in the Supplemental Material). When estimating the classification power of MD
274 through the calculation of the AUC, if instead of only correcting this marker for sex imbalance (as in
275 Fig. 3) we also correct it for NT, the AUC generally improves, especially for wake epochs, as shown
276 in Fig. 6.

277



278
279
280
281
282
283
284
285
286

Figure 5: (Left) mean degree corrected for age, calculated using wake epochs, as a function of neurodevelopmental traits. Cont (Epi) are shown in blue (red). The dashed line represents the threshold of optimal balanced accuracy for the separation between Cont and Epi. **(Right)** Comparison between neurodevelopmental traits of subjects classified correctly (Cont > threshold / Epi < threshold) and incorrectly (Cont < threshold / Epi > threshold). Shown here only for low alpha band (6Hz – 9Hz). See Supplemental Material for the same calculation in other frequency bands.



287
288
289
290
291

Figure 6: Comparison between AUC calculated using MD only corrected for sex (as in Fig. 3) and corrected for sex and neurodevelopmental traits index (NT).

292
293

In this work, we investigated how paediatric epilepsy and co-occurring traits of neurodevelopmental conditions impact functional brain networks obtained from EEG in wakeful rest and sleep. We showed that, for networks obtained from wake resting-state epochs, epilepsy diagnosis correlates with a decreased mean degree within different frequency bands, with this effect being most apparent in the beta band. For epochs obtained in sleep stages N1 and N2, this effect is generally less pronounced. We have also shown that a marker associated with autism and ADHD characteristics (NT) has a negative correlation with mean degree, which is consistent across frequency bands and stages of awareness. We also quantified how neurodevelopmental traits can influence the classification power of mean degree when separating controls and epilepsy subjects. We showed that children without epilepsy and with

303 high *NT* have a higher risk of being misclassified than those with low *NT*. Conversely, children with
304 epilepsy with low *NT* might have a higher risk of being classified as not having epilepsy if the
305 influence of *NT* is not accounted for when identifying optimal classification thresholds.

306
307 Functional networks extracted from resting-state EEG have been studied in the context of epilepsy
308 previously, and various markers have been explored. Chowdhury et al.¹¹ compared functional
309 networks from adult controls and adults diagnosed with idiopathic generalised epilepsy. They showed
310 that, in the low-alpha band, network mean degree and degree variance are elevated in epilepsy, while
311 clustering coefficient is lower in epilepsy. These results differ from what has been observed in this
312 work. However, it is important to point out that changes in the pre-processing and calculation of
313 functional networks can have a significant effect on network markers, as can type of epilepsy, so
314 comparisons across different studies need to be interpreted carefully. Potential differences between the
315 effects of epilepsy on network markers in children and adults can result from the intricate influence of
316 brain maturation in the paediatric brain. Resting-state functional EEG networks have been shown to
317 present complex band-specific changes during the maturation period (e.g., positive correlation between
318 network segregation and age in the upper alpha band)³⁶. These results evidence the importance of
319 considering the influence of brain maturation in the study of epileptogenic brain networks in children.
320 The effects of age were accounted for in the present study, but comparisons were made considering a
321 relatively broad age range (4 to 15 years old). Further studies with larger sample sizes, clustering
322 participants in narrower age ranges, are needed to clarify the influence of brain maturation on EEG
323 networks in the context of epilepsy and neurodevelopmental disorders.

324
325 The results described above, observed in networks derived from wakeful rest, were also consistent
326 with those from epochs from sleep stages N1 and N2, however the effect size was generally smaller
327 during sleep. This result is interesting since NREM sleep has been shown to activate interictal
328 epileptiform discharges (IED) in many types of epilepsies³⁷, which actually underpins the use of nap
329 studies to support epilepsy diagnosis. However, it is important to notice that smaller control-epilepsy
330 differences for markers in sleep than in wake does not imply that ictal or interictal activity should be
331 less frequent in sleep. The relationship between IEDs and seizure susceptibility is still unclear, with
332 some works suggesting that IEDs can have anti-seizure effects, depending on the underlying
333 physiological mechanisms leading to seizures^{38,39}. In this scenario, states where IEDs are more
334 frequent could lead to network representations with features associated to low ictogenicity. The
335 detailed relationship between IEDs and network markers would require long wake and sleep
336 recordings, rich in IEDs, and is beyond the scope of this work.

337
338 The influence of neurodevelopmental conditions, like autism and ADHD, on functional networks
339 extracted from EEG data is still an open question. Evidence suggests that autism is characterised by
340 long-range underconnectivity⁴⁰, but this has been challenged and the diversity in methodology makes
341 it difficult to evaluate and compare across studies⁴¹. In this study we have shown that network mean
342 degree presents a negative correlation with the neurodevelopmental trait index *NT* (autism and ADHD
343 characteristics). This relationship does not comprehensively describe the effect of autism and/or
344 ADHD on functional brain networks, but it shows how the traits associated with these conditions can
345 influence network-based biomarkers and, therefore, their potential clinical value. The trend observed
346 in the relationship between mean degree and *NT* is also observed for the SCQ and Conners' raw scores
347 separately (data not shown). In order to disentangle the influences of autism and ADHD on network
348 markers, future studies should extend the analysis presented here by considering cases with confirmed
349 clinical diagnoses of these conditions, and focus on the main characteristics that differentiate their
350 classification.

351

352 Most studies that explore network markers of epilepsy from EEG recordings tend to exclude subjects
353 with co-occurring conditions from the analysis, especially neurodevelopmental conditions. However,
354 it is often unclear how and to what extent subjects have been tested, especially when sub-clinical traits
355 of neurodevelopmental conditions are considered. The results presented in this work show that
356 ignoring this information can lead to skewed model calibration and inaccurate classification, especially
357 for children with high *NT*. Such inaccuracies could lead to even longer diagnostic delays,
358 misdiagnosis, and inappropriate treatment strategies.

359
360 Some limitations of this work need to be considered when interpreting the results presented above.
361 Our analysis was implemented considering a relatively small number of subjects, especially in the
362 control group. Additionally, autism and ADHD traits was not different between the control and
363 epilepsy groups. Previous works suggest that both conditions have a higher prevalence in epilepsy than
364 in typically developing children⁸, indicating that the data used in this study might not be representative
365 of the general population. However, it is important to point out that the “control” group in this work
366 represents children suspected of having epilepsy who had a differential diagnosis. To the best of our
367 knowledge, the expected prevalence of autism and/or ADHD in such a group is unknown. Future works
368 should also focus on stratifying the analyses above in different epilepsy types, presenting a detailed
369 quantification of the influence of each epilepsy syndrome in network markers and their
370 interrelationship with co-occurring conditions.

371
372
373

374 **Acknowledgements**

375 L.J. acknowledges support from The Waterloo Foundation via a Child Development Fund Research
376 Grant (grant ref. no. 1970-4687). A.W., C.R., and A.P.B. acknowledge support from The Waterloo
377 Foundation (grant ref no. 1970/3346). L.J., D.G. and J.R.T. acknowledge support from the University
378 of Birmingham Dynamic Investment Fund. J.R.T. acknowledges support from the EPSRC (grant ref.
379 no. EP/T027703/1). S.J. acknowledges support from the Alan Turing Institute and the EPSRC (grant
380 ref. EP/N510129/1).

381
382
383

384 **References**

385

- 386 1. Guerrini, R.; Epilepsy in children. *Lancet* **367**, 499–524 (2006).
- 387 2. Holmes, G. L.; Effect of Seizures on the Developing Brain and Cognition. *Semin. Pediatr. Neurol.* **23**, 120–126 (2016).
- 388 3. Nickels, K. C. *et al.*; Cognitive and neurodevelopmental comorbidities in paediatric epilepsy. *Nat. Rev. Neurol.* **12**, 465–476 (2016).
- 389 4. Menlove, L. & Reilly, C.; Memory in children with epilepsy: A systematic review. *Seizure* **25**, 126–135 (2015).
- 390 5. Oto, M. (Meritxell); The misdiagnosis of epilepsy: Appraising risks and managing uncertainty. *Seizure* **44**, 143–146 (2017).
- 391 6. DiMario, F. J.; *Non-epileptic Childhood Paroxysmal Disorders*. (Oxford University Press, 2009).
- 392 7. Chitre, M.; Pitfalls in the diagnosis and misdiagnosis of epilepsy. *Paediatr. Child Health (Oxford)*. **23**, 237–242 (2013).
- 393 8. Shankar, R., Perera, B., & Thomas, R. H.; Epilepsy, an orphan disorder within the neurodevelopmental family. *J. Neurol. Neurosurg. Psychiatry* **91**, 1245–1247 (2020).
- 394 9. Kramer, M. A. & Cash, S. S.; Epilepsy as a Disorder of Cortical Network Organization.

402 10. *Neurosci.* **18**, 360–372 (2012).

403 10. Davis, K. A., Jirsa, V. K., & Schevon, C. A.; Wheels Within Wheels: Theory and Practice of
404 Epileptic Networks. **21**, 243–247 (2021).

405 11. Chowdhury, F. A. *et al.*; Revealing a Brain Network Endophenotype in Families with
406 Idiopathic Generalised Epilepsy. *PLoS One* **9**, e110136 (2014).

407 12. Petkov, G. *et al.*; A critical role for network structure in seizure onset: a computational
408 modeling approach. *Front. Neurol.* **5**, 261 (2014).

409 13. Woldman, W. *et al.*; Dynamic network properties of the interictal brain determine whether
410 seizures appear focal or generalised. *Sci. Rep.* **10**, 7043 (2020).

411 14. van Diessen, E. *et al.*; Improved Diagnosis in Children with Partial Epilepsy Using a
412 Multivariable Prediction Model Based on EEG Network Characteristics. *PLoS One* **8**, e59764
413 (2013).

414 15. Shrey, D. W. *et al.*; Strength and stability of EEG functional connectivity predict treatment
415 response in infants with epileptic spasms. *Clin. Neurophysiol.* **129**, 2137–2148 (2018).

416 16. Rashid, B. & Calhoun, V.; Towards a brain-based predictome of mental illness. *Hum. Brain
417 Mapp.* **41**, 3468–3535 (2020).

418 17. Buckley, A. W. & Holmes, G. L.; Epilepsy and Autism. *Cold Spring Harb. Perspect. Med.* **6**,
419 a022749 (2016).

420 18. Winsor, A. A. *et al.*; Sleep disruption in children and adolescents with epilepsy: A systematic
421 review and meta-analysis. *Sleep Med. Rev.* **57**, 101416 (2021).

422 19. Cohen, S. *et al.*; The relationship between sleep and behavior in autism spectrum disorder
423 (ASD): a review. *J. Neurodev. Disord.* **6**, 44 (2014).

424 20. Reynolds, A. M. & Malow, B. A.; Sleep and Autism Spectrum Disorders. *Pediatr. Clin. North
425 Am.* **58**, 685–698 (2011).

426 21. Becker, S. P. *et al.*; Sleep and daytime sleepiness in adolescents with and without ADHD:
427 differences across ratings, daily diary, and actigraphy. *J. Child Psychol. Psychiatry.* **60**, 1021–
428 1031 (2019).

429 22. Gregory, A. M. *et al.*; ADHD and Sleep Quality: Longitudinal Analyses From Childhood to
430 Early Adulthood in a Twin Cohort. *J. Clin. Child Adolesc. Psychol.* **46**, 284–294 (2017).

431 23. Gibbon, F. M., MacCormac, E., & Gringras, P.; Sleep and epilepsy: unfortunate bedfellows.
432 *Arch. Dis. Child.* **104**, 189–192 (2019).

433 24. Larson-Prior, L. J. *et al.*; Modulation of the brain's functional network architecture in the
434 transition from wake to sleep. in *Progress in Brain Research* 277–294 (2011).

435 25. El-Baba, M. *et al.*; Functional connectivity dynamics slow with descent from wakefulness to
436 sleep. *PLoS One* **14**, e0224669 (2019).

437 26. Verweij, I. M. *et al.*; Sleep deprivation leads to a loss of functional connectivity in frontal
438 brain regions. *BMC Neurosci.* **15**, 88 (2014).

439 27. Khalsa, S. *et al.*; Variability in Cumulative Habitual Sleep Duration Predicts Waking
440 Functional Connectivity. *Sleep* **39**, 87–95 (2016).

441 28. Facer-Childs, E. R. *et al.*; Circadian phenotype impacts the brain's resting-state functional
442 connectivity, attentional performance, and sleepiness. *Sleep* **42**, (2019).

443 29. Schmitt, B.; Sleep and epilepsy syndromes. *Neuropediatrics* **46**, (2015).

444 30. Bagshaw, A. P. *et al.*; Effect of sleep stage on interictal high-frequency oscillations recorded
445 from depth macroelectrodes in patients with focal epilepsy. *Epilepsia* **50**, 617–628 (2009).

446 31. Rutter, M., Bailey, A., & Lord, C.; The Social Communication Questionnaire. *Los Angeles, CA*
447 (2003).

448 32. Conners, C. K.; *Conners 3rd Edition (Conners 3)*. *Journal of Psychoeducational Assessment*
449 (2008).

450 33. Caspi, A. & Moffitt, T. E.; All for One and One for All: Mental Disorders in One Dimension.
451 *Am. J. Psychiatry* **175**, 831–844 (2018).

452 34. Richard B. Berry, MD; Rita Brooks, MEd, RST, RPSGT; Charlene E. Gamaldo, M. & Susan
453 M. Harding, MD; Robin M. Lloyd, M. C. L. M.; American Academy of Sleep Medicine. The
454 AASM Manual for the Scoring of Sleep and Associated Events : Rules, Terminology, and
455 Technical Specifications, Version 2.2. *Am. Acad. Sleep* **28**, 391–397 (2016).

456 35. Cureton, E. E.; Rank-biserial correlation. *Psychometrika* **21**, 287–290 (1956).

457 36. Chung, Y. G. *et al.*; Variations of Resting-State EEG-Based Functional Networks in Brain
458 Maturation From Early Childhood to Adolescence. *J Clin Neurol* **18**, 581–593 (2022).

459 37. Jin, B. *et al.*; Epilepsy and Its Interaction With Sleep and Circadian Rhythm. *Front. Neurol.*
460 **11**, (2020).

461 38. Avoli, M.,de Curtis, M.,& Köhling, R.; Does interictal synchronization influence ictogenesis? *Neuropharmacology* **69**, 37–44 (2013).

462 39. Chvojka, J. *et al.*; The role of interictal discharges in ictogenesis — A dynamical perspective. *Epilepsy Behav.* **121**, 106591 (2021).

463 40. O'Reilly, C.,Lewis, J. D.,& Elsabbagh, M.; Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies. *PLoS One* **12**, e0175870 (2017).

464 41. Mohammad-Rezazadeh, I. *et al.*; Brain connectivity in autism spectrum disorder. *Curr. Opin.*
465 *Neurol.* **29**, 137–147 (2016).

466

467

468

469