

# Monitoring Alzheimer's Disease via Ultraweak Photon Emission

**Niloofar Sefati** <sup>1,\*</sup>, **Tahereh Esmaeilpour** <sup>1,\*</sup>, **Vahid Salari** <sup>2,\*</sup>, **Asadollah Zarifkar** <sup>3</sup>, **Farzaneh Dehghani** <sup>1,4</sup>, **Mahdi Khorsand Ghaffari** <sup>3</sup>, **Noémi Császár** <sup>5</sup>, **István Bókkon** <sup>5,6</sup>, **Serafim Rodrigues** <sup>7,8</sup>, **Daniel Oblak** <sup>2,\*</sup>

<sup>1</sup> *Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran*

<sup>2</sup> *Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada*

<sup>3</sup> *Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran*

<sup>4</sup> *Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran*

<sup>5</sup> *Psychosomatic Outpatient Clinics, Budapest, Hungary*

<sup>6</sup> *Vision Research Institute, Neuroscience and Consciousness Research Department, Lowell, MA, USA*

<sup>7</sup> *MCEN Team, Basque Center for Applied Mathematics, Bilbao, Bizkaia, Spain*

<sup>8</sup> *IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain.*

Correspondence\*:

Corresponding Authors

esmaeil@sums.ac.ir, vahid.salari1@ucalgary.ca, doblak@ucalgary.ca

## 2 ABSTRACT

3 The present study takes on an innovative experiment involving detection of ultraweak photon  
4 emission (UPE) from the hippocampus of male rat brains and finds significant correlations between  
5 Alzheimer's disease (AD), memory decline, oxidative stress, and the intensity of UPE emitted  
6 spontaneously from the hippocampus. These remarkable findings opens up novel methods for  
7 screening, detecting, diagnosing and classifying neurodegenerative diseases (and associated  
8 syndromes), such as in AD. This also paves the way towards novel advanced brain-computer  
9 interfaces (BCIs) photonic chip for the detection of UPE from brain's neural tissue. The envisaged  
10 BCI photonic chip (BCIPC) would be minimally invasive, cheap, high-speed, scalable, would  
11 provide high spatiotemporal resolution of brain's activity and would provide short- and long-term  
12 screening of clinical patho-neurophysiological signatures, which could be monitored by a smart  
13 wristwatch or smartphone via a wireless connection.

14 **Background & aim:** Living cells spontaneously emit biophotons, or UPE, during the process of  
15 metabolic reactions, and these UPE in tissues may be altered in pathological conditions. These  
16 compelling observations led us to hypothesise that AD (a severe neuropathological disorder)  
17 can be screened via UPE. This is substantiated by previous studies showing that oxidative  
18 stress occurs prior to the formation of amyloid plaques and neurofibrillary tangles (i.e. the

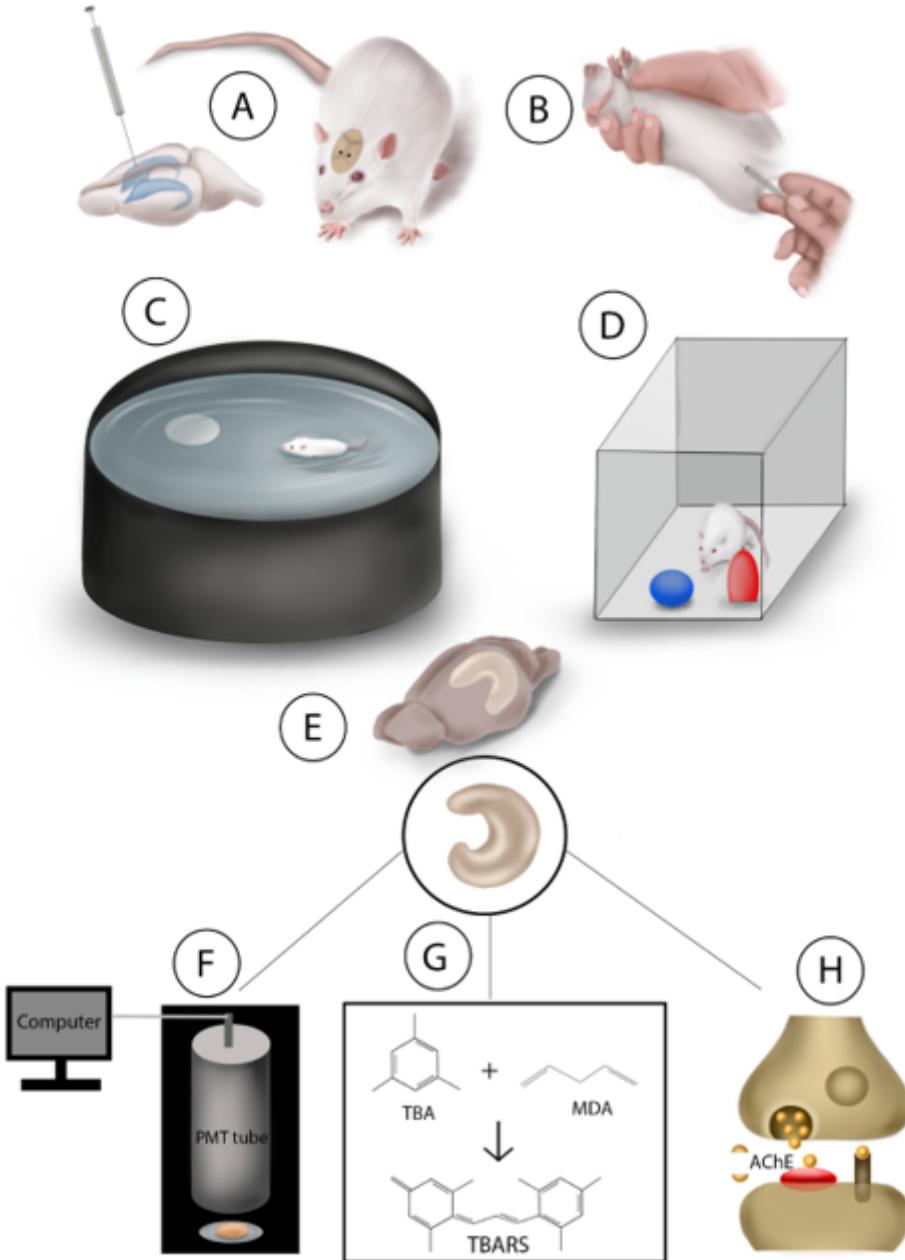
19 neuropathological hallmarks of AD). Indeed, oxidative stress is a critical factor contributing to  
20 the initiation and progression of AD. Moreover, earlier research have evidenced the association  
21 between UPE and oxidative stress of biological tissue. These combined observations set us  
22 to investigate whether UPE intensity of the hippocampus in a pathological state, induced by  
23 intracerebroventricular (ICV) injection of streptozotocin (STZ), can be correlated with memory,  
24 oxidative stress, Acetylcholinesterase (AChE) as a novel screening strategy for AD.

25 **Material & methods:** Thirty-two adult male rats were divided into four groups: Control, Sham,  
26 STZ, and STZ+Donp (n=8). Specifically, for inducing sporadic AD (sAD), STZ was injected on  
27 days 1 and 3. One week after the second ICV injection, the intraperitoneal (IP) use of donepezil  
28 was initiated and continued for two weeks. After treatment, spatial and recognition memory were  
29 evaluated from days 24 to 29 of the experiment using the Morris water maze (MWM) and novel  
30 object recognition (NOR) test, respectively. Finally, the rats were euthanased by cervical dislocate  
31 in day 30. Anesthetic drugs disrupt neural communication from chemical neurotransmitter receptor  
32 inhibition. UPE related to cells activity so anesthesia intervention must be considered. Then, their  
33 brains were removed and the hippocampus dissected. The Right hippocampus was evaluated  
34 in terms of UPE via a Photomultiplier tubes (PMT) device. Moreover, in left hippocampus we  
35 measured malondialdehyde (MDA) by the TBARS assay and heat via calorimeter ELIZA device.  
36 Acetylcholinesterase (AChE) activity was also scrutinized via acetylthiocholine reaction via the  
37 Ellman method.

38 **Results & discussion:** STZ injection impaired learning and memory function compared with the  
39 sham and control groups. The results of the MWM test indicated a decrease in the time used  
40 to find the hidden platform in the donepezil-treated group during training days, while in the STZ  
41 group, no significant reduction in this time was observed. In the probe trial, the donepezil-treated group  
42 showed a significant increase in target quadrant time in comparison with the STZ group  
43 ( $p<0.05$ ). Furthermore, the object recognition test demonstrated that the donepezil-treated group  
44 spent more time recognizing new objects in the testing phase ( $p<0.05$ ). Whereas, in the STZ  
45 group, there was no significant difference in spent time for identifying the objects. Ex vivo detection  
46 of UPE from the hippocampus of rats showed that the sham group had higher UPE than the  
47 Control group ( $p<0.05$ ). The STZ injection significantly increased UPE and MDA concentrations  
48 in the hippocampus than in the Sham and Control groups ( $p<0.0001$ ). Correlation analysis of  
49 results reveal that the emission intensity is associated with the MDA concentration ( $r = 0.855$ ).  
50 Hippocampus AChE activity also significantly increased in STZ-injected groups. Treatment with  
51 donepezil decreased MDA concentration, UPE intensity, and activity of AChE in comparison  
52 with the STZ group ( $p<0.05$ ). UPE intensity was linked with AChE activity as evidenced by  
53 Pearson correlation analysis between UPE intensity and AChE activity ( $r = 0.779$ ). Conclusion:  
54 The hippocampus UPE increases in STZ-induced sAD and is associated with the redox state  
55 of the tissue. Donepezil decreases the UPE and improves the oxidative stress induced by STZ  
56 injection. Since oxidative stress is one of the primary hallmarks in the progression of AD, then it  
57 stands to reason that the Brain's UPE emission can be used as a novel methodology for screening  
58 AD. Moreover, UPE could be used to monitor recovery from neurodegenerative diseases upon  
59 suitable future therapeutic treatments, as suggested by our experiment involving donepezil. Our  
60 findings, encourages further research and suggests the development of a minimally invasive BCI  
61 photonic chip (with similar quantum efficiency as PMT) for screening and diagnosing AD.

62 **Keywords:** Ultraweak photon emission (UPE), Photonic chip, Alzheimer's disease (AD), Hippocampus, Reactive oxygen species (ROS),  
63 Oxidative stress, memory, Brain-computer interface (BCI)

## 1 INTRODUCTION


64 To the best of our knowledge, there is currently no brain implantable chip that is specifically designed to  
65 screen and diagnose Alzheimer's disease (AD). While implantable brain chips have been developed for  
66 various purposes, such as monitoring brain activity or delivering therapeutic electrical stimulation, their  
67 use for screening or diagnosing AD is still an area of active research. Diagnosing AD typically involves  
68 a combination of cognitive and memory tests, brain imaging studies, and other assessments performed  
69 by a clinician. Based on the observation that the brain spontaneously emits photons, so called ultraweak  
70 photon emissions (UPE) (1; 2), we suggest that a brain-computer interface with an integrated photonic  
71 chip (BCIPC)(3) may be an efficient real-time method for monitoring early symptoms of AD and related  
72 dementias (ADRD). The envisaged technology would support clinicians by providing complementary  
73 data to efficiently screen and diagnose AD. Indeed, We have previously discussed a pattern recognition  
74 approach for an efficient interpretation of UPE via the output signals on a photonic interferometer chip (3).  
75 Supporting this vision is the fact that various research studies have shown that there are significant UPEs  
76 from neurons across the electromagnetic spectrum (1; 4). Such UPEs reflect cellular (and brain) oxidative  
77 status, as they are particularly intense during heightened metabolic activity or stress (5). Several studies  
78 point to direct correlations between UPE intensity and neural activity, oxidative reactions, EEG activity,  
79 cerebral blood flow, cerebral energy metabolism, and glutamate release (6). Such correlations suggest that  
80 we may use UPEs as a correlative signal to monitor different internal states across the stages of ADRD  
81 pathology and to expand the clinical criteria, particularly in the preclinical and mild cognitive impairment  
82 (MCI) stages where memory loss and other problems are not always evident. Discrimination between  
83 the interferometric patterns of normal, and preclinical stages will be non-trivial but tractable via machine  
84 learning, based on observation of highly synchronized brain activities with strong UPE correlations for  
85 specific cognitive tasks (3). With an analysis of signals over thousands of training trials, it will be possible  
86 to obtain an average pattern for feature extraction, enabling pattern recognition directly during preclinical  
87 and premarket approval testing.

88 The hippocampus is an important brain region that plays a crucial role in forming and retrieving memories  
89 (7). In AD, one of the earliest symptoms is memory loss and difficulty in forming new memories, which  
90 is linked to damage to the hippocampus. This is why the hippocampus is often a focus of research and  
91 imaging studies in the diagnosis of AD. The size of the hippocampus can also decrease in people with  
92 AD, which can be seen on brain scans such as MRI. However, it's important to note that memory loss and  
93 changes in the hippocampus can be caused by other factors as well, so it's not a definitive diagnostic tool  
94 for AD, hence a number of clinical evaluations are undertaken to accurately diagnose AD.

95 The detection of biophotons through a photonic chip implanted in the hippocampus is an area of ongoing  
96 research, and its potential for diagnosing AD is still unclear. Biophotons are extremely weak light emissions  
97 from biological systems and their relationship to neurodegenerative diseases such as AD is not yet fully  
98 understood, and there is currently no evidence to support its use as a reliable diagnostic tool for AD. This  
99 motivates the present study where we investigate biophotons from the hippocampus (8) and correlate it with  
100 other neuropathological signatures of AD, results of which enables us to propose the future development of  
101 BCIPC for screening and diagnosing AD.

102 1.1 Alzheimer's disease (AD), ROS, and Ultraweak Photon Emission

103 AD is the most common type of dementia and is a progressive neurodegenerative brain disorder causing  
104 a significant disruption of normal brain structure and function (9). Sporadic Alzheimer's disease (sAD),  
105 which begins after the age of 65 without a family history, is the most common type of AD and has several  
106 causes and risk factors (10). The risk factors and reasons associated with sAD include the accumulation  
107 of amyloid plaques, the formation of neurofibrillary tangles, decreased activity or number of cholinergic  
108 neurons in the brain, neuroinflammation, insulin signaling impairments, mitochondrial disorders, and  
109 oxidative stress (11; 12). In the brain of an AD patient, the most consistent neurotransmitter-related change  
110 is the reduction of cholinergic innervation in the cortex and hippocampus caused by the loss of neurons  
111 in the basal forebrain (13). Among the pharmacological agents, Acetylcholinesterase (AChE) inhibitors,  
112 like donepezil, seem to be the most effective agent for improving cholinergic deficits and reducing the  
113 symptoms of AD (14). As the most potent approved drug, donepezil affects various events of AD, such  
114 as inhibiting cholinesterase activities, anti- $A\beta$  aggregation, anti-oxidative stress, etc. (15). In sAD, the  
115 initiating causes of the neurodegenerative cascade are unknown, but some studies suggest increased levels  
116 of oxidative stress and impaired energy metabolism as the initiating cause of the disease (16). Oxidative  
117 stress is an imbalance between the antioxidant defense system and the production of reactive oxygen species  
118 (ROS). Mitochondria are susceptible to oxidative damage despite the presence of an antioxidant system,  
119 and damaged mitochondria produce more ROS than ATP (17). Spontaneously, when ROS are produced  
120 during the metabolic processes, the ultra-weak photons are emitted through the relaxation of electronically  
121 excited species formed during the oxidative metabolic processes (18); therefore, the biophoton emission  
122 rate could be utilized in order to investigate tissue oxidative state (19). The ultraweak photon emission  
123 (UPE) produces a very weak luminescence and can be performed by living organisms (18; 20), comprising  
124 microorganisms, plants, and humans. It is mainly named biophoton emission (21; 22). The UPE intensity  
125 changes are related to different physiological and pathological conditions, such as different kinds of stress,  
126 mitochondrial respiratory chain, cell cycle, and cancerous growth. It has been shown that the measurement  
127 of delayed luminescence emitted from the tissues provides valid and predictive information about the  
128 functional status of biological systems (23; 24). Several studies repeatedly illustrated that the intensity of  
129 photon emission changes in an abnormal condition, and abnormal cells emit significantly more biophotons  
130 than healthy cells. It has also been shown that changes in biophotonic activity are indicative of changes in  
131 mitochondrial ATP energy production manifested in physiological and pathological conditions (25; 26).  
132 Having considered that ROS production is related to inflammatory diseases and impaired metabolic  
133 processes (27), it is reasonable to expect that UPE can also be associated with inflammatory disease and/or  
134 metabolic processes (28). Therefore, UPE might be used practically for the diagnosis of inflammation and  
135 inflammation-related diseases (28). Reports have considered ultra-weak photon emission as a potential  
136 diagnostic tool, and some studies have found evidence for diagnosing patients with type 2 diabetes (29)  
137 and breast cancer (30). Intracerebroventricular (ICV) injection of low doses of streptozotocin (STZ) leads  
138 to neuropathological, biochemical, and behavioral changes similar to non-hereditary sAD in the rat brain,  
139 so it is used as a laboratory model to investigate the process and treatment of sAD in rat brain (31). STZ  
140 possibly desensitizes neuronal insulin receptors and reduces the activities of the glycolytic enzyme (32). It  
141 causes oxidative stress and decreases cerebral energy metabolism resulting in cognitive dysfunction by  
142 inhibiting the synthesis of adenosine triphosphate (ATP) and acetyl CoA, which in turn leads to cholinergic  
143 deficiency supported by reduced choline acetyltransferase (ChAT) activity in the hippocampus (33; 34)  
144 and increased AChE activity in rat whole brain (35). The present study was designed to evaluate the UPE  
145 intensity of the hippocampus in the normal, pathological, and therapeutical state and also investigate the



**Figure 1.** (A), ICV-STZ Injection; (B), IP injection of treatments; (C), Morris Water Maze test;(D), Novel Object Recognition test; (E), Hippocampus dissection; (F), UPE detecting of the right hippocampus with photon multiplier tube; (G), MDA estimation of left hippocampus by colorimetrical measurement of TBARS reaction with ELASA reader; (H), measurement of AChE activity of the left hippocampus with Ellman method

146 relationships between the intensity of UPE, memory, oxidative stress, and AChE activity for AD diagnosis  
147 and treatment success.

## **2 MATERIALS AND METHODS**

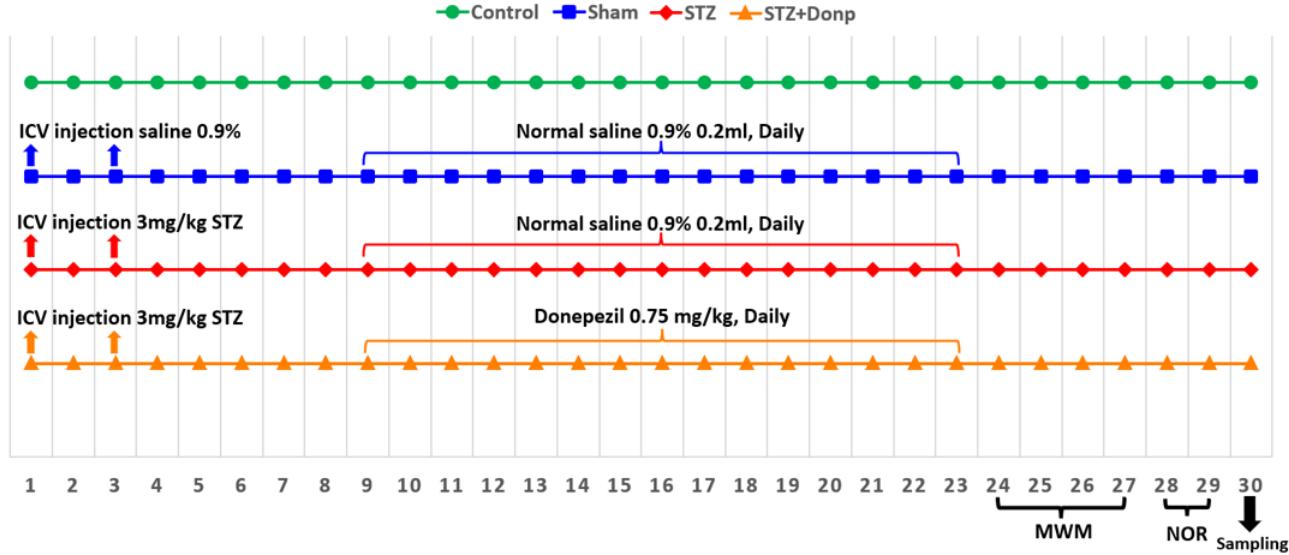
148 The whole method is graphically represented in Fig.1. The details are as follows:

149 **2.1 Animals**

150 In this study, 32 adult Sprague-Dawley male rats (220-250 g), were obtained from the Comparative and  
151 Experimental Medical Center of the Shiraz University of Medical Sciences. All rats were housed under  
152 standard conditions (temperature:  $22\pm2$  °c, relative humidity: 50%, with a 12-hour light/dark cycle) and  
153 had free access to laboratory food and water. The animals were subjected to an acclimatization period of  
154 one week before the beginning of the experiments. To prevent seasonal disturbances, experiments were  
155 started on all groups at the same time. All procedures in the study were based on the National Institutes of  
156 Health (NIH) guidelines for the care and use of laboratory animals (NIH Publications No. 8023, revised  
157 1978) and were approved by the Ethics Committee of the Shiraz University of Medical Sciences (approval  
158 number: IR.SUMS.REC.1400.191).

159 **2.2 Drugs and reagents**

160 Donepezil, was produced by Sigma, St. Louis, USA, and STZ, thiobarbituric acid, and trichloroacetic  
161 acid were procured from the Sigma-Aldrich company. Artificial cerebrospinal fluid (aCSF) was prepared as  
162 follows: (in mmol/L) 147 mM NaCl, 2.9 mM KCl, 1.6 mM MgCl<sub>2</sub>, 1.7 mM CaCl<sub>2</sub>, and 2.2 mM dextrose.


163 **2.3 Experimental design**

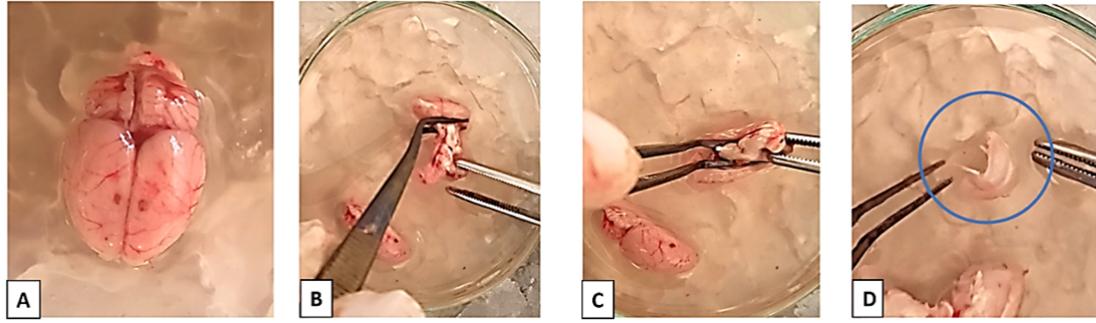
164 The rats were divided with simple randomized sampling into four groups (n=8), including Control,  
165 Sham, STZ, and STZ+Donp groups. the Control group underwent without any intervention. Sham and  
166 experimental groups underwent ICV cannulation of both lateral ventricles. To produce the ICV-STZ rat  
167 model and memory impairment in rats, after cannulation, ICV injection of STZ on days 1 and 3 of the  
168 experiment was done. For this purpose, 3 mg/kg STZ (Sigma, St. Louis, USA) was dissolved in 10  $\mu$ l sterile  
169 saline 0.9% and injected slowly into both lateral ventricles (each side 5 $\mu$ l). The Sham rats were treated  
170 identically with 10  $\mu$ l sterile saline 0.9%. One week after the second injection of STZ, the intraperitoneal  
171 (IP) treatments were initiated on the rats until day 23. Sham and STZ group received 0.2 ml saline 0.9%  
172 daily/IP, and the STZ+Donp group received 0.75 mg/kg donepezil daily/IP.

173 From days 24 to 29 of the experiment, rats were subjected to MWM and NOR tests. Finally, on day 30,  
174 the rats were dislocated, and their brains were removed (see Fig.2).

175 **2.4 Intracerebroventricular cannulation**

176 On the zero-day of the experiment, we carried out ICV cannulation of both lateral ventricles. Briefly,  
177 rats were anesthetized with an IP injection of ketamine HCl 10% (70 mg/kg) and xylazine HCl 2% (10  
178 mg/kg). Their heads were placed in a stereotaxic frame, and a midline incision was made sagittally in the  
179 scalp. The bregma boundary was visible after removing the remaining tissue. Holes were drilled in the  
180 skull with a dental handpiece with a burr size of 1mm on both sides over the lateral ventricles using the  
181 following coordinates from Paxinos atlas (0.8 mm posterior to bregma, 1.5 mm lateral to the sagittal line).  
182 Two cannulas with a height of 3 mm were inserted in these holes. Then, holes and cannula were covered  
183 with dental cement to fix the position. For ICV injection, the injection needle with 3.5 mm height was  
184 connected to the 10  $\mu$ l Hamilton syringe (Bonaduz, Switzerland) by a short piece of narrow polyethylene  
185 tube. The needle was inserted into the tip of the cannula.




**Figure 2.** Timeline of experiment. Lines represents groups.

## 186 2.5 Morris water maze

187 MWM test was performed from days 24 to 27 of the experiment. The maze consisted of a circular pool  
188 (160 cm in diameter, 60 cm in height), and up to 35 cm in height, it is filled with water (the temperature at  
189  $22 \pm 1^{\circ}\text{C}$ ). The pool is geographically divided into four quarters, equal north, south, east, and west, and  
190 in each quarter of the circle, a point is intended to leave the animal in the water. A transparent platform  
191 (diameter, 10 cm) was positioned in the middle of the target quadrant and submerged approximately 1 cm  
192 below the water's surface. All rats underwent four daily trials for three consecutive days for spatial learning  
193 assessment. The starting quadrant was changed each day. If the rat failed to find the hidden platform within  
194 60 s, it was guided to the platform by the experimenter. The rats stood on the platform for 10 s for spatial  
195 examination of the platform zone. Then, they were removed from the pool into the cage and rested for  
196 one min under a heater inside the cage. A probe trial was performed 24 h after the last acquisition trial to  
197 assess spatial memory. In this phase, the hidden platform was removed, and rats were abandoned from  
198 the opposite quadrant of the target quadrant into the water and given 60 s to swim in the pool. A visible  
199 platform trial was performed after the probe trial to check the rat's vision and platform perception. Time to  
200 reach the platform (escape latency), time spent in the target quadrant, the number of platform site crossings,  
201 and swimming speeds were automatically estimated with a video tracking system (EthoVision XT, Noldus  
202 Information Technology) for measuring mobility accurately; the software must be calibrated.

## 203 2.6 Novel object recognition test

204 On the 28th day of the experiment, recognition memory was evaluated by a novel object recognition  
205 test. The testing apparatus was a box with dimensions  $65 \times 45 \times 65$  cm. this test was performed for two  
206 days. On the first day, to familiarize themselves with the test box, the rats are located in the test box for 5  
207 min without any objects. On the second day in the familiarization phase, two similar objects were placed  
208 in two corners of the box, and the rats were placed in the box for 5 min to explore objects. Then the rats  
209 returned to the cage. After 60 min, the rats were retrial in the box for the testing phase, and one of the



**Figure 3.** Hippocampus dissection. (A) The brain was dissected, (B) Hemisphere was separated, and the cerebellum, pons, and medulla were removed, (C) Thalamus and hypothalamus dissection, (D) Hippocampus was removed from the cortex and placed in a petri dish containing ACSF.

210 familiar objects was replaced with a new object. The time spent to check each object was measured for 5  
211 min. The animals were evaluated when facing, sniffing, or biting the object. some equipment, such as a test  
212 box and objects, were cleaned with 70% ethanol between trials. Eventually, the discrimination index (the  
213 spent time identifying a novel object divided by the spent total time exploring either object) was measured  
214 for recognition memory assessment.

## 215 2.7 Hippocampus sampling

216 Finally, the rats cervical dislocated on day 30, and the brains were rapidly removed. Then, the right and  
217 left brain hemispheres separated, the right hippocampus was dissected for biophoton emission evaluations,  
218 and the left one was stored at -80 °C for MDA and AChE activity measurements (see Fig.3).

## 219 2.8 Detection of UPE

220 In this study, UPE were detected with the photomultiplier tube (PMT) placed in a dark box in a dark  
221 room. PMT is an intensely sensitive detector amplifying entrance photons from a field of view to electrical  
222 signals. The PMT was connected to the G.G.104 (Parto-Tajhiz-Besat co - PTB) converter, which was also  
223 connected to the laptop for data to be digitally visible. A photon counting system (R6095 Hamamatsu  
224 Photonics K.K., Electron Tube Center, Hamamatsu, Japan) was used to observe time-dependent photon  
225 emission intensity. PMT provides detection of photons in the range of 300 to 700 nm wavelength, with  
226 highest quantum efficiency (30%) at 420 nm. The collecting gate time from the PMT was set at 1s. Dark  
227 noise was detected with the number of counts in an empty dark box for 5min (c.p.5 min) before sample UPE  
228 detection and subtracted from the results. Noise is reduced by modifying the upper and lower threshold via  
229 PMT software. The distance between the sample and the PMT sensor was 0.5 cm. In each trial period, the  
230 medium's emission and then the UPE of samples were measured in a 5 min period. The right hippocampus  
231 was dissected and transferred to a 3 cm Petri dish containing oxygenated aCSF (O<sub>2</sub> 95%, CO<sub>2</sub> 5%), which  
232 was placed under the sensor. For declining any possible delayed luminescence, petri dish was placed in the  
233 darkroom for 10 min (23).

## 234 2.9 Sample preparation for biochemical analysis

235 The left hippocampus was removed, weighed, and homogenized in the 10-fold ice-cold phosphate buffer  
236 saline. The homogenizing was accomplished using Homogenizer (IKA T10 basic, Germany) apparatus for

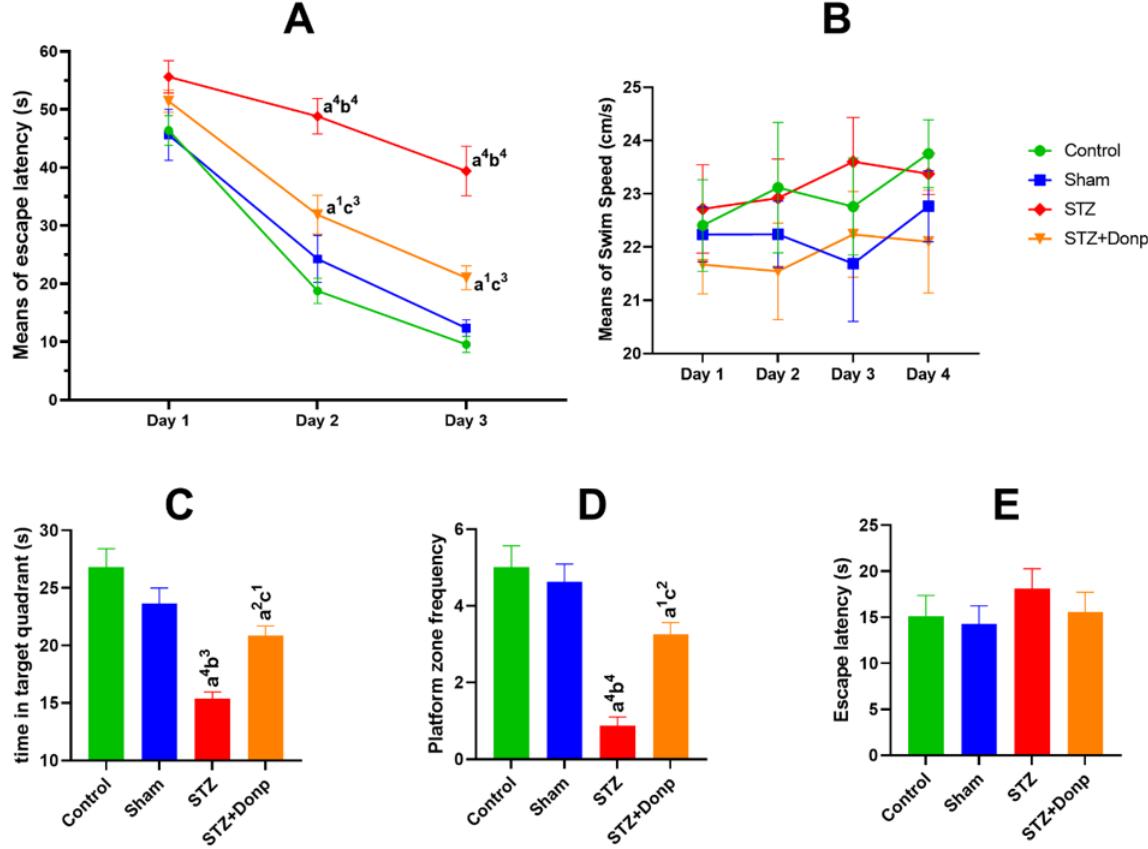
237 about 3 m. Next, centrifuging (12000 rpm) at 4°C for 5 m was performed, and the supernatant was isolated  
238 for the following assessments.

239 **2.10 MDA Assessment**

240 MDA, a marker of lipid peroxidation, was estimated colorimetrically using 1,1,3,3-tetra ethoxy propane  
241 as a standard. Lipid peroxidation was estimated with TBARS and determined by colorimetric measurement  
242 of the color produced during the reaction of thiobarbituric acid (TBA) with MDA by an Elisa plate reader  
243 (Bio-Tek Instruments, Inc) at 532nm (37). Results expressed as nmol/mg protein.

244 **2.11 Acetylcholinesterase activity assessment**

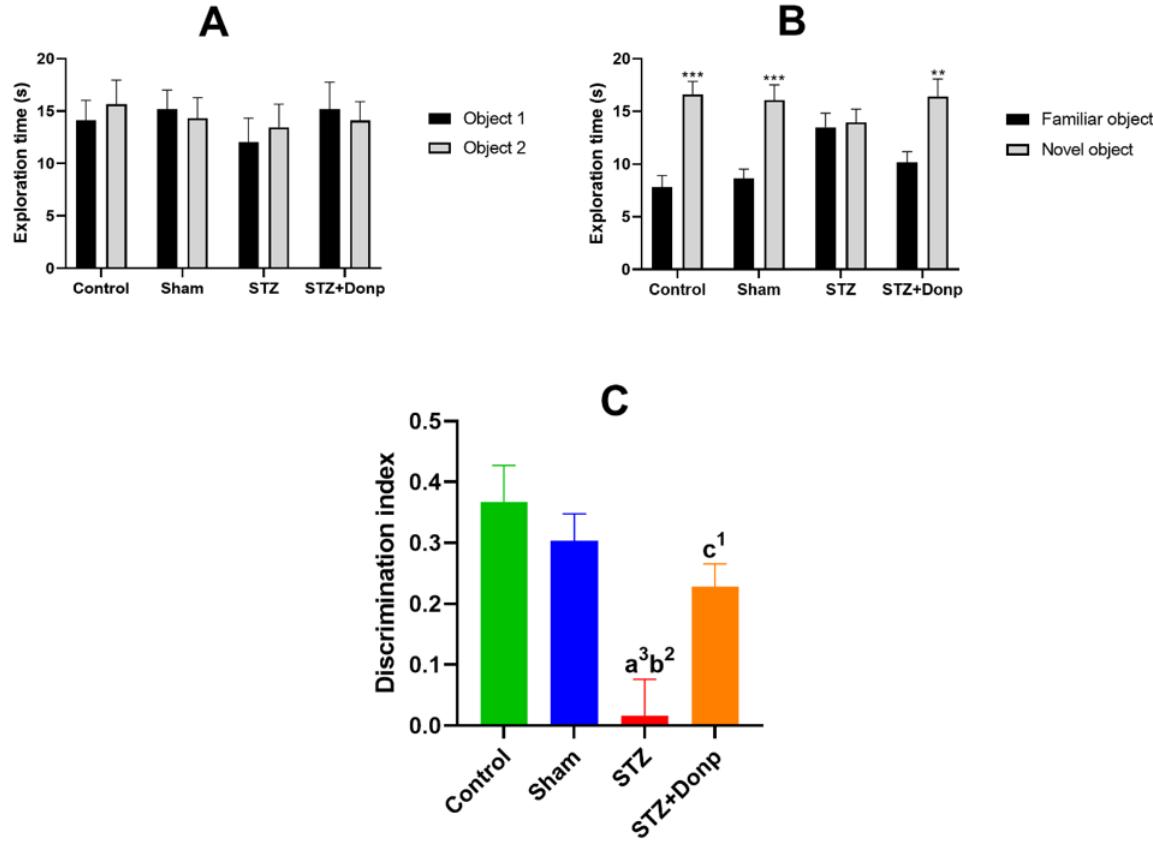
245 The activity of AChE was carried out according to the Ellman method, which uses acetylthiocholine  
246 as a substrate. Thiocholine, produced by AChE, reacts with 5,5-dithiobis (2-nitrobenzoic acid) to form a  
247 colorimetric product proportional to the AChE activity. The activity of AChE was spectrophotometrically  
248 measured at 412 nm and expressed as nmol/min/mg protein (38). Protein concentration was measured  
249 according to the method of Bradford (39).


250 **2.12 Statistical analysis**

251 Data were presented as the mean  $\pm$  SEM, and  $P < 0.05$  was considered statistically significant. To assess  
252 escape latency and swim velocity (Morris water maze) changes during the time, a two-way repeated-  
253 measures analysis of variance (TWRM-ANOVA) was done. Also, for other parameters, one-way ANOVA  
254 followed by Tukey's post hoc test was utilized for comparing various groups. In the NOR test, exploration  
255 time during the testing phase was analyzed by paired t-test. All statistical analyses were performed using  
256 GraphPad software (Prism Software Inc., San Diego, CA, USA).

### **3 RESULTS**

257 **3.1 Morris Water Maze**


258 There was no significant difference in escape latency between groups on the first day of the acquisition  
259 trial. On the 2nd and 3rd days, there was a significant difference in escape latency between the control  
260 group and other groups (STZ  $p < 0.0001$ , STZ+Donp  $p < 0.05$ ). STZ group had significantly higher scape  
261 latency in comparison with the sham group ( $p < 0.0001$ ). Also, on this day, the escape latency of the  
262 STZ+Donp group significantly decreased in comparison with the STZ group ( $p < 0.001$ ). Our results  
263 demonstrated that escape latency in the donepezil-treated group was significantly lower than in the STZ  
264 group ( $p < 0.001$ ) (see Fig.4A). No significant differences were observed in swim speed between groups  
265 on all days of the trial (Fig.4B). In the probe trial, the STZ-injected groups significantly spent lower time in  
266 the target quadrant compared with the control group (STZ  $p < 0.0001$ , STZ+Donp  $p < 0.01$ ). Still, only  
267 the STZ group was significant with the sham group ( $p < 0.001$ ). Whereas the donepezil-treated group  
268 significantly spent higher time in the target quadrant in comparison with the STZ group ( $p < 0.05$ ) (Fig.4C).  
269 In this trial, platform zone crossing in the STZ group significantly decreased compared with the control  
270 and sham groups ( $p < 0.0001$ ). Moreover, the STZ+Donp group had a significant difference from the STZ  
271 group ( $p < 0.01$ ) and the control group ( $p < 0.05$ ) (Fig.4D). Escape latency in visible platform trials was  
272 not significantly different between the groups (Fig.4E).

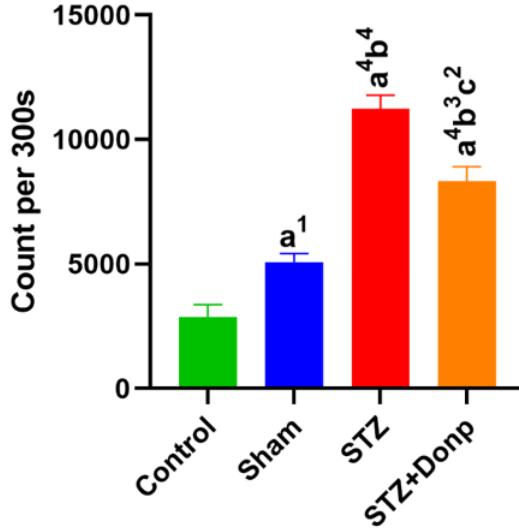


**Figure 4.** Morris Water Maze test. Data were expressed as mean  $\pm$  SEM ( $n = 8$ ). (A), Line chart of block mean of escape latency in trial days; (B), Line chart of velocity in trial day; (C), The target quadrant time spent in the probe trial; (D), The platform zone crossing frequency in the probe trial; (E), Escape latency in visible platform trial. Data were analyzed by two-way repeated-measures ANOVA for acquisition trial and velocity, and one-way ANOVA for probe and visible trial followed by Tukey's multiple comparison test. (a), Compared to the control group; (b), Compared to the sham group; and (c), Compared to the STZ group; 1p  $< 0.05$ , 2p  $< 0.01$ , 3p  $< 0.001$ , 4p  $< 0.0001$ . STZ: Streptozotocin, Donp: Donepezil

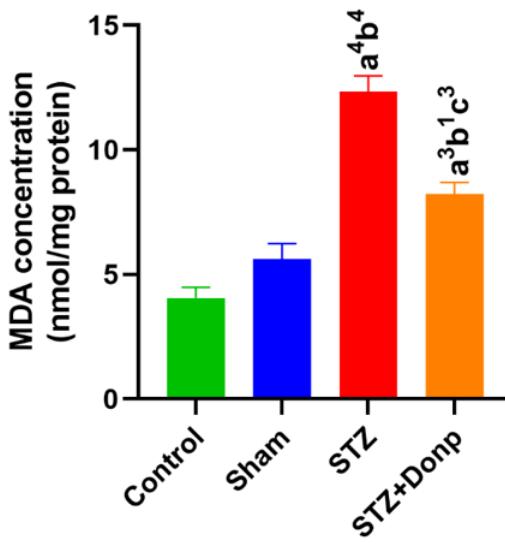
### 273 3.2 Novel object recognition test

274 No differences in the spent time exploring the two identical objects during the familiarization phase  
275 were found among animals (Fig.5A). ICV-STZ injection impaired responding in the NOR test, as was  
276 indicated by failure to discriminate between familiar and novel objects during the testing phase 1h after the  
277 familiarization phase. In control and sham groups, a significant increase ( $p < 0.001$ ) in exploration time  
278 towards a novel object was observed in comparison with a familiar object. Administration of donepezil  
279 improved memory in STZ -injected rats, as was shown by a significant increase ( $p < 0.01$ ) in the the  
280 exmeansation time of the novel object compared with the familiar object (Fig.5B). When results were  
281 expressed as discrimination index, the STZ group had a significantly lower discrimination index compared  
282 with control and sham groups ( $p < 0.01$ , and  $P < 0.001$  respectively), two-way ANOVA analyzed data  
283 significantly higher discrimination index in comparison with the STZ group ( $p < 0.05$ ) (Fig.5C).




**Figure 5.** Novel object recognition test. Results were expressed as mean  $\pm$  SEM (n = 8). (A), Exploration time during the familiarization phase; (B), Exploration time during the testing phase; (C), Discrimination index. Data were analyzed by paired t-test. \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001 compared to the exploration time of familiar objects during the testing phase of respective groups. Data were analyzed by one-way ANOVA followed by Tukey's multiple comparison tests. (a), Compared to the control group; (b), Compared to the sham group; (c), Compared to the STZ group; <sup>1</sup>p < 0.05, <sup>2</sup>p < 0.01, <sup>3</sup>p < 0.001. STZ: Streptozotocin, Donp: Donepezil

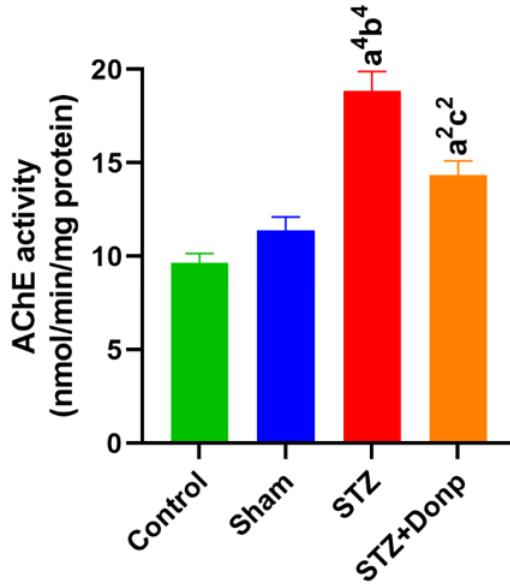
## 4 PHOTON EMITTING EVALUATION OF THE HIPPOCAMPUS


284 The mean of the total photon emission of the hippocampus during the 300 seconds was shown in Fig.6.  
285 ICV-STZ injection significantly increased hippocampus photon emission of STZ- injected rats compared  
286 with control and sham groups (p < 0.0001). The STZ+Donp rats had significantly lower hippocampus  
287 photon emission in comparison with the STZ group rats (p < 0.01).

### 288 4.1 Hippocampus MDA concentration

289 MDA concentration (index of lipid peroxidation) in the STZ-injected groups was significantly higher  
290 than in control and sham groups (p < 0.0001). Also, lipid peroxidation decreased in the STZ+Donp group  
291 (p < 0.001) compared with the STZ group but was still significant with control and sham groups (p < 0.001,  
292 p < 0.05, respectively) (Fig.7).




**Figure 6.** Representation of hippocampus total photon emission during the 300 seconds. The result was expressed as mean  $\pm$  SEM ( $n = 8$ ). Data were analyzed by one-way ANOVA followed by Tukey's multiple comparison test. (a), Compared to the control group; (b), Compared to the sham group; (c), Compared to the STZ group; <sup>1</sup> $p < 0.05$ , <sup>2</sup> $p < 0.01$ , <sup>4</sup> $p < 0.0001$ . STZ: Streptozotocin, Donp: Donepezil



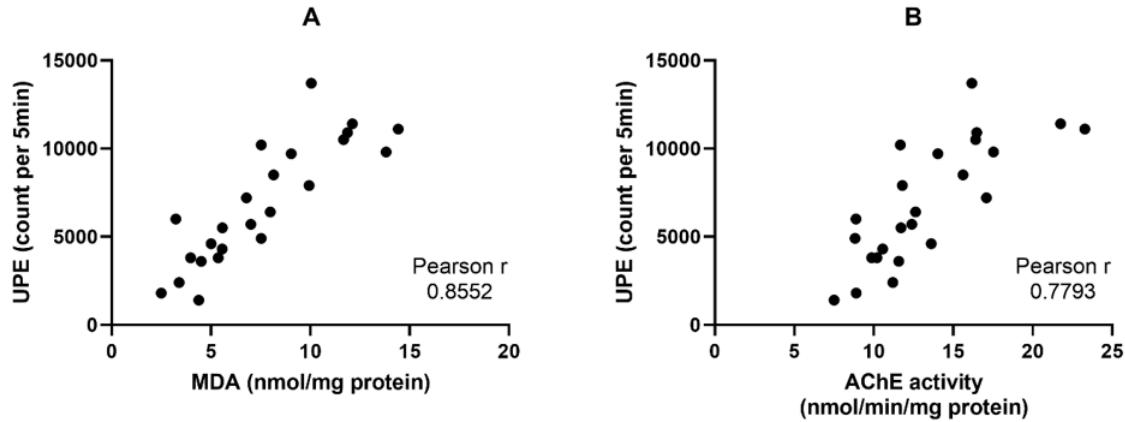
**Figure 7.** Representation of MDA concentration. Data were expressed as mean  $\pm$  SEM ( $n = 8$ ) and analyzed by one-way ANOVA followed by Tukey's multiple comparison test. (a), Compared to the control group; (b), Compared to the sham group; (c), Compared to the STZ group; <sup>1</sup> $p < 0.05$ , <sup>3</sup> $p < 0.001$ , <sup>4</sup> $p < 0.0001$ . STZ, Streptozotocin; Donp, Donepezil

## 293 4.2 AChE activity of the hippocampus

294 The hippocampal AChE activity significantly ( $p < 0.0001$ ) increased in the STZ- group compared with  
295 control and sham groups. In the donepezil-treated group, AChE activity of the hippocampus significantly



**Figure 8.** Representation of the AChE activity of the hippocampus. Data were expressed as mean  $\pm$  SEM ( $n = 8$ ) and analyzed by one-way ANOVA followed by Tukey's multiple comparison test. (a), Compared to the control group; (b), Compared to the sham group; (c), Compared to the STZ group;  $^1p < 0.05$ ,  $^2p < 0.01$ ,  $^3p < 0.001$ ,  $^4p < 0.0001$ . STZ, Streptozotocin; Donp, Donepezil.


296 decreased in comparison with the STZ group ( $p < 0.01$ ) but had significantly higher AChE activity than in  
297 the control group ( $p < 0.01$ ) (Fig.8).

#### 298 4.3 Correlation matrix of UPE with MDA & AChE activity of the hippocampus

299 UPE had more correlation strange with MDA as was proven by Pearson correlation analysis, UPE vs.  
300 MDA ( $r = 0.8552$ ); UPE vs. AChE activity ( $r = 0.7793$ ). The Coefficient of determination ( $r^2$ ) in this  
301 analysis showed that 73% of the UPE variance could be explained by MDA concentration, while 60% of  
302 UPE variance could be explained by AChE activity (Fig.9).

## 5 DISCUSSION

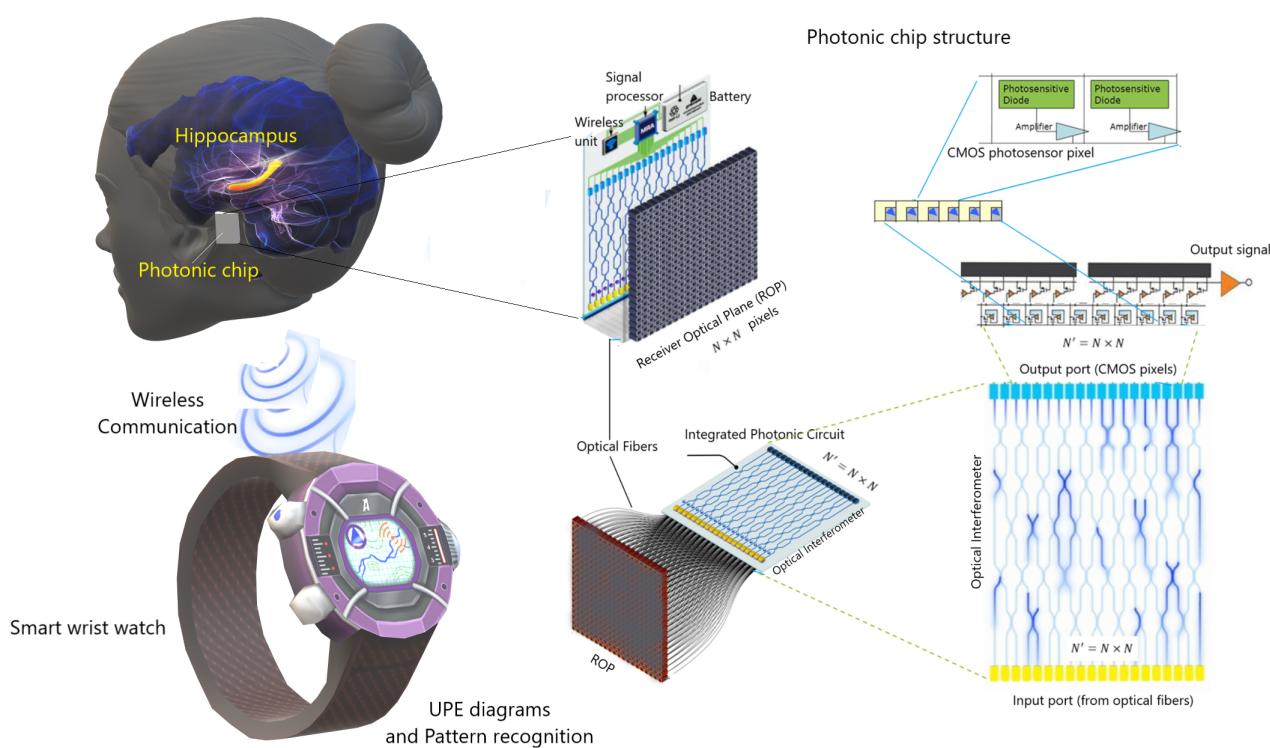
303 The present study investigated the effect of the most potent treatment of AD (donepezil) on the associations  
304 between the memory, intensity of UPE, oxidative stress, and AChE activity of the hippocampus for  
305 diagnosis and treatment success in ICV-STZ-induced sporadic AD models. Following ICV administration  
306 of STZ, rats exhibited memory impairment while testing for their behavioural paradigms by MWM and  
307 novel object recognition NOR tests. Previous studies regarding ICV-STZ-treated rats showed impairment  
308 in memory without any significant changes in escape latency time in MWM (40; 41) and NOR tests. Also,  
309 ICV-STZ rats had poor discrimination index and reflected no reaction to the novel object (34; 42). An  
310 anticholinesterase inhibitor (donepezil) was used as a standard treatment, and it was found that donepezil  
311 prevented ICV-STZ-induced memory impairment in all behavioral paradigms. In agreement with these  
312 results, prior studies indicated that donepezil inhibits memory deficits induced by ICV-STZ in rats (43; 44).  
313 Differences between groups in behavioural paradigms were not associated with any changes in vision  
314 and locomotor activity, as was demonstrated by no sign between groups in swim velocity and visible



**Figure 9.** Correlation matrix of right hippocampus UPE vs. left hippocampus MDA concentration & Ache activity. (A), UPE vs. MDA; (B), UPE vs. AChE activity.

315 platform trials. The memory performance deficits induced by ICV-STZ injection may be related to various  
316 mechanisms which play an essential role in cognitive function, like disrupting the mitochondrial membrane  
317 potential and decreasing the generation of ATP (45; 46). In response to this effect, STZ induces a rise in the  
318 production of ROS and disrupts mitochondrial function to generate H<sub>2</sub>O<sub>2</sub>. When ROS are spontaneously  
319 produced during the metabolic processes, the ultra-weak Photons are emitted spontaneously from electron  
320 energy level changes in chemical reaction of electron excited species to electron ground metabolites (18). In  
321 agreement with this evidence, we detected a significant elevation in photons emitting from the hippocampus  
322 of ICV-STZ-injected rats. Kobayashi et al. found that when whole brain slices are examined under an  
323 inhibitor of the mitochondrial electron transport chain, photon emission intensity increased, indicating  
324 electron leakage from the respiratory chain (47). Biophoton emission implicates a pathophysiological state  
325 driven by the excessive production of ROS and oxidative stress. A study showed that increased UPE in  
326 rats' brains is related to oxidative stress (48). Some reports addressed that ICV-STZ injection can lead  
327 to oxidative stress, neuroinflammation, and ROS production in rats' hippocampus (49; 50). Consistent  
328 with these reports, we found a significant increase in MDA concentration in the hippocampus of ICV-STZ-  
329 injected rats. MDA is the index of lipid peroxidation and is known as an oxidative stress marker. It is  
330 supposed that excited species for photon emission are formed through a radical reaction with intracellular  
331 substances. Particularly regarding unsaturated fatty acids, excited species are generated as the result of  
332 a lipid peroxidation process (51). From obtained results and previous studies could be concluded that  
333 elevated biophoton emitted by the hippocampus in ICV-STZ-injected rats is linked with ROS production  
334 and MDA concentration, as was evidenced in this study by Pearson analysis of UPE vs. MDA results. A  
335 study in a mouse model of rheumatoid arthritis stated that increased UPE intensity is strongly related to  
336 metabolic processes, which may be associated with lipid oxidation and inflammatory and ROS-mediated  
337 processes. Thus, UPE may serve as a valuable tool for diagnosing chronic disease (28). Investigations  
338 in the biophoton field have considered UPE as a new potential tool for monitoring biological processes  
339 related to ROS changes, such as ROS-related diseases (52; 53) and processes pertaining to oxidative stress  
340 metabolism. UPE detection advantage is providing cost-effective spatiotemporal information without a  
341 need for invasive methods (54). The use of UPE as a non-invasive tool for different illnesses diagnosis has  
342 been proposed and discussed in different kinds of literature (55; 56). One study showed a slight increase

343 in the UPE intensity in mice with transplanted bladder cancer, and untreated cancerous regions provided  
344 higher UPE intensity than normal regions (57). Takeda et al. evidenced changes in the UPE during the  
345 cell proliferation of human esophageal carcinoma cells (58) and tumor progression in transplanted mice  
346 (59). Boveris et al. characterized photon emission from mammalian organs (60). Evidence suggested  
347 noninvasive monitoring of oxidative metabolism and oxidative damage of living tissue using UPE (51).  
348 A document also showed that hypermetabolism induction in a rat's brain leads to increased ultraweak  
349 photon emission as a reflection of oxidative stress (48). ROS production has been analyzed by photometry,  
350 luminometry, flow cytometry, and precipitation reaction techniques (61). All of these techniques measure  
351 at only a single time point or require chemical labels; also, these techniques are biopsy-dependent and  
352 not necessarily feasible for diagnostic purposes. While UPE is a new promising tool used to monitor  
353 real-time oxidative processes without these requirements. The utility of UPE as a tool for monitoring  
354 health and disease has been indicated in several studies (62; 63; 64). It is known that AD has a long latent  
355 period before diagnosing disease symptoms. Recent studies demonstrated that mild cognitive impairment  
356 (MCI) is common along with AD, MCI subjects exhibited significant oxidative imbalance compared with  
357 age-matched controls, and some studies have revealed that oxidative stress occurs before forming plaques  
358 and NFTs (65; 66; 67). According to obtained results and previous studies, it seems that elevated UPE of  
359 the hippocampus in ICV-STZ-injected rats is linked with ROS production and MDA concentration. It may  
360 be possible to use UPE for early detection of AD. Treatment with donepezil significantly reduced biophoton  
361 emitting in the hippocampus of ICV-STZ-injected rats. This effect seems to be caused by decreasing ROS  
362 production and oxidative stress, as was proven by the MDA concentration decrease in donepezil-treated  
363 rats compared with the STZ group. In agreement with our results, previous studies showed that treatment  
364 with donepezil had an antioxidative effect in the ICV-STZ rat model, and the treatment decreased MDA  
365 and increased GSH levels, showing the reduction of oxidative stress in the brain of ICV-STZ rats (35; 68).  
366 ICV-STZ injection in rats causes reduced energy metabolism and synthesis of acetyl CoA, ultimately  
367 resulting in cholinergic deficiency; and, thereby, memory deficit. This process is supported by reducing  
368 choline acetyltransferase (ChAT) activity (69) and increasing acetylcholinesterase (AChE) function (68)  
369 in the hippocampus of ICV-STZ-injected rats. In this line, our results manifested that AChE activity  
370 increased in ICV-STZ-injected rats. Thus, UPE may also be correlated with metabolic systems involved in  
371 neurotransmission, as evidenced by the 61% coefficient of determination ( $r^2$ ) between UPE and AChE  
372 activity. A study identified associations between UPE intensity and neurotransmitter metabolites (28).  
373 Donepezil, a second-generation cholinesterase inhibitor, is used therapeutically for mild to moderate  
374 dementia of AD. It inhibits AChE reversibly and non-competitively (70). Thus, donepezil treatment can  
375 decrease the hippocampus's AChE activity in the STZ-injected rats, and this AChE metabolism reduction  
376 may be a reason for significant UPE reduction in donepezil-treated rats. But activity was not reached in the  
377 sham or control group because AChE activity was evaluated six days after the last dose.


### 378 5.1 Discussion of envisaged BCIPC for AD

379 Our compelling results calls for the development of an advanced BCI photonic chip (BCIPC) for detecting,  
380 diagnosing and classifying neurodegenerative diseases (and associated syndromes), such as in AD. The  
381 envisaged BCIPC would be minimally invasive, cheap, high-speed, scalable providing high spatiotemporal  
382 resolution of brain's activity when compared to electrical chips, which have stronger limitations on  
383 the number of electrodes. The BCIPC would longitudinally capture brain's UPE and appropriate data  
384 processing would complement existing neuropathological parameters to provide an enhanced clinical  
385 assessment of AD. The envisaged BCIPC is rendered in Fig. 10, and shows the possibility of connecting  
386 the BCIPC to a smart wristwatch or smartphone via its wireless connection. This technological proposal is

timely, since photonic technologies are rapidly advancing. They are poised to overtake many electrical technologies due to their unique advantages, such as miniaturization, high speed, low thermal effects, and large integration capacity that allow for high yield, volume manufacturing, and lower cost. Here we provide some predictions and discuss the feasibility of the technology and its limitations for AD and related dementias. To implant a photonic chip for monitoring photon emissions from the hippocampus, a minimally invasive approach is preferred. This can be achieved through low-invasive chip transplantation surgery that involves placing the chip on the surface of the temporal skull. The temporal lobe, particularly the medial region, is closely related to memory and time episode formation, and is often affected earlier in dementia patients compared to other brain regions. Therefore, detecting UPE (ultraweak photon emissions) from the temporal lobe using a minimally invasive surface skull transplantation of a photonic chip is likely to be more feasible than monitoring hippocampal formation, which requires more invasive procedures and is more challenging to transplant. Using a photonic interferometer to distinguish wavelengths of UPEs, the efficiency decreases significantly. This low number of photons is still interpretable since the chip will be fitted with single-photon detectors that receive a relatively high number of photons compared to the quantum limit (i.e.,  $10-10^3$  photons/sec). Moreover, the signal will be further discriminated from noise (e.g., dark noise and shot noise) via appropriate machine-learning training data (for a detailed discussion we refer the reader to our previously published work (3)). The integration time of the detector is estimated to be on the order of nanoseconds. Generally, biological systems exhibit UPE spectra from the near-ultraviolet and extend to the range 700-1000 nm, an optimal range for our photonic detector. Similar results may be achieved in the ultraviolet and visible spectra. These combined advantages enable for the future development of a "brain photonics" detection device to passively image the brain's spontaneous (Fig.10).

## 6 CONCLUSION

Treatment with donepezil improved spatial and recognition memory deficits via oxidative stress regulation and AChE inhibition in ICV-STZ-injected rats. Correlations with UPE led us to the conclusion that hippocampus UPE is associated with the redox state of the tissue. Since oxidative stress is one of the primary patho-neurophysiological signatures in the progression of AD, then it stands to reason that UPE detection of the brain will provide complementary clinical parameters for AD screening and diagnosis. Moreover, UPE could be used to monitor recovery from neurodegenerative diseases upon suitable future therapeutic treatments, as suggested by our experiment involving donepezil which decreases the patho-neurophysiological signatures and in a correlated way with UPE. In the cytosol of cholinergic presynaptic neurons, Ach neurotransmitter is produced from choline and acetyl-coenzyme A (acetyl-CoA) by means of choline acetyltransferase (ChAT). Acetyl-CoA is a key energy precursor intermediate in all cells of our body. Acetyl-CoA is almost entirely synthesized in the brain by the pyruvate dehydrogenase multi-enzyme complex (PDHC), which supplies 97 percent of the energy (71). Current AD therapy is mainly based on inhibitors of AChE by AChE inhibitors such as donepezil, rivastigmine, memantine, and galantamine, which enhance cholinergic transmission (72). The use of donepezil is particularly promising, as it also has potent anti-inflammatory effects, inhibits neuronal death and cognitive decline, and reduces pro-inflammatory gene expression (72). In the AD model, ICV-STZ injection induces AD disease-like symptoms that look like biomolecular, pathological, and behavioural features of AD (73; 74). ICV-STZ produces mitochondrial dysfunctions such as anomalous morphology, decreased ATP synthesis, and increased ROS generation (74; 75). This may explain why ICV-STZ injection significantly increased UPE and MDA concentrations in the hippocampus compared to the sham and control groups. Furthermore, donepezil inhibits AChE, which catalyzes the breakdown of acetylcholine (and some other choline esters that function as neurotransmitters).



**Figure 10.** A schematic representation for futuristic monitoring hippocampus UPE variations and pattern recognition that may help better diagnosis of Alzheimer's disease in the short- and long-term. The photonic chip can be connected to a smart wristwatch and monitor the brain state continuously. The figure is an update from the previously published work(3). For more details about the chip structure, see Ref. (3).

430 This may reduce mitochondrial acetyl-CoA production, i.e., mitochondria produce less acetyl-CoA, which  
431 changes the mitochondrial redox state and various mitochondrial mechanisms. As a result, these processes  
432 reduce UPE. However, the mitochondrion is the major redox, cellular signalling, and energetic hub of cells  
433 and neurons (76). In our experiments, treatment with donepezil improved spatial and recognition memory  
434 deficits via oxidative stress regulation and AChE inhibition in ICV-STZ-injected rats. Therefore, based on  
435 the obtained results, it could be concluded that hippocampus UPE is associated with the redox state of the  
436 tissue. Pearson correlation analysis revealed that 73% of the UPE variance could be explained by MDA  
437 concentration, while 60% of the UPE variance could be explained by AChE activity of the hippocampus.  
438 In addition, studies have suggested that mitochondria can have key roles in neurogenesis (77; 78; 79).  
439 Increasing evidence suggests that the dysfunction of cellular organelles, particularly mitochondria, has  
440 important roles in neurodegenerative disorders (79). These above-mentioned results and facts support the  
441 hypothesis that perturbed redox (oxidative stress) and mitochondrial mechanisms may play key roles in  
442 the development of AD. Thus, the UPE detection of the brain may be useful for a better understanding  
443 of the development of AD, its diagnosis, and the development of possible drugs. Therefore, it is possible  
444 that a photonic chip that can efficiently detect biophotons from the hippocampus could be a tool for the  
445 diagnosis or monitoring of AD. Biophoton emissions from the brain have been suggested as a potential  
446 diagnostic marker for various neurological disorders, and here we have shown that it can include AD, in  
447 which detecting changes in biophoton emissions from the hippocampus could help monitor the progression  
448 of AD. Since the results for UPE measurement are obtained with PMT in our experiments, we suggest that  
449 the photonic chip with a similar quantum efficiency as PMT can be a helpful tool for the diagnosis of AD.  
450 The CMOS quantum efficiency is about 75%, which is about three times higher than PMTs with a quantum  
451 efficiency of about 20-25%. According to the estimations in Ref. (3), the amount of total photon loss from

452 the receiver optical plane (ROP) to the output of the optical interferometer (OI) is about 50%. The QE of  
453 CMOS at the output of the OI is estimated to be 25% in body temperature under the implant conditions to  
454 have a final SNR of about 2. However, still, further research is needed to validate the use of biophoton  
455 emissions as a diagnostic tool and determine the specific changes in biophoton emissions associated with  
456 AD, while we have now a piece of evidence to be hopeful for designing new and cheaper methods for AD  
457 diagnosis.

## **CONFLICT OF INTEREST STATEMENT**

458 The authors declare that the research was conducted in the absence of any commercial or financial  
459 relationships that could be construed as a potential conflict of interest.

## **AUTHOR CONTRIBUTIONS**

460 Conceptualization: TE, AZ, FD, VS; Data curation: NS, TE, MKG; Formal analysis: TE, VS, MKG;  
461 Funding acquisition: TE, VS; Methodology: TE, NS, AZ, FD, MKG; Project administration: TE, VS;  
462 Resources: TE, AZ; Supervision: TE, VS, DO; Discussion: NS, TE, VS, MKG; Hypothesis: NS, TE, VS;  
463 Writing an original draft: NS, TE, VS, MKG; Writing a review and editing: TE, VS, NC, IB, SR, and DO.

## **FUNDING**

464 The work of NS, TE, AZ, FD, and MKG was supported by a grant (No. 22112) from Shiraz University of  
465 Medical Sciences, Shiraz, Iran (This article is partly an extract from Niloofar Sefati , s thesis, PhD student  
466 of Anatomical science). VS and DO thank the support from the Natural Sciences and Engineering Research  
467 Council (NSERC) of Canada and the National Research Council (NRC) of Canada. SR is funded via the  
468 BCAM Severo Ochoa accreditation CEX2021-001142-S / MICIN / AEI / 10.13039/501100011033 and  
469 through project RTI2018-093860-B-C21 funded by (AEI/FEDER, UE).

## **ACKNOWLEDGMENTS**

470 VS and DO are grateful for fruitful discussions with Christoph Simon and Hadi Zadeh-Haghghi. SR  
471 acknowledges support from Ikerbasque (The Basque Foundation for Science), the Basque Government  
472 through the BERC 2022-2025 program and by the Ministry of Science and Innovation: BCAM Severo  
473 Ochoa accreditation CEX2021-001142-S / MICIN / AEI / 10.13039/501100011033 and through project  
474 RTI2018-093860-B-C21 funded by (AEI/FEDER, UE) and acronym “MathNEURO”.

## **DATA AVAILABILITY STATEMENT**

475 The datasets [GENERATED/ANALYZED] for this study can be found in the [NAME OF REPOSITORY]  
476 [LINK].

## **REFERENCES**

477 1- Salari, V., Valian, H., Bassereh, H., Bokkon, I., and Barkhordari, A. Ultraweak photon emission in the  
478 brain. *J. Integ. Neurosci.* 14, 419–429. 2015.

479 2- T. Esmaeilpour, et. al. Effect of methamphetamine on ultraweak photon emission and level of reactive  
480 oxygen species in male rat brain. *Neuroscience Letters*, 801, 137136, 2023.

481 3- V. Salari, E. Saglamyurek, S. Rodrigues, C. Simon, D. Oblak, Are Brain-Computer Interfaces Feasible  
482 with Integrated Photonic Chips? *Frontiers in Neuroscience*, 15:780344, 2022.

483 4- Salari, V., Bokkon, I., Ghobadi, R., Scholkmann, F., and Tuszyński, J. A. Relationship between  
484 intelligence and spectral characteristics of brain biophoton emission: correlation does not automatically  
485 imply causation. *Proc. Natl. Acad. Sci. U.S.A.* 113, E5540–E5541. 2016.

486 5- Salari, V., Scholkmann, F., Vimal, L. P., Császár, N., Aslani, M., and Bokkon,I. Phosphenes, retinal  
487 discrete dark noise, negative aferimages and retinogeniculate projections: a new explanatory framework  
488 based on endogenous ocular luminescence. *Prog. Ret. Eye Res.* 60, 101–119. 2017.

489 6- T. Esmaeilpour, et. al. An Experimental Investigation of Ultraweak Photon Emission from Adult Murine  
490 Neural Stem Cells. *Scientific Reports*, 10:463, 2020.

491 7- Anderson P, Morris R, Amaral, Bliss T, O'Keefe J (eds.) *The hippocampus book*. New York: Oxford  
492 University Press. 2007.

493 8- Na Liu, Zhuo Wang, Jiapei Dai. Intracellular simulated biophoton stimulation and transsynaptic signal  
494 transmission. *Appl. Phys. Lett.* 121, 203701, 2022.

495 9-Huang L-K, Chao S-P, Hu C-J. Clinical trials of new drugs for Alzheimer disease. *Journal of biomedical*  
496 *science*. 2020;27(1):1-13.

497 10-Bettens K, Sleegers K, Van Broeckhoven C. Genetic insights in Alzheimer's disease. *The Lancet*  
498 *Neurology*. 2013;12(1):92-104.

499 11-Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer's disease prevalence.  
500 *The Lancet Neurology*. 2011;10(9):819-28.

501 12-Arnold SE, Arvanitakis Z, Macauley-Rambach SL, Koenig AM, Wang H-Y, Ahima RS, et al. Brain  
502 insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. *Nature Reviews*  
503 *Neurology*. 2018;14(3):168-81.

504 13- Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ, et al. Prevalence of  
505 Alzheimer's disease in a community population of older persons: higher than previously reported. *Jama*.  
506 1989;262(18):2551-6.

507 14- Brufani M, Filocamo L, Lappa S, Maggi A. New acetylcholinesterase inhibitors. *Drugs of the Future*.  
508 1997;22(4):397-410.

509 15- Li Q, He S, Chen Y, Feng F, Qu W, Sun H. Donepezil-based multi-functional cholinesterase inhibitors  
510 for treatment of Alzheimer's disease. *European journal of medicinal chemistry*. 2018;158:463-77.

511 16- O'Neill C, Anderton B, Mattson MP, Gary DS, Chan SL, Duan W, editors. *Perturbed endoplasmic*  
512 *reticulum function, synaptic apoptosis and the pathogenesis of Alzheimer's disease*. Biochemical Society  
513 *Symposia*; 2001: Portland Press.

514 17- Wang W, Zhao F, Ma X, Perry G, Zhu X. Mitochondria dysfunction in the pathogenesis of Alzheimer's  
515 disease: Recent advances. *Molecular Neurodegeneration*. 2020;15(1):1-22.

516 18- Pospíšil P, Prasad A, Rác M. Role of reactive oxygen species in ultra-weak photon emission in  
517 biological systems. *Journal of Photochemistry and Photobiology B: Biology*. 2014;139:11-23.

518 19- Tafur J, Van Wijk EP, Van Wijk R, Mills PJ. Biophoton detection and low-intensity light therapy: a  
519 potential clinical partnership. *Photomedicine and laser surgery*. 2010;28(1):23-30.

520 20- Havaux M, Triantaphylides C, Genty B. Autoluminescence imaging: a non-invasive tool for mapping  
521 oxidative stress. *Trends in plant science*. 2006;11(10):480-4.

522 21- Prasad A, Pospíšil P. Towards the two-dimensional imaging of spontaneous ultra-weak photon emission  
523 from microbial, plant and animal cells. *Scientific reports*. 2013;3(1):1-8.

524 22- Tsuchida K, Iwasa T, Kobayashi M. Imaging of ultraweak photon emission for evaluating the oxidative  
525 stress of human skin. *Journal of Photochemistry and Photobiology B: Biology*. 2019;198:111562.

526 23- Esmaeilpour T, Fereydouni E, Dehghani F, Bókkon I, Panjehshahin M-R, Császár-Nagy N, et al. An  
527 experimental investigation of ultraweak photon emission from adult murine neural stem cells. *Scientific  
528 Reports*. 2020;10(1):1-13.

529 24- Scordino A, Baran I, Gulino M, Ganea C, Grasso R, Niggli JH, et al. Ultra-weak delayed luminescence  
530 in cancer research: A review of the results by the ARETUSA equipment. *Journal of Photochemistry and  
531 Photobiology B: Biology*. 2014;139:76-84.

532 25- Sun Y, Wang C, Dai J. Biophotons as neural communication signals demonstrated by in situ biophoton  
533 autography. *Photochemical & Photobiological Sciences*. 2010;9(3):315-22.

534 26- Rizzo NR, Hank NC, Zhang J. Detecting presence of cardiovascular disease through mitochondria  
535 respiration as depicted through biophotonic emission. *Redox Biology*. 2016;8:11-7.

536 27- Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and  
537 tissue injury. *Antioxidants & redox signaling*. 2014;20(7):1126-67.

538 28- He M, van Wijk E, van Wietmarschen H, Wang M, Sun M, Koval S, et al. Spontaneous ultra-weak  
539 photon emission in correlation to inflammatory metabolism and oxidative stress in a mouse model of  
540 collagen-induced arthritis. *Journal of Photochemistry and photobiology B: Biology*. 2017;168:98-106.

541 29- Yang M, Ding W, Liu Y, Fan H, Bajpai RP, Fu J, et al. Ultra-weak photon emission in healthy  
542 subjects and patients with type 2 diabetes: evidence for a non-invasive diagnostic tool. *Photochemical &  
543 Photobiological Sciences*. 2017;16(5):736-43.

544 30- Zhao X, Pang J, Fu J, Wang Y, Yang M, Liu Y, et al. Spontaneous photon emission: A promising  
545 non-invasive diagnostic tool for breast cancer. *Journal of Photochemistry and Photobiology B: Biology*.  
546 2017;166:232-8.

547 31- Kamat PK, Kalani A, Rai S, Tota SK, Kumar A, Ahmad AS. Streptozotocin intracerebroventricular-  
548 induced neurotoxicity and brain insulin resistance: a therapeutic intervention for treatment of sporadic  
549 Alzheimer's disease (sAD)-like pathology. *Molecular neurobiology*. 2016;53(7):4548-62.

550 32- Plaschke K, Hoyer S. Action of the diabetogenic drug streptozotocin on glycolytic and glycogenolytic  
551 metabolism in adult rat brain cortex and hippocampus. *International Journal of Developmental  
552 Neuroscience*. 1993;11(4):477-83.

553 33- Lannert H, Hoyer S. Intracerebroventricular administration of streptozotocin causes long-term  
554 diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. *Behavioral  
555 neuroscience*. 1998;112(5):1199.

556 34- Shoham S, Bejar C, Kovalev E, Schorer-Apelbaum D, Weinstock M. Ladostigil prevents gliosis, 557 oxidative-nitritative stress and memory deficits induced by intracerebroventricular injection of streptozotocin 558 in rats. *Neuropharmacology*. 2007;52(3):836-43.

559 35- Sharma B, Singh N, Singh M. Modulation of celecoxib-and streptozotocin-induced experimental 560 dementia of Alzheimer's disease by pitavastatin and donepezil. *Journal of Psychopharmacology*. 561 2008;22(2):162-71.

562 36- Kumar M, Kaur D, Bansal N. Caffeic acid phenethyl ester (CAPE) prevents development of STZ-ICV 563 induced dementia in rats. *Pharmacognosy Magazine*. 2017;13(Suppl 1):S10.

564 37- Draper HH, Hadley M. [43] Malondialdehyde determination as index of lipid Peroxidation. *Methods in 565 enzymology*. 186: Elsevier; 1990. p. 421-31.

566 38- Ellman GL, Courtney KD, Andres Jr V, Featherstone RM. A new and rapid colorimetric determination 567 of acetylcholinesterase activity. *Biochemical pharmacology*. 1961;7(2):88-95.

568 39- Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein 569 utilizing the principle of protein-dye binding. *Analytical biochemistry*. 1976;72(1-2):248-54.

570 40- Awasthi H, Tota S, Hanif K, Nath C, Shukla R. Protective effect of curcumin against intracerebral 571 streptozotocin induced impairment in memory and cerebral blood flow. *Life sciences*. 2010;86(3-4):87-94.

572 41- Saxena G, Bharti S, Kamat PK, Sharma S, Nath C. Melatonin alleviates memory deficits and neuronal 573 degeneration induced by intracerebroventricular administration of streptozotocin in rats. *Pharmacology 574 Biochemistry and Behavior*. 2010;94(3):397-403.

575 42- Liu P, Zou L-B, Wang L-H, Jiao Q, Chi T-Y, Ji X-F, et al. Xanthoceraside attenuates tau 576 hyperphosphorylation and cognitive deficits in intracerebroventricular-streptozotocin injected rats. 577 *Psychopharmacology*. 2014;231(2):345-56.

578 43- Saxena G, Patro IK, Nath C. ICV STZ induced impairment in memory and neuronal mitochondrial 579 function: a protective role of nicotinic receptor. *Behavioural brain research*. 2011;224(1):50-7.

580 44- Agrawal R, Tyagi E, Shukla R, Nath C. Insulin receptor signaling in rat hippocampus: a study in STZ 581 (ICV) induced memory deficit model. *European Neuropsychopharmacology*. 2011;21(3):261-73.

582 45- Ishrat T, Khan MB, Hoda MN, Yousuf S, Ahmad M, Ansari MA, et al. Coenzyme Q10 modulates 583 cognitive impairment against intracerebroventricular injection of streptozotocin in rats. *Behavioural brain 584 research*. 2006;171(1):9-16.

585 46- Hoyer S. Brain glucose and energy metabolism abnormalities in sporadic Alzheimer disease. Causes 586 and consequences: an update. *Experimental gerontology*. 2000;35(9-10):1363-72.

587 47- Kobayashi M, Takeda M, Sato T, Yamazaki Y, Kaneko K, Ito K-I, et al. In vivo imaging of spontaneous 588 ultraweak photon emission from a rat's brain correlated with cerebral energy metabolism and oxidative 589 stress. *Neuroscience research*. 1999;34(2):103-13.

590 48- Adamo AM, Llesuy SF, Pasquini JM, Boveris A. Brain chemiluminescence and oxidative stress in 591 hyperthyroid rats. *Biochemical Journal*. 1989;263(1):273-7.

592 49- Rai S, Kamat PK, Nath C, Shukla R. A study on neuroinflammation and NMDA receptor function in 593 STZ (ICV) induced memory impaired rats. *Journal of neuroimmunology*. 2013;254(1-2):1-9.

594 50- Javed H, Khan M, Ahmad A, Vaibhav K, Ahmad M, Khan A, et al. Rutin prevents cognitive impairments  
595 by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer  
596 type. *Neuroscience*. 2012;210:340-52.

597 51- Cadenas E. Low-level chemiluminescence of biological systems. *Free radicals in biology*. 1984;4:211-  
598 42.

599 52- Wijk RV, Wijk E, Van P, Wiegant FA, Ives J. Free radicals and low-level photon emission in human  
600 pathogenesis: state of the art. 2008.

601 53- Rastogi A, Pospíšil P. Spontaneous ultraweak photon emission imaging of oxidative metabolic processes  
602 in human skin: effect of molecular oxygen and antioxidant defense system. *Journal of Biomedical Optics*.  
603 2011;16(9):096005.

604 54- Burgos RCR, Schoeman JC, Winden LJv, Červinková K, Ramautar R, Van Wijk E, et al. Ultra-  
605 weak photon emission as a dynamic tool for monitoring oxidative stress metabolism. *Scientific Reports*.  
606 2017;7(1):1-9.

607 55- Yang M, Van Wijk E, Pang J, Yan Y, van der Greef J, Van Wijk R, et al. A Bridge of Light: Toward  
608 Chinese and Western Medicine Perspectives Through Ultraweak Photon Emissions. *Global advances in*  
609 *health and medicine*. 2019;8:2164956119855930.

610 56- He M, Sun M, van Wijk E, van Wietmarschen H, van Wijk R, Wang Z, et al. A Chinese literature  
611 overview on ultra-weak photon emission as promising technology for studying system-based diagnostics.  
612 *Complementary Therapies in Medicine*. 2016;25:20-6.

613 57- Amano T, Kobayashi M, Devaraj B, Inaba H. Ultraweak biophoton emission imaging of transplanted  
614 bladder cancer. *Urological Research*. 1995;23(5):315-8.

615 58- Takeda M, Tanno Y, Kobayashi M, Usa M, Ohuchi N, Satomi S, et al. A novel method of assessing  
616 carcinoma cell proliferation by biophoton emission. *Cancer letters*. 1998;127(1-2):155-60.

617 59- Takeda M, Kobayashi M, Takayama M, Suzuki S, Ishida T, Ohnuki K, et al. Biophoton detection as a  
618 novel technique for cancer imaging. *Cancer science*. 2004;95(8):656-61.

619 60- Boveris A, Cadenas E, Reiter R, Filipkowski M, Nakase Y, Chance B. Organ chemiluminescence:  
620 noninvasive assay for oxidative radical reactions. *Proceedings of the National Academy of Sciences*.  
621 1980;77(1):347-51.

622 61- Bylund J, Björnsdottir H, Sundqvist M, Karlsson A, Dahlgren C. Measurement of respiratory burst  
623 products, released or retained, during activation of professional phagocytes. *Neutrophil methods and*  
624 *protocols*: Springer; 2014. p. 321-38.

625 62- Prasad A, Pospíšil P. Linoleic acid-induced ultra-weak photon emission from *Chlamydomonas*  
626 *reinhardtii* as a tool for monitoring of lipid peroxidation in the cell membranes. *PLoS one*.  
627 2011;6(7):e22345.

628 63- Rastogi A, Pospíšil P. Ultra-weak photon emission as a non-invasive tool for the measurement  
629 of oxidative stress induced by UVA radiation in *Arabidopsis thaliana*. *Journal of Photochemistry and*  
630 *Photobiology B: Biology*. 2013;123:59-64.

631 64- Ives JA, van Wijk EP, Bat N, Crawford C, Walter A, Jonas WB, et al. Ultraweak photon emission as a  
632 non-invasive health assessment: a systematic review. *PloS one*. 2014;9(2):e87401.

633 65- Mufson E, Chen E, Cochran E, Beckett LA, Bennett D, Kordower J. Entorhinal cortex -amyloid load in  
634 individuals with mild cognitive impairment. *Experimental neurology*. 1999;158(2):469-90.

635 66- Markesberry WR, Schmitt FA, Kryscio RJ, Davis DG, Smith CD, Wekstein DR. Neuropathologic  
636 substrate of mild cognitive impairment. *Archives of neurology*. 2006;63(1):38-46.

637 67- Price JL, McKeel Jr DW, Buckles VD, Roe CM, Xiong C, Grundman M, et al. Neuropathology of  
638 nondemented aging: presumptive evidence for preclinical Alzheimer disease. *Neurobiology of aging*.  
639 2009;30(7):1026-36.

640 68- Agrawal R, Tyagi E, Shukla R, Nath C. A study of brain insulin receptors, AChE activity and oxidative  
641 stress in rat model of ICV STZ induced dementia. *Neuropharmacology*. 2009;56(4):779-87.

642 69- Blokland A, Jolles J. Spatial learning deficit and reduced hippocampal ChAT activity in rats after an  
643 ICV injection of streptozotocin. *Pharmacol Biochem Behav*. 1993;44(2):491-4.

644 70- Schelterns P, Feldman H. Treatment of Alzheimer's disease; current status and new perspectives. *The  
645 Lancet Neurology*. 2003;2(9):539-47.

646 71- Szutowicz A, Bielarczyk H, Jankowska-Kulawy A, Pawełczyk T, Ronowska A. Acetyl-CoA the key  
647 factor for survival or death of cholinergic neurons in course of neurodegenerative diseases. *Neurochem  
648 Res*. 2013 Aug;38(8):1523-42.

649 72- Li SM, Mo MS, Xu PY. Progress in mechanisms of acetylcholinesterase inhibitors and memantine for  
650 treatment of Alzheimer's disease. *Neuroimmunol Neuroinflammation* 2015;2:274-80.

651 73- Grieb P. Intracerebroventricular Streptozotocin Injections as a Model of Alzheimer's Disease: in Search  
652 of a Relevant Mechanism. *Mol Neurobiol*. 2016 Apr;53(3):1741-1752.

653 74- Park J, Won J, Seo J, Yeo HG, Kim K, Kim YG, Jeon CY, Kam MK, Kim YH, Huh JW, Lee SR, Lee  
654 DS, Lee Y. Streptozotocin Induces Alzheimer's Disease-Like Pathology in Hippocampal Neuronal Cells  
655 via CDK5/Drp1-Mediated Mitochondrial Fragmentation. *Front Cell Neurosci*. 2020 Aug 4;14:235.

656 75- Guo, X. D., Sun, G. L., Zhou, T. T., Wang, Y. Y., Xu, X., Shi, X. F., et al. (2017). LX2343 alleviates  
657 cognitive impairments in AD model rats by inhibiting oxidative stress-induced neuronal apoptosis and  
658 tauopathy. *Acta Pharmacol. Sin.* 38, 1104–1119.

659 76- Aon MA, Camara AK. Mitochondria: hubs of cellular signaling, energetics and redox balance. A rich,  
660 vibrant, and diverse landscape of mitochondrial research. *Front Physiol*. 2015 Mar 26;6:94.

661 77- Unger MS, Marschallinger J, Kaindl J, Höfling C, Rossner S, Heneka MT, Van der Linden A, Aigner L.  
662 Early Changes in Hippocampal Neurogenesis in Transgenic Mouse Models for Alzheimer's Disease. *Mol  
663 Neurobiol*. 2016 Oct;53(8):5796-806.

664 78- Brunetti D, Dykstra W, Le S, Zink A, Prigione A. Mitochondria in neurogenesis: Implications for  
665 mitochondrial diseases. *Stem Cells*. 2021 Oct;39(10):1289-1297.

666 79- Zhang S, Zhao J, Quan Z, Li H, Qing H. Mitochondria and Other Organelles in Neural Development  
667 and Their Potential as Therapeutic Targets in Neurodegenerative Diseases. *Front Neurosci*. 2022 Apr  
668 5;16:853911

669 80- Sharma M, Gupta YK. Chronic treatment with trans resveratrol prevents intracerebroventricular  
670 streptozotocin induced cognitive impairment and oxidative stress in rats. *Life Sci*. 2002 Oct 11;71(21):2489-  
671 98.