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Summary

For investigations into fate specification and cell rearrangements in time-lapse images of preimplantation
embryos, automated 3D instance segmentation of nuclei and subsequent nuclear tracking are invaluable.
Often, the images’ low signal-to-noise ratio and high voxel anisotropy and the nuclei’s dense packing
and variable shapes limit the performance of many segmentation methods, while subsequent tracking of
nuclear instances is complicated by low frame rates and sample movements. Supervised machine learning
approaches can radically improve segmentation accuracy and enable easier tracking, but they often require
large amounts of difficult-to-obtain annotated 3D data. Here we report a novel mouse line expressing
near-infrared nuclear reporter H2B-miRFP720. H2B-miRFP720 is the longest wavelength nuclear reporter
in mice and can be imaged simultaneously with other reporters with minimal overlap. We then generate a
dataset, which we call BlastoSPIM, of 3D microscopy images of H2B-miRFP720-expressing embryos with
ground truth for nuclear instance segmentation. Using BlastoSPIM, we benchmark the performance of seven
convolutional neural networks and identify Stardist-3D as the most accurate instance segmentation method
across preimplantation development. We then construct a complete pipeline for nuclear instance segmentation
with our BlastoSPIM-trained Stardist-3D models and lineage tracking from the 8-cell stage to the end of
preimplantation development (> 100 nuclei). Finally, we demonstrate BlastoSPIM’s usefulness as pre-train
data for related problems, both for a different imaging modality and for different model systems. BlastoSPIM,
its corresponding Stardist-3D models, and documentation of the full associated analysis pipeline are available
at: blastospim.flatironinstitute.org.

Introduction 1

During preimplantation development of the mouse embryo, two consecutive cell fate decisions set aside 2

precursors of extraembryonic tissues from cells which will form the body of the embryo. Live images of 3

embryos expressing fluorescently tagged proteins are particularly useful for learning the rules by which cells 4

in the embryo dynamically interact with each other to specify these fates. However, deriving mechanistic 5

insights from these images depends on extraction of quantitative information about cellular features, such as 6

the position of each cell or the expression levels of specific proteins within each cell. Accurate segmentation 7

of nuclei is a first step towards such a goal, as a cell’s nucleus is a good proxy for cell position relative to 8

its neighbors and can contain information about cell-fate-specifying protein expression. To quantify these 9

features, the segmentation must not only classify each voxel as foreground (i.e., belonging to nuclei) or 10

background, but also assign each “instance” (i.e., nucleus) with a distinct label (S1 Fig). 11
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Studying the dynamics of development requires instance segmentation not for a single frame, but for a 12

(3+t)-D series of images of a developing embryo. To observe both fate decisions in preimplantation embryos, 13

these movies start at the early morula stage (8-cell embryo) and end at the late blastocyst stage (>100-cell 14

embryo), encompassing approximately 48 hours of development. Acquisition of a time lapse at sufficient 15

spatial and temporal resolution to follow individual cells through 48 hours yields nearly 200 3D images (each 16

composed of ≈60 2D slices), containing a total of ≈ 10,000 individual instances of nuclei; thus, manual 17

segmentation of every instance in every frame is not feasible. Although classical image analysis methods have 18

had success in automated nuclear segmentation [1–3], these methods often require high signal-to-noise ratio 19

(SNR) images and tuning of parameters by hand. Shallow-learning methods, such as ilastik, offer an alternative 20

solution for instance segmentation [4]; however, since these methods have relatively few trainable parameters, 21

their performance saturates as the training set’s size grows [4]. Supervised deep-learning methods have 22

many trainable parameters; thus, the performance of these networks benefit greatly from large ground-truth 23

sets, which allow the networks to learn salient features. Relative to classical and shallow-learning methods, 24

deep-learning methods often generalize better across biological conditions and microscopy types [5]. 25

Deep-learning methods for 3D instance segmentation of nuclei differ considerably in terms of architecture, 26

number of trainable parameters, and post-processing steps. Because of these differences (see S1 Table), it 27

is difficult to know a priori which method will segment nuclei most accurately for any biological system of 28

interest. To answer this question, ground-truth data is needed to a) train each network on relevant image 29

annotations and b) to comprehensively test network performance by quantifying overlap between each instance 30

in the ground-truth test set and each instance in the model output. 31

A study by Tokuoka et al. documented one of the first attempts to compare the performance of different 32

deep-learning methods on a ground-truth dataset of nuclear instance segmentation in preimplantation mouse 33

embryos [6]. Their ground-truth dataset, of nuclear centroids and semantic segmentation, spans from the 34

2-cell stage to at most the 53-cell stage (S2 Table) and enabled state-of-the-art performance for QCANet on 35

early stages of development, up to approximately the 16-to-32-cell stage. The deterioration in performance of 36

their model for later stages of development is in part due to the scarcity of training data past the 32-cell 37

stage. Tokuoka et al.’s study demonstrated a clear need for nuclear instance segmentation that would perform 38

accurately up to the end of preimplantation development in live images. For example, studying the first 39

fate decision in mammalian preimplantation development – which differentiates those cells on the surface of 40

the embryo (the trophectoderm, or TE) from those on the inside (the inner cell mass, or ICM) – requires 41

accurate segmentation from the 8-cell stage to the ≈ 64-cell stage [7]. Studying the next fate decision, in 42

which ICM cells differentiate into epiblast and primitive endoderm cell populations that spatially segregate, 43

requires accurate segmentation for even later stages ( > 100 nuclei). 44

To this end, here we first generate a mouse line that expresses a near-infrared nuclear reporter H2B- 45

miRFP720. H2B-miRFP720 is well suited for live imaging due to its reduced phototoxicity and its lack of 46

spectral overlap with reporters in the visible range. Then, we generate a dataset, called BlastoSPIM (1.0), of 47

light-sheet images of H2B-miRFP720-expressing preimplantation embryos with corresponding ground-truth 48

for nuclear instance segmentation. This dataset is the largest of its kind. Historically, large ground-truth 49

datasets have played a key role in enabling scientific progress. For example, by allowing researchers to focus 50

on the methods rather than the data collection, annotation, and evaluation design, ImageNet [8] played 51

an instrumental part in the rapid advances in object recognition. Our dataset for 3D nuclear instance 52

segmentation similarly provides a foundation for evaluating both new and existing methods for nuclear 53

instance segmentation. We use this dataset – that extends from the 2-cell stage to the >100-cell stage – to 54

train and test seven different deep-learning methods, including Cellpose, Stardist-3D, RDCNet, U3D-BCD, 55

UNETR-BCD, QCANet, and ELEPHANT. The Stardist-3D model, trained on BlastoSPIM 1.0, achieves 56

state-of-the-art performance, detecting nuclei with high accuracy in early to mid-stage preimplantation 57

embryos, even with low SNR images. Next, to improve segmentation accuracy at later embryonic stages, 58

we generate a new ground truth dataset, termed BlastoSPIM 2.0, on blastocyst embryos and show that 59

Stardist-3D trained on this dataset achieves similarly high nuclear segmentation accuracy even for embryos 60

with >100 cells. By using the two (early and late) Stardist-3D models, we develop a complete pipeline for 61

automatic segmentation, segmentation correction, nuclear centroid registration and lineage tracking. This 62

pipeline, by enabling the tracking of nuclei from the 8-cell stage to the >100-cell stage, provides insight into 63

the dynamics of nuclear volumes and nuclear shapes with respect to cell cycle and cell fate (ICM-TE). We 64

close by demonstrating that our ground truth dataset and corresponding models aids nuclear segmentation 65
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in other model systems (intestinal organoids [9] and Platynereis dumerilli embryos [10]) as well as in data 66

collected by other imaging modalities (spinning disk confocal). 67

Materials and methods 68

Transgenic mouse line generation 69

The H2B-miRFP720 transgenic mouse line was generated by targeting the TIGRE locus using the 2C-HR- 70

CRISPR method [11]. Two targeting plasmids were constructed with InFusion cloning (Takara Bio), one 71

consisting of 5’ and 3’ homology arms (each 1kb in length), surrounding H2B-miRFP720 driven by a CAG 72

promoter and flanked by rabbit beta globin polyA sequence; the second construct contained an additional 73

ORF-2A preceding H2B-miRFP720 flanked by a bGH polyA sequence. A single guide RNA (sgRNA) designed 74

using CRISPOR [12] was used to target the TIGRE locus: CAUCCCAAAGUUAGGUGUUA (Synthego). 75

CD1-IGS mice (Charles River strain 022) were used as embryo donors. Briefly, female CD1-IGS were 76

superovulated at 5-7 weeks of age using 7.5IU PMSG (Biovendor) administered by IP injection followed by 77

7.5IU HCG (Sigma) by IP injection 47 hours post PMSG. Super ovulated females were mated to CD1-IGS 78

stud males and checked for copulatory plug the following morning. 79

Cytoplasmic microinjection of 2-cell embryos was performed as previously described [11, 13]. Briefly, 80

embryos were harvested at the 2-cell stage on E1.5 by flushing the oviducts with M2 Media (Cytospring) 81

and each cell was microinjected with 100ng/ul Cas9 mRNA (made by IVT (mMESSGAE mMACHINE SP6 82

transcription kit, Thermo Fisher) using Addgene plasmid 122948), 30ng/ul donor plasmid and 50ng/ul sgRNA, 83

using a Leica Dmi8 inverted epifluorescent microscope, an Eppendorf Femtojet and a Micro-ePore (WPI). 84

Embryos were immediately transferred into the oviducts of pseudopregnant female CD1 mice. N0 pups were 85

identified using over-the-arm PCR primers (Fwd:tcagcctacctcaccaactg, and Rev:ccccatcgctgcacaaaata) and 86

outcrossed to CD1-IGS mice. N1 animals were genotyped using the same primers and the transgene was Sanger 87

sequenced. The N1 generation was further outcrossed twice before incrossing the line to obtain homozygous 88

mice. Homozygous and heterozygous offspring were distinguished using a wild-type PCR of the TIGRE locus 89

(TIGRE WT Fwd:CTTTCCAGTGCTTCCCCAAC and TIGRE WT Rev: CCCTTTCCCAAGTCATCCCT). 90

The first mouse line showed decreasing levels of H2B-miRFP720 fluorescence during preimplantation 91

development, while the second ORF-2A-H2B-miRFP720 mouse line showed ubiquitous high expression 92

throughout. Therefore, the ORF sequence was deleted in 2-cell embryos isolated from this mouse line using 93

the following sgRNAs: GGUGACGCGGCGCUGCUCCA and CAUGCCCAUUACGUCGGUAA, resulting in 94

a truncated ORF with a functional 2A peptide. Founders and subsequent generations were established from 95

this line, herein referred to as the H2B-miRFP720 mouse line, and ubiquitous H2B-miRFP720 fluorescence 96

was confirmed once again in embryos. The sequence of the H2B-miRFP720 transgene can be found in 97

S1 File. Other transgenic mouse strains used in this study include Cdx2-eGFP [14], mT/mG [15] and 98

YAP-emiRFP670 [16]. 99

Dataset Acquisition 100

Embryos were obtained from naturally mated or superovulated H2B-miRFP720 females mated to either 101

wild-type (CD1) or H2B-miRFP720 males. For the demonstration of four-color imaging YAP-emiRFP670; 102

Cdx2-eGFP females were mated to H2B-miRFP720; mT/mG males. Embryos were isolated at E1.5 (2-cell), 103

or E2.5 (8-cell) in M2 media and were cultured in Embryomax KSOM (Sigma-Aldrich) under paraffin oil 104

(Life Global Paraffin Oil - LGPO from Cooper Surgical) in a V-shaped imaging chamber at 37°C, with 5% O2 105

and 5% CO2. Images were acquired on an InVi SPIM (Luxendo/Bruker). For each fluorescent reporter, the 106

following excitation lasers and emission filters were used: eGFP 488 nm laser, 497-554 BP filter; tdTomato 107

561 nm laser, 577-612 BP filter; emiRFP670 642 nm laser, 659-690 BP filter; miRFP720 685 nm laser, 700 108

LP filter. To limit light exposure to the embryo, we acquired a full 3D image of each embryo at 15- minute 109

intervals, with 2.0 µm z-axis resolution and 0.208 µm x- and y-axis resolution. Typically, the embryos were 110

imaged from the 8-cell stage until the 64-cell stage or to the >100-cell stage, resulting in a duration of 48 111

hours or more. Raw time-lapse images were compressed to keller-lab-block (klb) format, on the fly. Blastocyst 112

images used in Figure 6(A-C) were acquired using a W1 spinning disk confocal with SoRa on an inverted 113

Nikon Ti2 with Hamamatsu ORCA-FusionBT, with a 20x (NA=0.75) air objective. 114
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Dataset Annotation 115

Raw 3D images of developing embryos were manually annotated using AnnotatorJ, an ImageJ plugin that 116

supports both semantic and instance annotation. Images were loaded into the tool as Z stacks in .tiff format. 117

For all images, brightness and contrast were adjusted by using the ‘auto’ and ‘reset’ functions in ImageJ. 118

’Instance’ was selected as the annotation type. For each nucleus, the top or the bottom slice was found by 119

comparing consecutive Z slices, and a contour was drawn for every slice that contained the nucleus. The 120

coordinates of the regions of interest (ROIs) enclosed by the contours were then saved in an individual file. 121

After each instance was annotated, the contours were overlaid on the image to distinguish the instance from 122

unannotated ones. Five individuals annotated, and an expert checked for annotation errors, via a custom 123

MATLAB code, before incorporation into the dataset. 124

Annotation of chromatin signal in mitotic cells, particularly those in metaphase and anaphase, presents 125

unique challenges. Because our nuclear reporter H2B-miRFP720 is a tagged histone, chromatin condensation 126

makes the fluorescent signal bright and often irregularly shaped. During metaphase, the ”nuclear” instance 127

was annotated as contiguous, and its contour in each z-slice was drawn to closely match the shape of the 128

signal. In anaphase and telophase, two instances (with distinct instance labels) were drawn and made to 129

conform closely with the boundary of the bright condensed signal. We carefully annotated the H2B signal 130

in metaphase, anaphase and telophase because it is important for the trained network to segment these 131

nuclei well: the shape – particularly the orientation of the metaphase plate – and volume can be particularly 132

informative for the assignment of daughter nuclei to mother nuclei in time lapse images (see Description of 133

Semi-automated Nuclear Tracking Methods). 134

Dataset Characteristics 135

The BlastoSPIM 1.0 dataset includes 573 fully annotated 3D images of nuclei in mouse embryos, each 136

manually curated for annotation. Across all images, there are 11708 individual nuclear instances annotated 137

and 116 annotated polar bodies. Not all of these 3D images come from different time series. For example, 138

for one developing mouse embryo, we annotated 89 consecutive time-points, and for another embryo, we 139

annotated 100 consecutive time-points. The total number of distinct embryos imaged and annotated is 31. 140

Aside from diversity in developmental stage, the embryos in this dataset express different H2B-miRFP720 141

alleles (see details in mouse line generation) and were also imaged with different laser intensities. This 142

diversity in SNR allows us to test whether model performance degrades significantly as SNR decreases. We 143

quantify SNR in our case by calculating mean foreground intensities and mean background intensities. We 144

report the distribution of SNRs, one point for each fully annotated 3D image, as the difference between mean 145

foreground and mean background in (S2 Fig). For comparison, the background intensity – in gray values – 146

typically has a mean of 118 and a variance of 10-14. 147

The BlastoSPIM 2.0 dataset consists of 80 annotated images of late-stage embryos. This set includes 6628 148

nuclear instances. Late blastocysts from this dataset with the lowest SNR values (S2 Fig) were selected and 149

incorporated into the existing low SNR set. The final number of annotated images in BlastoSPIM 1 + 2 is 150

653, and the number of annotated nuclear instances is 18336. 151

In addition, to demonstrate that the models trained on BlastoSPIM perform well also for images acquired 152

via other modalities, we annotated the nuclei in 10 different embryos imaged on a spinning disk confocal 153

microscope (Figure 6(A-C)). These ten images range from the 30-cell stage to the 61-cell stage and contain 154

461 nuclei in total. 155

Dataset Splits and Evaluation Metric 156

When splitting our dataset into a training set, a test set, and a validation set, our main objective was to 157

quantify how model performance varies as a function of both developmental stage and SNR. For BlastoSPIM 158

1.0 we created two separate test sets, one for low SNR and one for moderate SNR, each of which contained 159

a diversity of developmental stages. We define “low SNR” and “moderate SNR” by comparing the mean 160

foreground intensity to the mean background intensity. The “low SNR” images all have a mean foreground 161

intensity which is at most 134 gray values, approximately 15 gray values above the typical mean background 162

intensity. For reference, the background intensity – in gray values – typically has a variance of 10-14 (S2 163

Fig). Within both the moderate SNR and the low SNR sets, we group annotated embryos based on their 164
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developmental stage, estimated by the number of nuclei (i.e., ≈8-cell, ≈16-cell, ≈32-cell, ≈64-cell, >100-cell). 165

Each set deliberately contains more images from earlier stages than later stages so that the total of number of 166

nuclei per developmental stage is at least partially equalized across stages. From the BlastoSPIM 2.0 dataset, 167

8 embryos from various stages were used as a test set, as early as the 48-cell stage and as late as the 107-cell 168

stage . The remainder of the data, 72 annotated embryos, were either for validation or training. The exact 169

breakdown is specified at blastospim.flatironinstitute.org. 170

To evaluate how well the models performed on the test sets, we computed the intersection-over-union 171

(IoU) between the models’ segmentation and the ground truth. We considered an instance in the models’ 172

segmentation to match an instance in the ground truth if the IoU between the two was at least 0.5. We also 173

provide how performance varies as a function of this IoU threshold (S3 Fig, S4 Fig). We also calculate the IoU 174

between its ground-truth instance and its matched model-inferred inference; each unmatched ground-truth 175

instance contributes an IoU of zero to the average. As above, the IoU must be at least 0.5 for each match. To 176

compute how well the predictions fit the ground truth, we compute the panoptic quality [17]:

∑
(p,q)∈TP

IoU(p,q)

TP+FP+FN
2

, 177

where (p, q) represents a match between predicted object p and ground-truth object q. TP , FP , and FN 178

denote true positives, false positives, and false negatives, respectively. 179

The train-test-validation split for all the models is specified on the BlastoSPIM website. 180

Segmentation Correction Methods 181

To achieve accurate lineage tracking, even infrequent segmentation errors need to be corrected. These errors 182

include oversegmentation, undersegmentation, or misclassification of background noise as cells. To manually 183

rectify these errors, we employed an enhanced version of the ImageJ plugin, AnnotatorJ [18]. 184

AnnotatorJ provided users with an intuitive interface to inspect and identify segmentation errors by 185

overlaying the segmented ROIs onto the original image. To cater to the specific needs of 3D image analysis, 186

we introduced various enhancements to AnnotatorJ (v1.6). Briefly, AnnotatorJ v1.6 allowed for the display of 187

ROIs in each frame of a 3D image, enabling users to navigate seamlessly through frames and address errors in 188

each frame individually. This functionality was made possible by incorporating operations to add or remove 189

regions, modify boundary positions, and correct misclassified areas manually. A ”generate mask” operation 190

was added to easily generate the labeled mask image once corrections were completed. We implemented color 191

coding of ROIs for easier identification and generation of a final corrected labeled mask image. Additionally, 192

we introduced support for loading compressed KLB files, for efficient data handling. 193

Registration Methods 194

Under normal imaging conditions, the embryo can rotate and translate within the microscope field of view. 195

While global positions of cells in consecutive frames may change, their relative positions are unlikely to change 196

significantly. To achieve positional consistency over time, we use the coherent point drift (CPD) algorithm to 197

register pairs of frames in sequence [19]. CPD is a point set registration algorithm which takes a probabilistic 198

approach to aligning two sets of points. Each point set is represented by a gaussian mixture model (GMM), 199

and a transformation function is learned which maps the centroids of the first point set onto the centroids 200

of the second set. For each pair of frames, we take the corresponding point sets to be the centroids of the 201

distinct instances in the instance segmentation. We also restrict the transformation function to be a rotation 202

and translation. 203

We found that CPD tended to converge to local minima on our data depending on the initial rotation guess. 204

Because the point sets were small and thus the CPD execution time was low, the correct registration could 205

be found quickly by running many CPD trials with randomly chosen initial rotations. The final registration 206

was chosen as the trial which minimized the GMM covariance parameter. This covariance parameter acts as 207

a length-scale which tends to be large for misaligned point sets and small for aligned point sets. 208

Nuclear Tracking 209

After the error correction and registration steps, we perform semi-automated lineage tracking on the registered 210

nuclear segments. Our tracking algorithm constructs the lineage tree sequentially, at every iteration matching 211

nuclei to their predecessors in the previous time frame. We build our algorithm on the previously published 212
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effort [20] that was based on nearest neighbor association between nuclear centroids at adjacent time frames 213

and, in the case of mitosis, searching for pairs of daughters with minimal distance to the mother. However, 214

we found that while this method can be successful in tracking nuclei during interphase, the slower frame 215

rate of our samples is an obstacle to the success of the algorithm in correctly identifying division events. 216

Therefore, we introduced additional steps comparing nuclear volumes for every matched pair of nuclei to 217

prune incorrect tree edges and identify mother-daughter triples, with the option for manual correction. This 218

approach takes advantage of the observed differences in nuclear volume between daughter nuclei and their 219

mother due to splitting of condensed chromatin. More precisely, for every pair of frames, we perform several 220

steps. In the steps below, regardless of whether a division event occurred between times t and t+ 1, we refer 221

to nuclei at time t as mothers (or parents, interchangeably) and nuclei at time t+ 1 as daughters. Only if a 222

mother at time t has two daughter nuclei at t+ 1 has a division event occurred in the tree. 223

Step 1. We start by matching every label at time t+1 with its nearest neighbor at time t (using euclidean 224

distances between centroids), thus identifying prospective parents for every label. The matches can be viewed 225

as the edges that are added to the tree at height t. For these initial edges, we compare the volumes of the 226

two matched nuclei and first retain the edges that represent one-to-one mappings without significant volume 227

disbalance (defined by the daughter-mother volume ratio larger than a user-defined threshold; heuristically, 228

we set the default value to be 2/3). The rest of the edges represent many-to-one daughter-mother mappings. 229

For every prospective mother, we identify how many of the prospective daughter nuclei are large enough, i.e., 230

do not demonstrate significant volume disbalance to the mother (defined above). If there is just one large 231

daughter identified, we retain this connection pruning all the rest; otherwise, we prune all the edges for this 232

prospective mother. Thus, all the retained matches potentially represent the same nucleus which slightly 233

changed its position between times t and t+ 1. 234

Step 2. At this point, the nuclei at times t and t+ 1 that belong to the edges retained at Step 1 are 235

removed from consideration. The remaining nuclei at time t+ 1 undergo the next round of nearest neighbor 236

mapping to time t. At this stage, one-to-one mappings are retained. Now we aim to identify for mitotic 237

triples. To do this, we search for prospective parents (time t) that were mapped to exactly two nuclei at time 238

t+ 1. We retain both edges for such a triple if there is significant daughter-mother volume disbalance (see 239

definition in Step 1) for both prospective daughters. The mitotic triple criterion includes an option to check 240

for the centroid of the daughters to be close enough to the prospective parent. 241

Step 3. All the remaining connections from Step 2 represent the many-to-one mappings that do not 242

satisfy the criterion for the mitotic triple. We attempt to resolve such conflicting matches by using second 243

nearest neighbors. If this procedure does not identify a plausible mitotic triple based on the criterion described 244

in Step 1, we manually identify the correct mitotic triple and edit the lineage tree by using the rmedge and 245

addedge functions in MATLAB. 246

Construction of the Lineage Trees from the 8-cell stage to the ≈ 100-cell stage 247

The initial segmentation was produced using the “early embryo” Stardist-3D model for frames 1 through 145, 248

at which point the embryo’s cell count reached 64. For the remainder of the movie, ending at frame 210, 249

we switched to the “late blastocyst” Stardist-3D model as it achieves a higher accuracy in later stages and 250

reduces the number of error corrections needed. Following segmentation, we used our enhanced AnnotatorJ 251

tool to hand-correct errors and began tracking using our semi-automatic lineage construction algorithm. The 252

process of lineage construction provides temporal context which often reveals errors in the segmentation which 253

may be non-obvious when viewing a segmented frame in isolation. For this reason, performing hand-correction 254

and lineage construction in parallel is useful. After building the lineage tree, inner cell mass (ICM) and 255

trophectoderm (TE) fates were assigned based on nuclear shape (TE nuclei are typically more flat) and 256

position (TE nuclei are closer to the surface, while ICM nuclei are positioned deeper in the embryo). 257

From the beginning of the 32-cell stage to the 64-cell stage, the estimated volume of each nucleus was 258

computed by averaging the predictions of the early and late models. More specifically, since only one of 259

these two models was corrected per time point for the purpose of the lineage tree, we computed matches 260

between the corrected segmentation (from either the early or late model) and an uncorrected segmentation 261

from the other model. If a match of sufficiently high IoU was identified, then the volumes of the nuclear 262

instance in the two models were averaged. If no sufficiently matching instance was found, then only the 263

volume of the instance in the corrected segmentation was used. S5 Fig demonstrates that the model-predicted 264
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instances have volumes which agree well with those of the ground-truth matches; thus, for Figure 5 we used 265

model-predicted nuclear volumes as a reasonable proxy for the ground-truth volumes (which can only be 266

obtained by full manual annotation – not done for these lineage trees). 267

Quantifying nuclear volume and aspect ratio 268

For the quantification of nuclear aspect ratio, we use the procedure – based on calculating the moment of 269

inertia tensor – described in [21]. The quantification of volume was obtained by multiplying the number of 270

vocels in the instance with voxel volume. For Figure 5(D,E), to reduce noise in estimated nuclear volume, 271

each maximal volume (Vmax) per cell stage (8-to-16, 16-to-32 or 32-to-64) was calculated by averaging the 272

nuclear volume for 90 minutes preceding the nuclear volume peak (see Figure 5(B)). 273

For calculating maximal nuclear volumes in Figure 5(D,E), the 8-to-16 and 16-to-32 divisions are 274

unambiguously defined because they occur in two temporally distinct rounds. On the other hand, because 275

cell cycle asynchrony increases with developmental time, the definition of a 32-to-64 cell division is potentially 276

ambiguous: namely, some 16-to-32 divisions have not happened even as some daughters of other 16-to-32 277

divisions have themselves divided (see Figure 5(A)). For each tree, along a path from the root to the leaves, 278

we define the 32-to-64 cell divisions as those which – without any intervening divisions along the lineage path 279

– follow a 16-to-32 division. For the purposes of Figure 5(D,E), we only plot the 32-to-64 divisions which 280

result in two progeny which both survive until the end of tree and divide at least once more. We make this 281

choice because those are the only cases in which the quantities VD1,max + VD2,max and VD1,max − VD2,max 282

are well-defined. 283

Results 284

0.1 Establishment of a near-infrared nuclear reporter mouse line 285

Multicolor imaging is key to simultaneous recording of morphogenesis and cell fate specification. To enable 286

visualization of cell nuclei in concert with various other molecular markers, which are typically tagged with 287

green, red or far-red fluorescent proteins, we generated a novel spectrally distinct near-infrared nuclear 288

mouse line expressing H2B-miRFP720 (Fig 1(A)-(B)). First, using 2C-HR-CRISPR [11] we targeted CAG 289

H2B-miRFP720 to the TIGRE locus [12]. Early preimplantation embryos from this line showed uniform 290

H2B-miRFP720 expression; however, by the mid blastocyst stage significant dimming of the fluorescent 291

signal was noted, even in freshly isolated embryos (data not shown). A second mouse line harboring CAG 292

ORF-2A-H2B-miRFP720 in the TIGRE locus however did not exhibit the same dimming issue, and rather 293

showed a slight increase in H2B-miRFP720 intensity during preimplantation development. We therefore used 294

two sgRNAs to delete the ORF-2A with Cas9 in this line, resulting in a CAG H2B-miRFP720 line (hereafter 295

referred to as the H2B-miRFP720 mouse line) with bright reporter expression across all preimplantation stages 296

(Fig 1(A)-(B)). miRFP720 can be readily multiplexed with far-red fluorescent reporters such as emiRFP670 297

or the Halo-tag visualised with the JF646 dye, therefore this mouse line allows simultaneous imaging of up to 298

four different reporters in mouse embryos (Fig 1(C)). Furthermore, the long wavelength used for its detection 299

makes H2B-miRFP720 ideal for deep-tissue imaging and results in reduced phototoxicity. 300

0.2 A novel ground-truth dataset of preimplantation mouse embryos for com- 301

paring nuclear-segmentation methods 302

Using selective plane illumination microscopy (SPIM) we acquired 3D live images of H2B-miRFP720-expressing 303

preimplantation embryos at various developmental stages. We created a new ground-truth dataset with full 3D 304

nuclear instance segmentation. This dataset, which we call BlastoSPIM 1.0 (concatenation of blastocyst and 305

SPIM), is one of the largest and most complete of its kind (S2 Table) with more than 570 high-resolution, light- 306

sheet images with approximately 12,000 nuclei are annotated, spanning all preimplantation stages (Fig 1(D)) 307

(for details, see Dataset Characteristics and S2 Fig). The quality, detail, and size of the BlastoSPIM dataset 308

makes it unique relative to other publicly available ground truth datasets for nuclear instance segmentation 309

(S2 Table). 310
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To quantitatively illustrate the challenges posed by densely packed nuclei for instance segmentation, 311

using BlastoSPIM 1.0, we calculated how nucleus-to-nucleus distances change from the 16-cell stage to the 312

>100-cell stage. The surface-to-surface distance between nearest-neighbor nuclei has a median of 6.0 µm 313

at the 16-cell stage, 2.9 µm at the 32-cell stage, 1.8 µm at the 64-cell stage, and ≈0.5 µ at the >100-cell 314

stage (S6 Fig). This decrease in nearest-neighbor distance, with an increasing number of nuclei having a 315

< 1µm nearest-neighbor distance with successive developmental stages, is not accompanied by a comparable 316

decrease in nuclear size (S6 Fig); thus, instance segmentation is expected to be considerably more challenging 317

as development progresses. 318

Additionally, the challenge for instance segmentation is due not only to nucleus-to-nucleus juxtaposition, 319
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Fig 1. BlastoSPIM datasets, ground truth of nuclear instance segmentation for embryos
expressing a novel near-infrared nuclear marker. (A) Schematic of targeted TIGRE locus with the
CAG-H2B-miRFP720 insert. (B) Top: cartoon of preimplantation development in the mouse. After
fertilization, the zygote undergoes cleavage divisions. At the 8-cell stage, compaction and polarization occur.
By the 32-cell stage, a subset of cells called the trophectoderm (TE) form the embryo’s surface; the
remaining cells form the inner cell mass (ICM). The ICM cells begins to pattern into two fates, primitive
endoderm (PE) and epiblast (EPI), by the 64-cell stage; by implantation, around the > 100-cell stage, the
two inner fates are spatially segregated. Bottom: Maximum-intensity projected images – acquired with SPIM
– of preimplantation embryos expressing H2B-miRFP720 at different developmental stages. Scale bar: 10 µm.
(C) Preimplantation embryo expressing four spectrally distinct fluorescent reporters: H2B-miRFP720,
mTmG, YAP-emiRFP670, Cdx2-eGFP. Maximum intensity projections of images acquired with SPIM. Scale
bar: 10 µm. (D) Histogram of number of nuclei per embryonic stage (represented by embryo cell number) for
both BlastoSPIM 1.0 (blue, used for initial benchmarking of methods) and BlastoSPIM 2.0 (red, used for
extending accurate segmentation to later stages). For four embryos from different stages, the ground truth of
nuclear segmentation are shown.
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but also to characteristics of image acquisition. For example, live images often have low SNRs because 320

the exposure of embryos to light has to be limited to prevent phototoxicity [22]. Moreover, the sample is 321

imaged along a single axis (z-axis, by convention), resulting in voxel anisotropy – poorer z-resolution than 322

xy-resolution. Our ground-truth dataset contains a range of SNR values (S2 Fig) and has a voxel anisotropy 323

of approximately 10. In summary, because of its size as well as its diversity in developmental stage and SNR, 324

our dataset of manually annotated 3D instances of nuclei is uniquely suited to interrogate the performance of 325

any segmentation method – for achieving accurate nuclear instance segmentation in preimplantation mouse 326

embryos. 327

0.3 Benchmarking of seven instance segmentation methods on BlastoSPIM 1.0 328

reveals superior performance of Stardist-3D 329

We used our ground-truth dataset to compare seven instance segmentation networks (in S1 Table), including 330

Cellpose [23], Stardist-3D [24], RDCNet [25], U3D-BCD [26], UNETR-BCD [27], ELEPHANT [28], and 331

QCANet [6]. These methods span a variety of network architectures, from those including recurrent blocks or 332

transformers to more conventional U-Nets. They also represent the instances in different ways. For example, 333

Stardist-3D computes a set of distances to the boundary, while Cellpose predicts gradients that are tracked 334

to the instance center. 335

We trained each model with data from 482 3D images of embryos from BlastoSPIM 1.0 and then evaluated 336

on a test set composed of moderate SNR data. To interrogate stage-specific performance, we divided this test 337

set into developmental stages such that it contained approximately 120 nuclei from each stage (e.g., more 338

images from earlier stages than later stages). To benchmark each method, we compared the ground-truth 339

instances and model-inferred instances by computing matches based on the intersection-over-union (IoU). A 340

model-inferred instance is considered as a match to a ground-truth instance if the IoU is at least 0.5 (see 341

different IoU cutoffs in S3 Fig). Based on this matching, we computed the F1 score, defined as 2TP
2TP+FN+FP , 342

where TP, FP, and FN are the number of true positives, false positives, and false negatives, respectively 343

(Figure 2(A)). We also quantified the accuracy of the model predictions based on the panoptic quality (see 344

Dataset Splits and Evaluation Metric, (Figure 2(B)). As opposed to the F1 score, which simply counts matches 345

in a binary way based on a threshold in IoU, the panoptic quality also depends on the sum of the IoUs that 346

are above the specified IoU threshold. 347

Based on the F1 score, the Stardist-3D model outperformed all other methods across developmental stages 348

(Figure 2(A)). From the 8-cell stage up to the 64-cell stage, the F1 score remained above 95 %. This is 349

significantly higher than the state-of-the-art results on similar (confocal) data from preimplantation mouse 350

embryos, particularly in embryos with > 32 nuclei [6]. By comparison to Stardist-3D’s strong F1 score across 351

stages, the F1 score of the other methods depended more strongly on developmental stage (Figure 2(A)). For 352

example, both UNETR-BCD and the related U3D-BCD method performed reasonably well at the 8- and 353

16-cell stages but were unable to detect several nuclei in later stages as nuclei became more densely packed. 354

By contrast, the performance of Cellpose and RDCNet slightly improved from the 8-cell stage to the 64-cell 355

stage, then decreased at the later developmental stages. 356

Stardist-3D also achieved the highest panoptic quality, approximately equal to that of UNETR-BCD, 357

across developmental stages (Figure 2(B)). Despite UNETR-BCD’s low F1 as compared to both Stardist-3D 358

and ELEPHANT, its high panoptic quality can be explained as follows: the IoUs for UNETR-BCD’s successful 359

matches to the ground-truth instances are high even though it has fewer matches. By contrast, although 360

ELEPHANT had a reasonably high F1 score for the 16-cell and later stages, the panoptic quality remained 361

relatively low across stages. This is likely explained by ELEPHANT’s constraint that nuclei be represented 362

only as ellipsoids; by contrast, Stardist-3D’s representation of nuclei as star-convex polyhedra approximates 363

well the nuclear shapes in our ground-truth dataset S7 Fig. 364

In terms of both performance metrics, one method, QCANet, performed worse than the other methods. 365

Two key factors likely contributed to this poor performance. First, QCANet makes the images isotropic 366

by decreasing the xy-resolution and interpolating in z, and this coarser resolution likely complicates the 367

prediction of the boundary between closely juxtaposed nuclei. Second, since QCANet uses centroid-based 368

watershed, errors in the predicted centroid locations impact the predicted boundaries between instances and 369

can give rise to the prediction of instances with unrealistic shapes. 370

Figure 2(C,D) shows qualitative results of these seven networks on an embryo with 60 nuclei based on two 371
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Fig 2. Evaluation of seven instance-segmentation networks trained on BlastoSPIM 1.0 across
preimplantation developmental stages. (A,B) F1-score and panoptic quality, respectively, across
developmental stage. See S3 Fig for evaluation at different IoU cutoffs. (C,D) Qualitative evaluation on a
60-cell embryo. Instance contours overlaid on a representative slice of the intensity image in xy and in xz,
respectively. Each panel is labelled as either Ground-truth or according to the method evaluated. GT,
predicted true positive, false negative and predicted false negative outlines are shown for each model (see
legend in figure). False positives and false negatives are defined by comparing the 3D instance segmentation
results rather than the results shown in a single 2D slice. Note that if the model predicted instance does not
overlap sufficiently well with the ground truth instance, the result is a false positive paired with a false
negative. In (C), the extra cyan outlines for QCANet are predicted instances which match with instances in
nearby z-slices but over-extend in z. Scale bars: 10 µm. See S3 Table, S4 Table for evaluation of model
failures for difficult cases in other test images.
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2D image slices (one in xy, the other in xz). On this test image, Stardist-3D achieved the best F1-score by 372

producing only one false negative (not shown in slice) and no false positives. Although ELEPHANT produced 373

one instance per ground-truth instance, two of those instances overlapped poorly with the corresponding 374

ground-truth; these resulted in two false negatives and two false positives. UNETR-BCD and Cellpose each 375

produced approximately ten errors, including false positives and false negatives. The remaining three methods 376

produced significantly more errors than the others on this test case. Below we summarize the typical errors 377

made by each network. 378

U3D-BCD, UNETR-BCD, and RDCNet missed several nuclei due to under-segmentation – the merging 379

of more than one nucleus into the same instance label (see Figure 2(C) for UNETR-BCD and Figure 2(D) for 380

RDCNet). On the other hand, Cellpose often oversegmented nuclei into small spurious instances or missed 381

a ground truth instance entirely (predicting no instance which overlaps; see Figure 2(C)). QCANet often 382

predicted the right number of nuclear centroids, and thus avoided over- or under-segmentation, but if two 383

predicted centroids fell within the same contiguous region of the semantic segmentation, the watershed-based 384

post-processing often split the mask improperly (see two neighboring false positives in Figure 2(C)). 385

Some methods produced instances with shapes that are not consistent with the range of ground-truth 386

nuclear shapes. For example, QCANet often overpredicted the nuclear sizes (see instances which extend 387

across more z-slices than the ground-truth instances in Figure 2(D)). By contrast, Cellpose and RDCNet 388

tended to produce some small false positives with highly irregular shapes (see small false positives in Cellpose 389

panels in Figure 2(C-D)). U3D-BCD tended to produce instances with holes or gaps (see small holes in 390

U3D-BCD instance in Figure 2(C)). Although models (like U3D-BCD or RDCNet) that make few hard 391

assumptions about nuclear shape sometimes performed best on particularly difficult cases like mitotic nuclei 392

or polar bodies (S3 Table, S4 Table), our results suggest that the methods which make biologically plausible 393

assumptions about nuclear shape (ELEPHANT and Stardist-3D) often achieve higher F1 scores. In summary, 394

our comprehensive benchmarking of different models provided insight into the strengths and weaknesses of 395

each network and identified Stardist-3D as the best performing network for 3D images of live preimplantation 396

embryos. Moreover, our large ground truth dataset can be used to test whether future neural network 397

architectures can outperform Stardist-3D in accurately identifying the positions and shapes of nuclei in 398

embryos. 399

0.4 Extending Stardist-3D’s segmentation accuracy up to the > 100-cell stage. 400

Although Stardist-3D performed well up to the ≈ 64-cell stage (Figure 2(C-D)), its performance deteriorated 401

at later stages. Therefore, we set out to improve accuracy by specifically training the network on late 402

stage ground-truth data. We hand-annotated an additional 80 3D images of late stage embryos expressing 403

H2B-miRFP720, containing more than 6600 nuclear instances – a data set we termed BlastoSPIM 2.0 404

(Fig 1(D)). We trained and validated a new Stardist-3D model based on 72 images of late blastocysts from 405

BlastoSPIM 2.0 (termed ”late blastocyst model”). 406

The late blastocyst model outperformed the previous Stardist-3D model (hereafter referred to as the 407

”early embryo model”) from Figure 2 on test images of late blastocysts, and underperformed it on test images 408

of embryos with fewer than 64 nuclei (Figure 3(A,B), S4 Fig, S8 Fig). In particular, the late blastocyst model 409

performed better than the early embryo model in cases with closely juxtaposed nuclei (as seen in the ICM) 410

(Figure 3(C), S9 Fig), while it often over-segmented polar bodies, which typically only appear in images of 411

early embryos (S8 Fig). For comparison to these two models, we also trained a model on both BlastoSPIM 412

1.0 and 2.0 (”all stages model”) and found that this model’s performance fell between the performance of the 413

other two Stardist-3D models (Figure 3(A,B), S4 Fig). As a result, at any developmental stage, one would 414

achieve higher performance with the stage-specific models. We therefore transitioned from using the early 415

embryo model to using the late blastocyst model when the embryo has ≈ 48 nuclei (in the transition between 416

the 32-cell stage and the 64-cell stage). 417

We next asked whether the early embryo model and late blastocyst model would perform well even for 418

cases of very low SNR. We, thus, evaluated these Stardist-3D models on a more difficult test set – separate 419

from the test set in Figure 2 – comprised of images with a very low SNR ratio (S9 Fig). Although only a 420

third of the images in the training set for the early embryo model met our definition of low SNR (S2 Fig), 421

the F1 score of the early embryo model for the low SNR test set was ⪆ 90 % for all stages up to the 64-cell 422

stage. For later stages, the late blastocyst model outperformed the early embryo model by achieving an F1 423
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Fig 3. Comparing models trained on BlastoSPIM 1.0 (early embryo model), BlastoSPIM 2.0
(late blastocyst model), and on both 1.0 and 2.0 (all stages model). (A,B) F1-score and panoptic
quality, respectively, for the moderate-to-high SNR test set. See S4 Fig for evaluation at different IoU cutoffs.
Vertical line: approximate developmental stage at which to transition from the early embryo model to the
late blastocyst model. (C) Qualitative evaluation on a 106-cell embryo. Instance contours overlaid on a
representative slice of the intensity image in xy (top) and in xz (bottom), respectively. Each panel is labelled
as either Ground-truth or according to the model evaluated. Scale bars: 10 µm. Note that if the model
predicted instance does not overlap sufficiently well with the ground truth instance, the result is a false
positive paired with a false negative. Relatedly, see S8 Fig for errors produced by inference of the late
blastocyst model on early embryo data.

score of ≈ 86 %. Since the images in our low SNR test represent some of the most challenging cases, where 424

even human experts have difficulties in annotating instances (S9 Fig(D)), we expect our models to generalize 425

well to long-term live-imaging datasets with low-to-moderate SNR. 426

0.5 BlastoSPIM-trained Stardist-3D models enable lineage tracking 427

Analyzing developmental dynamics requires tracking of individual cell lineages over time. We therefore 428

developed a complete pipeline image analysis pipeline that integrated nuclear segmentation results from 429

the BlastoSPIM-trained Stardist-3D models with lineage tracking. First, using light-sheet microscopy, we 430

acquired a time series of 3D images of an H2B-miRFP720-expressing embryo, with one Z-stack acquired every 431

15 minutes. We automatically segmented the images by either the early embryo model or late blastocyst 432
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model, switching models around the 48-cell stage (Figure 4(A)). As accurate lineage tracking is contingent 433

upon accurate segmentation, we hand-corrected remaining errors using AnnotatorJ [18]. AnnotatorJ overlays 434

each segmented region of interest (ROI) onto the original image and provides an intuitive interface to edit, 435

delete, or create ROIs. Since AnnotatorJ was originally designed for 2D images, we introduced several 436

enhancements for corrections of 3D segmentations. Segmentation errors were corrected by removing false 437

positives, adding missing instances, and editing over-segmented regions. 438

To track corresponding nuclear instances across time, we first corrected for movement of the embryo 439

during image acquisition by computing a rigid transformation which aligns consecutive pairs of frames. Based 440

only on nuclear centroids, we registered consecutive frames by utilizing the coherent point drift algorithm 441

from [19]. Finally, we performed semi-automated lineage tracking on the registered nuclear instances. Our 442

algorithm operates sequentially, matching nuclei to their predecessors in the previous frame. Non-dividing 443

nuclei were tracked using nearest neighbor association between instance centroids. Additionally, for dividing 444

nuclei, we used a heuristic based on the difference in nuclear volume between potential mother-daughter 445

triples. For more details regarding segmentation correction, registration, and lineage construction, please see 446

Description of Semi-automated Nuclear Tracking Methods in the methods section. 447

0.6 Using the analysis pipeline to generate lineage trees and characterize nuclear 448

volumes and shapes from the 8-cell to late blastocyst stage 449

We used the pipeline (Figure 4) for the semi-automated analysis of an embryo from the 8-cell stage to the ≈ 450

100-cell stage (Figure 5(A-A”’), S10 Fig). After ≈ 52 hours of development, by a combination of 98 division 451

events and 8 death events, the embryo reached the 98-cell stage. At the final time point, we used nuclear 452

position as a proxy to assign ICM and TE fates and found 27 ICM nuclei and 71 TE nuclei, in keeping with 453

fate proportions previously reported [29]. To our knowledge, these are the longest lineage trees constructed 454

for perimplantation development. 455

Next, we characterized changes in nuclear volumes and shapes in individual cell lineages in Figure 5(A) 456

(see Quantifying nuclear shape properties in Methods). First, we examined how accurately our BlastoSPIM- 457

trained models report on these features by comparing nuclear volume and aspect ratios in embryos with 458

both ground truth and model-predicted segmentations. In comparing each model-predicted instance with its 459

matched ground-truth instance, we found that the nuclear volumes and aspect ratios of the two matched 460

well, particularly for the 8-cell stage up to the ≈ 80-cell stage (S5 Fig, S11 Fig). Therefore, for all nuclei 461

throughout the time lapse in Figure 5(A), we calculated nuclear volumes and aspect ratios based on the 462

corrected model predictions and treated those as a proxy for the ground-truth nuclear volumes and aspect 463

ratios. 464

Since the nucleus’s volume relative to that of the cytoplasm (NC ratio) has been shown to impact cell 465

cycles and gene expression in embryos of other species [30, 31], we first studied the dynamics of nuclear 466

volumes from the 8-cell stage to the blastocyst stage. For preimplantation mouse embryos, the total embryo 467

volume – excluding the cavity – is fixed, which means that cell divisions partition existing volume [32]. By 468

contrast, analysis of fixed embryos has revealed that nuclear volumes do not downscale as dramatically as 469

cell volumes [33]. To quantify in a live embryo how these increases in NC ratio arise, we analyzed nuclear 470

volumes from generation to generation (e.g., from a mother at the 16-cell stage to 2 daughters at the 32-cell 471

stage). Figure 5(B) shows an ICM and a TE example of nuclear volume trajectories from the root of a lineage 472

tree (8-cell stage) to its leaves ( ≈100-cell stage) (see S10 Fig). After each division, the nuclear volume grew 473

approximately linearly and reached a peak immediately before the subsequent division (see Figure 5(C), S10 474

Fig). To compare nuclear volumes at different developmental stages in a way that is not affected by the 475

asynchonous nature of cell cycle progression, we chose to use maximal nuclear volumes, which we measured 476

for each cell immediately before mitosis. 477

We compared the maximal volumes of the daughter nuclei (VD1,max and VD2,max) to that of their mother 478

(VM,max) across developmental stages (Figure 5(C,D), S12 Fig(B)). If the nuclei were not down-scaling with 479

developmental stage at all, then VD1,max + VD2,max would be expected to be ≈ 2VM,max. On the other hand, 480

if the nuclei were down-scaling to fix the NC ratio, we would expect VD1,max + VD2,max to be ≈ VM,max. For 481

the 8-to-16 and 16-to-32 cell transitions, the sum of nuclear volumes of the two daughters (VD1,max+VD2,max) 482

was greater than VM,max, but less than ≈ 2VM,max. Thus, the daughter nuclei were indeed down-scaling, but 483

were not simply halving the mother’s nuclear volume. By contrast, for the 32-to-64 cell stage, the sum of the 484
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Fig 4. Analysis pipeline, from image acquisition to lineage tree construction. Gray arrows
indicate order of steps in the pipeline. (A) Image acquisition and segmentation. Time series of 3D light-sheet
images were segmented automatically using the early embryo and the late blastocyst Stardist-3D models.
Green: light sheet used for illumination. Blue: emitted light is collected by the detection objective. (B)
Segmentation corrections. Errors in the segmentation were hand-corrected by overlaying the segmentation
with the raw image in each frame and removing false positives and/or adding instances which were missing.
(C) Registration of nuclear segmentations. Using the corrected segmentation, consecutive pairs of frames are
aligned spatially to account for rigid motion the embryo experiences during image acquisition. We employ
the coherent point drift registration algorithm, operating on the instances’ centroids extracted from the
segmentation. (D) Lineage tracking. After registration, a set of lineage trees was constructed (one for each of
the nuclei in the first frame) by matching nuclear identities between pairs of consecutive frames.
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Fig 5. Probing nuclear dynamics from the 8-cell stage to the late blastocyst. (A) Lineage trees.
Color indicates eventual contributions to the ICM and TE. Later times farther from center. Skull: cell death
event. Paths between the asterisked root and two asterisked leaves in (B). (A’-A”’) Max projections of H2B
signal and segmentations, colored as in (A). Scale bars: 20 µm. (B) Nuclear volumes along the paths
indicated by asterisks in (A). Trajectories are colored as in (A). Dashed lines: division events. (C) Cartoon
of nuclear volume dynamics along the lineage tree. Gray, gold, and purple: mother nucleus, larger daughter
nucleus, smaller daughter nucleus, respectively. (D,D’) Comparison of summed daughter nuclear volumes to
that of the mother. (E,E’) Comparison of volumes of two daughter nuclei. In (D,E), cyan: outlier due to
nuclear fragmentation.
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daughter volumes approximately equaled that of the mother (Figure 5(C,D)). This suggests that nuclear 485

growth is reduced at later developmental stages (see example trajectories in S10 Fig). Future work is required 486

to uncover the specific biological mechanisms controlling developmental-stage-dependent nuclear growth. 487

During the 8-to-16 and 16-to-32 cell transitions, a previous study reported that differences in cell volume 488

– particularly between ICM cells to TE cells – arise [21]. By comparing the volumes of daughter nuclei 489

resulting from the same division (VD1,max and VD2,max) across developmental stages (Figure 5(C,E), S12 490

Fig(C)), we tested when nuclear volume differences emerge in the embryo. For the 8-to-16 and 16-to-32 491

cell transitions, many of the divisions had pronounced asymmetries (Figure 5(E), S12 Fig(C)). By contrast, 492

for the 32-to-64-cell transition, the daughter nuclei had approximately equal maximal nuclear volumes 493

(Figure 5(C,E)). Since the nuclear volume asymmetries in earlier divisions often correspond to cases of two 494

progeny of differing ICM/TE fate (S10 Fig), decreased asymmetries at the 32-to-64-cell transition may reflect 495

the lack of mixed ICM/TE progeny in divisions after the 32-cell stage [7]. 496

In addition to nuclear volumes, nuclear aspect ratios likely also depend strongly on developmental stage 497

and ICM/TE cell fate. Since previous studies reported that at the 16-, 32-, and 64-cell stages, the TE cells 498

have larger aspect ratios than ICM cells [21, 34], we asked whether and at what developmental stage TE 499

nuclei develop higher aspect ratios than ICM nuclei. We found that TE nuclei developed high aspect ratios 500

not during the 16-cell stage, but later during the 32-to-64 cell stages (S10 Fig,S12 Fig(G-H”’)). This change 501

in TE nuclear shape occurred highly asynchronously across the TE population (S10 Fig, S12 Fig(G-H”’)) 502

and sometimes occurred very quickly (S12 Fig(H”’)). Additionally, although TE nuclei tended to have higher 503

aspect ratios than ICM nuclei, the distributions significantly overlapped, and both the median TE and 504

ICM nuclear aspect ratios increased by the >100-cell stage (S10 Fig). Interestingly, a subset of ICM nuclei 505

experienced an increase in aspect ratio during the last 3-4 hours of the time-lapse (see S10 Fig(C’,D’)). This 506

latter subset may correspond to primitive endoderm nuclei that flatten as the primitive endoderm forms a 507

monolayer (Fig 1(B)) [35]. 508

0.7 Generalization of our trained Stardist-3D models to different model systems 509

and a different imaging modality 510

Since previous studies have reported that deep convolutional neural networks can generalize well to unseen 511

datasets [5, 23,36], we next tested whether our BlastoSPIM-trained models could generalize to other model 512

systems and imaging modalities. In principle, our model’s performance on a different dataset could depend 513

on the model system, the method for nuclear labeling, and the imaging modality. In each generalization test 514

below, we first evaluated our early embryo and late blastocyst models on the test set without any additional 515

training. Then, we updated the weights of our early embryo and late blastocyst models by training on a 516

small set of ground truth data from the system of interest. We compared those so-called fine-tuned models to 517

a model trained only on ground-truth data from the system of interest. 518

First, to test the generalization of BlastoSPIM-trained models on a different imaging modality, we 519

generated a ground-truth set of 10 preimplantation mouse embryos from the ≈32-cell stage to the ≈64-cell 520

stage on a spinning disk confocal microscope (see example in Figure 6(A)). We set aside 2 embryos for 521

training and validation of a new “only confocal” model. We used that same set to update the weights of 522

our two BlastoSPIM-trained Stardist-3D models. On the remaining embryos, the late blastocyst model – 523

with and without training on confocal data – outperformed the “only confocal” model (Figure 6(B,C)). The 524

fine-tuned early embryo model also outperformed the “only confocal” model. Thus, the late blastocyst model 525

performed well out-of-the-box, and fine-tuning on a small training and validation set significantly improved 526

the performance of both the early embryo model and the late blastocyst model. Thus, our models generalized 527

well, alleviating the necessity of generating a large new ground-truth set of confocal data. 528

We quantified whether our models generalize to datasets from other model organisms. We evaluated our 529

Stardist-3D models on a ground-truth set of live light-sheet images of Platynereis dumerilli embryos from the 530

38- to the 392-cell stage [10] (see example in Figure 6(D)), in which nuclei were labeled by microinjection of 531

a fluorescent tracer. Applying our “early embryo” model to the five P. dumerilli images, we found that it 532

performed well, at ⪆ 90% F1 score, on early Platynereis embryos, from the 76- to 198- cell stages. For later 533

stages, the “late blastocyst” model outperformed the “early embryo” model by achieving an F1 score of ≈ 534

85% (Figure 6(E)). We, then, fine-tuned both of our Stardist-3D networks on a set of 4 P. dumerilli embryos. 535

We used the same sets to train and validate a new network, which we call the “only platynereis” model. The 536
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fine-tuned “late blastocyst” model outperformed the “only platynereis” model (Figure 6(E,F)) across the test 537

set. The superiority of the F1 score and the panoptic quality for the fine-tuned “late blastocyst” model was 538

most pronounced for the ≈200-cell embryo. For the three test images at late stages (with 198, 281, and 311 539

nuclei), the fine-tuned network generated ≈ 30 fewer errors, including false positives and false negatives, and 540

increased the mean IoU for matched instances at each timepoint. Notably, our models generalized to images 541

of P. dumerilli embryos despite several differences in this data compared to images of mouse embryos, such 542

as highly variable nuclear sizes and different nuclear textures (dense heterochromatic foci). 543

Finally, we tested our models’ generalizability to another system, intestinal organoids [9] (Figure 6(G)). 544

While our “early embryo” and “late blastocyst” models did not perform as accurately out-of-the-box as 545

they did on the previous two sets, fine-tuning of both of these models on sets of images of 10 organoids 546

with ground-truth significantly improved their performance (Figure 6(H,I)). For example, the fine-tuning 547

of the early embryo model on early organoid data (< 14 nuclei) and of the late blastocyst model on late 548

organoid data (≥ 14 nuclei) allowed these to outperform the “only organoids” models (trained on early and 549

late organoid data, respectively). Surprisingly, the best improvement in performance relative to the “only 550

organoid” models occurred at the 2-4 cell stages (Figure 6(H,I)). At these stages, a lumen has not yet formed 551

or is small, and the cells’ large nuclei are very closely juxtaposed and flattened. The large training set of 552

blastocyst embryos (in BlastoSPIM 1.0 and 2.0) enabled our models to avoid merging of these nuclei in the 553

segmentation. 554

Thus, our BlastoSPIM-trained models, either ”out-of-the-box” or fine-tuned with minimal ground truth 555

from another system, can greatly improve nuclear segmentation accuracy in different types of imaging data 556

(Figure 6). 557

Conclusion 558

To understand how individual cells’ behaviors contribute to morphogenetic events, biologists acquire staggering 559

amounts of time-lapse images of these processes. Quantifying the properties and behaviors of individual 560

cells in such image series requires instance segmentation: identifying which voxels belong to which object. 561

Although many measurements require segmentation of entire cells, instance segmentation of nuclei is useful 562

for estimating the relative positions of cells, classifying by mitotic stage, and measuring the expression of 563

nuclear-localized factors. Nuclear instance segmentation is challenging for several reasons, including nucleus- 564

to-nucleus proximity, variations in nuclear shape, voxel anisotropy, and low SNR. Since the application of 565

supervised machine learning methods to instance segmentation often requires relatively large ground-truth 566

datasets, here we generated a publicly available ground-truth dataset, called BlastoSPIM, which is the largest 567

3D dataset of nuclear instance segmentation ground truth of its kind. Such large, fully annotated datasets 568

are an extremely useful resource, including for the benchmarking of different methods. Here, by comparative 569

analysis of seven different neural networks on this new dataset, we have shown which of these networks best 570

addresses the challenges of nuclear segmentation in the preimplantation mouse embryo (Figure 2). 571

Our comparative analysis revealed state-of-the-art performance by Stardist-3D (early embryo model) 572

across developmental stages. From the 8-cell stage up to the 64-cell stage, Stardist-3D’s F1 score remained 573

above 95 %, and its panoptic quality at ≈ 80 % (Figure 2(A)). In contrast, the performance of other methods 574

varied, with Cellpose and RDCNet producing many false positives particularly at early developmental stages, 575

and U3D-BCD and UNETR merging several nuclei for the 64-cell stage and later stages (Figure 2). To further 576

improve segmentation performance at later stages of preimplantation development, we hand-annotated a 577

second ground truth dataset of nuclei in late blastocyst embryos and trained a second Stardist-3D model (late 578

blastocyst model), of which the F1 score remained above 90 % for the > 100-cell stage embryos (Figure 3(A)). 579

Therefore we not only present trained Stardist-3D models with superior performance for nuclear instance 580

segmentation in time-lapse images of early mouse embryos, but share large ground truth datasets (BlastoSPIM 581

1.0 and 2.0), which will be an important resource for evaluating the performance of future CNN architectures 582

because of the dataset’s size and quality and nuclear density relative to other currently available datasets (S2 583

Table). 584

Due to our interest in studying preimplantation mouse development in live images, we integrated our 585

Stardist-3D models (the early embryo and late blastocyst models) into a complete image analysis pipeline 586

(Figure 4), including time-lapse acquisition, instance segmentation, segmentation correction, nuclear centroid 587
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Fig 6. Generalization tests for different model systems and a different imaging modality. (A-C)
For mouse embryos imaged via spinning-disk confocal microscopy, we generated ground-truth nuclear
segmentation (see example max intensity projection in (C)). Panels in (A-B) indicate the performance of
different models on the ground-truth test set. (D-F) Same as in (A-C) but for a ground-truth set of
Platynereis dumerilli embryos [10]. (G-I) Same as in (A-C) but for a ground-truth set of intestinal
organoids [9]. For each case, fine-tuning of our networks enables superior performance as compared to the
network(s) trained on the system-specific ground-truth alone. All scale bars: 10 µm.

registration and lineage tracking. The models and the code underlying the pipeline are made publicly available 588

at blastospim.flatironinstitute.org. We used this pipeline to analyze a time-lapse image from the 8-cell stage 589

to the ≈100-cell stage. These segmentations revealed oscillations of nuclear volume with the cell cycle: 590

volumes gradually increased throughout interphase and peaked just before mitosis, resulting in a sudden 591

volume drop. We probed how nuclear volumes downscale from earlier developmental stages to later stages. 592

Whereas previous studies have quantified this effect based on fixed embryos or live images without tracking, 593

we used our lineage trees to compare the max volume of each mother nucleus to the max volumes of the 594

resulting daughter nuclei (Figure 5(C,D), S12 Fig(B)). We found that nuclei did indeed downscale in volume 595

over time, but that the max nuclear volumes of the daughter were not simply half that of the mother (see 596

S12 Fig for comparison to ground-truth examples). Additionally, sibling nuclei often differed significantly in 597

nuclear volume at early developmental stages (Figure 5(C,E), S12 Fig(C)), but such asymmetries decreased 598

considerably by the 32-to-64 cell transition (Figure 5(C,E)). We expect that our instance segmentation models 599

will enable many more insights into the development of preimplantation mouse embryos, including into the 600
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fate decision occurring within the ICM. 601

The usefulness of datasets like BlastoSPIM often extends to images acquired by different modalities or 602

of different model systems. Here we tested whether: (1) models trained on BlastoSPIM can be applied 603

off-the-shelf to segment nuclei in other contexts and (2) BlastoSPIM can be used to improve accuracy in 604

segmentation via pre-training when limited ground-truth data is available. Our generalization tests extended 605

across three datasets: preimplantation mouse embryos imaged by spinning-disk confocal microscopy, intestinal 606

organoids imaged by light-sheet microscopy [9] and Platynereis dumerilli embryos imaged by light-sheet 607

microscopy [10]. Our early embryo model and late blastocyst models worked well out-of-the-box for the 608

spinning-disk confocal set and up to the 200-cell stage for the Platynereis dumerilli embryos. Furthermore, 609

fine-tuning of our models on the spinning-disk confocal set and the Platynereis dumerilli embryos improved 610

model performance, both in terms of F1 score and panoptic quality, relative to a model trained on system- 611

specific data alone. Finally, fine-tuning of our models on the intestinal organoids set improved performance 612

relative to an “organoid only” model, particularly for stages when the nuclei were densely packed without a 613

separating lumen. Thus, just as with other large ground-truth datasets (for example, ImageNet for object 614

recognition in 2D images), finetuning or transfer learning from models trained on BlastoSPIM should improve 615

performance on related tasks. 616

The generalizability of our model fills a clear need since many publicly available models work only in 2D, 617

segment only cell boundaries, or are trained only on high SNR images [37]. Given our model’s performance even 618

without fine-tuning, small hand-corrections of our model’s predictions on a different biological system could be 619

used to generate training data, as long as that system’s nuclei satisfy the star-convexity assumption of Stardist. 620

We expect that BlastoSPIM and our Stardist-3D models, in conjunction with other publicly available datasets 621

and pre-trained models [38], will play a key role in the development of truly generalist models. Furthermore, 622

the integration of BlastoSPIM-trained models into a larger analysis pipeline enabled the construction of 623

lineage trees, which revealed the temporal dynamics of individual nuclei as fate decisions transpire. This 624

work is thus a crucial step towards fully automated (3+t)-D analysis of early mouse development, and the 625

full pipeline will likely prove useful for the analysis of developmental dynamics of other model organisms. 626
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Supplementary Information 627

S1 Table. Tools for 3D nucleus segmentation. Underlined: methods used for benchmarking here

Tool name Base network Network output Loss metrics Post-processing

Cellpose [23]
2D U-Net with
residual blocks,
style transfer

horizontal/vertical
gradient maps, cell
probability map

L2 loss (gradients), cross-
entropy loss (cell probabil-
ity)

probability threshold and
test-time enhancements

QCANet [6]

Two 3D U-Nets, hy-
perparameter tun-
ing by Bayesian op-
timization

Semantic segmenta-
tion, nucleus center
detection

Dice loss
Reinterpolation and
marker-based watershed

NuSeT [39]

2D U-Net inte-
grated with Region
Proposal Network
(RPN)

Semantic segmenta-
tion, bounding box
with score

cross-entropy loss + Dice
loss (segmentation), class
loss and regression loss (de-
tection)

watershed and 3D recon-
stitution from 2D slices

Stardist [24]
3D ResNet or 3D U-
Net

radial distances to
object boundary,
object probability
(OP) with distance
transform

cross-entropy loss (OP), OP-
weighted mean absolute er-
ror with regularization (ra-
dial distances)

OP threshold and non-
maximum suppression

RDCNet [25]
3D recurrent block
with stacked di-
lated convolutions

semantic classes,
semi-convolutional
embeddings

Embedding soft jaccard
(ESJ) loss

Margin thresholds, Hough
voting

EmbedSeg [10]
3D Branched ERF-
Net

pixel embed-
dings, clustering
bandwidth, seed
probability

Lovász-Softmax loss + seed
loss + smoothness loss

seed probability threshold,
cluster bandwidth thresh-
old

U3D-BCD [26]

3D U-Net with
residual blocks
substituted for con-
volutional layers

foregrounds masks,
instance contours,
signed-distance-
transform map

Weighted sum of cross-
entropy loss and dice loss
for foreground and con-
tour; mean-squared error for
signed distance

seed detection via thresh-
old on foreground proba-
bility and distance value,
marker-controlled water-
shed

UNETR-BCD
[27]

Stack of transform-
ers connected to
3D CNN-based de-
coder

foregrounds masks,
instance contours,
signed-distance-
transform map

Weighted sum of cross-
entropy loss and dice loss
for foreground and con-
tour; mean-squared error for
signed distance

seed detection via thresh-
old on foreground proba-
bility and distance value,
marker-controlled water-
shed

ELEPHANT
[28]

3D U-Net [40]

probability maps
for nucleus center,
nucleus periphery,
and background

sum of (i) class-weighted
negative log-likelihood loss,
(ii) one minus the dice co-
efficient for nucleus center
voxels, (iii) term penalizing
roughness in nucleus center
areas

edge subtraction (back-
ground class) from nu-
cleus center probablities,
thresholding on nucleus
center probability, en-
largement of ellipses

628
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S2 Table. Ground-truth, three-dimensional annotations of nuclei. Other examples of publicly 629

available ground-truth data sets for instance segmentation of nuclei. *The entire ground-truth dataset used 630

in [6] contains more than 6000 time-series of early mouse embryos, of which only 165 have been made publicly 631

available.

Name Microscopy
Nuclear
Labeling

Sample
Image
Count

Network results

NucMM-Z [26]

Serial-
section
electron
microscopy

N/A Zebrafish brain 1
Cellpose3D, Stardist-
3D, U3D-BCD

NucMM-M [26] Micro-CT N/A Mouse visual cortex 1
Cellpose3D, Stardist-
3D, U3D-BCD

BBBC050∗ [6]
Confocal
microscopy

H2B-
mRFP1,
H2B-
mCherry

Pre-implantation
mouse embryo from
the pro-nuclear stage
to 53-cell stage

165
QCANet, 3D U-Net,
3D Mask R-CNN

C. elegans developing
embryo [41]

Confocal
microscopy

histone-
GFP

C. elegans embryo be-
tween 2-cell stage and
≈300-cell stage

9
QCANet, 3D U-Net,
3D Mask R-CNN

Platynereis-Nuclei-
CBG [10]

Light-Sheet
Microscopy

Fluorescent
nuclear
tracer
injected

Platynereis dumerilii
embryo between 0
and 16 hours post-
fertilization

9
Cellpose3D, Stardist-
3D, EmbedSeg

Platynereis-ISH-
Nuclei-CBG [10]

Confocal
Microscopy

DAPI
Platynereis dumerilii
specimins 16 hours
post-fertilization

2
Cellpose3D, Stardist-
3D, EmbedSeg

Parhyale hawaiensis-
Nuclei [24]

Confocal
Microscopy

H2B-
eGFP

Parhyale hawaiensis
embryo between 46
hours post-amputation
(hpa) and 110 hpa

6
U-Net, Stardist-3D,
Cellpose3D, Embed-
Seg

C. elegans-Nuclei [24]
Confocal
Microscopy

DAPI
C. elegans embryo at
the 558-cell stage

28 U-Net, Stardist-3D

Mouse-Skull-Nuclei-
CBG [10]

Confocal
Microscopy

DAPI
Nuclei from the skull of
developing mouse em-
bryos

2
Cellpose3D, Stardist-
3D, EmbedSeg

Peri-implantation
mouse embryos [42]

Confocal
Microscopy

Antibody
staining

Peri-implantation
mouse embryos

35 3D U-Net
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S3 Table. Segmentation of H2B signal in mitotic cells. For mitotic nuclei, there were only 3 633

late-stage images (2 at the 64-cell stage, and 1 at 100-cell stage) with 6 examples. Nuclei were considered 634

mitotic if they were in metaphase or anaphase. For these late-stage embryos, there are many small nuclei 635

tightly packed together. All the methods missed at least one mitotic nuclei at IoU=0.5 with UNETR-BCD 636

performing the best with only one.

Method name Average IoU Misses (IoU < 0.1) Misses (IoU < 0.5) FP (IoU = 0.5)
Cellpose 0.52 1 2 2
QCANet 0.27 1 5 5
Stardist 0.46 1 2 2
RDCNet 0.37 0 4 4
U3D-BCD 0.41 1 4 4
UNETR-BCD 0.65 0 1 1
ELEPHANT 0.37 0 4 4

637

S4 Table. Segmentation of Polar Bodies. There were 13 images in which a total of 15 polar bodies 638

were labelled as such. All the methods detected all the polar bodies (except one that Cellpose missed at 639

IoU=0.1) but with varying degrees of success in how well they were segmented. At IoU=0.5, most methods 640

missed a few, except for RDCNet which was able to detect them all. We hypothesize that RDCNet which 641

uses much fewer parameters given its recursive design, is better able to learn to detect polar bodies using the 642

few examples in the training set.

Method name Average IoU Misses (IoU < 0.1) Misses (IoU < 0.5) FP (IoU = 0.5)
Cellpose 0.47 1 7 6
QCANet 0.35 0 14 14
Stardist 0.66 0 2 2
RDCNet 0.79 0 0 0
U3D-BCD 0.66 0 4 4
UNETR-BCD 0.70 0 2 2
ELEPHANT 0.60 0 5 5

643
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S1 Fig. Segmentation tasks applied to images of a pastoral scene [43] and of a mouse embryo. 644

(A) Raw image to be segmented. From top to bottom, an image of cows in a pasture, maximum intensity 645

projections of 3D image of 16-cell mouse embryo, a z-slice from the 3D image. 3D image has dimensions 646

(83.4 µm, 83.4 µm, 68 µm). Scale bar: 10 µm. (B) Semantic segmentation for images in (A). (C) Object 647

detection for images in (A). (D) Instance segmentation for images in (A). 648

S2 Fig. SNR of each image in the BlastoSPIM dataset. (A-B) Histogram, for annotated images in 649

the original BlastoSPIM set and in the corrected late blastocyst segmentations, respectively, of the difference 650

between mean foreground intensity and the mean background intensity. Black line: Cutoff for separating low 651

SNR from moderate-to-high SNR in the original BlastoSPIM dataset. 652

S3 Fig. F1 score and panoptic quality across IoU thresholds for seven methods. Analogous to 653

Figure 2(A,B). (A,A’) F1 score and panoptic quality, respectively, for an IoU cutoff of 0.2. (B,B’) Same as 654

in (A,A’), for an IoU cutoff of 0.3. (C,C’) Same as in (A,A’), for an IoU cutoff of 0.4. (D,D’) Same as in 655

(A,A’), for an IoU cutoff of 0.6. Note that Figure 2(A,B) are based on an IoU cutoff of 0.5. 656

S4 Fig. F1 score and panoptic quality across IoU thresholds for early embryo, late blastocyst, 657

and all stages models. Analogous to Figure 3(A,B). (A,A’) F1 score and panoptic quality, respectively, 658

for an IoU cutoff of 0.2. (B,B’) Same as in (A,A’), for an IoU cutoff of 0.3. (C,C’) Same as in (A,A’), for an 659

IoU cutoff of 0.4. (D,D’) Same as in (A,A’), for an IoU cutoff of 0.6. Note that Figure 3(A,B) are based on 660

an IoU cutoff of 0.5. 661

S5 Fig. Comparing ground-truth and model-predicted nuclear volumes across embryonic 662

stages. For the combined ground-truth set used in Figure 3(A,B), if a ground-truth instance is matched 663

to a model-predicted instance by an IoU of at least 0.5, we plot the ground-truth nuclear volume against 664

the predicted nuclear volume. Each panel (A-G) is labelled with the corresponding developmental stage. 665

See legend for meaning of dashed lines. Note that the large ground-truth instances at the 8-cell stage 666

correspond to a couple of ground-truth images in which an annotator overestimated nuclear sizes because of 667

low SNR. Encouragingly, our model predicted volumes for these instances which are closer to range of the 668

rest of ground-truth volumes. For the 8-cell stage, the second R2 value is for the set with the overestimated 669

ground-truth volumes removed. 670

S6 Fig. Nearest-neighbor distances between nuclei decrease dramatically during development. 671

(A-D) Example z-slices and quantification for 16-cell (A), 32-cell (B), 50-to-64-cell (C), and >90-cell (D) 672

embryos. The first two rows contain images and corresponding annotations. Each red arrow indicates the 673

nucleus’s effective radius, the radius of a sphere of equivalent volume. The gray lines indicate examples of 674

shortest surface-to-surface distance. The third and fourth rows show that the effective radius and the shortest 675

surface-to-surface distance decrease during development. Illustrations in the bottom histograms show that 676

the latter decreases more than the former. Median of histogram in black. Scale bar: 10 µm. 677

S7 Fig. Quantifying how well star-convex approximation applies to nuclear shapes in ground- 678

truth time series data. We fit each nucleus to a star-convex shape, using 128 rays. For a single embryo, for 679

which we have annotated ground truth for 89 consecutive timepoints (time points acquired every 15 minutes), 680

we plot a box for each time to illustrate how well this fit performs, in terms of IoU. When all nuclei are in 681

interphase, the star-convex fit performs quite well, at more than 90 percent IoU between the ground truth 682

and the model-generated instance. During the transition from the 16-cell stage to the 32-cell stage and from 683

the 32-cell stage to the 64-cell stage, the fit quality degrades. A small number of nuclei, about five in this 684

time series cannot be fit by a star-convex shape, resulting in an IoU of less than 40 percent. We expect that 685

the outlier nuclei (red) – which are not well fit by a star-convex shape – are likely mitotic, most likely in 686

either metaphase or anaphase when the shape of the condensed chromatin is often complex. Black dashed 687

line: the number of nuclei versus time. 688
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S8 Fig. Qualitative evaluation of failure modes for late blastocyst model on images of early 689

embryos, particularly those with low SNR. Blue: Model prediction which is a true positive. Green: 690

Model prediction which is a false positive. (A) z-slice containing only a polar body. Note that the late 691

blastocyst model predicts a couple of false positives around the polar body. (B) z-slice in which debris and a 692

reflection from the image chamber are falsely segmented into instances. (C) z-slice in which a false positive is 693

detected away from the embryo (see region with true positives). 694

S9 Fig. Quantitative and qualitative evaluation of failure modes for the early embryo model 695

and the late blastocyst model on images with particularly low SNR. (A,B) F1-score and panoptic 696

quality, respectively, for the low SNR test set, binned by developmental stage. (C,D) Representative xy 697

slices from an ≈ 90-cell embryo and an ≈ 64-cell embryo, respectively. Results from the early embryo model 698

in (C) illustrate its tendency to improperly merge closely juxtaposed nuclei into a single instance. Results 699

from the late blastocyst model in (C,D) illustrate its tendency to produce false positives, sometimes in 700

regions with nuclei which are blurred or haloed due to imaging artifacts. It is worth noting that these images, 701

particularly (D), have extraordinarily low SNR, which makes even manual annotation difficult. The results in 702

this supplemental figure, thus, represent some of the most difficult test images to segment. 703

S10 Fig. Dynamics of nuclear aspect ratios and nuclear volumes from Figure 5(A). (A,A’) 704

Nuclear volume and nuclear aspect ratio, respectively, for two paths in the lineage tree from the same root. 705

When the paths split at a division, one resulting daughter’s line is dashed, while the other’s remains solid. 706

Vertical dashed lines indicate division events. (B,B’) Nuclear volume and nuclear aspect ratio, respectively, 707

for two paths illustrated in Figure 5(B). Colors as in the tree in Figure 5(A). (C,C’) Nuclear volume and 708

nuclear aspect ratio, respectively, for two paths from the same root to leaves with different fates (one ICM, 709

one TE). Arrow indicates increased aspect ratio of ICM nucleus towards the end of the time lapse. (D,D’) 710

Same as in (C,C’), but for two different paths. 711

S11 Fig. Comparing ground-truth and model-predicted aspect ratios across embryonic stages. 712

For the combined ground-truth set used in Figure 3(A,B), if a ground-truth instance is matched to a 713

model-predicted instance by an IoU of at least 0.5, we plot the ground-truth nuclear aspect ratio against the 714

predicted nuclear aspect ratio. Each panel (A-G) is labelled with the corresponding developmental stage. See 715

legend for meaning of dashed lines. 716

S12 Fig. Dynamics of nuclear volume and aspect ratios in 2 ground-truth lineages. (A,A’) Two 717

fully ground-truth lineages, including both ground-truth nuclear annotation and nuclear tracking. The tree 718

coloring indicates ICM-TE lineage contribution as in Figure 5(A). (B) Plot analogous to Figure 5(D), for 719

the two ground-truth lineages (one in cyan, one in red). Each point represents one mother nucleus from the 720

16-cell stage giving rise to two daughter nuclei at the 32-cell stage. (C) Plot analogous to Figure 5(E), for 721

the two ground-truth lineages (one in cyan, one in red). (D) During the 32-cell stage (see the horizontal 722

black line), the TE nuclear volumes become statistically significantly bigger than the ICM nuclear volumes 723

(comparison based on rank sum test at each time). Dashed lines: mean nuclear volumes for the ICM and TE 724

nuclei in (A). Solid lines: result of fitting lines to inter-division nuclear trajectories, then averaging those lines 725

for the ICM and TE separately. (E) Same as in (D) but for the lineage in (A’). (F) Cartoon summarizing 726

nuclear volume dynamics in the lineages. By fitting a line to each inter-division interval at the 32-cell stage, 727

we extract the value of the linear fit immediately after the division (horizontal dashed lines), the growth rate 728

(indicated by solid black lines), and the time of division (vertical dashed line). (F’, F”, F”’) For each of the 729

ground truth trees, statistical comparisons between ICM and TE linear fits. p-values result from rank sum 730

test. (G-G”’) Example nuclear aspect ratios for the lineage in (A) Each segment is colored as in (A). If two 731

daughters are of same fate, one is plotted as a dashed line. Lines end when next division occurs. (H-H”’) 732

Same as (G-G”’) but for the lineage in (A’) Black arrow indicates sudden change in nuclear aspect ratio. 733

S1 File. Sequence file for H2B-miRFP720 mouse line. 734

February 20, 2024

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2024. ; https://doi.org/10.1101/2023.03.14.532646doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.14.532646
http://creativecommons.org/licenses/by-nd/4.0/


Network Implementation Details 735

Each model was trained with data from 482 3D images of whole embryos. Each embryo was cropped into 8 to 736

16 patches depending on the size for a total of 4363 patches. Each patch had a resolution of 64x256x256. The 737

patches overlap such that all voxels of a nucleus were fully contained in at least one patch. The raw intensity 738

images were bit-shifted by four bits to the right, so that all voxel intensities are in the range between 0 and 739

255. Any value still above 255 was capped at 255. 740

RDC Net 741

For all hyperparameter combinations sampled for training, a few were held constant. The down sampling 742

factors were chosen to be 1, 10, and 10, for the z, x, and y directions, respectively, to account for anisotropy. 743

Spatial dropout was chosen to be 0.1, following the original paper. All networks were trained for a maximum 744

of 200 epochs, batch size of 2, with the Adam optimizer and Cosine Decay Restarts scheduler with learning 745

rates from 10-3 to 0. The set of model weights that resulted in the lowest validation loss across all epochs was 746

saved. The patch size was either the original crop (64x256x256) or 32x256x256 (32 random, consecutive Z 747

slices from the original crop). The number of groups (parallel stacked, dilated convolution blocks with shared 748

weights), dilation rates, number of channels per group, number of iterations, and the margin parameter were 749

also adjusted to observe their effects on network performance. 750

During inference on test images, each raw image was broken into patches with the same size as those the 751

model was trained on. The test patches were passed through the model and the resulting label patches were 752

stitched together by discarding redundant masks and any masks touching the patch boundaries, assuming 753

each nucleus is located at the center of at least one patch. 754

Cellpose 755

Cellpose is called a generalist method for cell and nuclei instance segmentation. It is based on a 2D U-Net 756

with residual blocks and style transfer. The objects are modeled as a diffusion gradient. The output is 757

composed of horizontal and vertical gradient maps and a segmentation probability map. Since the original 758

cellpose model is 2D, the 3D patches were broken into 2D slices for training. The source code was modified 759

to include a data loader, since the size of the 2D training set is orders of magnitude larger than the original 760

Cellpose dataset. Models were trained for a maximum of 1000 epochs, either from scratch or from a pretrained 761

Cellpose model. Test images were down-sampled by a factor of 0.5 in X and Y to improve performance 762

since Cellpose is prone to over-segmentation for our full-resolution images in 3D. The patching and stitching 763

method was the same as for RDCNet. 764

Stardist 765

3D Stardist was trained with patches of 32x256x256 sampled from the full size patches. Input intensity was 766

normalized capping values below 1% and above 99.8%. For sampling the star convex in 3D, we used 96 rays 767

with a grid of 1x4x4 to compensate for the anisotropy. Data augmentation included 2D flips and grid warping. 768

U3D BCD and UNETR 769

In U3D BCD, a 3D Residual U-Net, and UNETR, which uses a transformer as an encoder, the instance 770

segmentation problem is broken down into learning hybrid representations i.e., semantic, contour and signed 771

distance transform maps with the help of neural networks, and using watershed algorithm to separate 772

instances. 773

UNETR encoder’s transformer uses an embedding dimension of 768, the input volume is patched into 774

volumetric tokens of dimensions 16 ×16×16, and multi-head self-attention is performed with 12 heads. 775

Augmentations, in the form of randomized brightness and contrast, flips, rotations and elastic deformations, 776

were used. Finally, the input volumes were randomly cropped to 16×128×128, before passing them through 777

the network. Adam optimizer with decaying learning rate was chosen for training. Weighted sum of Binary 778

Cross Entropy (BCE) Loss and Dice Loss is taken for foreground and contour masks, while Mean Squared 779

Error (MSE) was utilized for signed distance transform map predictions. Inference is performed by processing 780

overlapping sliding windows across the large volumes of testing set. During post-processing, the multi-channel 781
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outputs from networks are combined by thresholding them appropriately to find instance seeds (or markers). 782

Similarly, a more relaxed threshold on the outputs is used to obtain the foreground mask. Thereafter, 783

marker-controlled watershed algorithm can be used with the help of seeds and predicted distance map to find 784

instances. 785

QCANet 786

For QCANet, the original ground-truth set (BlastoSPIM 1.0) had to be converted to a set of nuclear 787

centroids and semantic segmentation. The nuclear centroid image was computed by first down-sampling 788

the xy-resolution by 4 and then by setting the value any voxels within 2.5 µm of a nuclear centroid to 1. 789

The semantic segmentation was computed by setting all labelled regions in the instance segmentation to 1 790

and downsampling by 4 (using scikit-image: block reduce based on maxima). The instance segmentation 791

was down-sampled in the same way, for comparing model predictions to ground truth. In all cases, the 792

down-sampled ground-truth always had the same dimensions: 64x173x169. 793

Images were read in as unsigned 16-bit tiffs, with the z-resolution about 2.5 times less than the xy- 794

resolution (as done in the original QCA study). To handle the very bright polar bodies in our images, we 795

changed QCANet’s image normalization. Input intensity was normalized capping values below 1% and above 796

99.8% and then normalized using CSBDeep’s normalize function. Both the training and validation sizes for 797

both nsn and ndn networks were 5, with augmentation. For all training, the epoch number was set to 200. 798

ELEPHANT 799

To train a 3D ELEPHANT model, we converted our ground truth data into ellipsoid labels, using the 800

script generate seg labels.py in their latest (and continuously updated) main ELEPHANT repository 801

(https://github.com/elephant-track/elephant-server). In the label generation step, the center ratio was 802

set to 0.7. In the training step, the script train.py was used. We trained a model extending the pre-trained 803

versatile model with our dataset of 64x256x256 crops using an additional crop size of 24x192x192, a batch 804

size of 10, and for 40 epochs. We used the class weights for the negative log-likelihood loss (classweights): 805

nucleus center=200, nucleus periphery=100, background=1, with a learning rate (lr) of 0.005. The validation 806

dataset was built as a subset of the dataset by picking up every 10 image/label pairs. The final model was 807

selected based on the validation set and was from the last epoch (i.e., epoch 40). The training was done in 808

approximately 7.6 hours. In the inference step, the script elephant-detection.py was used with the following 809

parameters: scales of 2.0x0.208x0.208 µm, a patch size of 24x256x256, a batch size of 10, a minimum radius 810

(rmin) of 2 µm, a maximum radius (rmax) of 10 µm, a center ratio (cratio) of 0.7, and a probability threshold 811

(pthresh) of 0.5. 812

Training with Synthetic Data 813

To counter the limited number of samples with densely-packed nuclei, we generate artificial samples to 814

learn generalized features. This is made possible by modeling nuclei as 3-dimensional Gaussian kernels, of 815

dimensions x, y, z where x, y ∈ [100, 150] and z ∈ [3, 6]. Elastic deformations, randomized lighting, and 816

addition of noise are done to match SNR ratios with that of actual data-set. The models are pre-trained with 817

this simulated data, allowing the network to fine-tune its predictions on the actual data-set. 818

Model Generalization Tests 819

Mouse blastocysts image by spinning disk-confocal 820

The generation of raw images and corresponding ground truth annotation is described in the Methods. The 821

voxel resolution for these images is the same as that of our BlastoSPIM datasets. The validation set for the 822

fine-tuned models and for the “only confocal” model is a single embryo with 50 nuclei, in 32x256x256 patches. 823

The training set for the fine-tuned models and for the “only confocal” model was is a single embryo with 824

58 nuclei, in 32x256x256 patches. All models were trained as described in the Stardist section of Network 825

Implementation Details. The fine-tuned models and for the “only confocal” model were trained in the same 826

way, with the only difference being in the weights of the network at the start of training. Further improvement 827

February 20, 2024

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2024. ; https://doi.org/10.1101/2023.03.14.532646doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.14.532646
http://creativecommons.org/licenses/by-nd/4.0/


of the fine-tuned model relative to the “only confocal” model could possibly be obtained by lowering the 828

learning rate or fixing some network weights during fine-tuning. 829

For the “early embryo” model and “late blastocyst” models results without fine-tuning, we combined the 830

validation and training embryos described above (one embryo with 50 nuclei and another with 58 nuclei) to 831

optimize only the nms threshold and probability threshold (using the built-in optimize thresholds) without 832

tuning any weights in the network. 833

Platynereis dumerilli embryos 834

The raw images and corresponding ground truth annotation for Platynereis dumerilli embryos are from [10]. 835

The voxel resolution for these images is 0.406 µm in xy as compared to 0.208 µm for the BlastoSPIM datasets, 836

while the z resolutions of both sets are equal. We, thus, upsampled the images of Platynereis dumerilli 837

embryos by a factor of 2 in xy (by interpolation with rescale from sci-kit image). The validation set for the 838

fine-tuned models and for the “only Platynereis” model contains half of 32x256x256 patches of 2 images, 839

one with 38 nuclei and the other with 392 nuclei. The rest of the 32x256x256 patches of these 2 images, in 840

addition to 32x256x256 patches of images with 113 nuclei and 261 nuclei, are in the training set. 841

All models were trained as described in the Stardist section of Network Implementation Details. The 842

fine-tuned models and for the “only confocal” model were trained in the same way, with the only difference 843

being in the weights of the network at the start of training. Further improvement of the fine-tuned model 844

relative to the “only confocal” model could possibly be obtained by lowering the learning rate or fixing some 845

network weights during fine-tuning. 846

For the “early embryo” model and “late blastocyst” models results without fine-tuning, we combined the 847

validation and training embryos described above to optimize the nms threshold and probability threshold 848

without tuning any weights in the network. 849

Intestinal Organoids 850

The organoids dataset was provided by the Liberali Lab (see [9]). It contained 3 sequences of live intestinal 851

organoids grown from single cells, 2 that were budding and 1 with a growing enterocyst. As compared to 852

nuclear shapes in early preimplantation embryos, the nuclear shapes in intestinal organoids vary considerable 853

across time and across different cells. Additionally, in images of intestinal organoids, the large nuclei are 854

closely juxtaposed even before the formation of a lumen. We used frames 21 to 350 of the first budding 855

organoid (starting with 2 nuclei and reaching ≈ 40 nuclei) for training and frames 21 to 350 of the enterocyst 856

(starting with 1 nucleus and reaching ≈ 30 nuclei) for testing. We used these frames because these images 857

had label images which appeared to be the most accurate with respect to the raw data. 858

We were given the original raw images and the deconvolved images but found that the models performed 859

better with the raw images. This is not surprising, since the BlastoSPIM-trained models were trained on raw 860

images as well. Denoising and deconvolving did not improve network performance although they improve 861

the visual appearance for human viewing. Images were acquired using light-sheet recordings performed with 862

a dual-illumination inverted light-sheet microscope. Images were acquired with an x-y resolution of 0.26 863

microns and 2.0 µm between slices. 864

Computational Resource Requirements 865

For training of any of the models presented in this study, either a 40 GB A100 or a 32GB V100 was used. 866

Training was not parallelized across multiple GPUs. Although the use of a GPU tends to speed up the process 867

of model inference, a GPU is not required for that step. For inference, we requested 150GB memory on 868

nodes with 2.6 GHz Intel Skylake CPUs. With 16 threads requested it takes on average 120-130s per image. 869

Additionally, for the use of our models on new data from different model systems or imaging modalities, the 870

optimization of the nms threshold and probability threshold – as opposed to the model weights themselves – 871

with the use of the Stardist-3D function optimize thresholds does not require a GPU. 872
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C. Russell, L. Moya-Sans, C. de-la Torre-Gutiérrez, D. Schmidt, D. Kutra, M. Novikov, M. Weigert,
U. Schmidt, P. Bankhead, G. Jacquemet, D. Sage, R. Henriques, A. Muñoz-Barrutia, E. Lundberg,
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