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Abstract. The Human Connectome Project Multimodal Parcellation
(HCP_-MMP1.0) provides a robust in vivo map of the cerebral cortex,
which demonstrates variability in structure and function that cannot
be captured through diffeomorphic image registration alone. The HCP
successfully employed a fully-connected neural network architecture to
capture this variation, however it is unclear whether this approach gen-
eralises to other datasets with less rich imaging protocols. In this paper
we propose and validate a novel geometric deep learning framework for
generating individualised HCP_MMP1.0 parcellations in UK Biobank
(UKB), an extremely rich resource that has led to numerous break-
throughs in neuroscience. To address substantial differences in image
acquisition (for example, 6 minutes of resting-state fMRI per subject for
UKB vs. 60 minutes per subject for HCP), we introduce a multi-step
learning procedure including pretraining with a convolutional autoen-
coder. Compared to a fully-connected baseline, our proposed framework
improved average detection rate across all areas by 10.4% (99.1% vs
88.7%), and detection of the worst performing area by 51.0% (80.9% vs.
29.9%). Importantly, this was not a result of the framework predicting
one consistent parcellation across subjects, as visual inspection indicated
that our method was sensitive to atypical cortical topographies. Code
and trained models will be made available at https://www.github.com.
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1 Introduction

The Human Connectome Project Multimodal Parcellation (HCP-MMP1.0) pro-
vides a robust in vivo map of the human cerebral cortex [Q10], which has been
implicated in cognition, behaviour and neuropsychiatric disorders [25]. Using
an observer-independent approach and multimodal cortical surface registration,


https://www.github.com
https://doi.org/10.1101/2023.03.14.532531
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.14.532531; this version posted March 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2 Authors Suppressed Due to Excessive Length

Typical Split Shifted

AR A O

Fig. 1. Representative examples of typical, split and shifted area 55b topographies
in individual HCP subjects, generated using the proposed geometric deep learning
framework. Inter-individual differences reflect variabilities that persist following diffeo-
morphic multimodal alignment to a single group average template.

the HCP identified 83 areas previously reported using post-mortem histology,
and 97 new areas defined by sharp transitions in structure and function [9].
Importantly, these cortical areas demonstrated marked diversity in structural
and functional organisation that cannot be captured through biomechanically-
constrained, diffeomorphic registration alone (Figure [If) [9]. To generate par-
cellations that reflected individual differences in cortical organisation, the HCP
used 112 unique features of cortical structure and function to train a fully-
connected neural network (FCNN) that accurately predicted which cortical area
each vertex belonged to (360 networks in total), even when they significantly
differed from the group average. These individualised HCP_MMP1.0 parcella-
tions, which have significantly advanced our understanding of brain-behaviour
relationships [4] and cognitive function [2], could benefit other large-scale neu-
roimaging consortia. One such study is the UK Biobank (UKB), an extremely
rich resource that has led to a number of neuroscientific breakthroughs [I87126].
However, as these parcellations utilised large amounts of high-resolution MRI
data per subject (including an extensive task fMRI battery) [10], it is unknown
whether individualised, high-quality parcellations are also achievable in studies
that cannot match these protocols [10/3].

The HCP FCNN approach demonstrated overall excellent performance, de-
tecting 96.6% of all cortical areas in 210 unseen subjects. However, some ar-
eas were detected <75% of the time [9]. It is unknown whether these areas are
truly absent, or whether this reflects inherent limitations in FCNN architectures,
namely that each vertex is treated as spatially independent of its neighbours.
Convolutional neural networks are one of the most successful learning-based
methods for semantic segmentation, and operate by passing localised filters over
an image to capture context-specific information [I5]. This work introduces and
validates a new geometric deep learning (gDL) framework for generating indi-
vidualised HCP_MMP1.0 parcellations on sphericalised cortical surfaces. Specif-
ically, this approach: 1) improves areal detection rates compared to a FCNN
baseline; 2) remains sensitive to individual topographic variations in areal or-
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ganisation that cannot be captured through diffeomorphic image registration
alone; and 3) generalises the HCP_MMP1.0 parcellation to a new dataset with
a substantially different image acquisition protocol.

2 Materials and Methods

Data HCP images were acquired with a customized 3T Siemens ‘Connectom’
Skyra scanner and standard Siemens 32-channel head coil at a single site in
Washington University, St. Louis [I1I]. Training examples were taken from the
same 210 HCP subjects (‘210P’; 29.4 4 3.5 years, 130 biological females (61.9%))
used to develop the original HCP MMP_1.0 [9]. HCP image acquisition consisted
of structural: 0.7mm isotropic Tlw and T2w; resting-state fMRI (rs-fMRI):
2.0mm isotropic, 60 minutes total; task-fMRI: 7 tasks, 48 minutes total [11].

Two cohorts were used for validation: 1) a separate set of 210 HCP subjects
(‘210V’; 28.8 & 3.5 years, 114 biological females (54.3%), same as used by [9]) and
2) 1500 UKB subjects (63.8 + 7.6 years, 822 biological females (54.8%)). UKB
images were acquired with a standard 3T Siemens Skyra scanner and Siemens 32-
channel head coil at 4 sites across England [I]. UKB image acquisition consisted
of structural: 1mm isotropic T1lw and T2-FLAIR; rs-fMRI: 2.4mm isotropic, 6
minutes total; task-fMRI: 1 task, 4 minutes total [IJ.

Pre-processing Major differences in scanning protocols exist between HCP
and UKB datasets, with UKB acquiring lower resolution structural and func-
tional imaging, and substantially less f/MRI per subject (fewer tasks and 6 vs. 60
mins of rs-fMRI). This necessitated the development and validation of new tools
for generalising the HCP_MMP1.0 to UKB data. To achieve this we first ran
the HCP minimal preprocessing pipeline [I1] to allow multimodal surface-based
registration [22I21] of individual subject cortical features to the HCP MSMAIl
template space. This drives alignment using features on sphericalised cortical
surfaces that better correspond with cortical areas, specifically: 1 T1lw/T2w ra-
tio ('myelin’) map, 32 rs-fMRI ICA spatial maps and 9 visuotopic spatial maps)
[9]. This required generating T1w/T2w ratio maps using the intensity bias cor-
rection described in [II], mapping the T1lw/T2w ratio and denoised rs-fMRI
timeseries to the cortical surface, and generating individualised rs-fMRI ICA
spatial maps through weighted dual regression of the HCP group ICA spatial
templateﬁ into UKB rs-fMRI timeseries data [9]. Compared to volumetric and
folding-based surface registration, this multimodal surface registration approach
markedly improves inter-individual alignment of cortical areas [9522//21].

S Generating UKB specific ICA maps for multimodal alignment was considered, but
was ultimately decided against in order to minimise differences in preprocessing with
the HCP. However, group ICA of 3000 UKB subjects at dimension = 40 generated
very similar components to group ICA of the same dimensionality in the HCP.
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Model design Parcellation of the cerebral cortex was framed as a binary clas-
sification problem, where models were tasked with labelling vertices as being
part of an area or not [9]. Model inputs were 91 cortical features including
cortical thickness, curvature, T1lw/T2w ratio, 77 rs-fMRI ICA spatial maps, 6
visuotopic spatial maps and 5 artefact mapsﬂ Vertex classification was spatially
constrained to occur within a restricted region (a ’searchlight’ containing vertices
within 30mm geodesic distance of the group average area). This was possible be-
cause all data had been multimodally aligned during pre-processing and justified
since the relative positions of cortical areas are strongly conserved [14]. In total
360 classification networks were trained, one for each area. Areas from left and
right hemispheres were considered separately, since some areas exhibit impor-
tant asymmetries in their functional connectivity and/or spatial relationships
with adjacent areas [9].

Fully-connected framework: An optimised FCNN architecture, which
better reflects current practices, was used as a baseline to ensure a fair compar-
ison with the gDL framework. Our optimised FCNN architecture differed from
the original HCP FCNN [9] (Supplementary Methods: Section 6) in the follow-
ing ways: 1) the number of hidden layers was increased from one (H; = 9) to
three, with dimensions of 128 (H;), 64 (Hz) and 32 (Hs); 2) tahn non-linearities
were replaced with SiLU non-linearities; 3) batchnorm was used after each non-
linearity; 4) the mean squared error loss was replaced with a binary cross-entropy
with logits loss; 5) each model was trained for a minimum/maximum of 30/80
epochs. If validation area under the receiver-operator curve (AUROC) did not
increase for 5 consecutive epochs, training was terminated and the model with
the highest AUROC was selected.

Geometric deep learning framework: To address outstanding issues in
generalising individualised HCP_MMP1.0 parcellations to the lower quality UKB
imaging data, a novel geometric deep learning framework was implemented on
icospheric cortical surfaces [8]. Each segmentation network (one per cortical area)
was based on a U-Net [23] with 5 encoding and 5 decoding blocks (Figure [2)).
Each block contained a single MoNet convolutional layer parameterised with K
= 37 Gaussian kernels and polar pseudo-coordinates [19], followed by a SiLU
nonlinearity [6]. The optimal number of Gaussian kernels was determined by
first assessing model performance for selected cortical areas using K = [5, 10,
15, 20, 25, 30, 35, 40, 45, 50] (optimal model performance when K = 35) and
then further optimising by making unit adjustments of K. Downsampling and
upsampling were achieved following the procedure described in [§]. Model over-
fitting was addressed by using 2D dropout (p=0.2) [24] prior to the first two
downsamples. Training was carried out in two stages. During the first (‘pre-
training’) stage, a reconstruction autoencoder was trained for the purpose of
initialising the weights of the segmentation model for each cortical area. The
reconstruction autoencoder had the same architecture as Figure [2| but lacked

" These are the same features as for [9] with the exclusion of task MRI features (1
mean task fMRI activation map, and 20 task fMRI spatial ICA maps) which had no
correlates in UKB
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Fig. 2. Geometric deep learning architecture. C' represents the number of channels,
and V represents the number of vertices. For the segmentation networks: [C;n, C1, Ca,
Cs, Ca, Cs, Cout] = [91, 32, 64, 128, 256, 512, 1]. For the reconstruction autoencoder,
skip connections were removed and C,,: varied across cortical areas.

skip connections. Each reconstruction autoencoder was tasked with reconstruct-
ing only the most informative cortical features for a given area, as determined
through visual inspection. All 91 cortical features were used as inputs in order
to match the input weight dimensions for the segmentation model in the second
training stage. However, the number of output channels (labels) to reconstruct
was variable across cortical areas, depending on how informative each cortical
feature was. The reconstruction autoencoder model weights were initialised with
xavier initialisation [I2]. Segmentation was performed in the second training
stage, using the pretrained model weights. Models inputs were the same 91 cor-
tical features, whilst labels were subject-specific parcellations derived from [9],
generated using the original FCNN architecture. Each segmentation model out-
put was transformed into a probability map using a sigmoid function, where
values represented the probability that each vertex belongs to a given cortical
area. Final parcellations were generated by aggregating across all classifiers us-
ing a winner-takes-all approach, with each vertex being assigned the label with
the highest probability.

Implementation and training Models were trained and tested using the
HCP210P and HCP29T subsets described in [9]. Cortical features and labels
were upsampled from a standard resolution (32,492 vertices) to a sixth order ico-
spheric resolution (40,962 vertices). All cortical features were normalised within-
subject and within-feature to a mean of 0 and standard deviation of 1, and ex-
treme values were clipped at + 4 standard deviations. Autoencoder models were
trained and validated using the mean absolute error, whilst segmentation models
were trained using a binary cross-entropy loss with logits, and validated using
area under the receiver-operator curve. All models were trained with a batch
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Fig. 3. Comparison of selected cortical areas across gDL and optimised FCNN archi-
tectures in UKB. All cortical areas highlighted are absent from the UKB 1500 group
average parcellation when using optimised FCNN architecture. However, all cortical
areas are present in UKB 1500 group average parcellation using gDL, and share very
similar topography to HCP210P group average. Only left hemisphere shown for visu-
alisation purposes.

size of 1, and optimisation was perfomed using AdamW [I7] with a learning rate
of 1073, All models were trained on a single NVIDIA RTX 24GB GPU, for a
minimum/maximum of 15/30 epochs. Model training was terminated if there
were no improvements in validation performance after 5 consecutive epochs.
Once trained, segmentation models were then applied to all UKB subjects. To
account for differences in the intensity distributions across each population, all
UKB subject features were histogram matched to the group average of the HCP
210P feature maps used for training. No UKB subjects were seen during training.

3 Results & Discussion

Figure [3] compares the group average parcellation of 1500 UKB subjects using
the optimised FCNN and gDL frameworks. Only 345 (left hemisphere: 172; right
hemisphere: 173) of 360 cortical areas were present in the optimised FCNN
group average, whilst all cortical areas were present in the results from our
proposed gDL method. Of note, the original HCP FCNN framework [9] was
unable to generate any meaningful parcellations for individual UKB data, most
likely due to a combination of lower data quality in the UKB and the spatial
independence of the FCNN. Moreover, using a single gDL network to parcellate
all areas simultaneously resulted in a group average parcellation containing only
135 of 180 areas per hemisphere.

The proposed gDL model also outperformed the optimised FCNN architec-
ture in average areal detection rate (99.1% vs. 88.7%) and lowest areal detection
rate (80.9% vs. 29.9%) across both hemispheres. Importantly, these gDL results
were not a result of each segmentation model predicting one consistent parcel-
lation across subjects: UKB areal probability distributions were highly similar
to those in the HCP, and demonstrate that cortical areas vary in location, even
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after areal feature-based cortical alignment (Figure , third row). Moreover,
visual inspection indicated that our method was sensitive to atypical cortical
topographies, with 3.7% (n = 54) of subjects having split 55b and 1.7% (n=26)
having shifted 55b (Figure [dp).

Both the optimised FCNN and gDL frameworks performed well in unseen
HCP210V cortical data, and demonstrate improvements compared to the original
HCP FCNN used in [9] (Table[l). The smaller differences in performance between
the optimised FCNN and gDL frameworks are expected, given that the amount
and quality of MRI data per subject in the HCP is substantially higher compared
to the UKB.

Despite marked differences in imaging protocols, these results highlight the
excellent replicability of the HCP_MMP1.0 parcellation using the proposed gDL
framework (Figure [4p), which is pertinent given concerns about reproducibility
in neuroimaging [20], and stands in contrast to the replicability of other fully
data-driven cortical parcellations in independent datasets [I3/16]. However, an
important limitation is that both optimised FCNN and gDL frameworks were
trained using labels generated from the original HCP FCNN [9], which should not
be considered ground truth. Further work is required to generate more accurate
training labels, and to understand how these impact model performance and
parcellation accuracy.

4 Conclusion

Here we present and evaluate an approach for generating individualised multi-
modal cortical parcellations that generalise to markedly different datasets, and
highlights the reproducibility of the HCP_MMP1.0 parcellation in independent
cohorts.
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Model Original FCNN [9] | Optimised FCNN | gDL
Average areal detection rate (%) 96.4 99.3 99.9
Lowest areal detection rate (%) 70.3 89.6 96.4
Split 55b (%) 4.6 5.1 1.7
Shifted 55b (%) 4.4 5.6 2.9

Table 1. Comparison of model performance in HCP 210V validation set. FCNN: fully-
connected neural network; gDL: geometric deep learning
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Fig. 4. Multimodal parcellation in the HCP and UKB. (a) First row: group average
maps for HCP 210P, HCP 210V and 3000 UKB subjects. Second row: Border overlap
between HCP 210P (blue; seen during training), HCP 210V and UKB 3000 (red; not
seen during training). Areas of purple indicate overlap between borders. The Dice over-
lap ratio between HCP 210P and UKB 3000 was 0.986, relative to 0.996 between HCP
210P and 210V group maps. Third row: Probabilistic maps of areas V1, 4, RSC, MT,
LIPv, TEla, 46, and 10r, overlaid on MSMAIll-aligned S1200 HCP average curvature
map. As expected, spatial variability of cortical areas between subjects changes across
the cortex, and this variability is consistent between HCP 210P and HCP 210V re-
ported in [9] using a fully connected neural network, and UKB 3000 using our method.
(b) Representative examples of typical (first row), split (second row) and shifted (third
row) area 55b topographies. Alongside each individual parcellation are the probability
maps for areas 55b, frontal eye field (FEF) and premotor eyefield (PEF), and the lan-
guage spatial ICA map (from ICA d=40). T1lw/T2w maps are shown for typical and
split 55b topographies, whilst the upper limb spatial ICA map is shown for the shifted
55b topography [9]. All maps are displayed on an inflated cortical surface. Results were
similar for both hemispheres, but only the left hemisphere is shown.
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